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Abstract. In this paper the problem of Connected Components Label-
ing (CCL) in binary images using Graphic Processing Units (GPUs) is
tackled by a different perspective. In the last decade, many novel al-
gorithms have been released, specifically designed for GPUs. Because
CCL literature concerning sequential algorithms is very rich, and includes
many efficient solutions, designers of parallel algorithms were often in-
spired by techniques that had already proved successful in a sequential
environment, such as the Union-Find paradigm for solving equivalences
between provisional labels. However, the use of decision trees to minimize
memory accesses, which is one of the main feature of the best performing
sequential algorithms, was never taken into account when designing par-
allel CCL solutions. In fact, branches in the code tend to cause thread
divergence, which usually leads to inefficiency. Anyway, this considera-
tion does not necessarily apply to every possible scenario. Are we sure
that the advantages of decision trees do not compensate for the cost
of thread divergence? In order to answer this question, we chose three
well-known sequential CCL algorithms, which employ decision trees as
the cornerstone of their strategy, and we built a data-parallel version
of each of them. Experimental tests on real case datasets show that, in
most cases, these solutions outperform state-of-the-art algorithms, thus
demonstrating the effectiveness of decision trees also in a parallel envi-
ronment.

Keywords: Image processing · Connected Components Labeling · Par-
allel Computing · GPU

1 Introduction

In the last decade, the great advance of Graphic Processing Units (GPUs) pushed
the development of algorithms specifically designed for data parallel environ-
ments. On GPUs, threads are grouped into packets (warps) and run on single-
instruction, multiple-data (SIMD) units. This structure, called SIMT (single-
instruction, multiple threads) by NVIDIA, allows to execute the same instruc-
tion on multiple threads in parallel, thus offering a potential efficiency advan-
tage [27]. It is commonly known that most sequential programs, when ported on
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GPU, break the parallel execution model. Indeed, only applications character-
ized by regular control flow and memory access patterns can benefit from this
architecture [11].

During execution, each processing element performs the same procedure (ker-
nel) on different data. All cores in a warp run like lock-step at same instruction,
but next instruction can be fetched only when the previous one has been com-
pleted by all threads. If an instruction requires different amounts of time in
different threads, such as when branches cause different execution flows, then
all threads have to wait, decreasing the efficiency of the lock-step. This is the
reason why intrinsically sequential algorithms must be redesigned to reduce/re-
move branches and fit GPU logic. But is this always necessary? Would this al-
ways improve performance? In this paper, focusing on the Connected Component
Labeling (CCL) problem, we demonstrate that the best performing sequential al-
gorithms can be easily implemented on GPU without changing their nature, and
on real case scenarios they may perform significantly better than state-of-the-
art algorithms specifically designed for GPUs. Given that CCL is a well-defined
problem that provides an exact solution, the main difference among algorithms
is the execution time. This is why the proposals of the last years focused on the
performance optimization of both sequential and parallel algorithms.

The rest of this paper is organized as follows. In Section 2 the problem of
labeling connected components on binary images is defined and the notation
used throughout the paper is introduced. Section 3 resumes state-of-the-art al-
gorithms for both CPUs and GPUs, describing strengths and weaknesses of each
proposal. In Section 4 we describe how sequential algorithms have been imple-
mented on GPU using CUDA. Then, to demonstrate the effectiveness of the
proposed solution, an exhaustive set of experiments is reported in Section 5.
Finally, Section 6 draws some conclusions.

2 Problem Definition

Given I, an image defined over a two dimensional rectangular lattice L, and I(p)
the value of pixel p ∈ L, with p = (px, py), we define the neighborhood of a pixel
as follows:

N (p) = {q ∈ L | max(|px − qx|, |py − qy|) ≤ 1} (1)

Two pixels, p and q, are said to be neighbors if q ∈ N (p), that implies
p ∈ N (q). From a visual perspective, p and q are neighbors if they share an edge
or a vertex. The set defined in Eq. 1 is called 8-neighborhood of p.

In a binary image, meaningful regions are called foreground (F), and the
rest of the image is the background (B). Following a common convention, we will
assign value 1 to foreground pixels, and value 0 to background.

