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The paper focuses on the effect of the pair coalescence of circular pores on the overall elastic proper-
ties. An analytic solution for the stress and displacement fields in an infinite elastic medium, containing
cylindrical pore with the cross-section formed by two circles, and subjected to remotely applied uniform
stresses is obtained. The displacement field on the surface of the pore is then determined as a function of
the geometrical parameters. This result is used to calculate compliance contribution tensor for the pore
and to evaluate effective elastic properties of a material containing multiple pores of such a shape.

© 2019 Elsevier Ltd. All rights reserved.
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1. Introduction « Complex variables technique involving conformal mapping of

the cross-sectional shape onto a unit circle (Kachanov et al.,
In the present paper we focus on the effect of the pair co- 1994). For many non-elliptical shapes, the transformation
alescence of circular pores on the overall elastic properties. The
research is motivated mostly be needs to predict properties of
porous materials obtained by Gasar technology - process consist-
ing of a melting metal in a gas atmosphere to saturate it with hy-

drogen and directional solidification (Shapovalov, 1994; Shapovalov

N
20) =R 7 + D" (11)
n=1

that maps conformally the exterior of the inhomogeneity in the

and Boyko, 2004). The pores have cylindrical shape and are nucle-
ated heterogeneously. The process is accompanied by pores coa-
lescence. Shapovlov (1998) showed that the pore coalescence be-
comes prominent for Gasar metals with high porosity. The model-
ing of the evolution process of pore coalescence has been proposed
by Liu et al. (2018). Fig. 1 illustrates the process of the pores co-
alescence and the resulting shapes of the pores’ cross-sections in
Gasar metals.

We consider this material in the framework of plane-strain
problem and assume that it contains aligned cylindrical inhomo-
geneities of certain cross-sectional shape. Analytical modeling of
materials with inhomogeneities of non-elliptical cross-section is
not well developed though many two-dimensional problems have
been solved. The main approaches to this problem are:
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complex z-plane into the interior of a unit circle in the -plane,
is used, with parameters R, N and a, corresponding to various
shapes; for the elliptical hole, for example, N=1, R = (a + b)/2 and
a; = (a—b)/(a+b). For “irregular” shapes, a numerical mapping
technique can be used (see Tsukrov and Novak, 2004);

- Finite element method, that is more universal, applies to inho-
mogeneities of arbitrary elastic properties, including anisotropic
ones, but has lower accuracy than the numerical conformal
mapping technique. Comparison of the two methods was given
by Tsukrov and Novak (2002).

Compressibility of non-elliptical holes has been first ana-
lyzed by Zimmerman (1986) on the example of super-circular
holes (convex and concave), by Givoli and Elishakoff (1992)
and Ekneligoda and Zimmerman (2008a) who considered holes
with “corrugated” boundaries and by Ekneligoda and Zim-
merman (2006, 2008b) who considered shapes having n-fold
symmetry axes. Results for the entire compliance contribu-
tion tensor of a non-elliptical hole have been obtained by
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Fig. 1. (a) Pores structure in Gasar Ni-15%Al, intermetallic compound (shape of pores is almost cylindrical, from Drenchev and Sobczak, 2009); (b) and (c) evolution of two

pores coalescence in Gasar copper (from Liu et al., 2018).
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Fig. 2. (a) two separate circular holes, (b) cross-section formed by two coalesced circular pores of generally different radii.

Kachanov et al. (1994) and Jasiuk (1995) for various polygons (con-
vex and concave) and Tsukrov and Novak (2002, 2004) for several
“irregular” shapes.

The present paper continues authors’ work (Lanzoni et al., 2018)
on the shapes that may be obtained by union of two circles of
generally different diameters (Fig. 2). We consider isotropic elas-
tic plane containing two circular holes of radii ry and r, (that
may overlap). Thus, the pore shapes may be non-convex and even
not simply connected. Instead of the conformal mapping technique
(that may be a problem in this case since connectivity of the
pore may change) we use an analytic approach based on Fourier
series representation or Fourier transform in bipolar coordinates
(Jeffery, 1921), («, B) (Fig. 3), related to the Cartesian coordinates
(x1.X2) by

o —Re|ln G EBDHA g Kt ba,
(xl + lxz) —a (x1 +1X2) —a

(1.2)

asinho

_ ) asin
" cosha —cos 8’

~ cosha — cos B (13)

X2

Note, that S-coordinate is multi-valued with a discontinuity of
27 across the segment connecting the foci. Hereinafter, we as-
sume -7 < B < m. The two poles of the bipolar coordinates are
located on the x; axis at distance + a, with a > 0 (the circles in
Fig. 2(a) refers to @; > 0 and &, < 0 whereas Fig. 2(b) shows two
overlapping circles with 8; > 0 and 8, < 0).

