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Multi-rate Tracking Control for a Space Robot on a

Controlled Satellite: A Passivity-based Strategy

Marco De Stefano1,2, Hrishik Mishra1, Ribin Balachandran1, Roberto Lampariello1,

Christian Ott1, Senior Member, IEEE and Cristian Secchi2, Senior Member, IEEE

Abstract—In this work we design a novel control strategy
for a space manipulator operating on a controlled base. The
proposed controllers resolve the tracking of the end-effector and
the regulation of the base. In particular, we focus on the effects
due to the different sampling rates of the manipulator and the
base controllers which can generate stability issues. These effects
are analysed from an energetic perspective and passivity-based
controllers are designed for the base and the manipulator to
avoid instability. The method is validated with simulations and
experiments on a robotic facility, the OOS-Sim.

Index Terms—Space Robotics and Automation, Compliance
and Impedance Control, Multi-Robot Systems, Tracking Control.

I. INTRODUCTION

IN On-Orbit Servicing (OOS) and active space-debris re-

moval missions, the approach phase concerns the tracking

of a free-floating target (defunct satellite) with a free-flying

space robot (i.e. a robotic manipulator on a fully actuated

base in a gravity-free environment) while maintaining the base

positioning within some limits [1].

Space robot control algorithms have been developed over

the years for the approach phase. Usually, an impedance

controller for the end-effector is implemented because the

manipulator might interact with the floating target satellite

pushing it away and compromising the mission [2]. The

impedance control problem of a free-floating robot was treated

in [3] and [4] using feedback linearization. In [5], a control

based on a generalized Jacobian matrix is proposed and in [6] a

sensory feedback control scheme is discussed to deal with the

floating nature of the base. However in these works the base

was not controlled. In the direction of coordinated control,

i.e. the control of the base and manipulator simultaneously,

[7] proposes a momentum-based strategy with reaction wheels

and [8] introduces a coordinated controller based on feedback

linearization. For the tracking case, a passivity-based tracking

controller was proposed in [9], however the tracking was
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Fig. 1: The OOS-Sim facility: free-flying space robot (left) and target
satellite-robot (right). The industrial robots simulate the dynamics of
satellite and the Light-Weight-Robot is the manipulation arm of the
free-flying space robot. I is the inertial frame, B the base frame and
E is the end-effector frame.

performed in joint space and for a fixed-base robot. In [10],

a trajectory tracking problem is addressed for a space robot,

but, with an unactuated base.

Although the regulation and tracking problem of a free-

flying space robot has been addressed previously in literature

[4], [7], [8], [11], the problems specific to the multi-rate con-

trol were not discussed. In [12, §3.2.2], the problem associated

with relative rates between the control of the base and robotic

arm (for the approach and capture phase) has been underlined

as an important factor to be considered for a space mission.

Indeed, due to base actuation and GNC (Guidance Navigation

and Control) system constraints, the control of the base needs

to run at low rate (between 1Hz and 10Hz) and the controller

of the manipulator at higher rate (usually 1000 Hz) [13].

Therefore, discrete controllers and multi-rate effects must be

taken into account during the design of the controllers (see e.g.

[14]) because they can jeopardize the stability of the system

[15]. Within this context, a first approach was developed in

our previous work [16] in which, however, only the regulation

problem for the manipulator and its base was treated and this

might not be suitable for a trajectory-tracking control needed

in the approach phase.

In this paper, we develop a passivity-based coordinated

controller for a free-flying space robot. Besides guaranteeing

trajectory tracking for the manipulator and regulation for the

base, we address the multi-rate nature of the controllers from

an energetic perspective. To this end, we will exploit the

time-domain passivity approach [17] that has already been
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successfully exploited for coping with non-idealities in space

robotics applications (see e.g. [18] and [19]).

The contribution of the paper is threefold. First, we design

a tracking control for the end-effector and a regulation control

for its base and we prove stability in continuous-time. Second,

we show how different sampling rates of the two controllers

can interfere and how this can lead to instability. Therefore,

two passivity controllers, one for the manipulator and one

for the controlled base, are designed for ensuring passivity.

