
13/07/2024 13:59

Twenty years of coordination technologies: State-of-the-art and perspectives / Ciatto, Giovanni; Mariani,
Stefano; Louvel, Maxime; Omicini, Andrea; Zambonelli, Franco. - 10852:(2018), pp. 51-80. (Intervento
presentato al convegno 20th IFIP WG 6.1 International Conference on Coordination Models and
Languages, COORDINATION 2018 Held as Part of the 13th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2018 tenutosi a esp nel 2018) [10.1007/978-3-319-92408-
3_3].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Springer Verlag

This is a pre print version of the following article:

Twenty Years of Coordination Technologies:
State-of-the-Art and Perspectives

Giovanni Ciatto[0000−0002−1841−8996]†, Stefano Mariani[0000−0001−8921−8150]?,
Maxime Louvel[0000−0002−1330−253X]♦, Andrea Omicini[0000−0002−6655−3869]†,

and Franco Zambonelli[0000−0002−6837−8806]?

† Alma Mater Studiorum–Università di Bologna, Italy
giovanni.ciatto@unibo.it, andrea.omicini@unibo.it

? Università di Modena e Reggio Emilia, Italy
stefano.mariani@unimore.it, franco.zambonelli@unimore.it

♦ Bag-Era, France
maxime.louvel@bag-era.fr

Abstract. Since complexity of inter- and intra-systems interactions is
steadily increasing in modern application scenarios (e.g., the IoT), coor-
dination technologies are required to take a crucial step towards maturity.
In this paper we look back at the history of the COORDINATION con-
ference in order to shed light on the current status of the coordination
technologies there proposed throughout the years, in an attempt to un-
derstand success stories, limitations, and possibly reveal the gap between
actual technologies, theoretical models, and novel application needs.

Keywords: coordination technologies, middleware, survey

1 Scope, Goal, and Method

Complexity of computational systems, as well as their impact on our everyday
life, is constantly increasing, along with the growing complexity of interaction—
inter- and intra-systems. Accordingly, the role of coordination models should
expectedly grow, along with the relevance of coordination technologies within
ICT systems: instead, this is apparently not happening—yet.

Then, it is probably the right time – now, after twenty years of the COOR-
DINATION conference – and the right place – the COORDINATION conference
itself – to take a a step back and reflect on what happened to coordination mod-
els, languages, and (above all) technologies in the last two decades. That is why
in this paper we survey all the technologies presented and discussed at COOR-
DINATION, examine their stories and their current status, and try to provide an
overall view of the state-of-the art of coordination technologies as emerging from
twenty years of work by the COORDINATION community. The main goal is to
provide a sound basis to answer questions such as: Are coordination technolo-
gies ready for the industry? If not, what is currently missing? Which archetypal
models lie behind them? Which are the research areas most/least explored? And
what about the target application scenarios?

2

1.1 Structure & Contribution of the Paper

Section 2 first provides an overview of the data about papers published in the
conference throughout the years (Subsection 2.1), as collected from the official
SpringerLink website and its companion BookMetrix service, with the aim of
emphasising trends concerning (i) the number of papers published in each vol-
ume, (ii) the number of citations generated by each volume, (iii) the number of
downloads generated by each volume, (iv) the most cited paper of each volume,
and (v) the most downloaded paper of each volume.

Then, the scope of our analysis narrows down to those papers bringing a
technological contribution, in the sense of describing a software artefact offering
an API exploitable by other software to coordinate its components. Accord-
ingly, Subsection 2.2 provides an overview of all the technologies born within
the COORDINATION conference series. For each one, the reference model im-
plemented, and the web URL where to retrieve the software – if any – are given.

Then, a brief description of all the software for which no working implementa-
tion could be found is reported for the sake of completeness, whereas technologies
still available are thoroughly described in Subsection 2.3. There, each selected
technology was downloaded and tested to clearly depict its health status:

– date of last update to the source code (or project web page, if the former is
not available)

– whether the software appears to be actively developed, in maintenance mode,
or discontinued

– whether suitable documentation is available

– whether the source code is publicly available

– whether the build process of the software artefact is reproducible

– whether the software artefact, once built, executes with no errors

For the latter two items, in case of failures, an explanation of the problem and,
if needed, the steps undertaken in the attempt to overcome it, are provided too.
In particular, the latter test is not meant to measure performance, or, to provide
a benchmark for comparisons: its purpose is to assess whether the technology
is usable, that is, executable on nowadays software platforms and by nowadays
programming languages. For instance, a library requiring an obsolete third-party
libraries that hinders smooth deployment is considered not usable. Accordingly,
each technology is tested either running provided example code, or developing a
minimal working example of usage of the API.

Section 3 discusses the data collected so as to deliver insights about: (i) the
evolution of technologies as they are stemming from a few archetypal models
(Fig. 5), (ii) the relationships between the selected technologies, as a comparison
of their features (Fig. 6), and (iii) the main goal and reference scenario of
each technology (Fig. 7). Also, a general discussion is provided, reporting about
success stories, peculiarities, and opportunities.

Finally, Section 4 concludes the paper by summarising the results of the sur-
vey and providing some perspectives for the future of coordination technologies.

3

1.2 Method

The scope of this survey is indeed the COORDINATION conference series.
There, we focus on coordination technologies intended as software implementing
a given coordination model, language, mechanism, or approach with the goal of
providing coordination services to other software applications. In other words,
our focus is on technologies implementing some form of coordination middleware
or API —analysed in Subsection 2.2. We nevertheless include in our overview
other technologies produced within COORDINATION (Subsection 2.1), such as
simulation frameworks, model-checking tools, and proof-of-concept implementa-
tions of process algebras—which are only described in short.

Starting from the COORDINATION conference proceedings available online
from SpringerLink1, the survey proceeds as follows:

1. for each conference year, papers describing a coordination-related technology
were gathered manually into a Google Spreadsheet

2. for each collected paper, we checked whether the paper was actually propos-
ing some software package—papers failing the test are omitted

3. for each paper passing the test, we verified the health status of the technology—
as described in Subsection 1.1

4. then, for each paper featuring at least a usable distribution – meaning a
downloadable version of the software – the corresponding software was down-
loaded and tested—i.e., installation & basic usage

2 The Survey

Although the focus of this paper are coordination technologies, we believe an
overview of the whole conference proceedings is due to give context to the survey
itself. Accordingly, Subsection 2.1 summarises and analyses all the data officially
available from Springer—concerning, for instance, citations and downloads of
each volume and paper. Then, Subsection 2.2 accounts for all the coordination
technologies mentioned in COORDINATION papers, regardless of their actual
availability, while Subsection 2.3 reports about the core of this survey: the status
of the coordination technologies nowadays publicly available.

2.1 Overview

The COORDINATION conference series has been held 19 times since its first
edition in 1996 in Cesena (Italy), and generated as many conference proceedings
volumes—all available online1. Data about the number of published papers, the
number of citations and downloads per year of each volume, as well as the most
cited and most download paper have been collected from SpringerLink and its
companion service BookMetrix2—and are reported in Table 1 on page 4 (last
checked February 9th, 2018). Highest values for each column are emphasised in
bold.

4

Edition No. of papers Citations/Year Downloads/Year MCP MDP

1996 34 3.32 140.00 16 124

1997 31 2.86 140.48 14 149

1999 32 2.05 205.26 6 154

2000 27 0.11 — 6 158

2002 35 2.81 301.88 7 180

2004 23 4.07 197.86 19 146

2005 19 3.00 261.54 9 214

2006 18 6.25 312.50 22 297

2007 17 8.27 341.82 14 308

2008 21 10.70 391.00 13 227

2009 15 7.44 370.00 13 259

2010 12 3.25 507.50 6 536

2011 14 4.00 538.57 6 675

2012 18 5.50 1081.67 6 523

2013 17 8.20 1314.00 7 547

2014 12 10.50 792.50 10 299

2015 15 6.67 1453.33 11 336

2016 16 14.00 2355.00 4 350

2017 14 2.00 1930.00 1 245

Avg. 20.53 5.53 701.94 10* 301.42*

Std. Dev. 7.57 3.60 658.47 5.42* 160.16*

Table 1. Overall data directly available online from Springer regarding the
COORDINATION conference series. To compute citations (downloads) per year, the
number of citations (downloads) was divided by the number of years the publications
is available since. MCP stands for “Most Cited Paper” whereas MDP stands for “Most
Downloaded Paper”.

5

Fig. 1. Number of papers in the volume and number of citations per year (computed
as described in text) of the volume.

The trend over time of the number of papers, the citations of the volumes, and
their downloads, are plotted in Fig. 1 and Fig. 2, respectively, along with their
trend line. A few significant trends can be spotted in spite of the high variability
between different editions of the conference. For the number of published papers,
the trend is clearly descending : the first five editions featured an average of
32 papers, whereas the latest five an average of 15. As far as the number of
citations per year generated by each volume of the proceedings is concerned, a
few oscillations can be observed:

– a first phase (from the 1st edition to the 4th) shows a decreasing number of
citations, from 3.32 down to 0.11 (the all-time-low)

1 http://link.springer.com/conference/coordination
2 http://www.bookmetrix.com/

Fig. 2. Number of downloads per year (computed as described in text) of the volume.

http://link.springer.com/conference/coordination
http://www.bookmetrix.com/

6

Fig. 3. Most cited paper per year with average values & standard deviation.

– then, in a second phase (from the 5th to the 10th edition) the number of
citations increases, up to 10.70 in 2008

– finally, after a brief fall in 2009 and 2010, the number of citations per year
kept increasing up to the all-time-high of 2016 (14.00)

For the number of downloads per year, two phases can be devised out in Fig. 2:

– in the first period, from the 1st edition to the 13th (2011), the trend is quite
stable, oscillating between 140 and 538.57

– in the second one instead, from 2012 up to latest edition, there is a sharp
increase up to the all-time-high of 2355.00 in 2016

Finally, Fig. 3 and Fig. 4 show the most cited paper and the most downloaded
paper per year, respectively. Besides noting (i) the highly irregular trend regard-
ing the most cited papers, oscillating from 6 to 22 through approximately three
epochs3 (few citations during 1996–2002, more citations during 2003–2009, few

3 Excluding the most recent editions, which had less time to generate citations.

Fig. 4. Most downloaded paper per year with average values & standard deviation.

