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• propose a novel generative adversarial network that is able to solve occlusions in pedestrian images by hallucinating the
missing parts while keeping both the appearance and the background coherent;

• devise a new way for synthetically generating occlusion pairs that result in more realistic images when compared to
other methods previously employed;

• propose a method for conditioning the occluded body part restoration on pedestrian attributes and consequently improv-
ing the generation process;

• provide a large scale CG dataset for pedestrian attribute recognition in crowded areas;

• conduct an ablation study in order to clarify and highlight the solutions adopted in our work.
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ABSTRACT

When you see a person in a crowd, occluded by other persons, you miss visual information that can
be used to recognize, re-identify or simply classify him or her. You can imagine its appearance given
your experience, nothing more. Similarly AI solutions can try to hallucinate missing information with
specific deep learning architectures, suitably trained with people with and without occlusions. The
goal of this work is to generate a complete image of a person, given an occluded version in input, that
should be a) without occlusion b) similar at pixel level to a completely visible people shape c) capable
to conserve similar visual attributes (e.g. male/female) of the original one. For the purpose we propose
a new approach by integrating the state-of-the-art of neural network architectures, namely U-nets and
GANs, as well as discriminative attribute classification nets, with an architecture specifically designed
to de-occlude people shapes. The network is trained to optimize a Loss function which could take into
account the aforementioned objectives. As well we propose two datasets for testing our solution: the
first one, occluded RAP, created automatically by occluding real shapes of the RAP dataset from Li
et al. (2016) (which collects also attributes of the people aspect); the second is a large synthetic dataset
AiC, generated in computer graphics with data extracted by the GTA video game, that contains 3D
data of occluded objects by construction. Results are impressive and outperform any other previous
proposal. This result could be an initial step to many further researches to recognize people and their
behavior in an open crowded world.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

While recent efforts in people detection, recognition and
tracking enabled a plethora of video-surveillance applications,
e.g. people identification, pose estimation and action analysis,
as in Ma et al. (2017); Riza Alp Guler (2018); Herath et al.
(2017), occlusions are still an open problem. The occlusion is-
sue is well known in the people detection and tracking literature
and generally affects any intelligent video surveillance system,
but it is debatable whether a real solution to the problem could
exist effectively. In fact, whenever an occlusion occurs we ob-
serve a removal of information from the observed scene. The
occluded portion of an object, indeed, becomes unknown and,
in a Parmenidian sense, it does not exist until it can be observed.
For this motivation most of the literature focused on counteract-
ing the phenomenon conveying occlusion robustness to either

∗∗Corresponding author: Tel.: +39-340-577-8217
e-mail: matteo.fabbri@unimore.it (Matteo Fabbri)

detection, tracking or re-id systems as in Zhuo et al. (2018);
Subramaniam et al. (2016); Pan and Hu (2007); Wang et al.
(2018b); Coppi et al. (2016). In the matter of fact, recovering
the image content from an occlusion is feasible only in the case
where the target has been previously observed e.g. in a video
stream. This is the approach followed also by many tracking
solutions which memorize several detected appearance of the
person, to discard occlusions as “less frequent accidents” w.r.t.
the normal visible appearance. Nevertheless, leveraging on the
generative capabilities of GANs in Goodfellow et al. (2014),
we aim at demonstrating that it is indeed possible to hallucinate
a plausible representation of the occluded content even when it
has never been previously observed, i.e. in single images.

Following on our previous work on the topic (Fabbri et al.
(2017)) in this paper we introduce a novel generative adversar-
ial network that leverages the generative power of GANs for
hallucinating the occluded portion of the image without any
guidance of an attention mechanism that could provide instance
level information about the occluding person. The proposed
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Fig. 1. A schematic representation of our method. On the left part is depicted the Adversarial Networks components, with the U-net generator above and
the discriminator above. In the right part of the image is presented RESNET-101 used as high level features extractor (pedestrian attributes) and VGG-16
used as medium-low level features extractor.

solution aims at generating or reconstructing the image of a
person which could be plausible in many senses: a) similar to
images of real people, observed in the training dataset; b) ac-
ceptable at pixel level as a person shape; c) capable to preserve
similar visual attributes of the ground truth de-occluded image.
This is carried out by exploiting solutions for attribute calssi-
fications (e.g. male/female, young/old, with/without trousers,
etc.) and integrating them in a U-net like generative and adver-
sarial architecture.