Third, we validate the controllers in a simulation study and

we verify it on a robotic facility, the OOS-Sim [2] shown

in Fig. 1, which is able to simulate the dynamics of a free-

flying robot on-ground1. The paper is structured as follows:

Sec. II introduces the model of the free-flying robot and the

combined control laws are presented in Sec. III. The problem

statement in using controllers with different sampling rate is

given in Sec. III-B. Sec. IV shows how to render the discrete-

time controllers passive. Validation results are shown in Sec. V

with experiments in Sec. VI. Sec. VII concludes the paper.

II. FREE-FLYING ROBOT MODEL

The general equations of motion of a gravity-free robot with

n joints mounted on a moving base are defined as [20]:
[

Hb Hbm

HT
bm Hm

][
ẍb

q̈

]

+

[
Cb Cbm

Cmb Cm

][
ẋb

q̇

]

=

[
Fb

τ

]

, (1)

where Hb ∈ R
6×6, Hm ∈ R

n×n, Hbm ∈ R
6×n are the

inertia matrices of the whole system, manipulator and the

coupling between the base and the manipulator, respectively2.

Cb ∈ R
6×6, Cm ∈ R

n×n and Cbm ∈ R
6×n are the non-

linear Coriolis/centrifugal matrix of the base, manipulator and

coupling between base-manipulator, respectively. The vectors

ẍb ∈ R
6 and q̈ ∈ R

n are the acceleration of the base

(linear and angular) and the acceleration of the robot joints

respectively and, ẋb ∈ R
6 and q̇ ∈ R

n are the respective

velocity vectors. Fb ∈ R
6 is the force-torque wrench acting

on the center of mass of the base-body and τ ∈ R
n is the

input torque vector to the manipulator.

The end-effector Cartesian velocity ẋm ∈ R
6 is given by:

ẋm = Jbẋb + Jmq̇, (2)

where Jb ∈ R
6×6 and Jm ∈ R

6×n are the Jacobian matrices

of the base and manipulator, respectively. Equation (1) can be

expressed with a proper change of coordinates from ξq to ξm,

where:

ξq =

[
ẋb

q̇

]

, ξm =

[
ẋb

ẋm

]

. (3)

The relationship between the new coordinate ξm with ξq are

given by the Jacobian J̃ defined as follows:

ξm =

[
I 0
Jb Jm

]

︸ ︷︷ ︸

J̃

ξq. (4)

1Experiments can be found also in the video attached to this paper.
2Throughout the paper the quantities with subscript m are pertinent to

manipulator and quantities with subscript b to the base

We assume that the manipulator is not redundant and that sin-

gular configurations are avoided using, e.g., a motion planner

[10], therefore,

J̃−T =

[

I −JT
b J−T

m

0 J−T
m

]

. (5)

Now, using the relationship in (4), the general equation (1)

can be rewritten as:
[

Mb Mbm

MT
bm Mm

]

︸ ︷︷ ︸

M

[
ẍb

ẍm

]

+

[
Γb Γbm

Γmb Γm

]

︸ ︷︷ ︸

Γ

[
ẋb

ẋm

]

= J̃−T

[
Fb

τ

]

=

[

Fb − JT
b Fm

Fm

]

, (6)

where M ∈ R
12×12 and Γ ∈ R

12×12 are the inertia and

Coriolis/centrifugal matrices in the new coordinate system.

Fm ∈ R
6 is the Cartesian wrench at the end-effector defined

as Fm = J−T
m τ .

The system (6) is a fully actuated Euler-Lagrange sys-

tem and therefore, see e.g. [21], it is passive with respect

to the generalized force-velocity pair ((ẋT
b , ẋ

T
m)T , ((Fb −

JT
b Fm)T ,F T

m)T ).

III. CONTROLLERS IN CONTINUOUS AND DISCRETE TIME

The goal of the controller is to resolve a tracking problem

for the end-effector and regulation of its base. To achieve

this goal, the controller at the base will be function of the

end-effector desired trajectory. This is in contrast with [16]

where only regulation control was implemented for both the

base and end-effector and therefore, the tracking terms did not

appear. However, this is a natural consequence of the coupled

dynamics between base and end-effector motions and must

be taken into account in the design of the control laws. In

this section, first the controllers are presented in continuous-

time with stability proofs. Later, the effects of the controllers

running at different sampling rates are discussed.