7

again during 2010–2017), and (ii) the increasing number of downloads in recent
years: in the four years between 2010 and 2013 the most downloaded papers
combined generated more downloads than the most downloaded papers of all
the previous years combined (2281 vs. 2216), it could be interesting to check
how many of such papers are related to technology, if any.

Overall, in the 19 editions of COORDINATION held until now, the most
cited / downloaded paper is about technology – in the broadest acceptation of
the term – in slightly less then a half of them: 7 papers amongst the most cited
ones, and 8 amongst the most downloaded ones.

By extending the analysis to all the papers published in the proceedings,
instead, out of all the 390 papers published, only 47 (just 12.05%) – based on
authors’ inspection of the papers – convey a technological contribution. And,
such an estimate is somehow optimistic, since we counted papers just for merely
mentioning a technology, with no means to access it—see Table 2.

Name Year Model (Closest) Web page & Notes

Manifold [5] 1996 IWIM [5]
http://projects.cwi.nl/manifold

no link to implementation

Sonia [12] 1996 Linda + access control no implementation found

Laura [92] 1996 service-oriented Linda no implementation found

MultiBinProlog [31] 1996 µ2Log [31]
http://cseweb.ucsd.edu/∼goguen/courses/230/pl/art.html

dead links

MESSENGERS [42] 1996
Navigational

Programming [42]

http://www.ics.uci.edu/∼bic/messengers

dead links

ACLT [35] 1996
Linda +

programmable tuple spaces
evolved into TuCSoN

Blossom [46] 1997
Linda +

coordination patterns
no implementation found

Bonita [84] 1997 asynch Linda no implementation found

Berlinda [93] 1997 Linda no implementation found

SecOS [22] 1999 Linda no implementation found

Messengers [95] 1999 CmPS + mobility [52]
http://osl.cs.illinois.edu/software/

no mention of “Messengers”

MJada [82] 1999 OO Linda
http://www.cs.unibo.it/cianca/wwwpages/macondo/

no reference to MJada

STL++ [87] 1999 ECM [87] no implementation found

Clam [86] 1999 IWIM [5] no implementation found

TuCSoN [28] 1999
novel

(many extensions to Linda)
http://tucson.unibo.it/

Truce [53] 1999 novel (protocols + roles) no implementation found

http://projects.cwi.nl/manifold
http://cseweb.ucsd.edu/~goguen/courses/230/pl/art.html
http://www.ics.uci.edu/~bic/messengers
http://www.cs.unibo.it/cianca/wwwpages/macondo/
http://tucson.unibo.it/

8

Name Year Model (Closest) Web page & Notes

CoLaS [29] 1999 novel (protocols + roles) no implementation found

OpenSpaces [38] 2000 OO Linda no implementation found

Piccola [2] 2000 novel http://scg.unibe.ch/research/piccola

Moses [4] 2000 LGI [4] http://www.moses.rutgers.edu

Scope [63] 2000
Linda + mobility

+ space federation
no implementation found

Pεω [6] 2002 IWIM [5]
http://reo.project.cwi.nl/reo

evolved into Reo

SpaceTub [94] 2002 Linda no implementation found

O’Klaim [15] 2004 OO Linda + mobility
http://music.dsi.unifi.it/xklaim

evolved into X-Klaim

Limone [40] 2004
Linda + mobility

+ spaces federation
http://mobilab.cse.wustl.edu/projects/limone

CRIME [65] 2007 Lime [34] http://soft.vub.ac.be/amop/crime/introduction

TripCom [89] 2007 Triple Space Computing [39] http://sourceforge.net/projects/tripcom

CiAN [88] 2008 novel http://mobilab.cse.wustl.edu/Projects/CiAN/Home/Home.shtml

Smrl [1] 2008 Pepa [45] http://groups.inf.ed.ac.uk/srmc/download.html

CaSPiS [18] 2008 IMC [17] http://sourceforge.net/projects/imc-fi

LeanProlog [91] 2008 novel http://www.cse.unt.edu/∼tarau/research/LeanProlog

JErlang [75] 2010 Join-Calculus [41] http://github.com/jerlang/jerlang

Session Java [68] 2011 Session Types [50] http://www.doc.ic.ac.uk/∼rhu/sessionj.html

WikiRecPlay /InFeed [80] 2012 BPM no implementation found

Statelets [57] 2012 novel http://sourceforge.net/projects/statelets

IIC [77] 2012 Reo [6] http://github.com/joseproenca/ip-constraints

LINC [58] 2015 Linda [44]
implementation not available for commercial reasons

see http://bag-era.fr/ index en.html#about

RepliKlaim [3] 2015 Klaim [19] http://sysma.imtlucca.it/wp-content/uploads/2015/03

Logic Fragments [30] 2014 Sapere [97] no implementation found

Table 2: Overview of the coordination technologies presented
at COORDINATION. “Name” denotes the technology, whereas
“Model” makes explicit the model taken as reference for the im-
plementation. The last column points to the web page where the
software is available – if any – and provides for additional notes.

http://scg.unibe.ch/research/piccola
http://www.moses.rutgers.edu
http://reo.project.cwi.nl/reo
http://music.dsi.unifi.it/xklaim
http://mobilab.cse.wustl.edu/projects/limone
http://soft.vub.ac.be/amop/crime/introduction
http://sourceforge.net/projects/tripcom
http://mobilab.cse.wustl.edu/Projects/CiAN/Home/Home.shtml
http://groups.inf.ed.ac.uk/srmc/download.html
http://sourceforge.net/projects/imc-fi
http://www.cse.unt.edu/~tarau/research/LeanProlog
http://github.com/jerlang/jerlang
http://www.doc.ic.ac.uk/~rhu/sessionj.html
http://sourceforge.net/projects/statelets
http://github.com/joseproenca/ip-constraints
http://bag-era.fr/index_en.html#about
http://sysma.imtlucca.it/wp-content/uploads/2015/03

9

2.2 Analysis of Technologies

Table 2 provides an overview of the coordination technologies born within the
COORDINATION conference series throughout the years. Only those technolo-
gies passing test §2 in Section 1.2 are included, that is, those technologies actually
delivering some form of coordination services to applications—i.e. in the form of
a software library with suitable API. For each technology, the original paper is
referenced, the model taken as reference for implementation indicated – if any –
and the URL to the technology web page hosting the software given—if any is
still reachable. Technologies whose corresponding software is still available – that
is, those passing test §3 in Section 1.2 – are further discussed in Subsection 2.3;
those with no working software found are briefly described in the following.

The early days. The first few years of COORDINATION (1996–2000) saw a
flourishing of successful technologies: some of the ideas introduced back then
are still alive and healthy. For instance, ACLT [35] adopted first-order logic
terms as Linda tuples, an intuition shared by the µ2Log model and its language,
MultiBinProlog [31]. Also, ACLT allowed agents to dynamically program tuple
spaces via a specification language, enabling definition of computations to be
executed in response to some events generated by interacting processes. Both
features influenced the TuCSoN model and infrastructure [28], one of the few
technologies to be still actively maintained nowadays.

Similarly, the IWIM coordination model and its corresponding language,
Manifold [5], were introduced back in 1996 and survived until present days
by evolving into Reo [6]. IWIM came by recognising a dichotomy between ex-
ogenous and endogenous coordination, and exploiting channel composition as a
means to build increasingly complex coordination patterns.

Finally, Moses [4] was presented to the COORDINATION community as an
infrastructure reifying the Low Governed Interaction (LGI) model. The tech-
nology is still alive and inspectable from its homepage, even if apparently no
longer maintained. Analogously, the Piccola composition language presented
in [2] clearly relies on a coordination technology which reached stability and
robustness, even if it seems to be no longer maintained, too.

Besides these success stories, many other papers at that time proposed a
technology, but either they only mentioned the technology without actually pro-
viding a reference to a publicly available software, or such a reference is no longer
reachable (i.e. the link is dead and no reference to the software have been found
on the web). For instance:

Sonia [12] — a Linda-like approach supporting human workflows, therefore
stressing aspects such as understandability of the tuple and template lan-
guages, time-awareness and timeouts, and security by means of access control

Laura [92] — a language attempting to steer Linda towards service-orientation,
where tuples can represent (formal descriptions of) service requests, offers,
or results, thus enabling loosely coupled agents to cooperate by means of
Linda-like primitives

10

MESSENGERS [42] — following the Navigational Programming method-
ology [42], where strongly-mobile agents – a.k.a. Messengers – can migrate
between nodes. Here, coordination is seen as “invocation [of distributed com-
putations] and exchange of data” and it “is managed by groups of Messengers
propagating autonomously through the computational network”

Blossom [46] — a Linda variant focusing on safety, which is provided by
supporting a type system for tuples and templates, and a taxonomy of access
patterns to tuple spaces, aimed at supporting a sort of “least privilege”
principle w.r.t. access rights of client processes

Bonita [84] — another Linda-like technology – as its successor WCL [85] –
focusing on asynchronous primitives and distribution of tuple spaces, which
can also migrate closer to their users

Berlinda [93] — providing a meta-model – along with a Java implementation
– for instantiating different Linda-like models

SecOS [22] — a Linda variant focusing on security and exploring the exploita-
tion of (a)symmetric key encryption

Messengers [95] — not to be confused with [42] despite its name, which fo-
cusses on message exchange by means of migrating actors

MJada [82] — an extension of the Jada language [25], focusing on coordinating
concurrent (possibly distributed) Java agents by means of Linda-like tuple
spaces with an extended primitive set and object-oriented tuples

Clam [86] — a coordination language based on the IWIM model [5]
Truce [53] — a scripting language aimed at describing protocols to which agents

must comply by enacting one or more roles
CoLaS [29] — a model and its corresponding language providing a framework

where a number of participants can join interaction groups and play one
or more roles within the scope of some coordination protocol. In particular,
CoLaS focuses on the enforcement of coordination rules by validating and
constraining participants behaviour

The millenials. After year 2000, technologies are less present amongst COOR-
DINATION papers, but not necessarily less important. For instance, Reo made
its first appearance in 2002 [6], its name written in Greek (Pεω). Reo provides an
exogenous way of governing interactions between processes in a concurrent and
possibly distributed system. Its strength is due to its sound semantics, enabling
researchers to formally verify system evolution, as well as to the availability of
software tools. The technology is indeed still alive and actively developed.

