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On the structure of the self-sustaining cycle
in separating and reattaching flows
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DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia, Italy

(Received )

The separating and reattaching flow and the wake of a finite rectangular plate is studied
by means of Direct Numerical Simulation data. The huge amount of information provided
by the numerical approach is here exploited to address the multi-scale features of the
flow and to assess the self-sustaining mechanisms at the basis of the main unsteadinesses
of the flow. We first analyse the statistically dominant flow structures by means of three-
dimensional spatial correlation functions. The developed flow is found to be statistically
dominated by quasi-streamwise vortices and streamwise velocity streaks as a result of
flow motions induced by hairpin-like structures. On the other hand, the reverse flow
within the separated region is found to be characterized by spanwise vortices. We then
study the spectral properties of the flow. Given the strongly inhomogeneous nature of
the flow, the spectral analysis has been conducted along two selected streamtraces of the
mean velocity field. This approach allows us to study the spectral evolution of the flow
along its paths. Two well-separated characteristic scales are identified in the near-wall
reverse flow and in the leading-edge shear layer. The first is recognized to represent trains
of small scale structures triggering the leading-edge shear layer while the second is found
to be related with a very large scale phenomenon which embraces the entire flow field.
A picture of the self-sustaining mechanisms of the flow is then derived. It is shown that
very large scale fluctuations of the pressure field alternatively promote and suppress the
reverse flow within the separation region. Driven by these large scale dynamics, packages
of small scale motions trigger the leading-edge shear layers, which in turn created them,
alternatively in the top and bottom side of the rectangular plate with relatively long
period of inversion thus closing the self-sustaining cycle.

Key words: Separating and reattaching flows, Multiscale analysis, Self-sustaining cycle

1. Introduction

The flow around bluff bodies is recognized to be a rich topic due to its huge number
of applications in natural and engineering sciences and, for this reason, it has been the
subject of many studies over the years. The most evident feature of such flows is the
massive separation of the flow which give rise to an oscillatory motion commonly referred
to as Kármán-like vortex shedding. However, from a fluid dynamic point of view, different
kind of bluff bodies can be defined. The deeply studied circular and square cylinders
are examples of canonical flows for the analysis of the flow separation of interest in a
plethora of applications. In the case of blunt bodies, however, in addition to the large
wake region typical of bluff bodies, an interesting phenomenon of flow recirculation may
occur, i.e. the reattachment to the body of the separated boundary layer. The behaviour
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of separating and reattaching flows is known to be of overwhelming interest for a wide
range of engineering applications such as the aerodynamics of vehicles, trains, long-span
bridge decks or high-rise buildings (Bruno et al. 2014). One of the main feature of this
type of flows is the combined presence of small scales, due to the occurrence of turbulent
motions, and large scales due to phenomena of shedding of large-scale vortices. These
two range of scales nonlinearly interact, thus giving rise to a self-sustained cycle (to be
not confused with the well-known near-wall self-sustaining cycle of fully developed wall-
bounded turbulence) where the production of turbulent fluctuations is embedded in the
system rather then being provided by an external agent. The complete understanding of
these multiple interacting phenomena would be of paramount importance for the correct
prediction and control of relevant issues in applications such as wind loads on buildings
and vehicles, vibrations and acoustic insulation and heat transfer efficiency. Archetypal of
these phenomena is the flow around a finite rectangular blunt plate. Such a flow represents
the simplest kind of separating and reattaching flow, thus allowing for a detailed analysis
of the underlyining physical mechanisms, while retaining at the same time the essential
flow features that characterize the more complex geometries of real-world applications.

Many studies on separating and reattaching flows have been carried out in the past.
The general aim is the understanding of the mechanisms behind the main unsteadinesses
of the flow. Cherry et al. (1984) reported a detailed experimental study of the time and
length scales developing in the shear layer. An intermittent feature of the flow is rec-
ognized, consisting of shedding of pseudoperiodic trains of vortical structures alternated
with relatively quiescent phases. Kiya & Sasaki (1983) found that the low frequency flap-
ping of the shear layer is accompanied by the enlargement and shrinkage of the separation
bubble. On the basis of these results, Kiya & Sasaki (1985) also suggest a mathemati-
cal model able to predict the reverse-flow intermittency and the frequency of local-flow
reversals. This picture has been lately confirmed by Tafti & Vanka (1991) both quali-
tatively and quantitatively. Hence, two different instabilities are identified: the primary
Kelvin-Helmholtz instability of the leading-edge shear layer and the instability of the
entire recirculating bubble (Sigurdson 1995).