Another major problem that arises when dealing with occlu-
sions, through learning-based solutions, is the lack of large-
scale datasets providing realistic occluded and non-occluded
pairs of images. Most of the proposed solution in literature,
like Fabbri et al. (2017); Ouyang et al. (2016); op het Veld et al.
(2015), paste together different people detections, or manually
add random objects or textures to a non-occluded image. These
processes ultimately fail to generate realistic data and are thus
a liability when employed for training a neural network that
aims at resolving the occlusion while keeping the rest of the
image coherent (e.g. the background) and preserving the per-
son’s attributes. To address this issue, we propose a novel, fully
automatic, way to generate realistic occlusion pairs by exploit-
ing the recent achievements in object segmentation in He et al.
(2017). This results are high-fidelity occlusion pairs, where the
background of the original image is preserved and the generated
occlusion is more realistic. Additionally, we created a massive
CG graphics generated dataset1, in which we artificially cre-
ated a large collection of occluded pedestrians. Additionally,

1Leveraging on the highly photo-realistic graphics of GTAV video-game.

we recovered from the game engine their attributes by manu-
ally annotating just the models. To our knowledge, this is the
first CG dataset for the purpose of de-occluding people having
a set of annotated person attributes (e.g. sex, hair color, dress
style, etc.).

To summarize, our contributions are threefold:

• We propose a novel generative adversarial network that is
able to solve occlusions in pedestrian images by halluci-
nating the missing parts while keeping both the appearance
and the background coherent;

• We devise a new way for synthetically generating occlu-
sion pairs that result in more realistic images when com-
pared to other methods previously employed, also by cre-
ating a huge CG dataset;

• We propose a method for conditioning the occluded body
part restoration on pedestrian attributes and consequently
improving the generation process.

We show by experiments that the design of a conditional GAN
that is aware of the attributes can acceptable hallucinate pedes-
trian and experimentally demonstrate that this information is
helpful in guiding the generation process. Results are interest-
ing in terms of very high accuracy, outperforming other previ-
ous methods. We believe that our method could be useful in
many computer vision systems, from surveillance, automotive
to human behavior understanding tasks.
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Fig. 2. Architecture of our generator network with corresponding number
of feature maps (n), we always use 1 as stride size.

2. Related Works

Generative image modeling with deep learning techniques
has received lots of attention in recent years. Works on this
field can be split into two categories. The first line of works
follows the unsupervised setup. Here, the variational autoen-
coders (VAE) proposed by Rezende et al. (2014) and Kingma
and Welling (2013) are the first popular methods which apply
a re-parameterization trick to maximize the lower bound of the
data likelihood. The most popular methods are indeed gener-
ative adversarial networks (GAN) of Goodfellow et al. (2014)
and Radford et al. (2015), which simultaneously learn a genera-
tor network to generate image samples and a discriminator net-
work to discriminate generated samples from real ones. GANs
are capable of generating sharp images by exploiting the adver-
sarial loss instead of more canonical losses such L1 or L2.

The second group of works produce images conditioned
on either categories, attributes, labels, images or texts. Yan
et al. (2016) proposed a Conditional Variational Autoencoder
(CVAE) to achieve an image generation conditioned on at-
tributes. On the other hand, Mirza and Osindero (2014) pro-
posed conditional GANs (CGAN) where both the generator
and the discriminator are conditioned on extra information to
perform category specific image generation. Lassner et al.
(2017) generated people in clothing, by conditioning on the
fine-grained body part segments. Reed et al. (2016a) proposed
a novel deep architecture and GAN formulation to effectively
translating visual concepts from characters to pixels, by adding
textual information to both generator and discriminator. They
also further investigated the use of additional location, key-
points or segmentation information to generate images in Reed
et al. (2016c) and Reed et al. (2016b). With only these visual
hint as condition and in contrast to our explicit condition on the
occluded image, the control exerted over the image generation
procedure is still abstract. Many works perform a conditioning
over image generation not only on labels or texts, but also on
images. Zhao et al. (2017) generated multi-view cloth images
from only a single view input by proposing a new image gener-
ation model that combines the strengths of the variational infer-
ence and the GAN framework. Chen and Grauman (2014) tack-
led the unseen view inference by casting the problem in terms
of tensor completion, and adapt a factorization approach to ac-
commodate single-view images. Isola et al. (2017) provides

