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Abstract. Local thermodynamic equilibrium (LTE) plays a crucial role in sta-
tistical mechanics and thermodynamics. Under small driving and LTE, locally
conserved quantities are transported as prescribed by linear hydrodynamic laws,
in which the local material properties of the systems at hand are represented by
the transport coefficients. The robustness and universality of equilibrium prop-
erties is not guaranteed in nonequilibrium states, in which different microscopic
quantities may behave differently, even if they coincide at equilibrium. We in-
vestigate these issues considering 1-dimensional chains of N oscillators. We
observe that non-negligible fluctuations, and persistence of correlations frus-
trate the onset of LTE, hence the existence of thermodynamic fields, such as
temperature.

1 Introduction

In their seminal paper Ref.[1], Rieder, Lebowitz and Lieb investigated the properties of 1-
dimensional systems made of N harmonic oscillators, with only nearest neighbors and, at
their ends, with stochastic heat baths. They proved that energy (interpreted as heat) flows
from hot to cold baths and that the profile of kinetic energy (interpreted as temperature)
decreases exponentially in the direction of the hotter bath, and in the bulk its slope vanishes
in the N → ∞ limit. Thus, globally energy flows from the hotter to the colder bath, while
locally it goes from regions of lower kinetic energy to regions of higher kinetic energy, which
is reminiscent of results on uphill diffusion, such as those obtained in Ref.[2] . Therefore, the
kinetic energy and the energy flow do not behave in these harmonic 1-dimensional systems
like temperature and heat would, in systems obeying thermodynamic laws.

With hindsight, this is not surprising, because thermodynamic behaviours belong to 3-
dimensional macroscopic objects, under the condition of Local Thermodynamic Equilibrium
(LTE). Mechanical quantities, such as kinetic energy and energy flux cannot be identified
with thermodynamic quantities, unless a number of conditions that make LTE possible, are
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verified, see for instance Refs. [3] §9, [4] Chapters 3, 4 and 5, [5] Section 15.1, [6] Section
2.3, [7] Section 3.3, [8] Chapter 1, [9,10]. In particular, LTE holds if microscopic, mesoscopic
and macroscopic space and time scales are well separated, so that object can be subdivided in
mesoscopic cells that are very small compared to macroscopic sizes, but contain a very large
number of particles. Consequently, boundary effects are negligible compared to bulk effects,
and neighboring cells can practically be considered small isolated thermodynamic systems,
which thermalize within very short times compared to the macroscopic scale. In other words,
correlations decay very rapidly in space and time and fluctuations are negligible, from the
macroscopic point of view. Fluctuations, in particular, are characteristic of particles systems:
they are larger in size for larger systems, and they may be observed in macroscopic systems
[11,12], but they must be negligible on the scale of observation, for the thermodynamic laws
to hold.

These may look almost contradictory conditions –how can mass and energy flow between
isolated systems?– but they are actually realized in most phenomena occurring at the scales of
our daily life, see e.g. [8] for an extensive illustration of these facts. For instance, the motion
of the center of mass of a mesoscopic cell can be regular and minimally energetic compared
to strongly irregular and exceedingly fast motion of the molecules inside the cell. The fact is
that the amounts corresponding to macroscopic observations are minimal compared to those
stored at the the microscopic levels. When this is the case, thermodynamic laws may apply,
and conduction, associated with disordered motions, can be distinguished from convection,
which is associated with regular motion, capable of doing mechanical work.

Provided the LTE condition is verified, matter behaves like a continuum, obeying ther-
modynamic laws, according to which the statistical laws are invariably and surely verified:
in each single system heat flows without exceptions from hot to cold bodies; it is not the
consequence of mere averaging procedures. Being robust under variations of macroscopic
parameters such as boundary conditions, and requiring no knowledge of the microscopic
conditions, such as the particles interaction potentials etc., thermodynamic laws are the rule
at the space and time scales of our daily life.

At the nanometric scale, or in low dimensional systems (1D and 2D) the above is not guar-
anteed. For instance, transport coefficients in 1D systems strongly depend on the boundary
conditions, instead of being local properties, as pertains to thermodynamic material proper-
ties [13–19]. Therefore, one commonly speaks of “anomalous” transport.