The instability at the basis of the shedding of vortices from the leading-edge is con-
jectured to be the result of a pressure pulse (Nakamura et al. 1991; Naudascher & Wang
1993) in analogy with the impinging-shear-layer instability (Rockwell & Naudascher
1979). Vortices which are formed in the leading-edge shear are convected downstream
and, by interacting with the trailing edge, generate a pressure pulse that triggers the for-
mation of new vortices at the leading-edge itself. In accordance with this picture, as the
streamwise length c of the rectangular plate is increased, the Strouhal number based on c
of the vortex shedding increases in a stepwise manner, at least for low Reynolds numbers
Re < 2000 (Nakamura et al. 1991; Ohya et al. 1992). On the other hand, for higher
Reynolds numbers, it has been shown that the flow exhibits receptivity to perturbations
having the same Strouhal number of the corresponding locked state, thus highlighting
that, even if shaded by a broader spectrum of turbulent fluctuations, the shear layer in-
stability retains its features also at high Reynolds numbers (Parker & Welsh 1983; Stokes
& Welsh 1986; Mills et al. 2002, 2003; Tan et al. 2004; Liu & Zhang 2015).

From a topological point of view, the above mentioned mechanisms are characterized
by the presence of well-defined coherent motions. In the very first part of the leading-
edge shear layer, large-scale spanwise vortices appear as a result of Kelvin-Helmholtz
instability. Then, transition to turbulence takes place very quickly. Indeed, the large-
scale spanwise rolls develop into hairpin-like vortices further downstream (Sasaki & Kiya
1991; Hourigan et al. 2001; Tenaud et al. 2016). As shown by Lasheras & Choi (1988),
this three-dimensional pattern is at the basis of the observed presence of streamwise
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velocity streaks which result from the interaction of counter-rotating pairs of streamwise
vortices with the mean shear in analogy with plane free shear layers.
It is worth mentioning that the behaviour of separating and reattaching flows has been

deeply investigated also in the context of aerodynamic bodies, see e.g. Rhie & Chow
(1983); Jones et al. (2008). Indeed, under certain conditions, the flow around wings or
blades could exhibit a separation of the boundary layer. Archetypal of the numerical
and experimental study of such separation bubbles is the separation occurring in a flat
boundary layer under the action of an imposed adverse pressure gradient, see e.g. Pauley
et al. (1990); Na & Moin (1998); Alam & Sandham (2000); Spalart & Strelets (2000);
Skote & Henningson (2002). The relevance of this phenomenon from an applicative point
of view is given by the fact that under certain conditions (Gaster 1969; Horton 1969) a
bursting of the separation bubble may occur thus causing an abrupt stall and a sudden
severe deterioration in wings or blades performance (Lissaman 1983).
Despite the large interest on separating and reattaching flows, there is still a number

of open issues that need to be addressed, especially concerning blunt bluff bodies with a
moderate chord-to-thickness range (3 < c/D < 7), which actually is of interest for most
of the applications. For these parameters, the impinging shear layer theory developed
by Rockwell & Naudascher (1979) is used to explain the main instabilities of the flow.
However, a complete picture of the self-regenerating turbulent mechanisms is still missing.
Furthermore, to the author’s knowledge, no direct numerical simulation (DNS) of the
flow around a finite rectangular plate at a sufficiently high Reynolds number has been
performed to date. For these reasons, we report direct numerical simulation data of the
flow around a finite rectangular plate with chord-to-thickness c/D = 5 and Reynolds
number Re = U∞D/ν = 3000. By means of two-point statistical observables we aim
at assessing the multiscale features of the flow and the self-sustaining mechanisms of
turbulence in such a flow configuration.

The paper is organized as follows. The details of the simulation are reported in section
§2. The topology of the flow in terms of mean single-point quantities and instantaneous
turbulent structures is shown in sections §3 and §4. The statistically dominant struc-
tures are described by means of three-dimensional spatial correlation function in §5. The
multiscale features of the flow are analysed in section §6 by means of turbulent spectra.
The detailed description of the flow given by the above mentioned sections is rationalized
in §7 where the presence of a self-sustaining regeneration cycle of turbulence is shown.
Finally, section §8 closes the work with final comments.