a general purpose architecture that is effective at synthesizing
photos from label maps, reconstructing objects from edge maps,
and colorizing images, among other tasks. Yang et al. (2015),
Huang et al. (2017), Yim et al. (2015), Ghodrati et al. (2015)
addressed the task of face image generation conditioned on a
reference image and a specific face viewpoint. Finnaly Yang
et al. (2017); Yeh et al. (2017); Pathak et al. (2016); Wang et al.
(2018a) tackled the task of image inpainting where large miss-
ing regions have to be filled based on the available visual data.
Our work can be seen as a particular case of inpainting, where
the portion of the image to inpaint is not known a priori.

3. Method

The goal of our work is to reconstruct occluded body part
of pedestrians in different surveillance scenarios. Given an im-
age of an occluded pedestrian as the network input, we aim at
removing the obstructions and replacing them with body parts
that could likely belong to the occluded person. Note that, dif-
ferently from the task of inpainting, we don’t want to guide the
network with the information about what portion of the image
we want to remove and complete. For this purpose, we want
to learn an image transformation between pairs of occluded im-
ages Iocc and not occluded images IGT . To achieve this, we train
a generator network G as a feed-forward CNN Gθg with param-
eters θg. For N training pairs images (Iocc, IGT ) we solve:

θ̂g = arg min
θg

1
N

N∑
n=1

Ltotal

(
Gθg

(
In
occ

)
, In

GT

)
(1)

Here θ̂g is obtained by minimizing the loss function Ltotal de-
scribed in the next subsection. Differently from Goodfellow
et al. (2014); Radford et al. (2015), our generator network takes
an image as input and instead of a random noise vector, as we
want to be deterministic in terms of generated image (e.g. the
same person should be always de-occluded in the same man-
ner). As a result, our generator network learns a mapping from
observed images Iocc to output image Igen. This differs also from
Isola et al. (2017); Mirza and Osindero (2014) which use ran-
dom noise alongside with the input image.

Following Goodfellow et al. (2014), we further define the
discriminator network Dθd with parameters θd, that we train
alongside Gθg with the aim of solving the adversarial min-max
problem:

min
G

max
D

EIGT∼pdata(IGT )[log D (IGT )]

+ EIocc∼pgen(Iocc)[log 1 − D (G (Iocc))] (2)

where D(IGT ) is the probability of IGT being a “real” image
while 1−D(G(Iocc)) is the probability of G(Iocc) being a “fake”
image. The min-max formulation force the generator network
G to fool the discriminator network D, which is adversarially
trained to distinguish between generated “fake” images and
“real” ones. Thanks to this approach, we obtain a generator net-
work G capable of learning solutions that are similar to not oc-
cluded images thus indistinguishable by the discriminator net-
work D. Note also that, differently from Isola et al. (2017), we
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Table 1. Classification performances of our ResNet-101 on RAP dataset
Method mA Accuracy Precision Recall F1
ACN Sudowe et al. (2015) 69.66 62.61 80.12 72.26 75.98
DeepMAR Li et al. (2015) 73.79 62.02 74.92 76.21 75.56
DeepMAR* Li et al. (2016) 74.44 63.67 76.53 77.47 77.00
HP-Net Liu et al. (2017) 76.12 65.39 77.33 78.79 78.05
ACN-Res50 Fabbri et al. (2017) 79.73 64.13 76.96 78.72 77.83
Ours 78,46 65,81 77.81 79.13 78.46

Table 2. Detailed comparison between various pedestrian attribute datasets
Dataset # Scenes # Samples # Attributes Min. Resolution Max. Resolution
PETA Deng et al. (2014) - 19,000 61(+4) 17 × 39 169 × 365
RAP Li et al. (2016) 26 41,585 69(+3) 36 × 92 344 × 554
PA-100K Liu et al. (2017) 598 100,000 26 50 × 100 758 × 454
AiC 512 125,000 24 36 × 87 533 × 1080

do not concatenate input images Iocc to the “fake” images Igen

or to the “real” images IGT as discriminator input.