In this paper we investigate the issue of temperature, treated in many specialized works,
cf. Refs.[20–26], focusing on chains of N Lennard-Jones oscillators without on-site poten-
tials, whose first and last oscillators interact with deterministic “heat” baths. To that purpose,
we observe that energy equipartition holds in equilibrium homogeneous systems, so that the
kinetic energy of any particle equals that of all other particles.

Consequence of equipartition is that numerous different microscopic notions of temper-
ature are equivalent at equilibrium. For instance, the thermodynamic temperature is obtained
averaging in time the average over all particles of the kinetic energy: temperature is indeed,
a collective property belonging to a very large number of particles, measured on a macro-
scopic time scale, [3,4,23,27,28]. Nevertheless, in equilibrium the same result is obtained
from the time average of the kinetic energy of a single particle, as well as from numerous
other microscopic quantities, including configurational temperatures and combinations of
configurational and kinetic temperatures [20,29,30].

Away from equilibrium, the situation is more problematic. Equipartition is violated [26,
31,32], the statistic describing the state of the system is model dependent, and the ergodic
properties of the particles dynamics are only partially understood [33,34]. Hence, there is no
universally accepted microscopic notion of nonequilibrium temperature [20–26]. Analogous
considerations hold for the definition of heat flux, that requires a clear distinction between en-
ergy transport due to macroscopic motions (convection), and transport without macroscopic
motions (conduction), cf. Chapter 4 of Ref.[35], and Section III.2 and Chapter XI of Ref.[36].
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To clarify these issues, we compare single particle with local mesoscopic quantities, and
we distinguish two cases: a) the mesososcopic cells are fixed in space, as appropriate for
solids; b) they move with the particles they contain, as in presence of convection, which
seems to be our case, cf. Refs.[37,38]. We find that:

– two mesoscopic notions of kinetic temperature with fixed cells in space, TC and KT ,
behave like the single particle kinetic temperature T , that depends on particle number
and is not localized in space (see e.g. Ref.[1,15,39] for different single particle kinetic
temperature profiles);

– one, in principle more appropriate, mesoscopic notion of kinetic temperature, based on
the peculiar velocities within moving cells, T p, does not agree with T , TC and KT ,
although the time average of the velocity of every particle in the cell, hence the cell itself,
vanishes;

– cell and molecular motion are correlated, making convection hard to be distinguished
from conduction, hence kinetic energy hard to be linked to temperature. Indeed, the mo-
tion of a single particle influences its neighbors, producing a kind of convective cascade.

– the validity of the local virial relation does not imply the existence of the temperature
field.

That difficulties do not ease –they actually seem to worsen [40] – when N grows at fixed
boundary temperatures, indicates that LTE, hence thermodynamic quantities such as temper-
ature, can hardly be established under our conditions in 1D systems such as ours. A possible
consequence is that the standard hydrodynamic limit may not apply to systems like the one
discussed here, even in presence of stochastic heat baths. Indeed, the existence of the hydro-
dynamic limit implies the validity of LTE [6]. This, however, does not exclude the existence
of the hydrodynamic limit for different 1D systems or under different boundary conditions.

2 Chains of oscillators and “temperature” profiles

Consider a 1D chain of N identical moving particles of equal mass m, and positions xi,
i = 1, ..., N . Add two particles with fixed positions, x0 = 0 and xN+1 = (N + 1)a, where
a > 0 is the lattice spacing. Let nearest neighbors interact via the Lennard-Jones potential
(LJ):

V1(r) = ε

[(a
r

)12
− 2

(a
r

)6]
, (1)

where r is the distance between nearest neighbors: r = xi−xi−1 and ε > 0 is the depth of the
potential well. Thus, xi = ai, with i = 0, . . . , N +1, is a configuration of stable mechanical
equilibrium for the system. We also consider interactions involving first and second nearest
neighbors, with second potential given by [41]:

V2(s) = ε

[(
2a

s

)12

− 2

(
2a

s

)6
]
, (2)

where s = xi − xi−2. Further, we add two particles with fixed positions x−1 = −a and
xN+2 = (N + 2)a. With potential V = V1 + V2, the system has the usual stable mechanical
equilibrium configuration xi = ai, i = −1, . . . , N + 2. The first and last moving particles
are in contact with two Nosé-Hoover thermostats, at kinetic temperatures TL (on the left) and
TR (on the right) and with relaxation times θL and θR. Introducing the forces

F1(r) =
∂V1
∂r

(r), F2(s) =
∂V2
∂s

(s) , (3)
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the equations of motion are given by:

mẍ1 = F1(x1)− F1(x2 − x1)− ξ1ẋ1, (4)
mẍi = F1(xi − xi−1)− F1(xi+1 − xi), i = 2, ..., N − 1, (5)
mẍN = F1(xN − xN−1)− F1(xN+1 − xN )− ξN ẋN , (6)

with

ξ̇1 =
1

θ2L

(
mẋ21
TL
− 1

)
, ξ̇N =

1

θ2R

(
mẋ2N
TR

− 1

)
, (7)

in the case of nearest neighbors interaction. For first and second neighbors interactions, we
have:

mẍ1 = F1(x1)− F1(x2 − x1) + F2(x1 + a)− F2(x3 − x1)− ξ1ẋ1,
mẍ2 = F1(x2 − x1)− F1(x3 − x2) + F2(x2)− F2(x4 − x2)− ξ2ẋ2,
mẍi = F1(xi − xi−1)− F1(xi+1 − xi) + F2(xi − xi−2)− F2(xi+2 − xi), i = 3, . . . , N − 2, (8)
mẍN−1 = F1(xN−1 − xN−2)− F1(xN − xN−1) + F2(xN−1 − xN−3)− F2(xN+1 − xN−1)− ξN−1ẋN−1,
mẍN = F1(xN − xN−1)− F1(xN+1 − xN ) + F2(xN − xN−2)− F2(xN+2 − xN )− ξN ẋN ,

with

ξ̇l =
1

θ2L

(
mẋ2l
TL
− 1

)
, l = 1, 2,

ξ̇l =
1

θ2R

(
mẋ2l
TR
− 1

)
, l = N − 1, N.

(9)

The hard-core nature of the LJ potentials preserves the order of particles: 0 < x1 < x2 <
· · · < xN < (N + 1)a holds at all times, if it does at the initial time [42].

For such systems, a form of single particle virial relation is found to hold [43] (see also
the upper panel of Fig. 6) , and then the average kinetic energy of a single particle is often
taken as the temperature Ti in the position occupied by particle xi [45]:

Ti =

〈
pi

2

m

〉
, i = 1, ..., N. (10)

Here, pi is the momentum of particle i, the angular brackets 〈·〉 denote time average, and Ti
is called single particle kinetic temperature. In the case in which TL 6= TR, the single particle
kinetic temperature profile may take rather peculiar forms, compared to the linear thermody-
namic temperature profiles in homogeneous solids when Fourier law holds. This is illustrated
in great detail in the specialized literature, cf. [15,39,45–48] just to cite a few. Certain pro-
files define kinds of universality classes, that can be analytically expressed in the infinite N
limit [39]. At the same time, numerically simulated profiles of various kinds of 1D systems,
appear to be sensitive to all parameters, such as the relaxation constants of the thermostats,
the interaction parameters etc. [15]. This is not surprising, since many correlations persist
in space and time in low dimensional systems, making the various quantities non-local, thus
hindering the realization of LTE [14,49–52].

In the following sections, we report our results about systems with various numbers of
particles N . The parameters defining the Lennard-Jones potentials are ε = 1 and a = 1,
while the mass of the particles is m = 1. The relaxation times of the thermostats θL and θR
are set to 1. The numerical integrator used is the fourth-order Runge-Kutta method with step
size 10−3. The time averages are typically taken over O(108) − O(109) time steps in the
stationary state.
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3 Comparing with mesoscopic notions of temperature