The aim of connected components labeling is to identify disjoint objects,
composed of foreground pixels. So, given two foreground pixels p, q ∈ F , the
relation of connectivity � can be defined as:

p � q ⇔ ∃{si ∈ F | s1 = p, sn+1 = q, si+1 ∈ N (si), i = 1, . . . , n} (2)
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We say that two pixels p, q are connected if the condition p � q is true. The
above definition means that a path of connected foreground pixels exists, from
p to q. Moreover, since pixel connectivity satisfies the properties of reflexivity,
symmetry and transitivity, � is an equivalence relation. Equivalence classes based
on � relationship are called Connected Components (CC).

Algorithm 1 Union-Find functions. P
is the Union-Find array, a and b are pro-
visional labels.
1: function Find(P , a)
2: while P [a] 6= a do
3: a← P [a]

4: return a

5: procedure Union(P , a, b)
6: a← Find(P, a)
7: b← Find(P, b)
8: if a < b then
9: P [b]← a
10: else if b < a then
11: P [a]← b

The pixel connectivity associated
to the neighborhood of Eq. 1 is usu-
ally called 8-connectivity, in contrast
to the 4-connectivity, in which only
pixels sharing an edge are consid-
ered neighbors and then connected.
According to the Gestalt Psychology,
CCL usually requires 8-connectivity,
that is why we focus on it.

CCL algorithms assign a positive
unique label (integer number) to all
foreground pixels of a connected com-
ponent of the image, marking back-
ground pixels with 0. Depending on
the strategy used to perform the task,
it can happen, at some point of the al-

gorithm, that two connected pixels p, q are assigned different provisional labels.
In that case, the two labels are said to be equivalent. Equivalent labels must be
eventually modified, so that they result equal to a certain representative one,
through a process of equivalence resolution.

Several strategies exist to solve equivalences, among which one of the most
efficient exploits Union-Find, firstly applied to CCL by Dillencourt et al. [14].
The Union-Find data structure provides convenient procedures to keep track of
a partition P of the set S of provisional labels. Two basic functions are defined
on labels a, b ∈ S:

– Union(a, b): merges the subsets containing a and b.
– Find(a): returns the representative label of the subset containing a.

The recording of an equivalence between labels is performed through a call to
Union, while Find eases the resolution. The partition is represented as a forest
of rooted trees, with a tree for every subset of S. The forest can be represented
as an array P , where P [a] is the father node of a. A possible implementation of
Union-Find functions is given in Algorithm 1.

3 Connected Components Labeling Algorithms

Efficiency of connected components labeling is critical in many real-time applica-
tions [13, 29, 30], and this is the reason why many strategies have been proposed
for efficiently addressing the problem [10].
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Fig. 1. (a) is the Rosenfeld mask used by SAUF to compute the label of pixel x during
the first scan and (b) is the Grana mask used by BBDT and DRAG to compute the
label of pixels o, p, s and t. Finally, (c) is one of the optimal decision trees associated to
the Rosenfeld mask. Here ellipses (nodes) represent conditions to check and rectangles
(leaves) are the actions to perform.

Traditionally, on sequential machines a two scan algorithm is employed. It is
composed of three steps:

– First scan: scans the input image using a mask of already visited pixels, such
as the one in Fig. 1a, and assigns a temporary label to the current pixel/s,
recording any equivalence between those found in the mask;

– Flattening : analyzes the registered equivalences and establishes the definitive
labels to replace the provisional ones;

– Second scan: generates the output image replacing provisional with final
labels.

When statistics about connected components are required (e.g. area, perime-
ter, circularity, centroid), the second scan can be avoided, reducing the total
execution time.

Different solutions allowed performance improvements by avoiding redundant
memory accesses [19, 21, 34]. One of the first improvements is the Scan Array-
based Union-Find (SAUF) proposed by Wu et al. in [34]. This is a reference
algorithm because of its very good performance and ease of understanding. The
optimization introduced with SAUF reduces the number of neighbors visited
during the first scan using a decision tree, such as the one shown in Fig. 1c. The
idea is that if two already visited pixels are connected, their labels have already
been marked as equivalent in the Union-Find data structure, so we do not even
need to check their values.

Since 8-connectivity is usually employed to describe foreground objects, this
algorithm was extended in [18, 19] with the introduction of 2×2 blocks, in which
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all foreground pixels share the same label. In this case, the scanning mask is big-
ger (Fig. 1b), leading to a large number of combinations that produces a complex
decision tree, whose construction is much harder. In [20] an optimal strategy to
automatically build the decision tree by means of a dynamic programming ap-
proach has been proposed and demonstrated. This approach is commonly known
as Block Based Decision Tree scanning (BBDT).