First, we consider a single inhomogeneity and solve Neumann
boundary value problem in two-steps: (1) assessment of the fun-

Fig. 3. Sketch of the bipolar coordinate system.

damental displacement field related to a remotely applied uniform
stress in a homogeneous body and (2) fulfillment of the boundary
conditions by adding an extra-term to the fundamental field. This
solution is used to construct the compliance contribution tensor of
a pore of interest by calculating proper contour integrals. The com-
pliance contribution tensor can be used to calculate overall elastic
properties of a material containing parallel cylindrical holes with
the cross-sections shown in Fig. 2.
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Fig. 4. Sketch of an infinite plate with (a) two separate holes and (b) two merging holes subjected to remote normal o®y;, 0>y, and shear o>, stress fields along the

principal directions xy, X5.

Fig. 5. Distribution of the dimensionless stress fields (a) 0'ao/0™11; (b) 0 gg/0™11; (C) Top/o™1 in a plate subjected to a remote stress in the x; direction for p=3/5, y =1.

2. Two separate circular holes

In this Section we briefly summarize the known results about
elastic fields in an infinite plate containing two separate circular
holes of radii r; and r, in an infinite plane separated by the liga-
ment § between them. For the case of two holes of the same radius
the problem was solved by Ling (1947, 1948a) for remotely applied
normal loadings and by Karunes (1953) for remotely applied shear
loading. Radi (2011) generalized their solutions for two holes of
different radii.

The geometry of the problem is completely determined by
two independent geometrical parameters: for example, ratio of
the radii p =ry/r, and relative length of the ligament y = §/rq
(Fig. 4):

X1 =11+06[1—=(r1 +0.58)/(r1 +12+8)];
arccosh (xc1/r1);  a=rysinh (o);
—arcsinh(a/ry); Xg = —rycoshay.

R
I

(2.1)
The plane is subjected to the action of remotely applied stresses
oy, 053, anq 0. N
The traction free boundary conditions

(3
N
Il

0y =Tag=0fora=a;, ay (2.2)

have to be satisfied at the holes.
The stress field, corresponding to the biharmonic Airy stress
function y is given by Jeffery (1921):

. a . a
Oy = [(cosha—cos,B) 252 smhocﬁ—smﬁ@ +coshai|hx,
92 a
op = [(cosha—cosﬂ)— —smhoc—a smﬂaﬂ +cosﬂ:|hx;
Tup = (cosha — cosﬂ)aﬂaa (24)
where
h, = %(cosha —cosp). (2.5)

The Airy function x can be represented as the sum of a funda-
mental stress function x(®), which gives the uniform stresses ap-
plied at infinity but does not yield vanishing tractions on the cir-
cular boundaries, and an auxiliary stress function va required to
satisfy the boundary conditions (2.2), which gives zero stresses at
infinity. Correspondingly,

h(O) h(1) (2.6)

91
92
93

94

95
96
97
98
99
100


https://doi.org/10.1016/j.ijsolstr.2019.05.012

101

102

103

104
105

JID: SAS

ARTICLE IN PRESS

4 L. Lanzoni, E. Radi and I. Sevostianov /International Journal of Solids and Structures xxx (xXxx) Xxx

o

0.8 2 88
0.6

0.4 ‘

0.2

c) 2.03
1.45
0.87
029

~0.20

Fig. 6. Distribution of the dimensionless stress fields (a)
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O aa[0®22; (b) 0gp/0®2; () 04p/0>2; in a plate subjected to a remote stress in the x, direction for p=3/5, y =1.