Recent implementations are more easily available on the web. Out of 22
coordination technologies, just 6 were not found on the web during the survey:

OpenSpaces [38] — focussing on the harmonisation of the Linda model with
the OOP paradigm and, in particular, with the inheritance mechanism

Scope [63] — analogously to Lime, it provides multiple distributed tuple spaces
cooperating by means of local interactions when some process attempts to
access a tuple, thus providing a sort of federated view on the tuple space

SpaceTub [94] — successor of Berlinda, it aims at providing a meta-framework
where other Linda-like frameworks can be reproduced

11

WikiRecPlay / InFeed [80] — a pair of tools (browser extensions, no longer
available) aimed at extracting and manipulating information from web appli-
cations to record them and later replay, enabling the definition of sequences
of activities that can be synchronised with each other. The goal here is to
augment social software with coordination capabilities.

LINC [58] — a coordination environment implementing the basic Linda primi-
tives – out, in, rd – in a setting in which each tuple space (called bag) could
implement the primitives differently (still preserving semantics), a conve-
nient opportunity when dealing with physical devices (i.e. in the case of
deployment to IoT scenarios) or legacy systems (i.e. databases). It provides
transactions to alleviate to developers the burden of rolling back actions in
the case of failures, and a chemical-reaction model inspired to Gamma [11]
for enacting reaction rules. Several tools [59] are provided to help developers
debug the rules, and to generate rules from high level specifications. The
LINC software is nevertheless not publicly available because it is exploited
by the Bag-Era company. Accordingly, it is not further analysed in Subsec-
tion 2.3, but it is included in Section 3 as an example of industrial success.

Logic Fragments [30] — a chemical-based and programmable coordination
model likewise Sapere [97] – to which it is inspired – enriched with a logic-
based one through the notion of Logic Fragments, which are combinations
of logic programs defining on-the-fly, ad-hoc chemical reactions – similar to
Sapere eco-laws – that apply on matching tuples to manipulate other tuples
or to produce new Logic Fragments. The aim is to guarantee data consis-
tency, favour knowledge representation of partial information, and support
constraints satisfaction, thanks to verification of global properties enabled by
the logic nature of the framework.

All the others are still publicly available, thus further analysed in next section.
For instance, the O’Klaim language presented in [15] evolved into the X-

Klaim project [16] which is still alive, even if apparently no longer maintained.
Similar considerations can be made for Limone [40] and CRIME [65], which both
stem from the idea of opportunistic federation of transient tuple spaces intro-
duced by LIME [66], and improve it with additional features such as lightweight-
ness and orientation to ambient-programming.

Analogously, the CiAN [88] model and middleware, targeting the coordina-
tion of distributed workflows over M obile Ad-hoc Networks (MANETs), comes
with a mature implementation, although no longer maintained. An extension to
Session Java [51] is proposed in [68] to explicitly tackle synchronisation issues
such as freedom from deadlock via multi-channel session primitives, Whereas
the implementation was discontinued in 20114, the source code is still available
from GoogleCode archive. JErlang [75], a Java-based implementation of Erlang
extended with constructs borrowed from the Join-Calculus [41], appears to
be no longer maintained too as explicitly stated in its home page5, although a
couple of implementations are still available and (partially) working.

4 Year of latest commit: https://code.google.com/archive/p/sessionj.
5 http://jerlang.org/

https://code.google.com/archive/p/sessionj
http://jerlang.org/

12

Also RepliKlaim [3], an implementation of Klaim [19] aimed at optimising
performance and reliability through replication of tuples and tuple spaces, re-
ceived updates until 2015 as far as we know, thus appears to be discontinued.
Likewise, 2015 is the year when both Statelets [57] and IIC [77] received their
last known update: the former is a programming model and language aimed at
integrating social context and network effects, derived from social networks anal-
ysis, as well as semantic relationships amongst shared artefacts in, i.e. groupware
applications, into a single and coherent coordination model, while the latter pro-
poses Interactive Interaction Constraints (IIC) as a novel framework to ground
channel-based interaction – à la Reo – upon constraints satisfaction, interpreting
the process of coordinating components as the execution of a constraints solver.

Next section briefly focuses on those technologies—that is, coordination tech-
nologies that can be actually installed and used nowadays—step §4 in Section 1.2.

2.3 Analysis of selected technologies

Table 3 overviews the working technologies we were able to somewhat successfully
test, that is, only those technologies listed in Table 2 which successfully surpassed
test §4 described in Section 1.2—a software artefact exists and is still working.

It is worth noting that, w.r.t. Table 2, a few technologies are not included
in this section despite the corresponding software is available from the reference
web page therein referenced. The reason is:

– Smrl requires ancient software to run—that is, an old version of Eclipse
requiring in turn an ancient version of the Java runtime (1.4)

– CaSPiS [18] (or better, JCaSPiS, namely the Java-based implementation of
CaSPiS) was not found anywhere—neither in the author personal pages, nor
in their account profiles on Github, nor in the web pages of the SENSORIA
project mentioned in the paper. Nevertheless, the IMC model and frame-
work allegedly grounding its implementation is still accessible6. Then we
proceeded to download it looking for the CaSPiS code, without success. It
is worth to be mentioned, anyway, that the IMC framework code appears to
be broken, since compilation fails unless a restricted/deprecated Java API
is used7, and even in the case of instructing the compiler to allow for it8

the attempt to run any part of the software failed without informative error
messages—just generic Java exceptions.

– LeanProlog is not usable as a coordination technology as defined in Sec-
tion 1.2: it is a Prolog engine with low-level mechanisms for handling multi-
threading, and provides no API for general purpose coordination

– Session Java, as explicitly stated in its home page, requires an ancient version
of the Java runtime to run, that is, 1.4

– Statelets is explicitly tagged as being in “pre-alpha” development stage, and,
upon inspection, revealed to be only partially developed

6 https://sourceforge.net/projects/imc-fi/
7 A class uses a deprecated API, and another one requires breaking access restrictions.
8 See https://goo.gl/pdWCsx.

https://sourceforge.net/projects/imc-fi/
https://goo.gl/pdWCsx

13

N
a
m

e
L

a
st

u
p

d
a
te

H
ea

lt
h

D
o
cu

m
en

ta
ti

o
n

S
o
u
rc

e
co

d
e

B
u
il
d

D
ep

lo
y
m

en
t

T
u
C

S
o
N

2
0
1
7

A
ct

iv
el

y
d
ev

el
o
p

ed
A

va
il
a
b
le

A
va

il
a
b
le

S
u
cc

es
sf

u
l

S
u
cc

es
sf

u
l

M
o
se

s
2
0
1
7

A
ct

iv
el

y
d
ev

el
o
p

ed
/
m

a
in

ta
in

ed
A

va
il
a
b
le

U
n
av

a
il
a
b
le

—
S
u
cc

es
sf

u
l

J
E

rl
a
n
g

2
0
1
7

D
is

co
n
ti

n
u
ed

P
o
o
r

A
va

il
a
b
le

F
a
il
ed

—

II
C

2
0
1
5

D
is

co
n
ti

n
u
ed

P
o
o
r

A
va

il
a
b
le

F
a
il
ed

S
u
cc

es
sf

u
l

R
eo

2
0
1
3

A
ct

iv
el

y
d
ev

el
o
p

ed
A

va
il
a
b
le

A
va

il
a
b
le

S
u
cc

es
sf

u
l

P
a
rt

ia
ll
y

su
cc

es
sf

u
l

T
ri

p
C

o
m

2
0
0
9

D
is

co
n
ti

n
u
ed

P
a
rt

ia
ll
y

av
a
il
a
b
le

A
va

il
a
b
le

S
u
cc

es
sf

u
l

S
u
cc

es
sf

u
l

C
iA

N
2
0
0
8

D
is

co
n
ti

n
u
ed

A
va

il
a
b
le

A
va

il
a
b
le

S
u
cc

es
sf

u
l

S
u
cc

es
sf

u
l

P
ic

co
la

2
0
0
6

D
is

co
n
ti

n
u
ed

A
va

il
a
b
le

J
av

a
o
n
ly

N
o

S
m

a
ll
ta

lk
S
u
cc

es
sf

u
l

S
u
cc

es
sf

u
l

C
R

IM
E

2
0
0
6

D
is

co
n
ti

n
u
ed

U
n
av

a
il
a
b
le

U
n
av

a
il
a
b
le

—
S
u
cc

es
sf

u
l

K
la

va
2
0
0
4

D
is

co
n
ti

n
u
ed

P
o
o
r

A
va

il
a
b
le

S
u
cc

es
sf

u
l

S
u
cc

es
sf

u
l

X
-K

la
im

2
0
0
4

D
is

co
n
ti

n
u
ed

A
va

il
a
b
le

A
va

il
a
b
le

F
a
il
ed

—

L
im

o
n
e

2
0
0
4

D
is

co
n
ti

n
u
ed

U
n
av

a
il
a
b
le

A
va

il
a
b
le

F
a
il
ed

—

R
ep

li
K

la
im

—
a

—
a

U
n
av

a
il
a
b
le

A
va

il
a
b
le

S
u
cc

es
sf

u
l

S
u
cc

es
sf

u
l

a
T

h
er

e
is

n
o

p
u
b
li
cl

y
av

a
il
a
b
le

co
d
e

re
p

o
si

to
ry

,
th

u
s

n
o

in
fo

rm
a
ti

o
n

a
b

o
u
t

la
te

st
co

m
m

it
s.

T
a
b
le

3
.