A. Coordinated Control in Continuous Time

The continuous-time tracking control for the end-effector is

designed as follows:

Fm = Mmẍmd+Γmẋmd−KPm∆xm−KDm∆ẋm, (7)

where ẍmd(t) ∈ R
6 and ẋmd(t) ∈ R

6 are respectively

the desired acceleration and velocity of the manipulator end-

effector expressed in the inertial frame. Usually, such infor-

mation can be generated by a motion planner which provides

a feasible trajectory for the end-effector [10]. KPm,KDm ∈
R

6×6 are stiffness and damping matrices respectively. The

vector ∆xm = (xm − xmd) ∈ R
6 is the error between

the measured and desired poses (position and orientation) of

the manipulator end-effector. Similarly, the vector ∆ẋm =
(ẋm − ẋmd) is the error between the measured and desired

end-effector velocities. The controller in (7) can be projected

into the joint space to have torque command to the manipulator

as: τ = JT
mFm.
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For the base, the regulation control is designed as follows:

Fb = Mbmẍmd+Γbmẋmd−KPb∆xb−KDbẋb+JT
b Fm,

(8)

where KPb,KDb ∈ R
6×6 are stiffness and damping matrices

of the regulation control of the base, respectively. The vector

∆xb = (xb − xbd) ∈ R
6 is the error (in position and

orientation) between the measured and desired base pose.

Notice that the orientation error for the base and manipulator

exploits the quaternion representation calculated from the

relative orientation matrix error (see [16] for more details).

It is worth pointing out that in (8), although the base is

regulating about a set-point, the control law is a function

of the desired end-effector velocity and acceleration. This

is due to the inertial coupling between the base and end-

effector tracking motions. Therefore, the regulation control law

proposed in [16] for the base controller will not be suitable.

Otherwise it might result in instability during the tracking. It

can be verified that

[∆ẋb,∆ẋm,∆xb,∆xm] = 0 (9)

is an equilibrium point of (6) using (7) and (8), and that the

following proposition holds true. Note that the controller at

the base resolves only the regulation problem, therefore the

velocity error in (9) results to be ∆ẋb = ẋb.

Proposition 1: Consider the system (6), with the tracking

control law (7) for the end-effector and the regulation control

law (8) for the base. Then, the equilibrium point in (9) is

asymptotically stable.

Proof 1: Consider the total positive definite energy of the

system, which is upper and lower bounded, as the following

candidate Lyapunov function:

V = 1
2

[

ẋT
b ∆ẋT

m

]

M

[
ẋb

∆ẋm

]

+

1
2

[

∆xT
b ∆xT

m

] [
KPb 0
0 KPm

]

︸ ︷︷ ︸

K

[
∆xb

∆xm

]

︸ ︷︷ ︸

∆x

,
(10)

where M and K are positive definite matrices. Computing

the time-derivative, we obtain:

V̇ =
[

ẋT
b ∆ẋT

m

] [

M

[
ẍb

ẍm − ẍmd

]

+ 1
2Ṁ

[
ẋb

∆ẋm

]

︸ ︷︷ ︸

∆ẋ

+K

[
∆xb

∆xm

] ]

.

(11)

Substituting the values M [ẍT
b ẍT

m]T from (6), we get:

V̇ =
[

ẋT
b ∆ẋT

m

]



−Γ

[
ẋb

ẋm

]

+

[

Fb − JT
mFm

Fm

]

−

M

[
0

ẍmd

]

+
1

2
Ṁ

[
ẋb

∆ẋm

]

+

Γ

[
0

ẋmd

]

− Γ

[
0

ẋmd

]

+K

[
∆xb

∆xm

]]

(12)

and considering the skew-symmetric property of the Euler-

Lagrange system, where:

[

ẋT
b ∆ẋT

m

] 1

2
(Ṁ − 2Γ)

[
ẋb

∆ẋm

]

= 0, (13)

equation (12) can be simplified and rewritten as:

V̇ = ẋT
b Fb − ẋT

b J
T
b Fm +∆ẋT

mFm − ẋT
b Mbmẍmd−

∆ẋT
mMmẍmd − ẋT

b Γbmẋmd −∆ẋT
mΓmẋmd+

ẋT
b KPb∆xb +∆ẋT

mKPm∆xm. (14)

Substituting the control laws (7) and (8) in (14), the time-

derivative of Lyapunov function results to be:

V̇ = −ẋT
b KDbẋb −∆ẋT

mKDm∆ẋm ≤ 0. (15)

As a result of negative semi-definiteness of the time-derivative

Lyapunov function in (15), stability is proved. From (15), it

is standard to invoke Barbalat’s Lemma for non-autonomous

systems [22] to conclude that ẋb,∆ẋm → 0 for a trajectory

which is bounded in ẍmd, ẋmd,xmd.