The components of the corresponding displacement vector are

3.72

1.86
-1.86 o
-3.72

C) 0g/0™12 in a plate subjected to a remote shear stress in the x; x, plane for p =3/5,

hy
cosho — cos 8

hy
cosho — cos 8

(2.10)

+ v) for plane strain or plane

(053 — 035) sin B sinh

y=1
where
. given by Jeffery (1921)
BO _ (oesin®B + og3sinh®a — 207y sin Bsinha) 27) c_1 8
X 2(cosha — cos B) ’ 2Uly = (coshtx—cosﬂ)[ > 9a
_ K+1 i( hQ )]
h{" = [Ba +K In(cosha — cos B)](cosha — cos B) 4 0B\ cosha—cosp )|
k-120
+ Zq)n(a) cosnp + Y () sinnp. (2.8)  2mup = (cosha —cos )| — 9B
n=1
Kk+1 0 hQ
Functions ¢n(e) and ¥q(@) are given by 4 9a\cosha —cosp )|
¢n(a) = Ay cosh(n + 1)a + B, cosh(n — 1a where « = 3-4 v or Kl= (3d— v) /(1
4G, sinh(n + 1)@ + Dy sinh(n — 1)a: stress state, respectively, an
Ya(@) = apcosh(n + 1)a + by cosh(n — 1) b — 2133 (cosha + sinh’a — cos ) —
+cpsinh(n + 1)a + dy sinh(n — 1), 29 ¢ cosha — cos B

The integration constants B, K, An, Bn, Cy, Dy, an, by, cn, dy are

given in the Appendix Al.

+ [ZB B —4Ktan™! (tanh % cot

B

2)](cosh o —cos B)
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Fig. 8. Dimensionless hoop stress o gg along the contour of the hole (a) with o =« and (b) with « =, for some values of p and y =1.

+2(A; sinh 2¢ + C; cosh 2«) sin 8 stress along the contours of the pores for some values of p =ry/r7,

—2(ay sinh 20 + ¢; cosh 2a) cos B y =4/ry = 1. Fig. 9 provides the same information for different
o values of y and p=2.

+2) {[Assinh (n+ 1)a + B, sinh(n — 1)a

n—2 3. Two overlapped circular holes

+ G, cosh (n+ 1) + D, cosh (n— 1)a]sin nB +

inh 1 be sinh 1 The modeling of two overlapping circles differs considerably

—[an sinh (1 + 1)e + by sinh (n - T)ex from the case discussed in Section 2: the circular contours rep-

+ cncosh (n+ 1)a +dy cosh (n — 1)a]cos nB}. (211) resent two curves of constant 8 (0 < 81 < w,—w < B, < 0) for

o € (—oo, o) (Fig. 8). In this case, Fourier transforms have to

Figs. 5-7 show distribution of the dimensionless stress fields be applied instead of the Fourier series (see, for example, Ling,

in a plate subjected to a remote stresses oy, 055 and o}y, re- 1947; 1948b; Dutt, 1960). The geometry of the problem is com-

spectively. Fig. 8 illustrates distribution of the dimensionless hoop pletely defined by three independent parameters, e.g. coordinates
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Fig. 9. Dimensionless hoop stress o gg along the contour of the hole (a) with « =« and (b) with « =a; for some values of y and p =2.

Ye1, Yeo Of the centers of two circles and the focal distance a. Then,
B1=arctan afycq, By =arctan afycp, 11 = afsin |B1], r, = afsin |B;],
and the area included in the contour reads A=r;2 (7 — B1) + 122
(7 + By) + a? (cot B1 —cot B;). In contrast to the case of 2 sepa-
rate holes, here the ligament & turns out to be a negative quantity
defined as § =yc1 — 11 — (Ve +12).

The form of the fundamental stress function is the same as in
(2.7), whereas the auxiliary stress functions are taken as follows:

hY = / F(s, B) cossa + G(s, B) sinsads,
0

h?) = (cosha — cos ﬁ){Klog cosha — cos }

cosha + cos B

where

F(s, B) = fr(s)sin B sinhsp + ke (s) cos B coshsp
+gr(s) sin B coshsB + hg(s) cos B sinhsf;
G(s, B) = fc(s)sin B coshsp + kg (s) cos B sinhsfB

+gc(s) sin B sinhsB + hg(s) cos B coshsp.

(3.1)

(3.2)
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—1.64

-2.46

b)

Fig. 10. Distribution of the dimensionless stress fields (a) oo /0> 11; (D) 0 gg/0>11; (C) 04p/0>11 in a plate subjected to a remote stress in the x; direction for 1 =1/2 and

Ky=—1

—0.35

-1.05

=175

—2.45

-0.28

-0.56

b)

-0.26
-0.52
-0.78

—1.04

Fig. 11. Distribution of the dimensionless stress fields (a) 0 e /0 ®22; (b) 0 gg/0>22; (C) 04p/0> 2, in a plate subjected to a remote stress in the x, direction for x; =1/2 and

Ky=—1

Note also that a symmetric layout is retrieved if B,=—f1:
In such a case one has gg(s)=gq(s)=hg(s)=hg(s)=0 (see
Ling (1948b) for a plate with symmetric overlapped holes sub-
jected to normal loadings and Karunes (1953) for the shear load-
ing). For remotely applied shear loading it is hy(?)=0.