O
v
er

v
ie

w
o
f

th
e

w
o
rk

in
g

co
o
rd

in
a
ti

o
n

te
ch

n
o
lo

g
ie

s
p
re

se
n
te

d
a
t

C
O

O
R

D
IN

A
T

IO
N

.
C

o
lu

m
n

“
H

ea
lt

h
”

d
en

o
te

s
th

e
st

a
tu

s
o
f

th
e

so
ft

w
a
re

,
fo

r
in

st
a
n
ce

w
h
et

h
er

it
is

st
il
l

a
ct

iv
el

y
d
ev

el
o
p

ed
,

o
n
ly

in
m

a
in

te
in

a
n
ce

m
o
d
e,

o
r

a
ct

u
a
ll
y

d
is

co
n
ti

n
u
ed

,
co

lu
m

n
“
B

u
il
d
”

is
fi
ll
ed

w
h
en

ev
er

so
u
rc

e
co

d
e

is
av

a
il
a
b
le

a
n
d

d
en

o
te

s
w

h
et

h
er

b
u
il
d

st
ep

s
(i

.e
.

co
m

p
il
a
ti

o
n

in
to

b
in

a
ri

es
a
n
d

d
ep

en
d
en

ci
es

re
so

lu
ti

o
n
)

w
er

e
su

cc
es

sf
u
l,

co
lu

m
n

“
D

ep
lo

y
m

en
t”

in
d
ic

a
te

s
w

h
et

h
er

th
e

so
ft

w
a
re

h
a
s

b
ee

n
su

cc
es

sf
u
ll
y

ex
ec

u
te

d
.

It
is

w
o
rt

h
to

em
p
h
a
si

se
th

a
t

L
IN

C
h
a
s

b
ee

n
le

ft
o
u
t

si
n
ce

it
is

p
a
rt

o
f

co
m

m
er

ci
a
l

so
lu

ti
o
n
s

so
ld

b
y

th
e

B
a
g
-E

ra
co

m
p
a
n
y,

th
u
s

n
o

fu
rt

h
er

in
sp

ec
ti

o
n

o
f

th
e

so
ft

w
a
re

w
a
s

p
o
ss

ib
le

.

14

TuCSoN. Although TuCSoN [28] appeared at COORDINATION in 1999, its
roots date back to the first edition of the conference, as the ACLT model [35].

TuCSoN is a coordination model adopting Linda as its core but extending it
in several ways, such as by adopting nested tuples (expressed as first-order logic
terms), adding primitives (i.e. bulk [83] and uniform [60]), and replacing tuple
spaces with tuple centres [71] programmable in the ReSpecT language [70]. It
comes with a Java-based implementation providing coordination as a service [96]
in the form of a Java library providing API and a middleware runtime, especially
targeting distributed Java process but open to rational agents implemented in
tuProlog [36]. The TuCSoN middleware is publicly available from its home page9,
which provides both the binaries (a ready-to-use Java jar file) and a link to the
source code repository. From there, also documentation pages are available, in
the form of a usage guide and a few tutorials providing insights into specific
features. Finally, a few related sub-projects are therein described too, such as
TuCSoN4Jade [62] and TuCSoN4Jason [61], which are both Java libraries aimed
at integrating TuCSoN with Jade [13] and Jason [21] agent runtimes, respec-
tively, by wrapping TuCSoN services into a more convenient form which best
suites those developers accustomed to programming in those platforms.

As far as technology is concerned, TuCSoN is still actively developed, being
the latest commit in 2017, when also the latest related publication has been
produced—an extension to the ReSpecT language and toolchain exploited to
program tuple centres in TuCSoN [27]. Also, it is actively exploited as the in-
frastructural backbone for other projects – e.g., the smart home logic-based
platform Home Manager [23] – and industrial applications—e.g., the Electronic
Health Record solution [37]. Nevertheless, TuCSoN is the results of many years
of active development by many different people with many different goals. Thus,
despite some success stories, TuCSoN would require some substantial refactoring
and refinement before it can become a truly commercially-viable product.

Moses. Moses [4] is the technology implementing the Law Governed Interaction
(LGI) coordination model [64], which aims at controlling the interaction of agents
interoperating on the Internet. In LGI, each agent interacts with the system by
means of a controller, that is, a component exposing a fixed set of primitives
allowing agents to exchange messages with other agents. The controller is in
charge of intercepting invocations of primitives by interacting agents to check if
they are allowed according to the law currently adopted by that controller.

Laws are shared declarative specifications dictating how the controller should
react when it intercepts events of interest. Laws are expressed either in a Prolog-
like language or as Java classes. Each controller has its own state which can be
altered by reactions to events and can influence the effect of future reactions.
Non-allowed activities are technically prohibited by the controller which takes
care of aborting the forbidden operation—for instance, by not forwarding a mes-
sage to the intended receiver if some conditions are met.

9 http://tucson.unibo.it

http://tucson.unibo.it

15

The project home page10 is well-organised and provides a number of re-
sources focussed on Moses/LGI such as reference papers, manuals, tutorials,
JavaDoc, examples. The page also provides an archive with the compiled ver-
sions of the Moses middleware, the latest one dating back to 2017—suggesting
that the project is actively maintained and/or developed, and representing an-
other success story born within the COORDINATION series. We were able to
successfully compile and execute the code: however, no source code is provided,
and some poriontof the web page, such as the JavaDoc, are not updated w.r.t.
the current Moses implementation. Finally, Moses still bounds to deprecated
technologies such as Java Applets, which we believe may hinder its adoption.

JErlang. JErlang [75] is an extension of the Erlang language for concurrent and
distributed programming featuring joins as the basic synchronisation construct—
as borrowed from the Join-Calculus [41]. The web page mentioned in the
paper11 is no longer accessible; by searching JErlang and the authors’ names
on the web, a GitHub repository with the same broken reference popped up12,
apparently tracking the development history of the JErlang technology. There,
however, JErlang is described as an implementation of Erlang/OTP on the JVM.
Also, another apparently very similar technology is therein referenced: Erjang.

Anyway, JErlang installation and usage instructions are nowhere to be found,
and, when trying to build the project through the provided Maven pom.xml file,
the build fails due to many errors related to obsolete dependencies—which we
were not able to fix. Instead, Erjang GitHub repository – with no clue about its
links to the paper – provides installation instructions, however building fails due
to a Java compilation failure for a “bad class file” error13. We feel then free to
declare the implementation as discontinued.

IIC. Interactive Interaction Constraints (IIC) [77] is a sort of “spin-off” of Reo
introduced in 2013 [77]. The original approach of implementing Reo connectors
as interaction constraints is extended to allow interaction to take place also be-
tween rounds of constraints satisfaction. This extends the expressive reach of
IIC beyond Reo, and makes the whole process of constraints satisfaction trans-
actional w.r.t. observable behaviour.

The IIC software is distributed as a Scala library providing an handy syntax
which eases definition of Reo-like connectors. The Scala library source code is
distributed by means of a GitHub repository14 where the latest commit dates
back to 2015. The library ships with a SBT configuration, allegedly supporting
automatic building. Nevertheless, we were not able to reproduce the compila-
tion process since the provided SBT configuration depends on an ancient SBT
version. Therefore, we consider IIC a no longer maintained but still usable full-
fledged coordination technology.

10 http://www.moses.rutgers.edu/index.html
11 https://www.doc.ic.ac.uk/∼susan/jerlang/
12 Second link in “See also” section at https://github.com/jerlang/jerlang
13 Actual error is: “class file contains malformed variable arity method: [...]”.
14 http://github.com/joseproenca/ip-constraints

http://www.moses.rutgers.edu/index.html
https://www.doc.ic.ac.uk/~susan/jerlang/
https://github.com/jerlang/jerlang
http://github.com/joseproenca/ip-constraints

16

Reo. Reo was firstly introduced to the COORDINATION community in [6],
its name in Greek letters (Pεω). Similarly to the IWIM model, Reo adopts a
paradigm for exogenous coordination of concurrent and possibly distributed soft-
ware components. According to the Reo model, components are the entities to be
coordinated, representing the computations to be performed, while connectors
are the asbtraction reifying coordination rules. The only assumption Reo makes
about components is that they have a unique name and a well-defined interface
in the form of a set of input ports and output ports. Conversely, connectors
are composed by nodes and channels, or other connectors. A number of coordi-
nation schemes can be achieved by combining the different sorts of nodes and
channels accordingly. This allows to formally specify how, when, and upon which
conditions data may flow from the input to the output ports of components.

Diverse research activities originated from Reo throughout the years, mostly
aimed at (i) analysing the formal properties of both Reo connectors and con-
straints automata [10], which are the computational model behind Reo seman-
tics; and (ii) supporting web services orchestration [54], composition, and veri-
fication [55] by means of code generation and verification tools.

Several technologies are available from the Reo tools homepage15, collectively
branded as the Extensible Coordination Tools (ECT). They consist of various
Eclipse IDE plugins, such as a graphical designer for Reo connectors, and a
code generator which automatically converts the graphical description into Java
sources in which developers may inject applicative logic. Nevertheless, the gen-
erated code comes with no explicit support for distribution.

According to their home page, ECT are allegedly compatible with any Eclipse
version starting from 3.6; while we were not able to reproduce its installation
in that version (due to a dependency requiring an higher version of Eclipse), we
succeeded in installing it on Eclipse version 4.7 (the latest available), but the code
generator appears buggy and unstable – thus hindering further testing – because
of several non-informative error messages continuously appearing when trying
to use the Reo model designer—which is a required step for code generation.

The ECT source code is available from a Google Code repository16—last
commit dating back to 2013. In [78] a novel implementation is proposed, named
Dreams, implemented in Scala and aimed at closing the gap between Reo and
distributed systems. Nevertheless, its binary distribution seems unavailable and
no documentation is provided describing how to compile or use it, thus we were
not able to further test this novel Dreams framework.

TripCom. TripCom [89] is essentially a departure from the Linda model where
the tuple space abstraction is brought towards the Semantic Web vision [47]
and web-based semantic interoperability in general. The former is achieved by
employing the Resource Description Framework (RDF) – that is, a represen-
tation of semantic information as a triple “subject-predicate-object” – as the
tuple representation language, and by considering tuple spaces as RDF triplets

15 http://reo.project.cwi.nl/reo/wiki/Tools
16 https://code.google.com/archive/p/extensible-coordination-tools/source

http://reo.project.cwi.nl/reo/wiki/Tools
https://code.google.com/archive/p/extensible-coordination-tools/source

17

containers. Also, Linda primitives have been consequently re-thought under a
semantics-oriented perspective—that is, by adopting an ad-hoc templating lan-
guage enabling expression of semantic relationships. The latter is achieved by
making triple spaces accessible on the web as SOAP-based web-services.