Generator Network. Our generator structure differs from those
presented in Radford et al. (2015) and Fabbri et al. (2017): fol-
lowing Ronneberger et al. (2015) and Isola et al. (2017) we pro-
pose the “U-Net” like architecture depicted in Fig. 2. In particu-
lar, the structure of our network slightly differs from the one de-
scribed in Ronneberger et al. (2015) and Isola et al. (2017). The
network is composed by 4 down-sampling blocks and a specu-
lar number of up-sampling components. Each down-sampling
block consists of 2 convolution layers with a 3×3 kernel. Every
convolutional layer is followed by a batch normalization and a
leaky ReLU activation. Finally, each block has a max-pooling
layer with stride of 2. The up-sampling part has a very similar
but overturned structure, where each block is composed by an
up-sampling layer of stride 2. After that, each block is equipped
with 2 convolution layers with a 3×3 kernel. The last block has
an additional 1×1 kernel convolutional layer which is employed
to reach the desired number of channels: 3 RGB channels in
our case. A tanh has been used as final activation. We addi-
tionally inserted skip connections between mirrored layers, in
the down-sampling and up-sampling streams, in order to shuttle
low-level information between input and output directly across
the network. Eventually, padding is added to avoid cropping the
feature maps coming from the skip connections and concate-
nate them directly to the up-sampling blocks outputs. Roughly
speaking, our task can be seen as a particular case of image-to-
image translation, where a mapping is performed between the
input image and the output image. Additionally, for the specific
problem we are considering, input and output share the same
underlying structure despite differing in superficial appearance.
Therefore, a rough alignment is present between the two im-
ages. In fact, all the non-occluded parts that are visible in the
input images must be transferred to the output with no alter-
ations. The structure of the U-Net lends itself optimally to our
task, and the skip connections are fundamental for the conser-
vation of the non-occluded image content. In this way, useful

low-level information is not lost during the encoding passage:
by leveraging this kind of information, we are able to maintain
the appearance of visible parts in the image.

Discriminator Network. The discriminator, instead, aims to de-
termine if an image is true or if it has been generated. In partic-
ular, the structure is similar to the one in Radford et al. (2015),
composed by 4 convolutional layers with kernel size 5× 5. The
resulting features are followed by one sigmoid activation func-
tion in order to obtain a probability for the classification prob-
lem. We use batch normalization before every Leaky ReLU
activation, except for the first layer.

3.1. Loss Function

The definition of the loss function Ltotal is crucial for the ef-
fectiveness of our generator network. We propose the following
loss formulation, composed by a weighted combination of three
components:

Ltotal =

total loss︷                                ︸︸                                ︷
Ladv︸︷︷︸

adver. loss

+ λ1 · Lvgg︸    ︷︷    ︸
cont. loss

+ λ2 · Latr︸   ︷︷   ︸
attr. loss

(3)

The first term of Eq. (3) is the adversarial loss Ladv. This
component encourages the generator network G to generate im-
ages belonging to the not occluded domain of pedestrians by
fooling the discriminator network D:

Ladv = Lbce (D (G (Iocc)) , 1) (4)

where D(G(Iocc)) is the probability that G(Iocc) is classified as
“real” by the discriminator network. As a possible drawback,
the images produced by the generator network G are forced to
be realistic thanks to the discriminator network D, but they can
be unrelated with the original input. For instance, the output
could be a plausible image of a pedestrian displaying a very dif-
ferent aspect with respect to the input image. Thus, is essential
to mix the adversarial loss Ladv with an additional loss, such as
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Fig. 3. Qualitative results based on the ablation study on RAP dataset (leftmost) and AiC dataset (rightmost). GT columns indicate ground truth images
while in the OCC columns are presented the input occluded images. Columns 3 and 9 are the outputs of our baseline, where adversarial loss and MSE are
used. Columns 4 and 10 represents results of the VGG loss. On 5 and 11 we have results of experiments using all the 3 losses combined: adversarial loss,
VGG loss and attribute loss. Finally, columns 6 and 12 show results where attributes are injected as input to the network.