At equilibrium, the thermodynamic temperature is given by the time average of the instanta-
neous average over all particles of the kinetic energy. In such average, by definition, particles
with high kinetic energy contribute to high temperature, and regions with a larger number of
particles give a greater contribution than regions of equal volume with a smaller number of
particles. However, equilibrium is a homogeneous state in which all particles and equal vol-
umes equally contribute to the thermodynamic properties [53,54]. In LTE cases, this picture
is replicated on the scale of mesoscopic cells that are large compared to particles interaction
ranges, and small compared to the observation scale [3,8–10,27]. Then, the average over all
particles is replaced by averages over the particles that lie in such (practically isolated) cells.
In presence of temperature gradients, equipartition is violated and different particles or dif-
ferent regions must contribute differently to the local temperatures. Moreover, particles may
enter and exit a given cell, contributing at times to a cell, and at other times to other cells. Un-
der LTE, such boundary effects are negligible by definition [3,8], but in general, especially
in 1D driven systems, they must be dealt with.

Unfortunately, there is no universally valid strategy for that, apart from the principle that
temperature must be higher in one region than in an another, if energy flows from the first
to the latter. What this means in dynamical terms is far from obvious, when the microscopic
statistics are not standard, something that happens, for instance, in presence of dissipation.
Various possibilities may thus be considered [20,23,24,30].

The most direct mesoscopic extension of the global equilibrium kinetic temperature is
the cell kinetic temperature defined as follows: subdivide the interval [0, (N + 1)a] in cells
Ck = [(N+1)a(k−1)/M, (N+1)ak/M ], k = 1, ...,M , that are sufficiently large to house
a large number of particles. The borders of these cells are fictitious: particles can move freely
back and forth through them. At a given instant of time τ , let the number of particles in cell
Ck be denoted by nk(τ) and introduce the quantity:

T̂k(τ) =
1

nk(τ)

N∑
i=1

1

2
mẋ2i (τ)χk (xi(τ)) , (11)

where χk (xi(τ)) equals 1 if the particle i position at time τ , xi(τ), belongs to Ck, and it
vanishes if xi(τ) /∈ Ck. The quantity T̂k(τ) is the instantaneous mean kinetic energy per
particle in Ck, at time τ . Averaging T̂k(τ) in time, we obtain the cell kinetic temperature, i.e.
time average of the instantaneous mean kinetic energy per particle in Ck:

TC(k) =
1

τmax

τmax∑
τ=1

T̂k(τ)

=
1

τmax

τmax∑
τ=1

1

nk(τ)

N∑
i=1

1

2
mẋ2i (τ)χk (xi(τ))

(12)

where τmax is the total number of time steps [55]. Because of equipartition, at equilibrium
TC constitutes a valid local counterpart of the global instantaneous mean kinetic energy per
particle, which in turn equals the single particle kinetic temperature Ti. The quantity TC(k)
is, however, quite different from Ti, because:

a) it is mesoscopic, as required by thermodynamics;
b) it depends on space rather than on particle label.

Nevertheless, for chains with first and second neighbors Lennard-Jones interaction potential,
we find that the TC profiles are approximately equal to the Ti profiles. Figure 1 shows that
increasing the number of cells, M , when N is sufficiently large, makes TC better and better
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Fig. 1. TC(k) profile as a function of the rescaled cell position x = k/M , forN = 256 (green crosses)
and N = 1000 (purple circles), with M = 8, 16, 32, 64, TL = 1 and TR = 10. Although TC is a
function of space, not of particle label, it converges to the single particle kinetic temperature profile,
see the data for N = 1000 in the panel for M = 64, where Ti (red dots) is represented vs x = i/N .

reproduce the Ti profile. This happens despite the fact the particle positions undergo O(N)
fluctuations, as discussed in Ref.[40].

Therefore, the convergence of TC to Ti, that can be appreciated also in the upper panel of
Fig.2, must be related to the fact that nearby particles collectively and coherently oscillate like
one block [49], with similar kinetic energies. In that case, it does not matter which of them
is in Ck; the average over the particles inside Ck approximately equals the single particle
kinetic energy. This, however, is not what happens in the case of thermodynamic equilibrium,
in which the equality of the particle energies is a statistical effect concerning particles that
move incoherently and in a very disordered fashion. For chains with third nearest neighbor
interactions, we reached the same conclusions, which indicates that they do not depend on
any special choice of interaction potentials.