He et al. [21] were the first to realize that, thanks to the sequential approach
taken, when the mask shifts horizontally through the image, it contains some
pixels that were already inside the mask in the previous iteration. If those pixels
were checked in the previous step, a repeated reading can be avoided. They
addressed this problem condensing the information provided by the values of
already seen pixels in a configuration state, and modeled the transition with a
finite state machine. In [16] a general paradigm to leverage already seen pixels,
which combines configuration transitions with decision trees, was proposed. This
approach has again the advantage of saving memory accesses.

In [5, 8], authors noticed the existence of identical and equivalent subtrees in
the BBDT decision tree. Identical subtrees were merged together by the compiler
optimizer, with the introduction of jumps in machine code, but equivalent ones
were not. By also taking into account equivalent subtrees they converted the
decision tree into a Directed Rooted Acyclic Graph, which they called DRAG.
The code compression thus obtained, does not impact neither on the memory
accesses, nor on the number of comparisons, but allows a significant reduction
of the machine code footprint. This heavily reduces the memory requirements
increasing the instruction cache hit rate and the run-time performance.

When moving to parallel architectures, CCL can be easily obtained by re-
peatedly propagating the minimum label to every pixel neighbor. Nevertheless,
much better alternatives exist. Oliveira et al. [28] were the first to make use of
the Union-Find approach in GPU. In their algorithm, the so called Union Find
(UF), the output image is initialized with sequential values. Then, Union-Find
primitives are used to join together trees of neighbor pixels. Finally, a flattening
of trees updates the output image, completing the task. The algorithm is firstly
performed on rectangular tiles, and then large connected components are merged
in a subsequent step.

Optimized Label Equivalence (OLE) [23] is an iterative algorithm that records
Union-Find trees in the output image itself. The algorithm consists of three ker-
nels that are repeated in sequence until convergence. They aim at propagating
the minimum label through each connected component, flattening equivalence
trees at every step.

Zavalishin et al. [35] proposed Block Equivalence (BE), introducing the block-
based strategy into a data-parallel algorithm. They make use of two additional
data structures besides the output image: a block label map and a connectivity
map, respectively to contain block labels and to record which blocks are con-
nected together. The structure of the algorithm is the same as OLE, with the
exception that it operates on blocks instead of single pixels. When convergence
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is met, a final kernel is responsible for copying block labels into pixels of the
output image.

Komura Equivalence (KE) [24] was released as an improvement over Label
Equivalence. Anyway, it has more in common with the Union Find algorithm.
Indeed, their structures are almost equivalent. The main difference is the initial-
ization step, which starts building Union-Find trees while assigning the initial
values to the output image. The original version of the algorithm employs 4-
connectivity. An 8-connectivity variation has been presented in [2].

Finally, Distanceless Label Propagation (DLP) [12] tries to put together pos-
itive aspects of both UF and LE. The general structure is similar to that of UF,
with the difference that the Union operation is performed between each pixel
and the minimum value found in a 2×2 square. Moreover, the Union procedure
is implemented in an original and recursive manner.

4 Adapting Tree-Based Algorithms to GPUs

Algorithm 2 Summary of algorithms
kernels. I and L are input and output
images. The pixel (or block) on which a
thread works is denoted as x.
1: kernel Initialization(L)
2: L[idx]← idx

3: kernel Merge(I, L)
4: DecisionTree(Mask(x))

5: kernel Compression(L)
6: L[idx]← Find(L, idx)

7: kernel FinalLabeling(L)
8: label← L[idx]
9: for all a ∈ Block(x) do
10: if I(a) = 1 then
11: L(a)← label
12: else
13: L(a)← 0

We adapt SAUF, BBDT and DRAG
to a parallel environment, thus pro-
ducing CUDA based CCL algorithms,
that we call C-SAUF, C-BBDT and
C-DRAG.