For establishing asymptotic stability of such systems, Ma-

trosov theorem has been exploited in literature [9], where

an auxiliary function of the states, W , is chosen such that

Ẇ 6= 0 when V̇ = 0. We choose W = ∆xTM∆ẋ,

which is similar to the one reported in [22] and was used

for analysis in joint-space. Computing Ẇ and substituting the

values M [ẍT
b ẍT

m]T from (6) with the control laws (7) and

(8), we get the following:

Ẇ = ∆ẋTM∆ẋ+∆xT
(

−K∆x−KD∆ẋ+(Ṁ−Γ)∆ẋ
)

where KD = [(KDb 06×6)
T (06×6 KDm)T ]. Recalling that

the trajectory and the states are bounded, it can be concluded

that Ẇ is bounded. In particular, it can be seen that when

V̇ → 0, Ẇ = −∆xTK∆x which is sign-definite (negative)

and non-zero for non-zero error ||∆x||. Then, with this result,

we satisfy the conditions of Matrosov’s theorem to establish

asymptotic stability of the state in (9). �

As validation, we run a simulation with the control laws

in (7) and (8). The desired trajectory commanded to the end-

effector is shown in Fig. 2 for a position x and orientation

θ, where the behaviour of the position trajectory is chosen to

prove the efficiency of the controller during tracking.

The tracking error is shown at the top of Fig. 3 and

it is expressed in position and orientation as: ∆xm =
(∆pm,∆Φm). At the bottom, the error ∆xb = (∆pb,∆Φb)
in position and orientation of the base is shown. As it can be

seen, both the errors converge in continuous time. The tracking
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Fig. 3: Stable system with continuous-time controllers. Tracking error
of the end-effector (top) and error of the base (bottom).

error is in the order of 10−4 m for the end-effector and the

base regulates about the given set-point.

Remark 1: The orientation error is represented using yaw,

pitch and roll angles (ψ, θ, φ) in the plots of the paper.

B. Coordinated Control in Discrete-time: Problem Statement

In real space applications, the base is usually actuated with

a low rate controller with respect to the manipulator control

rate [13]. Let us consider Tm to be the sampling time of the

controller for the manipulator and Tb for the base controller,

where Tb = nTm, n ∈ Z
+. For a discrete time k, it will result

that k = kmTm = kbTb, where km and kb are the discrete

steps in each controllers. Therefore, (7) and (8) in discrete-

time can be rewritten as:

Fm(km) = Mm(km)ẍmd(km)+Γm(km)ẋmd(km)−

KPm∆xm(km)−KDm∆ẋm(km), (16)

Fb(kb) = Mbm(kb)ẍmd(kb)+ Γbm(kb)ẋmd(kb)−

KPb∆xb(kb)−KDbẋb(kb)+ JT
b (kb)Fm(kb). (17)

During the inter-sampling period (km and kb), the discrete

control law might not cancel the respective power terms, as can

be seen by substituting Fm(km) from (16) and Fb(kb) from

(17) into (14). Therefore, the discrete nature of the controllers

leads to creation of virtual energy which destroys the passivity

of the system and it might lead to instability [23].

In the following simulation, the discrete controllers (16) and

(17) are applied to the system (6) considering the same initial

conditions and trajectory (see Fig. 2) of the continuous case.

We assume values of Tm = 0.001s and Tb = 0.3s, which

are typical sampling-times for controllers in space scenarios

[13]. The behaviour of the system is shown in Fig. 4. Both

the tracking error of the end-effector (top) as well as the error

at the base increase (see ∆φb) and the system results to be

unstable. The following section will show how to remove the

destabilising effects caused by the discrete controllers.
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Fig. 4: Unstable system with discrete-time controllers. Tracking error
(top) and error of the base (bottom).