The implementation is hosted on a SourceForge repository17 and it is appar-
ently discontinued, provided that the last commit dates back to 2009, and the
home page lacks any sort of presentation or reference to publications or docu-
mentation. Nevertheless, the available source code appears well engineered and
is well documented. It can be easily compiled into a .war file and then deployed
on a Web Server (i.e. Apache Tomcat).

Once deployed, the web service is accessible via HTTP – making it is virtually
interoperable with any programming language and platform – and can be tested
by means of a common web browser. Additionally, the service exposes a WSDL
description of the API needed to use it, which implies that a client library
(aka stub) may be automatically generated using standard tools for service-
oriented architectures. Nevertheless, this WSDL description is the only form of
documentation when it comes to actually interact with the web-service.

CiAN. Collaboration in Ad hoc Networks (CiAN) [88] is a Workflow Management
System (WfMS) enabling users to schedule and execute their custom workflow
over MANETs. It comes with a reference architecture and a middleware. The
middleware keeps track of the workflow state in a distributed way, and takes
into account routing of tasks’ input/output data, on top of a dynamic network
topology where nodes communication is likely to be opportunistic.

Workflows in CiAN are modelled as directed graphs whose vertices represent
tasks, and edges represent the data-flow from a task to its successors: when a task
is completed, a result value is transferred through its outgoing edges. Conditions
may be specified within task definitions stating, for instance, weather a task
should wait for all its inputs or just for one of them.

Users can encode their workflow descriptions via a XML-based language to
be endowed to an initiator singleton node, distributing the workflow to a number
of coordinator nodes in charge of allocating tasks to the available worker nodes.

While the middleware is implemented in Java, tasks logic can be implemented
virtually by means of any language since CiAN only assumes the application logic
to interact with the middleware by means of the SOAP protocol, which provides
great interoperability. Both the middleware’s source code and its compiled ver-
sion are distributed through CiAN website18, together with detailed documenta-
tion and some runnable examples. The source code can be easily compiled, and
both the obtained binaries and those publicly available can be run smoothly.
The code is well documented and engineered. Nevertheless, the source code and
documentation both date back to 2008: we therefore consider the project to be
mature and usable, but no longer maintained.

17 https://sourceforge.net/projects/tripcom
18 http://mobilab.cse.wustl.edu/Projects/CiAN/Software/Software.shtml

https://sourceforge.net/projects/tripcom
http://mobilab.cse.wustl.edu/Projects/CiAN/Software/Software.shtml

18

Piccola. Piccola [2] is in its essence a composition language. It provides simple
yet powerful abstractions: forms as immutable, prototype-like, key-value ob-
jects; services as functional forms which can be invoked and executed; agents as
concurrent services; and channels as inter-agent communication facilities. Vir-
tually any interaction mechanism can be built by properly composing these
abstractions, such as shared variables, push and pull streams, message-passing,
publish-subscribe, and so on.

Nevertheless, a limitation is due to the fact that not solely the coordination
mechanisms are to be programmed with the Piccola language, but also the co-
ordinated entities. There is thus no possibility of integration with mainstream
programming languages, which is a severe limitation for adoption. Additionally,
even if Piccola comes with networking capabilities virtually enabling deployment
to a distributed setting, there is no middleware facility available and no opportu-
nity with integration with others is given, which is another factor likely to hinder
Piccola adoption within the scope of distributed programming and coordination.

Piccola home page19 is still available and collects a number of useful re-
sources such as documentation pages and implementation. This comes in two
flavours: JPiccola, based on Java, which reached version 3.7, and SPiccola, based
on Smalltalk, which reached version 0.7. Source code is provided for the Java
implementation only, which correctly compiles and executes.

Nevertheless, the project appears to be discontinued, given that the last com-
mit on the source repository dates back to 2006.

CRIME. CRIME adheres to the Fact Spaces model, a variant of Linda which
absorbs transient federation of tuple space from Lime [66] for implementing
mobile fact spaces—tuple spaces where tuples are logic facts and each tuple space
is indeed a logic theory. Federated fact spaces are therefore seen as distributed
knowledge bases.

In this sense, CRIME has some similarities with TuCSoN, which exploits first-
order logic tuples both as the communication items and as the coordination laws.
In this context, Linda out and in primitives collapse into logic facts assertions
and retractions, respectively.

Suspensive semantics is not regarded as being essential within the scope of the
Fact Spaces model, since the focus is about programming fact spaces to react to
information insertion/removal (or appearance/disappearance in case of transient
federation). Accordingly, users can register arbitrary logic rules by means of a
Prolog-like syntax. The head of such rules represent propositions which may be
proved true (activated) or unknown (deactivated) given the current knowledge
base by evaluating the body of the rule. Users can then plug arbitrary application
logic reacting to (de)activation of these rules.

Implementation of CRIME is available on the project home page20 and con-
sists of an archive shipping pre-compiled Java classes with no attached source
code. The software is apparently no longer maintained : the web page has been

19 http://scg.unibe.ch/research/piccola
20 http://soft.vub.ac.be/amop/crime/introduction

http://scg.unibe.ch/research/piccola
http://soft.vub.ac.be/amop/crime/introduction

19

updated last in 2010, and the archive dates back to 2006. Nevertheless, the
archive provides a number of example applications which have been tested and
are still correctly working. No support is provided to application deployment and
no documentation has been found describing how to deploy CRIME to an actual
production environment.

Klava-? With notation Klava-? we refer to the family of models and technologies
stemming from Klaim [19] – such as O’Klaim [15] and MoMi [14] – which
nowadays evolved into the X-Klaim/Klava framework [20].

X-Klaim consists of a domain-specific language and its compiler, which pro-
duces Java code by accepting X-Klaim sources as input. The produced code
exploits the Klava library in turn, that is, the Java library implementing the
middleware corresponding to the Klaim model.

The overall framework explicitly targets code mobility, thus allowing both
processes and data to migrate across a network. To do so, X-Klaim and Klava
provide a first-class abstraction known as locality. Localities are of two sorts:
either physical, such as network nodes identifiers, or logical, such as symbolic
references to network nodes having a local semantics. Each locality hosts its
own tuple space, and the processes therein interacting. The Linda primitives
supported by Klava are always explicitly or implicitly related to the tuple space
hosted on a specific locality. Furthermore, processes are provided with primitives
enabling them to migrate from a locality to another in a strong manner, that is,
along with their execution state.

Both X-Klaim and Klava are distributed by means of the Klaim Project
home page21, providing well detailed documentation. For what concerns X-Klaim,
its C++ source code – dating back to 2004, date of the last edit, visible right
below the title – is publicly available along with a self-configuring script meant
to ease compilation. Nevertheless, we were not able to reproduce the compila-
tion process on modern Linux distributions, seemingly due to some missing (and
undocumented) dependency. No clues about how to fix the self-configuration
process when it fails is provided, neither we were able to find some sort of doc-
umentation explicitly enumerating the compilation dependencies.

Conversely, the Klava library – actually implementing the coordination mid-
dleware – is distributed as a single .jar file containing both Java sources and
the binaries. The .jar file dates back to 2004 likewise for X-Klaim, so it is ap-
parently no longer developed, but further testing showed how the Klava library
is still functioning, since it is self-contained and targets Java versions 1.4+.

Limone. Limone [40] is a model and middleware meant to improve scalability and
security in Lime [66] through access control, and explicitly targeting distributed
mobile systems and, in particular, agents roaming across ad-hoc networks built
on top of opportunistically interconnected mobile devices.

Once two or more devices enter within their respective communication range
and thus establish a connection, the agents running on top of them are (po-
tentially) enabled to interact by means of transient sharing of their own tuple

21 http://music.dsi.unifi.it/klaim.html

http://music.dsi.unifi.it/klaim.html

20

spaces. But, for some agents to be actually able to communicate, Limone states
they should specify their engagement policies. An agent A’s engagement policy
determines which agents are allowed to interact with it and to which extent, that
is, which primitives are allowed to be invoked. Agents satisfying the policy are
registered within A’s acquaintance list. So, each agent only has to care about its
acquaintance list, thus reducing the bandwidth requirements for the middleware.

A reactive programming mechanism completes the picture, enabling agents
to inform their peer about their interest in tuples matching a given template, in
order to be informed when such tuples becomes available.

The Limone technology is distributed by means of the project web page22 in
the form of a compressed archive containing the Java source code (dated back
in 2004) and a Makefile for automatic build. Nevertheless, the code strictly
requires to be compiled against a Java version prior to 1.5, and modern Java
compilers do not support such an ancient version23 . For these reasons, we could
not proceed to further test the technology and we consider it to be no longer
maintained nor actually usable.

RepliKlaim. RepliKlaim [3] is a variant of Klaim [19] introducing first-class ab-
stractions and mechanisms to deal with data locality and consistency, so as to
give programmers the ability to explicitly account for and tackle these aspects
when developing parallel computing applications. Specifically, the idea is to let
the programmer specify and coordinate replication of data, and operate on repli-
cas with a configurable level of consistency. This enables the programmer to
adapt data distribution and locality to the needs of the application at hand,
especially with the goal of improving performance in terms of concurrency level
and data access speed—in spite of latencies due to distribution.

Most of the abstractions and mechanisms, as well as syntax elements and
semantics, of RepliKlaim are exactly as in Klaim, such as data repositories, pro-
cesses, locations, and many actions. When due, actions are extended to explicitly
deal with replication aspects, such as in the case of an out primitive putting mul-
tiple copies of the same tuple in multiple localities, or an in primitive removing
all replicas from all locations at once. Also, various degrees of consistency among
replicas in the same or different locations are achieved depending on whether
primitives are synchronous (namely, atomically executed) or asynchronous.

There exists a prototype implementation of RepliKlaim on top of Klava, the
Java implementation of Klaim, available for direct download from a URL24 given
in its companion paper [3]. From there, a .rar archive is provided, containing a
version of Klava and the source files implementing RepliKlaim, which can be
easily compiled and run successfully.