Because of the normalization to the total time in Eq.(12), and not to the time spent inside
Ck, the contribution of one particle with given energy to TC(k) is small if the particle spends
a short time in Ck , and it is larger in cells in which it stays longer. At the same time, this
notion of “temperature” does not care whether many or just a few particles visit the cell
of interest, since only the average energy over the particles visiting Ck matters. Thus, the
energy contributed by the particles to cell Ck is not additive and, in the event that all particles
visiting Ck spend a short time in it, the time averaging of (12) yields a low cell temperature
TC(k); this is not impossible in non-homogeneous states. However, in principle, even a short
residence time may suffice for a considerable amount of energy to flow out of Ck , thanks to
suitable interactions or if a large number of particle escapes from that cell. From the point of
view of Fourier law, the temperature of the cell should then be larger rather than smaller of
that in the neighboring cells, but TC(k) does not guarantee this result.

As in 1D systems such as ours one cannot ensure the good statistics needed for LTE [4,53,
54], the probability of such extreme events may not be negligible. To take into account these
situations, it is necessary to enhance the contribution of a particle that spends a limited time
in cell Ck, conditioning temporal averages to such a time. This has been done in Refs.[56,
57], for systems of non-interacting particles, such as billiards. To treat systems of interacting
particles, we modify the temperature of Refs.[56,57] as follows. Take a long observation time
interval and let u(i, k) be the cardinality of I(i, k), the set of time steps in which particle i
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lies in cell Ck. Compute first the time average of the kinetic energy of particle i, conditioned
to the time that this particle has spent in cell Ck:

K(i, k) =
1

u(i, k)

∑
τ∈I(i,k)

1

2
mẋ2i (τ) , (13)

then average over the particles that have visited cell Ck, using as a weight the time spent by
each of them in Ck:

KT (k) =
1∑N

i=1 u(i, k)

N∑
i=1

u(i, k)K(i, k)

=
1∑N

i=1 u(i, k)

N∑
i=1

∑
τ∈I(i,k)

1

2
mẋ2i (τ) .

(14)

The quantity KT (k) is a weighted average, over the particles that have visited Ck, of their
conditional time averaged kinetic energy K(i, k). The time average of the kinetic energy of
particle i is obtained dividing by the time that i spends in the cell, not the total time, hence
the contribution of particle i to KT (k) may be large even if the time it spent in Ck is short.
This suffices to conclude that KT (k) differs from both TC(k) and Ti.

What about the distinction between conduction and convection? To discuss this issue, one
should first define the collective motion of a cell, and the motion of particles in it, with respect
to the cell motion. This can be done, for instance, subdividing the chain of N oscillators in
M cells made of consecutive particles, letting cell Ĉ` contain the particles N

M (` − 1) + 1 ≤
i ≤ N

M `, ` = 1, . . . ,M , when nc = N
M is an integer. One may then introduce the velocity of

the center of mass of Ĉ`, vG`
say, as the velocity of the cell, and the peculiar velocity of the

particles in Ĉ`:
ci = ẋi − vG`

if i ∈ Ĉ`. (15)

In accord with this definition we introduce the peculiar temperature of cell ` as:

T p` =
1

τmax

τmax∑
τ=1

1

2nc

∑
i∈Ĉ`

mci(τ)
2 (16)

which reduces to the cell kinetic temperature, if the centers of mass of the cells are at rest.
In a case with N = 2000, TL = 1 and TR = 10, we have computed the following time

averages: 〈vG`
〉, 〈v2G`

〉, 〈ci〉, 〈c2i 〉, 〈vivG`
〉 and 〈Ti〉. We found that both 〈vG`

〉 and 〈ci〉 vanish,
consistently with the fact that all particles are bounded by still walls at x0 = 0 and xN+1 =
(N + 1)a. In Fig.2, upper panel, we compare the single particle kinetic temperature Ti, the
cell kinetic temperature TC and the peculiar temperature T p. In the lower panel, we then
show the relative difference of the two mesoscopic quantities TC and T p, i.e. |TC−T p|/T p,
which shows that they are similar but not identical. This result is further confirmed by Fig.3,
showing that the relative differences range between 2% and 8%.