IV. PASSIVITY-BASED COORDINATED CONTROLLERS

This section tackles the strategy adopted for compensating

the virtual energy introduced in the system. To this end,

Time Domain Passivity Approach (TDPA) is exploited, which

will enforce passivity in the discrete controllers by adding

a control action based on energy observers [17]. Hence, a

background on TDPA is provided in this section and a network

representation of the system is proposed in order to design

passivity controllers for the base and manipulator.

A. Enforcing Passivity Through TDPA

Passivity is an input/output characteristic of the system and

it is a sufficient condition for achieving stability [24]. For

a generic system with power port (F (k),v(k)) ∈ R
n, the

passivity condition can be expressed as in [17, §2] and reported

below,

E(m) = E(0) +

m∑

k=0

F T (k)v(k)T ≥ 0, (18)

where E(0) represents the initial energy stored in the system

and T is the sampling time. Equation (18) states that the

system can not produce energy more than its initial storage

and the input energy. Otherwise the system results to be

active, i.e. E(m) < 0, and it will produce energy which can

destabilise the system [25]. A common method which exploits

the passivity condition in (18) is the TDPA. This approach

is based on two elements, a Passivity Observer (PO) which

monitors the energy flowing through the power port using (18)

and a Passivity Controller (PC), which is activated when the

passivity condition is violated (i.e. E(m) < 0). The PC acts

with a time-varying damper to dissipate the required amount of

energy. Therefore a variable force (or velocity) is commanded

to the system to restore the passivity. The benefit of using

TDPA is given by the independence on system dynamics

knowledge and by the power-port variables available at the

network port.
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B. Network Representation for the Manipulator and Base

Controllers

A network representation for the free-flying robot system

is shown in Fig. 5 and it will be used for performing energy

analysis. Block S represents the dynamics of the free-flying

robot, which receives from the left side the forces at the

base, i.e. FB = Fb − JT
b Fm and from the right side the

controller forces of the manipulator Fm, as in (16). The

two inputs are combined as reported in (6). The network of

the base controller is represented with Cb, which contains

the dependent terms F ∗

b = Mbmẍmd + Γbmẋmd and the

impedance resulting from the stiffness and damping terms,

Zcb. Similarly, the network for the manipulator controller

is represented with Cm, which contains the dependent term

F ∗

m = Mmẍmd+Γmẋmd and the impedance of the stiffness

and damping terms, Zcm.

Both controllers are represented within dashed boxes in

Fig. 5 because they run in discrete-time. In particular, Cb runs

at a lower rate Tb and Cm at a higher rate Tm. This difference

in rates while connecting the discrete-controllers to the system

dynamics through the ports B and M leads to an unstable

system, as discussed in Sec. III-B.

Note that in the design of the controller in continuous-

time (Sec. III-A), (10) represents the energy function of

the controlled system (interpreting the proportional and the

derivative actions of the controllers as springs and dampers).

The control actions were able to compensate the coupling

between the base and the manipulator, as evident from (15)

which prove the stability of the system.

However, since the controllers run at different rates, the

compensation of the coupling is not perfect and, therefore it

creates virtual energy which destroys the energy balance of the

system. Since the system S is passive, if we enforce the passiv-

ity of the controllers, the overall controlled system in Fig. 5

given by the interconnection of passive systems is rendered

passive. Therefore, the fact that the overall internal energy does

not increase, will enforce stability through passivity [24]. By

monitoring the energy flows at the ports B and M and, then

using passivity controllers, it is possible to ensure the passivity

of the overall system. Therefore, we need to define the power

correlated variables at the ports B and M of Fig. 5. These

can be expressed as (input,output) variables as: (FB , ẋb) and

(Fm, ẋm), respectively. Then, passivity analysis of these ports

will be performed in the following subsections by exploiting

the TDPA approach.

ẋb ẋm

FB Fm

CmCb

Zcb

F ∗

b

S

Tb TmB M

Zcm

F ∗

m

Fig. 5: Network representation of the satellite-manipulator system
(S) with tracking controller Cm for the manipulator and regulation
controller for the base Cb.