The fundamental stress function (2.7) can be rewritten, after 138
some algebra, in the following form: 139

(Ao™sin®B — 20755 sin B sinha)
2(cosha — cos B)

where Ac>® =(0%1; —0®y)). 140

+ 035 cos 3, (3.3)

0 _
hQ =
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Fig. 12. Distribution of the dimensionless stress fields (a) 0o /0™ 12; (D) 0 gg/0®12; (C) 04/ >12 in a plate subjected to a remote shear stress in the x; x, plane for «q=1/2

and kK, =-1.

The traction-free boundary conditions at the hole are
for B = B1, Bas
hy P (a, B)+hyP (@, B)=0 fora, p— 0. (3.4)

The first two conditions can be reformulated for the auxiliary
stress functions hy ('), B) and hy (*)(e, B) as

92h,

0'520, Talgzo,

8;68 =0, for 8 = B4, Ba. (3.5)
and
|:(coshoz — cos ;‘3)8—2 - sinhozi - sinﬁi + cos ,B]
da? Ja B
hy =0, for 8 = B4, Bo. (3.6)
The last of the conditions (3.4) yields
[Ooo ke(s)ds = O (3.7)

Taking the derivative of expression (3.6) with respect to o and
using (3.5) one can write

ad 92 h f
m 1_W X:O’ 01',3:/31,/32, (38)
and in turn, integration of (3.8) with respect to o gives
92
|:1 e 2]hX+C =0, forg =Bi(i=1,2). (3.9)

Expressions (3.5) and (3.9) can now be used to find unknown
functions fx(s), fo(s), kr(s), kg(s), gr(s) and hg (s). Constant K follows
from condition (3.7) for normal loading.

Condition (3.6) gives (for 8 =81, B2).

(1 — cos B cosh ) sin B sinh o
(cosho — cos ﬁ)3

/ F'(s, B)sinsads = Ac™ + Bg sinh
0

sin2f sinh 2o
(cosha + cos /3) (cosha — cos /3)

/' SG/(s. B) cossards = a5 (3 —4cos B cosha + cos 2 cosh 2a)
0 2(cosha — cos B)°

(3.10)

where the apex denotes derivative with respect to coordinate § 153
whereas from condition (3.9) one has 154

cosho —cos B
cosha + cos B

K sin®2p
(cosha — cos B)(cosa + cos /3)2

_ i sin2p ! +
2 cosha —cosfB  (cosha — cos B)?

~ 2sinh’« oy <_
(cosha — cos B)* 2

~ 2sinh’a ) c
(cosha — cos /3)3 v

/ (1 + $2)G(s. B) sinsads = + 123cosho¢smh<>¢smﬂ
(cosha — cos f})

/m (1+8?)F(s, B) cossads = K cos B In +2Kcos B
0

cos®B
cosha + cos B

+2K

cosh o

2cosh’a + sinh’a
(cosha — cos )

5 coshasinh®a
(cosha — cos ,3)2

. s 1.3
gy 2Sinfsin’a o (1)

12 (cosha — cos ﬁ)3

Eq. (3.11)1, for o — oo yield 155

forp=6i(1i=1,2) .
(3.12)

G =[2K 0355 +BoB]cos B, Ci=oysing,
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Thus, from Egs. (3.10) and (3.11), taking into account results
(3.12) one has for g = B; (i=1, 2)

F/(s, B) = 2aAo® /00 sinsa (1 — cos B cosha) sin;‘isinhada
ST 0 (cosha — cos B)
. in2p sinh 2
2K f sinso sin ,3251n o da:
ST Jo (cosha + cos B)* (cosha — cos B)
o 2
G'(s, Bi) = —op3 ST
/ (3—4cos,3cosha+c052/2 cosh2a) cos sadar (3.13)
0 2(cosha — cos B)
and
2K ®© cosha — cos B
F(s, Bi) = mcosﬂ/0 cossa lnm
n 4K cos?B /°° COoSsu o+
1+sH)m o cosha + cos B
B 21(2 sinzzﬂ/ Cos so do+
(1 +sH)m 0 (cosha —cos B)(cosa + cos B)
A02 ﬁ/ cossa( 3cos B i
(1 +s )7T (cosa — cos B)
B 2sin®p 3)da;
(cosa —cos )
2073 . o .
G(s. Bi) = — s smﬂ/ sinsado
2 /3/ cosh sinh « sin s coshesinhosinse -
(1 +s )7T (cosha — cos B)?
4015 ﬂ/ sinh® _ sinh’asinsae sin so (3.14)
C(1+s )7T (coshafcosﬂ)
Note that, through the results reported in Appendix A2, all the
Fourier transforms involved in the Eqs. (3.13) and (3.14) can be