L1 or L2, that evaluate the per-pixel distance between the gen-
erated and the ground truth image. Usually, training a network
using such losses leads to reasonable solutions. However, the
outputs appear blurred with lack of high frequency details.

A possible solution for generating sharper results is to adopt
a different content loss, like the perceptual loss introduced by
Johnson et al. (2016) and used also in Ledig et al. (2017) or
deblurring problems as in Kupyn et al. (2017):

Lvgg(i, j) =
1

Wi, jHi, j

Wi, j∑
x=1

Hi, j∑
y=1

(
φi, j(Io)x,y − φi, j(Igen)x,y

)2
(5)

where Wi, j and Hi, j are the dimensions of the feature maps φi, j

obtained by the j-th convolution after ReLU activation and be-
fore the i-th max-pooling layer within the VGG16 network, pre-
trained on ImageNet in Deng et al. (2009) as done by Johnson
et al. (2016).

The Lvgg that we employed in our work is based on the sum
of different intermediate layers of VGG16:

Lvgg =
∑
i, j∈L

Lvgg(i, j) (6)

where Lvgg(i, j) is taken from eq. 5 and L is the set of used acti-
vations. Rather than encouraging the pixels of the output image
Igen to exactly match the pixels of the target image IGT , we in-
stead encourage them to have similar feature representations as
computed by the VGG16 network. As demonstrated in John-
son et al. (2016) and Mahendran and Vedaldi (2015), minimiz-
ing the content loss for higher layers do not preserve color and

textures. As we reconstruct from early layers, instead, images
tend to be perceptually similar to the target image IGT in terms
of color and texture. For this reason, we adopted early layers
for the content loss objective.

Since our main purpose is not limited to naively restore the
occluded parts of pedestrians, but also to maintain and high-
light their attributes, we introduced an additional loss compo-
nent Latr of Eq. (3). Like for the perceptual loss Lvgg, we used
a classification network as loss function. More precisely we
adapted ResNet-101 by He et al. (2016), pre-trained on Ima-
geNet, to the task of multi-attribute classification. More pre-
cisely, we replaced the last two layers (the average pooling and
the last fully connected layer) in order to fit the desired input
shapes. Differently from the VGG loss, with this attribute loss,
we work on a higher level of abstraction, forcing the generator
network to produce images that exhibit characteristics coherent
with the attributes of the person. In this case, we didn’t use the
euclidean distance as loss, but a weighted binary cross entropy:

Latr = −

A∑
i=1

exp (1 − ri) ·
(
yi · log

(
ψi(Igen)

))
+ exp (ri) · (1 − yi) · log

(
1 − ψi(Igen)

)
. (7)

Here, A is the number of attributes classified by the ResNet-
101, ri is the positive ratio of i-th attribute. ψ is the output of
our attribute classification network and yi is the i-th ground truth
label.
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Fig. 4. Examples from the AiC dataset exhibiting its variety in viewpoints, illuminations and scenarios.

3.2. Training Details

We trained our GAN with 320 × 128 resized input images
while simultaneously providing the target image in order to
compute the supervised loss. We adopted the standard approach
in Goodfellow et al. (2014) to optimize the networks alternat-
ing gradient descent updates between the generator and the dis-
criminator with K = 1. Data augmentation is performed by
randomly flipping the images horizontally. We used mini-batch
SGD applying the Adam solver with momentum parameters
β1 = 0.5 and β2 = 0.999 and learning rate 2 · 10−4. In our
experiments we chose a λ1 value of 10 and λ2 value of 5 of
Equation 3 and a batch size of 20. Each training is performed
using a Titan Xp GPU.