C. Passivity Observers - Passivity Controllers Architecture

The passivity observers are designed to monitor the energy

of the ports using (18) and will be applied to each degree-of-

freedom (dof) independently. Enforcing passivity component-

wise on the variables composing a port is sufficient for

enforcing the passivity of the overall port. In fact, considering

(18) and neglecting E(0), the energy can be split into the n

components as follows:

m∑

k=0

(F (k)T v(k)T ) =

m∑

k=0

n∑

i=1

Fi(k)vi(k)T, (19)

where it is evident that if Fi(k)vi(k)T > 0 for each compo-

nent i = 1, . . . , n then
∑m

k=0(F (k)Tv(k)T ) > 0.

1) PO-PC for the manipulator controller: A first PO-PC is

implemented on the port (Fm, ẋm) to monitor the activity of

the port M . The passivity observer is defined as:

Eobsm(km) = Eobsm(km − 1) + Fm(km)ẋm(km)Tm+

βm(km − 1)ẋm(km − 1)2Tm, (20)

where βm is the variable damper calculated as:

βm(km) =







−
Eobsm

(km)+Em(0)
ẋm(km)2Tm

Eobsm(km) < −Em(0)

0 else.

with Em(0) being the initial stored energy. The second term

on the right side of (20) is the input energy at the port M and

the last term is the update of energy which is dissipated by

the passivity controller whose force is given by:

Fpcm(km) = −βm(km)ẋm(km). (21)

Therefore, if the passivity condition is violated, the correction

in force will be provided to the manipulator as follows:

F
′

m(km) = Fm(km) + Fpcm(km). (22)

2) PO-PC for the base controller: A second PO-PC mon-

itors the port (FB , ẋb) at the base. In order to have higher

accuracy, the passivity observer for this port is implemented

in the system running at faster rate (Tm) and it is defined as:

Eobsb(km) = Eobsb(km − 1) + FB(km)ẋb(km)Tm

+ βb(km − 1)ẋb(km − 1)2Tm, (23)

where the velocity of the base ẋb can be measured at sampling

rate Tm (eg., using a high-rate position sensor). Notice that the

total energy Eobsb (km) is updated at each sampling time Tm.

The values of FB changes at each time step Tb and between

two values, the observer holds the previously received value.

Similar to the energy observer for the manipulator, the second

term on the right side of (23) is the energy of the port B

and the last one is the update of the passivity controller. The

variable damper βb is derived as:

βb(km) =







−
Eobs

b
(km)+Eb(0)

ẋb(km)2Tm

Eobsb (km) < −Eb(0)

0 else,
(24)
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where Eb(0) is the initial stored energy. Then the force of the

passivity controller at the base is calculated as:

Fpcb(km) = −βm(km)ẋb(km). (25)

Although the passivity controller is calculated at high rate,

its force correction is provided at the sampling step Tb.

Therefore, when the passivity condition is violated, the force

provided to the system through the base controller is:

F
′

B(kb) = Fb(kb) + Fpcb(kb). (26)

Fig. 6 shows the networks with the PCs placed on the

manipulator and base controller. Notice that the force vectors

modified by the PO/PC architecture, F
′

B for the base controller

and F
′

m for the manipulator controller have been added.

Therefore, both the controllers in the dashed boxes endowed

with the PCs are rendered passive. Consequently, the overall

system is passive since it is an interconnection of passive

networks.

ẋb ẋb ẋmẋm

FB FmF ′

m

CmCb

Tb

F ′

B

PCb PCm

Zcb

F ∗

b

Tm

S

B M

Zcm

F ∗

m

Fig. 6: Network representation scheme with tracking control Cm and
controller at the base Cb endowed with the two PCs.

V. SIMULATION RESULTS

In this section we show the results of the simulation per-

formed with the proposed controllers. The manipulator control

runs at Tm = 0.001s and the base control runs at Tb = 0.3s,
which are typical values for a space scenario [13] and we

consider the same trajectory as shown in Fig. 2. The base

where the manipulator is attached (satellite) has a mass of

M = 150 Kg with Inertia Ix = 38kgm2, Iy = 20 kgm2,

Iz = 23 kgm2 and the mass and inertia parameters of the

manipulator are reported in [16].

Fig. 7 shows the energy observed in the system for the

manipulator (top) and base (bottom) without the action of

the passivity control. Notice that the negative trend indicates

activity in the system and it caused the instability showed

in Fig. 4. The proposed controller can compensate for this

active energy which provides a correction shown in Fig. 8.