2. Direct Numerical Simulation

A Direct Numerical Simulation (DNS) has been performed to study the flow around a
rectangular cylinder. To the author’s knowledge, this is the first DNS preformed in such a
canonical flow for a sufficiently high Reynolds number. Indeed, several numerical studies
have been performed in the past, most of them make use of modelling approaches, see
Bruno et al. (2014) for a detailed review of simulations (and also experiments) performed
in such a flow configuration. The only attempt to face the problem via direct numerical
simulation has been that of Hourigan et al. (2001) but the analysis has been carried out
for very low Reynolds numbers, namely Re = 350, 400 and 500, and a fully developed
turbulent state has not been achieved.

The evolution of the flow is governed by the continuity and momentum equations,

∂ui

∂xi
= 0
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Figure 1. Configuration of the system.
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where x = x1 (u = u1), y = x2 (v = u2), z = x3 (w = u3) are the streamwise, vertical
and spanwise directions (velocities), p is the pressure field, and Re = U∞D/ν is the
Reynolds number with ν the kinematic viscosity, U∞ the free-stream velocity and D
the thickness of the plate. The OpenFOAM R© finite volume open source code (Weller
et al. 1998) is used to numerically solve the Navier-Stokes equations (2.1). In particular,
equations (2.1) are discretized by means of a structured Cartesian grid of hexahedral
cells. The numerical technique is based on central spatial interpolation operators at the
second order while time integration is performed with a second order backward Euler
implicit scheme. The pressure-velocity coupling is performed with the pressure-implicit
split-operator algorithm (Issa 1986). Inlet-outlet boundary conditions are imposed in
the streamwise direction. The inlet condition is the free-stream velocity U∞. The outlet
boundary condition combines a Neumann/Dirichlet condition. In particular, it imposes
a zero gradient when the flow is pointing outward the boundary while it imposes a zero
velocity when an inward flow is detected. The same boundary condition is imposed in
the vertical direction, the only difference being that in case of inward flow the imposed
condition on velocity is U∞ for the streamwise component and zero for the other two
components. Finally, periodic boundary conditions are imposed in the spanwise direction.
The flow case consists of a rectangular plate whose lengths are (Lx, Ly) = (5D,D),

see figure 1. The considered Reynolds number is Re = 3000. The extent of the numerical
domain is (Dx,Dy,Dz) = (112D, 50D, 5D) and, through the a posteriori analysis of two-
point spatial correlation functions, is found large enough to not interfere with the flow
dynamics. The structured Cartesian grid employed is composed by 1.5 · 107 volumes. In
particular, the number of volumes above the rectangular plate is (Nx,Nz) = (128, 144).
The volume distribution is homogeneous in the spanwise direction while in the streamwise
and vertical directions a geometric progression is adopted, ∆xi = ki−1

x ∆x1 and ∆yj =
kj−1
y ∆y1 with kx = 1.06, ky = 1.04, ∆x1 = 0.004 and ∆y1 = 0.004. This approach is

used to obtain higher resolution levels in the near-wall leading- and trailing-edge regions.
Three main grid resolution issues arise and are given by the discretization of the sharp
corners, of the boundary layer regions and of the turbulent core regions. Concerning the
sharp corners, the size of the surrounding cells is (∆x,∆y,∆z) = (0.004, 0.004, 0.0347)
and is found to be sufficiently small also compared with other approaches such as those
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collected in Bruno et al. (2014). Concerning the near-wall resolution, the boundary lay-
ers are characterized by small levels of turbulence due to their very short development
length. Hence, the more important near-wall resolution requirement is given by the cor-
rect discretization of the vertical gradients rather than of turbulence. In terms of fric-
tion units, the mean grid resolution employed is (∆x+,∆y+,∆z+) = (6.1, 0.31, 5.41)
where (·) denotes the streamwise average along the rectangle length. Due to the highly
inhomogenous behaviour of friction which essentially reflects the upstream and down-
stream acceleration of the boundary layers rather than the development of small scale
fluctuations, the local behaviour of resolution in friction units significantly varies from
minima of the order (∆x+