A GPU algorithm consists of a
sequence of kernels, i.e., procedures
run by multiple threads of execu-
tion at the same time. In order to
transform the aforementioned sequen-
tial algorithms into parallel ones, the
three steps of which they are com-
posed (first scan, flattening, and sec-
ond scan) must be translated into
appropriate kernels. In each of those
steps, a certain operation is repeated
over every element of a sequence.
Thus, a naive parallel version consists
in a concurrent execution of the same
operation over the whole sequence.
Unfortunately, the first scan cannot

be translated in such a simple way, because of its inherently sequential nature:
when thread tx runs, working on pixel x, every foreground pixel in the neigh-
borhood mask must already have a label. To address this issue, we assign an
initial label to each foreground pixel, equal to its raster index (idx). This choice
has two important consequences. First, we can observe that there is no need
to store provisional labels in the output image L, because calculating them is
trivial. So, until second scan, L can be used as the Union-Find structure, thus
removing the need to allocate additional memory for P . In fact, in our parallel
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Table 1. Kernel composition of the proposed CUDA algorithms.

C-SAUF C-BBDT C-DRAG

Initialization X X X Creates starting Union-Find trees
Merge X X X Merges trees of equivalent labels
Compression X X X Flattens trees
FinalLabeling X X Copies block labels into pixels

algorithms, L ≡ P . The second consequence is that the first scan loses the aim
of assigning provisional labels, and it is only required to record equivalences. Its
job is performed by two different kernels: Initialization and Merge.

The first one initializes the Union-Find array L. Of course, at the beginning,
every label is the root of a distinct tree. Thus, in this kernel, thread tx performs
L[idx]← idx.

The second kernel, instead, deals with the recording of equivalences between
labels. During execution, thread tx traverses a decision tree in order to decide
which action needs to be performed, while minimizing the average amount of
memory accesses. When no neighbors of the scanning mask are foreground, noth-
ing needs to be done. In all other cases, the current label needs to be merged
with those of connected pixels, with the Union procedure. Moreover, the im-
plementation of Union proposed in Algorithm 1 requires to introduce atomic
operations to deal with the concurrent execution.

Then, it is easy to parallelize the flattening step: it translates into a kernel
(Compression) in which thread tx performs L[idx] ← Find(L, idx) to link each
provisional label to the representative of its Union-Find tree.

The last step of sequential algorithms is the second scan, which updates
labels in the output image L. A large part of the job of second scan is not
necessary in our parallel algorithms, because Compression kernel already solves
label equivalences directly in the output image. In the case of C-SAUF, increasing
foreground labels by one is the only remaining operation to perform, in order
to ensure that connected components labels are positive numbers different from
background. We avoid a specific kernel for this, shifting labels of foreground
pixels by 1 since the beginning of the algorithm. This trick requires small changes
to Union-Find functions. For C-BBDT and C-DRAG, a final processing of L is
required to copy the label assigned to each block into its foreground pixels. This
job is performed in FinalLabeling kernel. Table 1 sums up the structure of the
proposed algorithms, while Algorithm 2 provides a possible implementation of
the described kernels.

5 Experimental Results

In order to produce a fair comparison, algorithms are tested and compared with
state-of-the-art GPU implementations using the YACCLAB open-source bench-
marking framework [9, 17]. Since this tool has been originally developed for se-
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Table 2. Average run-time results in ms. The bold values represent the best performing
CCL algorithm. Our proposals are identified with ∗.

3DPeS Fingerprints Hamlet Medical MIRflickr Tobacco800 XDOCS

C-SAUF* 0.560 0.487 2.867 1.699 0.571 3.846 14.870
C-BBDT* 0.535 0.472 2.444 1.249 0.529 3.374 12.305
C-DRAG* 0.526 0.460 2.423 1.220 0.496 3.322 12.012
OLE [23] 1.111 1.031 5.572 2.996 1.174 8.152 35.245
BE [35] 1.401 1.056 4.714 2.849 1.053 6.120 20.314
UF [28] 0.593 0.527 3.243 2.062 0.656 4.332 17.333
DLP [12] 0.657 0.484 3.323 1.719 0.597 5.031 18.182
KE [2] 0.565 0.478 2.893 1.644 0.523 4.007 15.445

quential algorithms, we have enriched its capabilities to run also GPU-based
CCL algorithms.

Experiments are performed on a Windows 10 desktop computer with an Intel
Core i7-4770 (4×32 KB L1 cache, 4×256 KB L2 cache, and 8 MB of L3 cache),
16 GB of RAM, and a Quadro K2200 NVIDIA GPU (640 CUDA cores and
4 GB of memory). Algorithms have been compiled for x64 architectures using
Visual Studio 2017 (MSVC 19.13.26730) and CUDA 10 (NVCC V10.0.130) with
optimizations enabled.