evaluated in closed form, thus allowing to find the analytic expres-
sions of functions F(s, B), G(s, B) and their derivatives:

sinhs(Z — |B]) sinhsB

4. Evaluation of the compliance contribution tensor

Compliance contribution tensors have been first introduced by
Horii and Nemat-Nasser (1983) for pores of ellipsoidal shape (ex-
plicit formulas connecting compliance contribution tensor and Es-
helby tensor for an ellipsoidal pore are given in the appendix of
the mentioned paper). Components of this tensor for various two-
dimensional pores were given by Kachanov et al. (1994) and for
ellipsoidal inhomogeneities — by Sevostianov and Kachanov (1999).
This tensor connects the extra strain due to the presence of the in-
homogeneity under given remotely applied stresses. Indeed, if we
consider a representative volume element V containing an isolated
inhomogeneity of volume V;, the average, over representative vol-
ume V strain can be represented as a sum

e=5":0"+ Ae (4.1)

where SO is the compliance tensor of the matrix and ¢ represents
the uniform boundary conditions (tractions on dV have the form
tl3y=0C « n where ¥ is a constant tensor); ¢° can be viewed as
far-field (“remotely applied”) stress. The material is assumed to be
linear elastic; hence the extra strain due to the inhomogeneity A &

is a linear function of ¢©:
iz
A& =V —H: (4.2)

where H is a fourth-rank compliance contribution tensor of the

inhomogeneity. If the inhomogeneity is a pore, the extra overall

strain due its presence is given by the well-known expression in

terms of an integral over the pore boundary (Hill, 1963):
1

Ag = —/ (un + nu)ds (4.3)
2V Jay

Thus, Neumann boundary value problem has to be solved in or-
der to find the compliance contribution tensor of a pore.

4.1. Two separate circular inhomogeneities (symmetric with respect
to x; axis)

+ 4Kcos?B

1B +

F(s, B) = —2Kcos

s(1 +s2) cosh &
—aAo™sin®B csc | B|cschs sinhs(r —

_Ksin2 sec B sinhs(w —

(1 + s2) sinh s sin 8

|B]) — 2scoshsB csc|B| — (=2 cot Bcsc B +sec|,8|)smhs|ﬁ|

2(1+s2)sin || cos,Bsmhsn

7TS(1+52) coshs(m — | B])cschs(rrs) —

G(S ﬂ)_z V) S7T(1+SZ) l'l|/3|;
. scos B sinhs|B| + sinh % sinhs(Z — |B]) sin| 8|
F'(s, B) = 4K sin2p ssm|2,8|smhs7t
v i pS(scoshs(mw — |B|) —sinhs(mw — |B]) cot
. . 8 8D —sinhs (e - |B1) cot 8],

G/ (s, B) = 2073cschsm [cos B coshs(mw —

System (3.15) imposed for B = B; (i=1, 2) allows assessing
functions fr(s), fo(s), kr(s), kg(s), gr(s), gg(s), he(s) and hg(s) and, in
turn, the stress and displacement fields according to Eqs. (2.4) and
(2.10), respectively. For the case of two equal overlapping holes
B1=— B the expressions of f(s), kr(s) reported in Ling (1948b) for
normal loadings and fg(s), kg(s) reported in Karunes (1953) for
shear loadings are exactly retrieved (actually, a misprint occurred
in expression (16); of F, reported in Karunes (1954), in which the
square in “n2” must be removed). Figs. 10-12 illustrate distribution
of the dimensionless stress fields in a plate subjected to a remote
stresses o, 055 and oy, respectively.

|B|) —ssin|B|sinhs(w —

IBDI- (3.15)