In Fig.4, we note that the profiles of the square velocities 〈v2G`
〉 and 〈c2i 〉 are similar but

on different scales, and that the proportionality factor between the two approximately equals
the mass inside a moving cell. Therefore, the kinetic energy of a cell, seen as a fluid element
of mass equal to the sum of the masses of its particles and that moves at the speed of its
center of mass, is comparable to, instead of much smaller than, the total kinetic energy of
the particles in the reference frame of this center of mass. This observation is related to the
following: the normalized correlations between the velocity of a particle in a cell and the
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Fig. 2. N = 2000, TL = 1, TR = 10. Upper panel: single particle kinetic temperature Ti (red dots)
vs x = i/N , cell temperature TC(k) (green crosses) and peculiar temperature T p(k) (blue bullets)
vs x = k/M , with M = 40. Lower panel: relative difference of the two mesoscopic quantities in the
upper panel |TC − T p|/T p. This difference ranges between 2.5% and 6.5%.

velocity of the cell itself,
〈vivG`

〉√
〈v2i 〉〈v2G`

〉

are rather large in general, and of about 15% in the case of Fig.4, as illustrated by the upper
panel of Fig.5. Moreover, the profile of the correlations has the same shape of 〈c2i 〉 or 〈v2G`

〉
(compare with Fig.4). This fact is quantified by the lower panel of Fig.5, in which 〈vivG`

〉 is
given as a function of 〈c2i 〉, and fitted to the line

〈vivG`
〉 ' a〈c2i 〉+ b . (17)

Note that, for macroscopic systems in which LTE holds, the notions of temperature con-
sidered here are equivalent: energy equipartition implies that all degrees of freedom con-
tribute the same, so that all averages eventually lead to the thermodynamic temperature. In
our 1D systems, the correlations that persist in time, and our observations concerning Figs.
4, 2 and 5 imply that this is not the case.
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Fig. 3. Further examples of relative deviations between cell temperature and peculiar temperature
|TC −T p|/T p computed for N = 500, 1000, 1500, 2000. In the uppermost four panels the number of
cells M is 20, while in the lower panels it is 10.

4 Concluding remarks

In this work we have presented numerical results concerning several kinds of 1D systems
of nonlinear oscillators, in contact with two Nosé-Hoover thermostats. Scrutinizing the be-
haviour of mechanical quantities that are commonly considered in the specialized literature,
we have investigated the violations of LTE, and the fragility (non-universality) of “thermo-
dynamic” quantities, that is expected in 1D systems [15,14,23].

Thermodynamic properties emerge from the collective behavior of very large assemblies
of interacting particles, if correlations decay rapidly compared to observation time scales,
and if boundary effects are negligible. While this is often the case of 3D mesoscopic cells
containing large numbers of properly interacting particles, it is not obvious in 1D systems.

Considering the mesoscopic “temperatures” TC and KT , we have shown that grouping
particles together in cells localized in space does not suffice to obtain profiles that differ from
the single particle kinetic temperature, that is not a function of space, but of particle label.
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〉 in cells ` = 1, . . . ,M

versus `. Lower panel: average squared peculiar velocity 〈c2i 〉 for particles i = 1, . . . , N versus i. The
two quantities are not sufficiently separated. The quantities v2G`

and c2i are not sufficiently separated,
compared to thermodynamic cases.

On the other hand, the profiles of the mesosocpic “temperature” T p do substantially differ
from those of the previously mentioned temperatures. Therefore, one concludes that results
obtained using one or the other must be taken with a grain of salt.

The fact is that large fluctuations [40] and persisting correlations prevent LTE and the
direct identification of mechanical quantities with thermodynamic ones. As a matter of fact,
even the validity of the local virial relation, see the upper panel of Fig. 6, does not im-
ply the statistics of square velocities corresponding to a temperature, cf. Fig.6, lower panel.
Therefore, the standard laws and quantities of macroscopic systems are not appropriate to
understand the behavior of 1D systems such as our chains of Lennard-Jones oscillators.
Future developments of our work will focus on large N limits that reproduce mesoscopic
rather than macroscopic length scales as, for instance, in [58–60].
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panel: 〈vivG`〉 vs 〈c2i 〉 and a linear fit.
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