min,∆y+min,∆z+min) = (0.1, 0.003, 0.6) to maxima of the order
(∆x+

max,∆y+max,∆z+max) = (34, 0.375, 30). As a reference, let us notice that in the forward
boundary layer region, the local behaviour of the present resolution is found comparable
to the one reported Yao et al. (2001), where a grid refinement study of the trailing-edge
separation of a fully turbulent boundary layer is carried out. As far as the resolution of
the turbulent core regions is concerned, this is assessed by using the Kolmogorov scale
η = (ν3/ǫ)(1/4). We measure (∆x∆y∆z)1/3/η < 2.2 in the leading-edge shear layer where
the transitional machanisms take place, while (∆x∆y∆z)1/3/η < 6.2 in the turbulence
core region above the plate and (∆x∆y∆z)1/3/η < 3.8 in the wake. Finally, the time
step is kept variable throughout the simulation, to obtain a condition CFL < 1 in each
point of the domain. The resulting time step, on average, is ∆t = 0.0023.
In the present flow case, the computational demand for well-converged statistics de-

noted as 〈·〉, is mitigated by the statistical stationarity of the flow field and by the
statistical homogeneity in the spanwise direction. Furthermore, the flow exhibits certain
statistical symmetries in the vertical direction which are better expressed by shifting the
origin of the vertical coordinate to the centre of the rectangle, ỹ = y −D/2. Indeed, the
transformation ỹ → −ỹ leaves quantities like U = 〈u〉 and 〈uiui〉 statistically invariant
while reversing the sign of quantities like V = 〈v〉, 〈uv〉 and ∂〈·〉/∂ỹ. Accordingly, the
average of a generic quantity β is defined as

〈β〉(x, ỹ) =
1

N

N
∑

i=1

1

2

(

1

Lz

∫ Lz/2

−Lz/2

β(x,+ỹ, z, t)dz ±
1

Lz

∫ Lz/2

−Lz/2

β(x,−ỹ, z, t)dz

)

, (2.2)

where the sum and difference of the two integrals is imposed by the symmetric/antisymmetric
nature of the considered variable. After reaching a statistical steady state, the fields
are collected at a number N = 317 of samples separated in time by ∆T = T where
T = D/U∞ is the characteristic time scale of the flow. In the following, the custom-
ary Reynolds decomposition of the flow in a mean and fluctuating field is adopted, i.e.
ui = Ui + u′

i and p = P + p′. If not specifically stated, variables are hereafter presented
dimensionless by using D for lengths and D/U∞ for times.

3. Mean flow features

In this section, we report the main features of the mean flow. As shown in figure 2(a),
the streamlines of the mean flow highlight the presence of a separation at the leading
edge and of a reattachment at xr ≈ 3.65. Hence, a large scale recirculation is present
on average and will be hereafter called primary vortex, see green lines in figure 2(a).
The flow separation gives rise to a strong leading-edge free-shear layer as highlighted
in figure 2(a), where the regions of the flow characterized by high levels of mean shear
are also shown. Actually, a second recirculating bubble is present and highlighted with
red lines again in figure 2(a). This secondary vortex is located below the primary vortex.
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Figure 2. (a) Streamlines of the mean velocity field (U, V )(x, y). The primary vortex, secondary
vortex and wake vortex, denoted as PV, SV and WV, are identified with green, red and cyan
streamlines, respectively. The shaded regions show the mean shear for values |∂U/∂y| > 4. The
relevant locations P1, P2, P3, P4 and P5 used for the analysis of the spatial correlations §5 and
of the temporal signals §7, are also reported. (b) Isocontours of the mean pressure field P (x, y).
(c) Isocontours of turbulent kinetic energy 〈q〉 = 〈u′

iu
′

i〉/2. In (b) and (c) the dashed lines report
the location of the primary vortex, secondary vortex and wake vortex.

Indeed, the reverse flow induced in the near-wall region by the primary vortex creates a
boundary layer moving upstream. As shown by the isocontours of the mean pressure field
in figure 2(b), the induced boundary layer undergoes an adverse pressure gradient, hence
it decelerates, becomes thicker and, finally, breaks down leading to separation (Simpson
1989). Hence, the secondary vortex, being induced by the primary vortex, is counter-
rotating with respect to the primary vortex and its characteristic length and time scales
are smaller than those of the primary vortex. After the average reattachment point for
x > xr, the flow evolves in a downstream boundary layer and finally detaches at the
trailing edge thus forming a third recirculating region hereafter called wake vortex, see
cyan lines in figure 2(a). Further details can be found in Cimarelli et al. (2018).