Nevertheless, as stated in the paper describing RepliKlaim, its implementa-
tion currently relies on encoding its model in the standard Klaim model, thus,

22 http://mobilab.cse.wustl.edu/projects/limone
23 As stated here: https://docs.oracle.com/javase/9/tools/javac.htm#JSWOR627
24 http://sysma.imtlucca.it/wp-content/uploads/2015/03/RepliKlaim-test-examples.

rar

http://mobilab.cse.wustl.edu/projects/limone
https://docs.oracle.com/javase/9/tools/javac.htm#JSWOR627
http://sysma.imtlucca.it/wp-content/uploads/2015/03/RepliKlaim-test-examples.rar
http://sysma.imtlucca.it/wp-content/uploads/2015/03/RepliKlaim-test-examples.rar

21

Linda LGI IWIM

ACLT LINC Klava Lime TripCom Moses Manifold

Piccola CiAN JErlang

ClamLimone CRIME

RepliKlaim Reo

TuCSoN IIC

Fig. 5. Lines of evolution of selected technologies (below the dashed line), as stemming
from a few archetypal coordination model (above the dashed line).

on the practical side the code provided only features examples about how to
translate RepliKlaim primitives into Klava. No higher-level API directly provid-
ing to developers the replica-oriented operations of RepliKlaim is provided. In
other words, there exists no RepliKlaim Java library which can be imported to
other java projects in order to exploit its provided coordination services.

3 Discussion

In this section we aim at providing further insights about the technologies de-
scribed in Subsection 2.3, especially to understand (i) whether they stem from a
common archetypal coordination framework (Fig. 5), (ii) their relationships in
terms of the features they provide (Fig. 6), and (iii) which goal mostly motivated
their development and which application scenario they mostly target (Fig. 7).

A family tree. Fig. 5 depicts a sort of “family tree” of the selected coordination
technologies, emphasising how they stem from a few archetypal coordination
models/languages, and how they are built on each other. It makes thus appar-
ent how most of the technologies still available stem from two archetypal models:
Linda [44] and IWIM [5]. Nevertheless, whereas in the case of Linda many het-
erogeneous extensions have been proposed throughout the years, focussing on
different features and thus diverging from Linda in many diverse ways, the
evolution of the IWIM model appears much more homogeneous, featuring de-
scendants which “linearly” extend their ancestors’ features. Summing up, from
Linda stem the TuCSoN family, the Klaim [19] family – including Klava and
RepliKlaim –, the Lime [74] family – with Limone and CRIME –, besides the
lone runners LINC and TripCom, whereas from the IWIM root stems the Reo
family—completed by Manifold, Clam, and the latest extension IIC.

22

Apart from these two big family trees, we have the LGI model, along with
its implementation, Moses, and a small group of “lone runners” with unique
features: Piccola, CiAN, and JErlang. While the former inspired some features
of technologies stemming from other models – for instance, its programmable
laws inspired essentially any other technology or model having reactive rules of
some sort, such as LINC –, the latter remained mostly confined to itself.

It is interesting to notice how “the IWIM family” and “the Linda family”
remained well-isolated one from each other over all these years. Whereas this
can be easily attributed to the fundamental difference in the approach to coor-
dination they have – data-driven vs. control-driven, as also emphasised in Fig. 6
on page 23 – it seems odd that nobody tried to somewhat integrate these two
extremely successful coordination models, in an attempt to improve the state of
art by cherry-picking a few features from both to create a novel, hybrid coordi-
nation model [69], with “the best of two worlds”. To some extent, the TuCSoN
model, along with its coordination language, ReSpecT, pursues this path: Re-
SpecT in fact can be regarded as a data-driven model because coordination is
based on availability of tuples, as in Linda, but, at the same time, coordina-
tion policies are enforced by declarative specifications which control the way in
which the coordination medium behaves, thus, ultimately, how the coordinated
components interact—as typical for control-driven models like IWIM.

We believe that the path toward integration could be the key in further
perfecting and improving coordination models and languages, by complement-
ing data-driven models elegance and flexibility with control-driven models fine-
grained control and predictability.

Families marriage. Fig. 6 enriches the family tree just described with relation-
ships indicating differences (red and green arrows) and similarities (blue arrows)
in features provided—notice that w.r.t. Fig. 5 Piccola, CiAN, and JErlang have
been removed because they are so unique that no clear relationship may be
found with other technologies. As already mentioned for Fig. 5, Linda has been
taken as the common ground for many technologies which are instead very het-
erogeneous in the aim pursued: if ACLT , TuCSoN, and LINC have a Linda core
enriched with many other features – such as programmability, transactionality,
and novel primitives –, the Klaim family and the Lime one diverge more, by
changing the way in which primitives behave – as in the case of localities in
Klaim –, or the way in which the interacting processes see each others’ tuple
spaces—as for Lime transient federation.

Nevertheless, technologies which may appear as being far apart from each
other have interesting similarities, as in the case of the interaction rules of LGI,
thus Moses, which strongly resembles ACLT and TuCSoN reactions, or the fact
that both the Reo family and Moses are based on message passing. Or, the fact
that both CRIME and TuCSoN rely on logic tuples so as to leverage on the
inference capabilities of interacting agents, while Reo and both Lime and Klaim
take into account mobility of processes and coordination abstractions (tuple
spaces vs. channels) as a first-class citizen.

23

Linda LGI IWIM

ACLT

LINC

Klava Lime TripCom Moses Manifold

ClamLimone CRIME

RepliKlaim Reo

TuCSoN IIC

+programmability

+inference

+transactions

+rules
+localities

+mobility

+mobility

+federation

+RDF

+replicas

+access control
+inference

programmability

+access control

+primitives

+asynch

+scalability

+in-round

interaction

-localities

-mobility

data-driven vs. control-driven

endogeneous vs. exogeneous

access control

inference
programmability

messages
mobility

-federation

Fig. 6. Main differences (in green and red) and similarities (in blue) amongst selected
technologies. Arrows indicate what it takes (in green, add something; in red, remove
something) to go from one technology (the source) to another (the destination).

It is worth emphasising here that Fig. 6 highlights the features to which
more attention has been devoted throughout the years: programmability, access
control, and mobility. We believe that these features, possibly extended with
scalability and inference capabilities, are crucial for widening applicability of
coordination technologies to real-world scenarios. For instance, the Internet of
Things (IoT) [9] – along with its variants Web of Things [48] and Internet of
Intelligent Things [8] – is a very good fit for testing coordination technologies,
and requires precisely the aforementioned features.

Goals & preferred scenarios. Finally, Fig. 7 relates the selected technologies with
the main aim pursued which motivates their extension in a particular direction,
along with the applications scenario they best target.

From the description of the selected technologies we gathered, two are the
main goals motivating their evolution: (i) providing flexibility so as to deal with
the majority of heterogeneous application scenarios possible, and (ii) focussing
on first-class abstractions for better supporting space-awareness of both the
coordination abstractions and the interacting processes.

In fact, TuCSoN / ACLT , LINC, and Moses all provide means to somewhat
program the coordinative behaviour of the coordination medium, thus aim at
making it configurable, adaptable, malleable, even at run-time, and/or provide

24

Flexibility Humans-in-the-loop Space-awareness Semantics

ACLT LINC Moses Manifold Klava Lime TripCom

Piccola CiAN JErlang

Clam RepliKlaim

Limone CRIMEReoTuCSoN

IIC

General purpose WfMS IoT Service composition

Fig. 7. Selected technologies per main goal pursued (top, blue arrows) and preferred
application scenario (bottom, red arrows).

additional coordination primitives to expand the expressive reach of the coor-
dination technology. The Klaim family, the Reo family, and the Lime family
instead, are geared toward some forms of space-awareness, be it by promoting
mobility or by providing location-sensitive primitives.

Besides these, two more main goals can be devised, peculiar to specific tech-
nologies: (iii) supporting humans-in-the-loop, in the case of CiAN, and (iv) pro-
vide a semantic representation of data items, in the case of TripCom.

About the application scenarios explicitly declared as of particular interest
for the technology, the most prominent one is service composition, which is es-
pecially interesting for Piccola, JErlang, the Reo family, the Klaim family, and
TripCom—besides being naturally applicable to all other technologies too. Then,
whereas technologies such as LINC and the Lime family are mainly tailored to
the IoT landscape, being meant to cope with the requirements posed by small,
possibly portable, possibly embedded devices with low resources, Workflow Man-
agement (WfMS) is peculiar to CiAN, while also considered by TuCSoN [79]. Be-
sides these application scenarios, there are many technologies without a specific
focus, although they have been applied to many different ones, such as TuCSoN
itself, LINC, Moses, and TripCom: these have been associated with the generic
“General purpose” scenario.

We believe that the goals and application scenarios just highlighted strengthen
our previous consideration that the IoT could be the “killer-app” for coordination
technologies. In fact, flexibility (there including programmability and configura-
bility), space-awareness (there including mobility and location-awareness), and

25

semantics (there including interoperability of data representation formats) are
all necessary ingredients for any non-trivial IoT deployment: the former helps
in dealing with uncertainty and unpredictability typical of the IoT scenarios,
the latter is required for building open IoT systems, and some form of space-
awareness is a common feature of many IoT deployments, from retail to industry
4.0. Also, the fact that service composition has been already thoroughly explored
is a great advantage and the perfect starting point for tackling IoT challenges:
both the IoT and the Web of Things vision foster a world where connected
objects provide and consume services, which can be composed in increasingly
high-level ones.

4 Conclusion

The main aim of this paper is to provide insights about the state-of-the-art of co-
ordination technologies after twenty years of the COORDINATION conference
series, and to stimulate informed discussion about future perspectives. Overall,
apart from some notable success stories – i.e. the commercial success of LINC
along with the active development of TuCSoN and Reo – most coordination tech-
nologies have gone through a rapid and effective development at the time they
were presented, then lacked further improvements or even maintenance of its us-
ability, thus never reached a wider audience—i.e. outside the COORDINATION
community or in the industry. Obviously, something also happens outside the
COORDINATION boundaries. For instance, coordination technologies are sur-
veyed in [73], whereas [81] focuses on tuple-based technologies. However, mostly
of the technological developments reported here just happened after those survey
were published, in 2001 [72].