The components of the unit vector and the infinitesimal arc
length on the contour of the two circles with o = const are:
cosha;cos B —1

cosha; — cos B
asign(o;
gn (o) dg
cosha; — cos 8

sinh |o;| sin 8

n =-—
cosha; — cos B

sign(a),

ny =-—

ds = r;df = i=1,2 (4.4)
where 6 is the polar angle measured from x; axis as shown in
Fig. 13(a). In the Cartesian coordinate system (x;, X,), the compo-
nents of the unit vector, the displacement field and the infinites-

imal arc length on the contour of the two separate circles with

Please cite this article as: L. Lanzoni, E. Radi and I. Sevostianov, Effect of pair coalescence of circular pores on the overall elastic proper-
ties, International Journal of Solids and Structures, https://doi.org/10.1016/j.ijsolstr.2019.05.012

175

176
177
178
179
180
181
182
183
184
185
186
187

188
189
190
191
192
193

194
195
196
197

198
199

201

202
203

204
205
206
207


https://doi.org/10.1016/j.ijsolstr.2019.05.012

208

209

210

21
212
213

JID: SAS

[m5G;May 15, 2019;19:45]

10 L. Lanzoni, E. Radi and I. Sevostianov/ International Journal of Solids and Structures xxx (XXxx) Xxx

r/r =1
rlr=2
rlr=3
single circle

0.9
22 0 5 S/r 10 15 20
C) i; —_ =1
......... rlr =2
20 £ r/n=3
_____ single circle
3
o 1.8
S
T 1.6
L4 N
1.3
0 W 5 15 20

s/l

b)-03
—-0.35

-0 40

Hyn

—045{

-0 50
-0 5?2

-2 0 5§/ 10

15 20

—_ /=1

r/rn=2
r/r=3
single circle

10
6/}”1

15 20

Fig. 14. Normalized components of the cavity compliance tensor (a) Hyiin i; (b) Hiiza i (€) Hazoa i; (d) Hyapp o for some values of p. Reference is made to plane strain

condition.

o = const are

Uy = —Uq Cos 6 — ugsin 0; Uy = —Uq Sin 6 +ugcos 0; (4.5)

with
cosf = ccoosshha& iccis 5) 5_,31 sign(a;); sinf = —Csoi;? O':j‘ﬂ Sci(f)lsﬂﬂ;
ds = ridf = %dﬁ, (4.6)
and
foro =1 >0: ny = —cos6; n, = —sin 6;
foro =1 <0: n; = cos 6; ny = —sin 6. (4.7)

Now, using results of the Section 2 and formulas (4.3) compli-
ance contribution tensor can be calculated for two separate pores
(the integral has to be evaluated numerically).

4.2. Overlapped circles symmetric with respect to X, axis

The component of the unit vector and the infinitesimal arc
length on the contour at 8 =const are

B sinha sinf3; . ) _ 1—coshacosp; .
m = —mﬂgn(ﬁ:), n; = —mﬂgn(ﬁ,)
_rdg - asignB) i
ds = r;d0 = cosh a — cos da, i=1,2 (4.8)
For the overlapping holes (Fig. 13(b)), one finds
Uy = Uy Sin 6 — ug cos 6; uy = —uy cos 6 — ug sin 0; (4.9)
for=6>0: n; = —cosf; ny, = —sin@;
forB=8,<0: ny = —coso; n, = sin 6; (4.10)
cosg = Snhasinfi g g 1-cosha cosfy

cosho — cos i’

cosh @ —cos B; ’
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ds =r;d6 = —Mda.
cosho — cos f;

Taking into account that the area of the pore cross-section A; =
riz(n —|Bi + (sin|2B1])/2]), one can use results of Section 3 and
formula (4.3) to evaluate the compliance contribution tensor.

Fig. 14 illustrates the dimensionless components of the compli-
ance contribution tensor in dependence on §/r; for different values
of ry/rq.