4. Datasets

We evaluated our method on RAP dataset from Li et al.
(2016), comparing state-of-the-art methods and performing the
ablation study over each loss employed. In addition, we further
propose a new large-scale computer-graphics dataset AiC for
pedestrian attribute recognition in crowded scenes. Differently
from existing publicly available datasets, AiC is mainly focused
on occlusion events.

4.1. RAP Dataset

RAP from Li et al. (2016) is a very richly annotated dataset
with 41,585 pedestrian samples, each of which is labeled with
72 attributes as well as viewpoints, occlusions and body parts
information. In order to evaluate our method, we corrupted the
dataset with occlusions. Differently from Fabbri et al. (2017),

where obstructions are created by cutting parts of images ac-
cording to regular geometric shapes, we have adopted a more
sophisticated approach that has led us to more realistic results.
By exploiting the state-of-the-art performances of Mask R-
CNN He et al. (2017), pre-trained on the COCO Dataset in Lin
et al. (2014), we produced segmentation masks for each person
in the RAP dataset. The computed silhouettes were then used
to crop people’s shapes from the dataset. Those crops are then
used to reproduce the occlusions by simply randomly overlap-
ping them to each image sample of RAP dataset. In addition, to
reduce the visual gap between the original image and the over-
lapped person, we performed a Gaussian blurring. However,
this is not applied to the whole image but only to the area given
by the difference between an expansion and an erosion of the
segmentation mask of the overlapping image. The only con-
straint that we have introduced is that the overhead person must
not occupy 1/7 of the top part of the starting image. Each image
is computed as follows:

Iocc = IGT 1 � ¬α (β (IGT 2 )) + α (β (IGT 2 ) � IGT 2 ) (8)

where β(IGT 2 ) is the binary mask generated using Mask R-CNN
and morphology operations. α is a function used to translate
the overlap section randomly over the destination image IGT 1 .
The dataset is already organized in 5 random splits. Each of
which contains 33,268 images for training and 8,317 for test-
ing. Due to the unbalanced distribution of attributes in RAP we
selected the 51 attributes that have the positive example ratio in
the dataset higher than 0.01.

4.2. AiC Dataset
Most of the publicly available pedestrian attribute datasets

like RAP in Li et al. (2016); PETA in Deng et al. (2014);
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Table 3. Ablation study results on RAP dataset
Method mean Accuracy Accuracy Precision Recall F1 SSIM PSNR
Occlusion 65.74 51.05 68.71 64.35 66.46 0.7079 14.62
Baseline 70.75 56.54 70.57 71.79 71.17 0.7853 20.35
VGG loss 72.42 58.83 72.53 73.53 73.02 0.8181 20.89
VGG and attr. loss 72.22 59.59 73.47 73.76 73.61 0.8143 20.68
VGG and attr. loss (+ input attr.) 81.16 74.76 84.23 85.63 84.92 0.8151 20.72
GT data 78,46 65,81 77.81 79.13 78.46 - -

Table 4. Ablation study results on Aic dataset
Method mean Accuracy Accuracy Precision Recall F1 SSIM PSNR
Occlusion 73.09 65.00 75.53 75.30 75.41 0.6125 19.54
Baseline 74.00 66.41 76.12 76.63 76.37 0.6028 21.08
VGG loss 79.04 71.98 80.10 81.21 80.65 0.7019 23.01
VGG and attr. loss 82.30 76.45 83.66 84.41 84.03 0.7048 22.90
VGG and attr. loss (+ input attr.) 91.93 88.73 92.40 93.36 92.88 0.7021 22.87
GT data 91.59 88.19 91.67 93.50 92.57 - -