Although we acknowledge that researchers are usually mostly concerned with
providing scientifically-relevant models rather than production-ready software,
we also believe that backing up models and languages with more then proof-of-
concept software is crucial to promote wider adoption of both the technology it-
self and the models, which in turn may provide invaluable feedback to researchers
for further developing and tuning models. The next decade will probably tell us
more about the actual role of coordination technologies in the development of
forthcoming application scenarios: the IoT, for instance, is at the “peak of in-
flated expectations” according to Gartner’s hype cycle for 2017, and is expected
to reach the plateau in 2 to 5 years. This means the time is ripe for pushing
forward the development of coordination technologies, so as to have them ready
when the IoT will be mature enough to actually benefit from their added value.

Besides coordination technologies, we believe the COORDINATION confer-
ence is quite healthy: although the number of published papers is decreasing,
citations and downloads grows (modulo too recent years), and contributions
conveying technological advancements still represent almost a half of all the
contributions.

26

References

1. Abreu, J., Fiadeiro, J.L.: A coordination model for service-oriented interactions.
In: Lea and Zavattaro [56], pp. 1–16

2. Achermann, F., Kneubuehl, S., Nierstrasz, O.: Scripting coordination styles. In:
Porto and Roman [76], pp. 19–35

3. Andrić, M., De Nicola, R., Lafuente, A.L.: Replica-based high-performance tuple
space computing. In: Holvoet and Viroli [49], pp. 3–18

4. Ao, X., Minsky, N., Nguyen, T.D., Ungureanu, V.: Law-Governed Internet com-
munities. In: Porto and Roman [76], pp. 133–147

5. Arbab, F.: The IWIM model for coordination of concurrent activities. In: Ciancar-
ini and Hankin [24], pp. 34–56

6. Arbab, F., Mavaddat, F.: Coordination through channel composition. In: Arbab
and Talcott [7], pp. 22–39

7. Arbab, F., Talcott, C. (eds.): Coordination Models and Languages. 5th Interna-
tional Conference, COORDINATION 2002 York, UK, April 8–11, 2002 Proceed-
ings, LNCS, vol. 2315. Springer (2002)

8. Arsénio, A., Serra, H., Francisco, R., Nabais, F., Andrade, J., Serrano, E.: Internet
of Intelligent Things: Bringing artificial intelligence into things and communication
networks. In: Xhafa, F., Bessis, N. (eds.) Inter-cooperative Collective Intelligence:
Techniques and Applications, SCI, vol. 495, pp. 1–37. Springer (2014)

9. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A survey. Computer
Networks 54(15), 2787–2805 (2010)

10. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
reo by constraint automata. Science of Computer Programming 61(2), 75–113 (Jul
2006)

11. Banătre, J.P., Fradet, P., Le Métayer, D.: Gamma and the chemical reaction model:
Fifteen years after. In: Calude, C.S., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
Multiset Processing, LNCS, vol. 2235, pp. 17–44. Springer (2001)

12. Banville, M.: Sonia: An adaptation of Linda for coordination of activities in orga-
nizations. In: Ciancarini and Hankin [24], pp. 57–74

13. Bellifemine, F.L., Poggi, A., Rimassa, G.: JADE–a FIPA-compliant agent frame-
work. In: 4th International Conference and Exhibition on the Practical Application
of Intelligent Agents and Multi-Agent Technology (PAAM-99). pp. 97–108 (1999)

14. Bettini, L., Bono, V., Venneri, B.: Coordinating mobile object-oriented code. In:
Arbab and Talcott [7], pp. 56–71

15. Bettini, L., Bono, V., Venneri, B.: O’Klaim: A coordination language with mobile
mixins. In: De Nicola et al. [33], pp. 20–37

16. Bettini, L., De Nicola, R.: Mobile distributed programming in X-Klaim. In:
Bernardo, M., Bogliolo, A. (eds.) Formal Methods for Mobile Computing, LNCS,
vol. 3465, pp. 29–68. Springer (2005)

17. Bettini, L., De Nicola, R., Falassi, D., Lacoste, M., Lopes, L., Oliveira, L., Paulino,
H., Vasconcelos, V.T.: A software framework for rapid prototyping of run-time
systems for mobile calculi. In: Priami, C., Quaglia, P. (eds.) Global Computing,
pp. 179–207. Springer (2005)

18. Bettini, L., De Nicola, R., Loreti, M.: Implementing session centered calculi. In:
Lea and Zavattaro [56], pp. 17–32

19. Bettini, L., Loreti, M., Pugliese, R.: An infrastructure language for open nets. In:
2002 ACM Symposium on Applied Computing (SAC 2002). pp. 373–377. ACM,
New York, NY, USA (2002)

27

20. Bettini, L., Nicola, R.D., Pugliese, R.: X-Klaim and Klava: Programming mobile
code. Electronic Notes in Theoretical Computer Science 62, 24–37 (2002)

21. Bordini, R.H., Hübner, J.F., Wooldridge, M.J.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons, Ltd (Oct 2007)

22. Bryce, C., Oriola, M., Vitck, J.: A coordination model for agents based on secure
spaces. In: Ciancarini and Wolf [26], pp. 4–20

23. Calegari, R., Denti, E.: Building Smart Spaces on the Home Manager platform.
ALP Newsletter (Dec 2016)

24. Ciancarini, P., Hankin, C. (eds.): Coordination Languages and Models. 1st In-
ternational Conference, COORDINATION ’96 Cesena, Italy, April 15–17, 1996
Proceedings, LNCS, vol. 1061. Springer (1996)

25. Ciancarini, P., Rossi, D.: Jada: Coordination and communication for Java agents.
In: Vitek, J., Tschudin, C. (eds.) Mobile Object Systems Towards the Pro-
grammable Internet, LNCS, vol. 1222, pp. 213–226. Springer (1997)

26. Ciancarini, P., Wolf, A.L. (eds.): Coordination Languages and Models. 3rd In-
ternational Conference COORDINATION’99 Amsterdam, The Netherlands, April
26–28, 1999 Proceedings, LNCS, vol. 1594. Springer (1999)

27. Ciatto, G., Mariani, S., Omicini, A.: Programming the interaction space effectively
with ReSpecTX. In: Ivanović, M., et al. (eds.) Intelligent Distributed Computing
XI, pp. 89–101. Springer International Publishing (2018)

28. Cremonini, M., Omicini, A., Zambonelli, F.: Coordination in context: Authentica-
tion, authorisation and topology in mobile agent applications. In: Ciancarini and
Wolf [26], pp. 416–416

29. Cruz, J.C., Ducasse, S.: A group based approach for coordinating active objects.
In: Ciancarini and Wolf [26], pp. 355–370

30. De Angelis, F.L., Di Marzo Serugendo, G.: Logic Fragments: A coordination model
based on logic inference. In: Holvoet and Viroli [49], pp. 35–48

31. De Bosschere, K., Jacquet, J.M.: µ2Log: Towards remote coordination. In: Cian-
carini and Hankin [24], pp. 142–159

32. De Meuter, W., Roman, G.C. (eds.): Coordination Models and Languages. 13th
International Conference, COORDINATION 2011, Reykjavik, Iceland, June 6-9,
2011. Proceedings, LNCS, vol. 6721. Springer (2011)

33. De Nicola, R., Ferrari, G.L., Meredith, G. (eds.): Coordination Models and Lan-
guages. 6th International Conference, COORDINATION 2004 Pisa Italy, February
24-27, 2004 Proceedings, LNCS, vol. 2949. Springer (2004)

34. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.:
Ambient-oriented programming. In: Companion to the 20th Annual ACM SIG-
PLAN Conference on Object-oriented Programming, Systems, Languages, and Ap-
plications. pp. 31–40. OOPSLA ’05, ACM, New York, NY, USA (2005)

35. Denti, E., Natali, A., Omicini, A., Venuti, M.: An extensible framework for the
development of coordinated applications. In: Ciancarini and Hankin [24], pp. 305–
320

36. Denti, E., Omicini, A., Ricci, A.: tuProlog: A light-weight Prolog for Internet appli-
cations and infrastructures. In: Ramakrishnan, I. (ed.) Practical Aspects of Declar-
ative Languages, LNCS, vol. 1990, pp. 184–198. Springer (2001)

37. Dubovitskaya, A., Urovi, V., Barba, I., Aberer, K., Schumacher, M.I.: A multia-
gent system for dynamic data aggregation in medical research. BioMed Research
International 2016 (2016)

38. Ducasse, S., Hofmann, T., Nierstrasz, O.: Openspaces: An object-oriented frame-
work for reconfigurable coordination spaces. In: Porto and Roman [76], pp. 1–18

28

39. Fensel, D.: Triple-space computing: Semantic web services based on persistent pub-
lication of information. In: Aagesen, F.A., Anutariya, C., Wuwongse, V. (eds.) In-
telligence in Communication Systems, LNCS, vol. 3283, pp. 43–53. Springer (2004)

40. Fok, C.L., Roman, G.C., Hackmann, G.: A lightweight coordination middleware
for mobile computing. In: De Nicola et al. [33], pp. 135–151

41. Fournet, C., Gonthier, G.: The reflexive CHAM and the Join-calculus. In: 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
pp. 372–385. ACM (1996)

42. Fukuda, M., Bic, L.F., Dillencourt, M.B., Merchant, F.: Intra- and inter-object
coordination with MESSENGERS. In: Ciancarini and Hankin [24], pp. 179–196

43. Garlan, D., Le Métayer, D. (eds.): Coordination Languages and Models. 2nd Inter-
national Conference COORDINATION ’97 Berlin, Germany, September 1–3, 1997
Proceedings, LNCS, vol. 1282. Springer (1997)

44. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 7(1), 80–112 (Jan 1985)

45. Gilmore, S., Hillston, J.: The PEPA workbench: A tool to support a process
algebra-based approach to performance modelling. In: Haring, G., Kotsis, G. (eds.)
Computer Performance Evaluation Modelling Techniques and Tools, LNCS, vol.
794, pp. 353–368. Springer (1994)

46. van der Goot, R., Schaeffer, J., Wilson, G.V.: Safer tuple spaces. In: Garlan and
Le Métayer [43], pp. 289–301

47. Hendler, J.A.: Agents and the Semantic Web. IEEE Intelligent Systems 16(2),
30–37 (Mar 2001)

48. Heuer, J., Hund, J., Pfaff, O.: Toward the Web of Things: Applying Web tech-
nologies to the physical world. Computer 48(5), 34–42 (May 2015)