(4.11)

5. Concluding remarks

In this paper, we calculated compliance contribution tensor of
two separate or intersecting circular pores. For this goal, we first
considered two holes and solved Neumann boundary value prob-
lem in two-steps: (1) assessment of the fundamental displacement
field related to a remotely applied uniform stress in a homoge-
neous body and (2) fulfillment of the boundary conditions in the
problem with pores by adding an extra-term to the fundamental
field. This solution was used to construct the compliance contribu-
tion tensor of the combination of two circular pores by calculating
proper contour integrals. Plots for Hyy;y and Hypyy (Fig. 14(a) and
(c)) generally reproduce the curves for two corresponding compo-
nents of the resistivity contribution tensor (Lanzoni et al., 2018). At
the same time, components Hyjy; and Hyp1p behave differently and
may show non-monotonic not only near §/r; = 1 (point where the
circles touch each other), but also when &/r; > 1 or §/r; <1 (see
Fig. 14(b) and (d)). This is in agreement with expressions for cross-
property connections for a material with ellipsoidal/elliptical pores
and inhomogeneities derived by Sevostianov and Kachanov (2002,
2008). In particular, for a two-dimensional elliptical hole

H- ll:(zal + al)e]e]ele1 + Mezezezez
Eo aq a
(a1 + az)?
e, @et ere1)(ere; +eeq) — (ere1eze; + exezee)
102
(5.1)
1/a1+a a; +ax
R=— 5.2
ko ( @ eie; + 0 ez?z) (5.2)
So that
1 1
EoH =koRy1|1+ ——|; EoH =koRpp |1+ ——|;
o111 Ko 11[ + kORzz]v 0012222 o 22[ + kORll ]v
1 1 (Ri1 + Ry)?
EoH = —: EgH == 53
otz k()Ru K koRzz T2 RllRZZ ( )

Components Ry; and Ry, that behave oppositely (one increases
when another decreases) enter expressions for Hyjpp; and Hyppp in
concurrent manner, so that their combined effect may be quite
complex.

The case §/r1 = =2, r/r; = 1 corresponds to an isolated circular
inhomogeneity. In this case, the well-known result for the compli-
ance contribution tensor of a circular hole (see Horii and Nemat-
Nasser, 1983) is recovered. The compliance contribution tensor
constitutes the basic building block for calculation of the overall
elastic properties of a material containing parallel cylindrical holes
with the cross-sections shown in Fig. 2 (see Kachanov and Sevos-
tianov, 2018)
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Appendices

Al. Integration constants used in Section 2

A = % cosh (1 + @) {2 (ar)sinh?a, — 2 (ary)sinhZe;

+[g(aq) — g(az)] tanh (o + a2)}, (A11)
B, = % cosh (g — az){zf(ocz)sinhzozl —2f(oq )sinh2a2
—[g(o1) + g(az) Jtanh (o — az)
+ g(ap)sinh2ay — g(ovp)sinh2o0,} (A1.2)
1
G = ) cosh (a1 + az){g(az) — glar)
+[f(a1) = f(o)]tanh (a1 + o2)
+ f(ag)sinh2ay — f(op)sinh2a,} (A13)
2
B=B = 5 cosh(oy — o) {[f (1) + f(z)]tanh(ay — at2)
+ g(az) — gla1)}. (Al14)
where:
f(@) =2Ke ™ sinh o — (035 — oF)e 2signa,
g(a) = cosh2a — e71*l(o ¥ cosh a + o35 sinh |« ), (A15)
D = 2sinh(e; — &) (sinh; + sinh’ay) (A16)
e 2l cosh2a, — e?ll cosh 204
=" sinh2(a; — o) ’ (AL7)
e 2l sinh 2a; 4 el sinh 2
at sinh2(a; — o) ' (AL8)
1
Ay = Hf{Pn(auaz)@n(a]) + Pa(az, a1) Pn(oz)
n
+ Qu (0, a2) D+ (1) + Qulaz, o) P * (0r2) (A1.9)
1
By = H—{an(on,oez)fbn(a]) + P_p (02, 1) Pn(a2)
n
+Qn (a1, 02) P (1) + Qnl@z, )P+ (a2)}  (A110)
1
G = —F{Un(alsa2)¢n(al) + Un (02, 1) Py (a2)
n
=+ [Vn(Oll, (12) =+ cosh(2na2 — (n — 1)0[1)]@;1 * ((X])
+ Vi (o, 1) @ * (a02) } (A110A)
1
D, = F{U—n(al, az)®p (o) + U_n(az, o) Pn(az)
n
+Von(aq, )P x (1) + Vop(on, ) @n x (2)}  (AL1D)
1
an = —{Pr(a1, @2)Wn(ay) + Py (o2, 001) Wn(exa)
n
+ Qn(or1, a2) W * (1) + Qulaz, o) Wy * (a2)} (A112)
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sinsads

/°° (1 —cos B cosha) sinh«
0 (cosha — cos B)*

bu = g1 (Pon(r, 00) Wi (1) + P (@2, 01) W (1)
n _Es(scoshs(n—|,3|)—sinhs(71—|,3|)c0t|,3|).