PA-100K in Liu et al. (2017) does not contemplate occlusion
events. They only provide samples of full visible people, com-
pletely ignoring crowded situations of pedestrians occluding
each other (which is indeed common in urban scenarios). To
overcome this limitation, we propose the Attributes in Crowd
dataset, a novel synthetic dataset for people attribute recogni-
tion in presence of strong occlusions. AiC features 125,000
samples (100,000 for training and 25,000 for testing), each
of which is automatically labeled with information concerning
sex, age etc. Each of the 24 attributes is present at least in a 15%
of samples which highlight a good balance in terms of labels.
The collected samples feature a vast number of different body
poses, in several urban scenarios with varying illumination con-
ditions and viewpoints. Skeleton joints are also available for
each identity. Joints are additionally labeled with an occlusion
flag which tells if the specific body part is directly visible from
the camera point of view. Moreover, each image sample has his
vanilla version where each obstacle is removed from the im-
age. Thus, for each occluded pedestrian, we know exactly how
it really is behind the occlusion (this is obviously not obtain-
able in real environments). Fig. 4 exhibits some examples of
the dataset. To foster future research on this topic, the dataset
will be publicly released upon publication. AiC was created by
exploiting the highly photo-realistic video game Grand Theft
Auto V developed by Rockstar North.

5. Experimental Results

In this section we provide details about the metrics adopted,
followed by a detailed ablation study that presents qualita-
tive and quantitative results for three different combinations of
losses (that we added to the adversarial loss): MSE loss, VGG
loss and a combination of VGG loss and attribute loss. We also
investigate how the information about the attributes of a person
can enhance the quality of the produced images. Finally, we

compare our method with the most related works of Isola et al.
(2017) and Fabbri et al. (2017).

5.1. Evaluation Metrics

Evaluating the quality of synthesized images is an open and
challenging problem as stated in Salimans et al. (2016). Tra-
ditional metrics such as per-pixel MSE do not estimate joint
statistics of the result, and therefore do not extrapolate the full
structure of the result. In order to more holistically evalu-
ate the visual quality of our results, we employed two tactics.
Firstly, we compared the performance of the proposed model
through metrics directly calculated over the reconstructed im-
ages. Specifically, we adopted the structural similarity SSIM
and the peak signal-to-noise ratio PSNR. Secondly, we mea-
sured the capability of the proposed network of being able to
preserve original attributes, like gender, hairstyle or wearing
jacket, by exploiting the ResNet-101 of He et al. (2016) net-
work trained on the task of multi-attribute classification. Thus,
following Li et al. (2016), Fabbri et al. (2017) and Liu et al.
(2017), we provide five evaluation metrics for the attribute clas-
sification task, namely mean Accuracy, Accuracy, Precision,
Recall and F1.

ResNet-101 Classification Network. We trained the network
with 320 × 128 resized images with Adam as optimizer and
learning rate set to 2 · 10−4. In Table 1 a comparison on the
classification task with other state-of-the-art networks on RAP
dataset is presented. The same network is trained independently
using RAP and AiC, in order to provide reliable metrics for
each dataset.

5.2. Ablation Study

As previously stated, we investigated three loss combinations
in order to clarify and highlight the solutions adopted in our
work:
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Fig. 5. Qualitative comparison with state-of-the-art approaches: results are presented for both RAP (leftmost) and AiC (rightmost). GT columns indicate
ground truth images while in the OCC columns are presented the input occluded images. Columns 1 and 4 are the images recovered by Pix2Pix in Isola
et al. (2017). On 2 and 5 are presented results obtained from the method used in Fabbri et al. (2017). The last two columns, 3 and 5, show our best approach
output.

• Baseline: the Baseline architecture uses, in conjunction
with the adversarial loss, the MSE loss as content loss;

• VGG loss: differently from the Baseline, we replaced the
MSE loss with the VGG loss. The layers (1,2), (2,2), (3,3)
and (4,3) are chosen as the set L of activations on Eq. 6.
In Eq. 3 we set λ1 to 10 and λ2 to 0;

• VGG loss + Attr. loss: in this case all the three losses are
employed. The VGG loss always refers to the same four
activation layers. The Attribute loss is computed between
the output of the ResNet-101 classification network com-
puted on the generated images and the ground truth labels
provided by the datasets. In Eq. 3 we set λ1 and λ2 to 10
and 5 respectively. Note that we did not use all the avail-
able attributes of RAP dataset, but only the first 51 for the
reason explained in section 5.1. For AiC dataset, instead,
we used all the available attributes.