The figures at the top show the passivity control action

provided to the manipulator and the figures at the bottom,

the passivity control of the base. The energy observers with

the actions of the PCs are shown in Fig. 9 where the positive

semi-definiteness indicates the passivity of the system as per

equation (18). Finally the error of the manipulator during

the tracking and the error of the base for the regulation are

shown in Fig. 10 top and bottom, respectively. It is worth to

compare Fig. 4 (before applying the passivity-based method)

and Fig. 10 (with the proposed method). It can be seen that

all the activity has been removed and the errors converge.
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Fig. 7: Energy observers for manipulator (top) and base (bottom)
without PC which creates instability shown in Fig. 4.
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manipulator (top) and passivity controller forces Fpcb = (fpcb , τpcb)
for the base (bottom).

VI. EXPERIMENT RESULTS

The coordinated control architecture is validated on a

robotic system, the OOS-Sim. The facility exploits industrial

robots to simulate satellite dynamics in gravity-free environ-

ment. The base motion of the free-flying robot is simulated by

the industrial robot shown on the left side of Fig. 1. It moves

according to a model-based dynamics as reported in (1). More

details about the OOS-Sim facility can be found in [2], [26].

The control of the base runs at 250 Hz and the manipulator

controller at 1000 Hz. The mass and inertial parameters of

the space robot are the same as reported in Sec. V. A linear

trajectory of 20 cm is commanded to the Light-Weight-Robot

arm along the −z axis in the inertial frame (see Fig. 1) for 10
seconds and the base is regulated about a set-point in a relative

position of [0.04, 0, 0.08] m and [10, 0, 0] deg in orientation

with respect to the inertial frame.
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Fig. 9: Energy observers for manipulator (top) and base (bottom) with
PC. Positive trends indicate passivity.
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Fig. 10: Tracking error of manipulator (top) and regulation error of
the base (bottom) with the proposed controllers.

The tracking error of the manipulator for the position and

orientation is shown at the top of Fig. 11 and the force applied

are shown at the bottom, respectively. As it can be seen, during

the tracking (first 10s) the maximum error is 0.008 m in

position and 1.1 deg in orientation.

The regulation error for the base is shown in Fig. 12 (top)

and the respective applied force are shown at the bottom of

Fig. 12. The residual error in position and orientation for the

base is 0.012 m in position and −2 deg in orientation. This

is due to the residual forces Fm applied by the manipulator

and transmitted to the base, as can be seen in (17). During the

experiment, the energy observers measured the activity result-

ing from the multi-rate controllers, as shown in Fig. 13. This

extra energy is compensated with the passivity controllers to

render the system passive. Fig. 14 shows the energy observers

with the action of the passivity controllers. As can be seen, the

energy is greater than zero respecting the passivity condition
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Fig. 11: Experiment results: Tracking error in position and orientation

(top) and force F
′

m = (f
′

m, τ
′

m) of the manipulator (bottom).
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Fig. 12: Experiment results: regulation error of the base (top) and
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B = (f
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b , τ
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b) (bottom).

in (18). The proposed controllers can run on a real robot in

spite of the practical issues like measurement noise, friction

and unmodeled dynamics. This and additional experiments can

be seen in the video accompanying the paper.

VII. CONCLUSIONS

Space mission requirements impose hard constraints on the

on-board power and relative sampling rates of the controllers.

This factor has an effect on the controllers design, which need

to fulfill stability characteristics while running at different

rates. In this paper we have shown that different sampling

rates between two controllers (satellite-base and manipulator)

can deteriorate the performances and lead to instability. We

proposed a controller architecture endowed with passivity

observers and passivity controllers, which can fulfill the task of

tracking a desired end-effector trajectory and regulate the base

while ensuring stability. The passivity observers have been
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Fig. 13: Experiment results: Energy observers without PC for the
manipulator (top) and base (bottom). Negative trend indicates activity.
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Fig. 14: Experiment results: Energy observers with PC for the ma-
nipulator (top) and base (bottom). Positive trend indicates passivity.

designed to monitor the activities of the base and manipulator

and two passivity-based controllers have been used for remov-

ing the activities. As a result, the overall system is stable. The

proposed controllers have been experimentally validated on a

robotic facility, the OOS-Sim. The method aims at generality

and it can be applied also in other domains.
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