The iso-contours of turbulent kinetic energy 〈q〉 = 〈u′
iu

′
i〉/2 shown in figure 2(c) high-

light the initial almost laminar state of the leading-edge shear layer. Instabilities asso-
ciated with the shear-layer amplify the intensity of the fluctuations thus giving rise to
turbulence. The maximum intensities of turbulent kinetic energy are reached in a region
which elongates itself in the streamwise direction and crosses the external paths of the
large scale recirculation. This region will be hereafter called primary vortex shedding re-

gion. The peak of turbulent kinetic energy is located at (x, y) ≈ (2.7, 0.4). Then, moving
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downstream the turbulent fluctuations decrease their magnitude but retain their local
maxima far away from the wall for y ≈ 0.35. This behaviour of 〈q〉 inverts while moving
through the wake where turbulent kinetic energy increases again forming a local maxi-
mum in a region just behind the wake vortex centered at (x, y) ≈ (6.2, 0.15). For further
details, see Mollicone et al. (2017) where the energetics of separating and reattaching
flows are assessed by analysing the mean and turbulent kinetic energy budgets.

4. Instantaneous flow topology

The complex physical features characterizing the separated and reattaching flow can
be highlighted by analysing the structures emerging from the instantaneous velocity field
in the different regions of the flow. This aspect has been already investigated in the past.
Here, supported by the present DNS data, we intend to recall these previous results on
the formation and evolution of vortices with particular attention to the flow structures
populating the reverse flow region. To this aim, in figure 3, the regions where the second
largest eigenvalue (λ2) of the tensor SikSkj+ΩikΩkj is negative, λ2 = −2, are shown with
iso-surfaces colored by the intensity of the streamwise velocity, see Jeong et al. (1997).
Here, Sij = (∂ui/∂xj +∂uj/∂xi)/2 and Ωij = (∂ui/∂xj −∂uj/∂xi)/2 are the symmetric
and antisymmetric part of the velocity gradient tensor. Other values of λ2 have been
analysed and we found that, under certain reasonable limits, i.e. −8 < λ2 < −1, no
relevant differences appear in the identified turbulent structures.

As shown in figure 3, a complex flow feature emerges from the analysis of the instan-
taneous vortical pattern. The sharp corner at the leading-edge fixes the location of the
boundary layer detachment and a leading-edge shear layer takes place. In the very first
part of the shear layer, for x < 0.3, the flow is laminar as highlighted by the presence
of a flat and continuous layer of spanwise vortical motion in figure 3(a). Then, the spa-
tially developing shear layer grows and, through instability and transitional phenomena
breaks down to turbulence. A Kelvin-Helmholtz-like instability develops first, leading to
the formation of spanwise vortex tubes, see again the main plot of figure 3(a). Subse-
quently, transition to turbulence sets in very rapidly for x > 0.5 (Winant & Browand
1974; Spalart & Strelets 2000). Under the effect of the mean shear, still strong at these
streamwise locations, perturbations of the flow field lead to the lift up and stretching of
the primary spanwise vortices thus forming hairpin-like structures (Hourigan et al. 2001;
Langari & Yang 2013; Tenaud et al. 2016) arranged in a staggered manner (Soria et al.

1993; Sasaki & Kiya 1991), see the enlargement of figure 3(a). By moving downstream,
these hairpin-like structures are stretched and, as shown in figure 4 where the pattern
taken by the streamwise vorticity, ωx = ∂w/∂y − ∂v/∂z is reported, the flow motion
develops streamwise vortices (Kiya & Sasaki 1985; Bernal & Roshko 1986), which are
known to induce entrainment and high- and low-speed streaks (Jiménez 1983).
By following the mean streamline paths of the flow shown in figure 2(a), we argue