In order to further investigate how some additional informa-
tion about the attributes can improve the restoration process, we
performed a further experiment where attributes are fed as input
to the network, alongside with the occluded image:

• Entire: in this setup we adopted both the VGG loss and
the Attribute loss, alongside with the adversarial loss. Dif-
ferently from our main method, attributes are injected di-
rectly to the main flow of the generator network. Specifi-
cally, the attribute vector of the occluded pedestrian is fed

to a fully connected layer in order to produce a feature vec-
tor that is reshaped to match the bottleneck dimension of
our generator network.

Fig. 3 shows some qualitative results. The baseline performs
considerably worse than the other setups, not being able to com-
pletely remove the occlusions on AiC (column 9 of Fig. 3).
This is probably due to the fact that AiC is a more challeng-
ing dataset compared to our corrupted version of RAP. For the
same reason, RAP results are overall more appealing than the
ones of AiC. Moreover, no substantial difference appears be-
tween the other setups, highlighting the fact that the VGG loss
is the main component that guides the network to produce high-
quality results.

Table 3 and Table 4 provide quantitative results for RAP and
AiC respectively. From the tables it emerges that, despite being
visually indistinguishable, the images obtained from the three
setups (VGG loss, VGG and Attribute loss and Entire) produce
very different results in terms of attribute metrics. In partic-
ular, the difference between the VGG loss and the VGG loss
with Attribute loss on AiC dataset differs by about 3 points.
Moreover, by injecting the generator network with information
concerning attributes, we obtain attribute metrics remarkably
higher compared to the upper bound of the ground truth im-
ages. The generator network, by restoring the occluded images,
is able to produce an output that has enhanced attribute charac-
teristics.
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Table 5. Comparison with the state-of-the-art method on RAP dataset
Method mA Accuracy Precision Recall F1 SSIM PSNR
Occlusion 65.74 51.05 68.71 64.35 66.46 0.7079 14.62
Pix2Pix Isola et al. (2017) 69.53 52.00 64.95 70.05 67.40 0.7172 17.94
Fabbri et al. (2017) 66.00 51.40 65.59 67.97 66.76 0.6758 18.47
Ours 72.22 59.59 73.47 73.76 73.61 0.8143 20.68

Table 6. Comparison with the state-of-the-art method on AiC dataset
Method mA Accuracy Precision Recall F1 SSIM PSNR
Occlusion 73.09 65.00 75.53 75.30 75.41 0.6125 19.54
Pix2Pix Isola et al. (2017) 69.52 60.69 72.12 71.86 72.00 0.6318 20.91
Fabbri et al. (2017) 73.10 64.79 75.48 75.01 75.24 0.5949 21.23
Ours 82.30 76.45 83.66 84.41 84.03 0.7048 22.90

5.3. Comparison With Previous Works

Since our task of de-occlusion is novel, there is no direct
comparison work. So, to compare the results of our network,
in addition to Fabbri et al. (2017), we applied the pix2pix archi-
tecture in Isola et al. (2017) to our task. In Table 5 and Table
6 can be shown that our network perform favourably for each
metric, both for RAP and AiC datasets.

From Fig. 5 it emerges that our method, despite not using
attention mechanisms, is able to detect and to remove the oc-
clusion, with no external additional information. Furthermore,
differently from Fabbri et al. (2017) and Isola et al. (2017), our
method learns to transfer with no alterations the portion of im-
ages that are not occluded. Finally, Fig. 6 depicts some failure
cases of our method that display the challenge of strong occlu-
sions.

Fig. 6. Some failure cases on RAP (leftmost) and AiC (rightmost). From
this images, it is possible to see that, in cases of strong occlusions, complete
restoration remains a difficult task. Moreover, also with particular back-
ground conditions, as we can see in the first image triplet, the network is
not able to perform a reliable reconstruction.

6. Conclusions

In this work we presented the use of GANs for image en-
hancing in people attributes classification. Our generator net-
work have been designed to overcome a common problem in
surveillance scenarios, namely people occlusion. Experiments
have shown that jointly enhancing images before feeding them
to an attribute classification network can improve the results
even when input images is affected by this issue. We find this
line of work can foster research about the problem of attribute
classification in surveillance contexts where camera resolution
and positioning cannot be neglected.
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