With the purpose of stressing algorithms behaviours, thus highlighting their
strengths and weaknesses, we perform three different kind of tests on many
real case and synthetically generated datasets provided by YACCLAB. Selected
datasets cover most of the fields on which CCL is applied and are described in
the following.

Medical [15] is a collection of 343 binary histological images with an average
amount of 484 components to label. Hamlet is a scanned version of the Ham-
let provided by the Gutenberg Project [32]. The dataset is composed of 104
images with an average amount of 1 447 components to label. Fingerprints [26]
contains 960 images taken from fingerprint verification competitions (FCV 2000,
FCV 2002 and FCV 20040) and binarized using an adaptive threshold. XDOCS,
is a set of 1 677 high-resolution historical document images retrieved from the
large number of civil registries that are available since the constitution of the
Italian state [4, 6, 7]. Images have an average amount of 15 282 components to
analyze. 3DPeS [3] contains surveillance images processed with background sub-
traction and Otsu thresholding. MIRflickr is a set of images containing the Otsu
binarized version of the MIRFLICKR-25000 [22] dataset. It is composed of 25 000
standard resolution images taken from Flickr, with an average amount of 492
connected components. Tobacco800 [1, 25, 33] counts 1 290 document images col-
lected and scanned using a wide variety of equipment over time. The images sizes
vary from 1200× 1600 up to 2500× 3200.

As shown in Table 2, KE is confirmed to be the state-of-the-art GPU-specific
algorithm, when taking into account the average run-time on all datasets. It
is interesting to note that even a straightforward implementation of SAUF (C-
SAUF) is able in many cases to outperform it. The two more complex tree-based
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Fig. 2. Average run-time results with steps in ms. Lower is better.

algorithms (C-BBDT and C-DRAG) significantly reduce the computational re-
quirements, with C-DRAG being always the best.

To better appreciate this results, it is useful to split the time required by
memory allocation and the computation. Fig. 2 shows that in some cases more
than 50% of the time is dedicated to memory allocation, especially on small
images. BE clearly suffers from the additional data structures. When moving to
larger images (e.g.XDOCS), the reduced time allowed by C-BBDT and C-DRAG
is evident. How is this possible? Irregular patterns of execution are supposed to
slow down the thread scheduling, so a decision tree is the worst thing that could
happen to GPUs. This is not a myth, but we need to understand how often
different branches are taken in the execution. So, the third test (Fig. 3) is run
on a set of synthetic images generated by randomly setting a certain percentage
(density) of pixel blocks to foreground. The minimum size of foreground blocks
is called granularity. Resolution is 2048× 2048, density ranges from 0% to 100%
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(d) granularity = 16

Fig. 3. Granularity results in ms on images at various densities. Lower is better.

with a step of 1%, and granularity g ∈ [1, 16] have been considered. Ten images
have been generated for every couple of density-granularity values, for a total
of 16 160 images, and charts report the average time per couple. When granu-
larity is 1 (Fig. 3a), it is possible to observe that both C-BBDT and C-DRAG
computational time explodes around density of 50%, in accordance with our ex-
pectation. The only cases in which those algorithms outperform GPU-specific
ones is when density is below 10% or over 90%. Indeed, at low/high densities the
decision is taken quickly by the first levels of the tree structures, saving a lot of
memory accesses and without breaking the thread execution flow. Since images
on which CCL is applied are usually in that range of densities, this explains
the previously observed behavior. Moreover, when granularity grows (Fig. 3b-
Fig. 3d), small portions of the image have irregular patterns requiring to explore
deeper tree levels, while the vast majority tends to be all white or all black,
again maximizing the tree performance.

6 Conclusions

In this paper we have addressed the problem of connected components label-
ing on GPU. We have focused our analysis on three 8-connectivity sequential
algorithms relying on decision trees and we have adapted them to GPU pro-
gramming paradigm, without altering their substance. Hence, we have compared
these proposals against GPU state-of-the-art algorithms on real case datasets
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and the experimental results show their surprisingly good performance. An ex-
planation of their effectiveness has been provided thanks to a set of additional
tests on synthetic images. The C-DRAG algorithm always outperforms the other
CUDA-designed proposals, highlighting the feasibility of decision trees on GPU.
The source code of described algorithms is available in [31], allowing anyone to
reproduce and verify our claims.
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