+ Qo @)W x (@) + Qaldz, a)Wn = (@)} (ALIB) =75 Snhse (A2.1)
1 o0 sinh 2«
&n = — g 1Un (01, @) W (@) + Up (@2, 00) W () /  sinsads
n 0 (cosho —cosB)(cosha + cos B)

% 2 —(n-1 v
WVl @) + cosh@nes = (= )l + (@) ssinhs|B] cos B + sinh < sinhs(% — |B]) sin ]

v, v Al14 = .
+ Va(o, o) Wy + (ar2) } ( ) 2 Sinh sz s 2l ] . (A2.2)

1 bl CoS so _ _sinhs(m —|Bil)
dp = H*H{Ufn((ll, a2)Wn (o) +U_p(az, 01) Wn(2) /0 m = Sinhstsin| B 1B (A2.3)
+ Von(ar, 02)Wh + (1) +Vop(g, 1) W+ (22)}  (AL15) . :
for n> 2, where f ___ossx o= ﬂM' (A2.4)
- 1 o (coshoa + cos f;) sinh s sin | G;]’
Pa(§.m) = o (sinh(& + ) sinhn(§ —n)
+ n sinh(£ + n&) sinh(€ —n)). (A1.16) /“’ Cos se dor — 7 SC0sh Bi — cot|Bi| sinhs| B
0 (cosha + cos /31)2 sinh snsinzlﬂi| ’
A2.5
Qu(§, 1) = cosh (§ +nn)sighn(§ —n) —n cosh(n + n&) sinh(§ —n), (A23)
(A117)
oo _ ) sinhs(Z — | B;
: / o (cosha cosﬁ‘)cossada:—n (3-181)
Un(€.n) = - lcosh(€ +nn) sinhn(& — ) cOh o + cos f; scosh (s3)
+ n cosh(n + n£) sinh(£ — n)]. (A118) (A2.6)

(cosha — cos ﬂi)z sin?B; sinh s7r

Vi (€, 1) = sinh(£ + nn) sinh n(€ — n) — n sinh(y + n€) sinh(¢ — n), /°° cos sa dor = 7 SCoshs @ — |Bil) + cot || sinhs(rr — |,8i|);
0

(A1.19)
(A2.7)

H, = 2n{sinh?[n(c; — a3)] — n?sinh® (g — a2)}. (A1.20)
o CoSs so d
@y (@) =2Ke ™ sinh « — (055 — oY )ngn(@)signe,  (A121) /0 (cosha —cos )
o 3scoshs(mw — |Bi|) cot|Bi| + (s2 — 2+ 3csc? B;) sinhs(w — |Bi])
&, (o) = —e"l[2K (cosh & + nsign|e|) B sin®| B;| sinh s ’
+ (053 — oY) n (n? — 1) sinh|o3|] (A1.22) (A2.8)

e cos so
/ sdo =
0 (cosha —cos f)(cosha + cos B)
B nsec|ﬂ| sinhs(mw — |B|) cos B — 2scoshsB csc B — (sec|B| — 2 cot |B| csc B) sinhs|B]

- - A2.
4sin|B| cos B sinhsm (A2.9)

il cosha __sinhs(zw — |Bi]) cos B;
/0 (cosha — cos ;) cos(sa)da=r sinh sz sin | G;

W, % (Ol) = 2ngn(oz) (A].23) (AZ.]O)
V(o) =213 n(n? — 1) e "@sinha. (A1.24) N
Finally, the constant K follows from the condition / % cos(sa)da
- 0 (cosho — cos f3y)
Z (An +By) =0. (A1.25) scoshs(zw — | Bi]) cot | Bi|+csc?| Bi| sinhs(zw — |Bi])
=7 - - ; (A2.11)
n=1 sinh szt sin | B
after the introduction of the constants A, and By, for n>1.
A2. Useful Fourier transforms / % sin(sa)do
0 (cosha — cos f3;)
The following definite integrals have been used to find expres- . sinh s coshsfB; — coshsm sinh [sB;| (A212)
sions (3.13) and (3.14): - sinh s7T sin |ﬁ1| ’ ’
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o COS so
/ ————dx
0 (cosha — cos f3;)
. coshsBi(scothsm + cot|B;|) — sinhs|B;| (s + cot | B;| coths)
= — ;
sSin ﬂi

(A2.13)
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