49. Holvoet, T., Viroli, M. (eds.): Coordination Models and Languages. 17th Inter-
national Conference, COORDINATION 2015, Grenoble, France, June 2-4, 2015,
Proceedings, LNCS, vol. 9037. Springer (2015)

50. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) Program-
ming Languages and Systems, LNCS, vol. 1381, pp. 122–138. Springer (1998)

51. Hu, R., Yoshida, N., Honda, K.: Session-based distributed programming in Java.
In: Vitek, J. (ed.) ECOOP 2008 – Object-Oriented Programming, LNCS, vol. 5142,
pp. 516–541. Springer (2008)

52. Jagannathan, S.: Communication-passing style for coordination languages. In: Gar-
lan and Le Métayer [43], pp. 131–149

53. Jamison, W.C., Lea, D.: TRUCE: Agent coordination through concurrent inter-
pretation of role-based protocols. In: Ciancarini and Wolf [26], pp. 384–398

54. Jongmans, S.S.T.Q., Santini, F., Sargolzaei, M., Arbab, F., Afsarmanesh, H.: Or-
chestrating web services using Reo: from circuits and behaviors to automatically
generated code. Service Oriented Computing and Applications 8(4), 277–297 (Dec
2014)

55. Kokash, N., Krause, C., de Vink, E.: Reo + mCRL2: A framework for model-
checking dataflow in service compositions. Formal Aspects of Computing 24(2),
187–216 (Mar 2012)

56. Lea, D., Zavattaro, G. (eds.): Coordination Models and Languages. 10th Interna-
tional Conference, COORDINATION 2008, Oslo, Norway, June 4-6, 2008. Pro-
ceedings, LNCS, vol. 5052. Springer (2008)

57. Liptchinsky, V., Khazankin, R., Truong, H.L., Dustdar, S.: Statelets: Coordination
of social collaboration processes. In: Sirjani [90], pp. 1–16

29

58. Louvel, M., Pacull, F.: LINC: A compact yet powerful coordination environment.
In: Kühn, E., Pugliese, R. (eds.) Coordination Models and Languages, LNCS, vol.
8459, pp. 83–98. Springer (2014)

59. Louvel, M., Pacull, F., Rutten, E., Sylla, A.N.: Development tools for rule-based
coordination programming in LINC. In: Jacquet, J.M., Massink, M. (eds.) Coor-
dination Models and Languages, LNCS, vol. 10319, pp. 78–96. Springer (2017)

60. Mariani, S., Omicini, A.: Coordination mechanisms for the modelling and simu-
lation of stochastic systems: The case of uniform primitives. SCS M&S Magazine
IV(3), 6–25 (Dec 2014)

61. Mariani, S., Omicini, A.: Multi-paradigm coordination for MAS: Integrating het-
erogeneous coordination approaches in MAS technologies. In: Santoro, C., Messina,
F., De Benedetti, M. (eds.) WOA 2016 – 17th Workshop “From Objects to Agents”,
CEUR-WS.org, vol. 1664, pp. 91–99. Sun SITE Central Europe (29–30 Jul 2016)

62. Mariani, S., Omicini, A., Sangiorgi, L.: Models of autonomy and coordination:
Integrating subjective & objective approaches in agent development frameworks.
In: Braubach, L., Camacho, D., Venticinque, S., Bădică, C. (eds.) Intelligent Dis-
tributed Computing VIII, SCI, vol. 570, pp. 69–79. Springer International Pub-
lishing (2015)

63. Merrick, I., Wood, A.: Scoped coordination in open distributed systems. In: Porto
and Roman [76], pp. 311–316

64. Minsky, N.H., Leichter, J.: Law-Governed Linda as a coordination model. In: Cian-
carini, P., Nierstrasz, O., Yonezawa, A. (eds.) Object-Based Models and Languages
for Concurrent Systems. LNCS, vol. 924, pp. 125–146. Springer (1994)

65. Mostinckx, S., Scholliers, C., Philips, E., Herzeel, C., De Meuter, W.: Fact Spaces:
Coordination in the face of disconnection. In: Murphy and Vitek [67], pp. 268–285

66. Murphy, A.L., Picco, G.P., Roman, G.C.: LIME: A coordination model and mid-
dleware supporting mobility of hosts and agents. ACM Transactions on Software
Engineering and Methodology (TOSEM) 15(3), 279–328 (Jul 2006)

67. Murphy, A.L., Vitek, J. (eds.): Coordination Models and Languages. 9th Inter-
national Conference, COORDINATION 2007, Paphos, Cyprus, June 6-8, 2007.
Proceedings, LNCS, vol. 4467. Springer (2007)

68. Ng, N., Yoshida, N., Pernet, O., Hu, R., Kryftis, Y.: Safe parallel programming
with Session Java. In: De Meuter and Roman [32], pp. 110–126

69. Omicini, A.: Hybrid coordination models for handling information exchange among
Internet agents. In: Bonarini, A., Colombetti, M., Lanzi, P.L. (eds.) Workshop
“Agenti intelligenti e Internet: teorie, strumenti e applicazioni”. pp. 1–4. 7th AI*IA
Convention (AI*IA 2000), Milano, Italy (13 Sep 2000)

70. Omicini, A.: Formal ReSpecT in the A&A perspective. Electronic Notes in Theo-
retical Computer Science 175(2), 97–117 (Jun 2007)

71. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer
Programming 41(3), 277–294 (Nov 2001)

72. Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R. (eds.): Coordination of
Internet Agents: Models, Technologies, and Applications. Springer (Mar 2001)

73. Papadopoulos, G.A.: Models and technologies for the coordination of Internet
agents: A survey. In: Omicini et al. [72], chap. 2, pp. 25–56

74. Picco, G.P., Murphy, A.L., Roman, G.C.: LIME: Linda meets mobility. In: 1999
International Conference on Software Engineering (ICSE 1999). pp. 368–377 (May
1999)

75. Plociniczak, H., Eisenbach, S.: JErlang: Erlang with Joins. In: Clarke, D., Agha, G.
(eds.) Coordination Models and Languages, LNCS, vol. 6116, pp. 61–75. Springer
(2010)

30

76. Porto, A., Roman, G.C. (eds.): Coordination Languages and Models. 4th Inter-
national Conference, COORDINATION 2000 Limassol, Cyprus, September 11–13,
2000 Proceedings, LNCS, vol. 1906. Springer (2000)

77. Proença, J., Clarke, D.: Interactive interaction constraints. In: De Nicola, R.,
Julien, C. (eds.) Coordination Models and Languages, LNCS, vol. 7890, pp. 211–
225. Springer (2013)

78. Proença, J., Clarke, D., de Vink, E., Arbab, F.: Dreams: A framework for dis-
tributed synchronous coordination. In: 27th Annual ACM Symposium on Applied
Computing (SAC 2012). pp. 1510–1515. ACM, New York, NY, USA (2012)

79. Ricci, A., Omicini, A., Denti, E.: Virtual enterprises and workflow management as
agent coordination issues. International Journal of Cooperative Information Sys-
tems 11(3/4), 355–379 (Sep/Dec 2002)

80. Rossi, D.: A social software-based coordination platform. In: Sirjani [90], pp. 17–28
81. Rossi, D., Cabri, G., Denti, E.: Tuple-based technologies for coordination. In:

Omicini et al. [72], chap. 4, pp. 83–109
82. Rossi, D., Vitali, F.: Internet-based coordination environments and document-

based applications: a case study. In: Ciancarini and Wolf [26], pp. 259–274
83. Rowstron, A.I.T.: Bulk Primitives in Linda Run-Time Systems. Ph.D. thesis, The

University of York (1996)
84. Rowstron, A.I.T.: Using asynchronous tuple-space access primitives (bonita prim-

itives) for process co-ordination. In: Garlan and Le Métayer [43], pp. 426–429
85. Rowstron, A.I.T.: WCL: A co-ordination language for geographically distributed

agents. World Wide Web 1(3), 167–179 (Sep 1998)
86. Sample, N., Beringer, D., Melloul, L., Wiederhold, G.: CLAM: Composition lan-

guage for autonomous megamodules. In: Ciancarini and Wolf [26], pp. 291–306
87. Schumacher, M., Chantemargue, F., Hirsbrunner, B.: The STL++ coordination

language: A base for implementing distributed multi-agent applications. In: Cian-
carini and Wolf [26], pp. 399–414

88. Sen, R., Roman, G.C., Gill, C.: CiAN: A workflow engine for MANETs. In: Lea
and Zavattaro [56], pp. 280–295

89. Simperl, E., Krummenacher, R., Nixon, L.: A coordination model for triplespace
computing. In: Murphy and Vitek [67], pp. 1–18

90. Sirjani, M. (ed.): Coordination Models and Languages. 14th International Confer-
ence, COORDINATION 2012, Stockholm, Sweden, June 14-15, 2012. Proceedings,
LNCS, vol. 7274. Springer (2012)

91. Tarau, P.: Coordination and concurrency in multi-engine Prolog. In: De Meuter
and Roman [32], pp. 157–171

92. Tolksdorf, R.: Coordinating services in open distributed systems with Laura. In:
Ciancarini and Hankin [24], pp. 386–402

93. Tolksdorf, R.: Berlinda: An object-oriented platform for implementing coordination
languages in Java. In: Garlan and Le Métayer [43], pp. 430–433

94. Tolksdorf, R., Rojec-Goldmann, G.: The Spacetub models and framework. In:
Arbab and Talcott [7], pp. 348–363

95. Varela, C., Agha, G.: A hierarchical model for coordination of concurrent activities.
In: Ciancarini and Wolf [26], pp. 166–182

96. Viroli, M., Omicini, A.: Coordination as a service. Fundamenta Informaticae 73(4),
507–534 (2006)

97. Zambonelli, F., Omicini, A., et al.: Developing pervasive multi-agent systems with
nature-inspired coordination. Pervasive and Mobile Computing 17, 236–252 (Feb
2015)

	Twenty Years of Coordination Technologies: State-of-the-Art and Perspectives
	Scope, Goal, and Method
	Structure & Contribution of the Paper
	Method

	The Survey
	Overview
	Analysis of Technologies
	Analysis of selected technologies

	Discussion
	Conclusion