that a first branch of turbulent structures is advected downstream towards the free flow
while a second branch of turbulent fluctuations, following the recirculating paths of the
primary vortex, is conveyed towards the wall and finally impinge on it. The turbulent
structures of the first branch, by passing the trailing-edge region, are encompassed by
oscillatory large scale motions reminiscent of the laminar von Kármán instability, see
the lateral view of the turbulent motions given by figure 3(c). On the other hand, the
turbulent structures of the second branch, after the impingment to the wall, are split
into two boudary layers, one moving upstream and the other downstream. As shown
in figure 3(b), the turbulent structures moving upstream through the reverse boundary
layer are predominantly aligned in the streamwise direction in the first part while, by
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Figure 3. Instantaneous flow realization. Iso-surfaces of λ2 = −2 colored by streamwise velocity.
The perspective and lateral views are shown respectively in (a) and (c). The enlargement in (a)
highlights an hairpin-like structure of the flow. The top view shown in (b) reports the isosurfaces
of λ2 = −2 characterized by a negative streamwise velocity, u < −0.2, in order to highlight the
flow structures within the reverse flow region. The mean reattachment lenght xr and the mean
location of the secondary vortex (SV) are also reported.

moving further upstream, in correspondence of the streamwise location of the secondary

vortex, they are recognized to form a pattern of spanwise vortex tubes. This topological
change of the turbulent structures in the reverse flow region will be statistically analysed
in section §5 and will be explained as a result of clustering of structures due to very slow
intermittent phenomena of upstream advection in section §7.

It is finally important to point out that the turbulent motion described so far is actually
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Figure 4. Instantaneous flow realization. Iso-surfaces of positive and negative streamwise
vorticity, ωx = ±7, are used to detect the streamwise vortical pattern of the flow.

superimposed to low-frequency unsteadinesses. Low-frequency unsteadinesses are very
large scale phenomena that are felt everywhere in the flow (Kiya & Sasaki 1985). For
this reason, their presence is indicative of a possible coupling of phenomena occurring in
the two sides and in the wake of the rectangular plate. A way to characterize these large

scale unsteadinesses is the use of a spanwise average, here denoted as (̂·). This operation
is performed to cancel out the small spanwise scales of turbulence and, dependently on
the size of the domain in the spanwise direction, it allows to almost retain the large
time scale features of the flow (Le et al. 1997). In figure 5, the time evolution of the
spanwise averaged wall shear stress τ̂w on the top wall is shown. The temporal variation
of the spanwise averaged reattachment point x̂r is recognized as the downstream border
between reverse flow, τ̂w < 0 (grey region) and forward flow, τ̂w > 0 (white region). As
shown in figure 5, the spanwise averaged reattachment point x̂r follows an oscillatory
pattern in the form of saw-teeth. As highlighted by the enlargement of figure 5, x̂r moves
downstream slowly with an average velocity Uτ ≈ 0.24, measured by means of the slope of
the saw-tooth ramp. While moving downstream, an area of forward flow forms upstream
which eventually overtakes the downstream reverse flow zone, thus closing the leaning
saw-tooth shape. Hence, the upstream limit of the formed forward zone becomes the new
reattachment point. This behaviour is consistent with the picture of a slow enlargement
of the primary vortex interrupted by the detachment of a large scale motion rather than
being followed by a rapid phenomenon of shrinkage. In particular, it appears that once
the primary vortex reaches a critical volume corresponding to x̂r ≈ 3.8, it becomes
unstable giving rise to a shedding of large scale motions. The frequency of this shedding,
measured as the averaged distance between two saw-teeth, is t ≈ 7. As it will be shown
in the analysis of frequency spectra in sections §6 and §7, this time scale exactly matches
that of vortex shedding in the wake. For this reason this time scale will be hereafter
referred as the shedding time scale of the flow.

The space-time contours of the spanwise-averaged wall shear stress in figure 5 allow us
to analyse also the large scale behaviour of the secondary vortex which can be recognized
as the region of forward flow, τ̂w > 0 (white region), in between the reverse flow, τ̂w < 0
(grey region), induced by the primary vortex. An oscillatory pattern can be recognized
consisting of long periods of the order of t ≈ 25 where the secondary vortex takes place,
thus interrupting the attached reverse flow of the primary vortex. These periods are
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Figure 5. Space-time plot of spanwise-averaged contours of the instantaneous shear stress at
the top wall. Solid black line marks τ̂w = 0 and separates the regions of forward, τ̂w > 0 (white)
and reverse, τ̂w < 0 (grey) flow. PV and SV are used to indicate the reverse and forward flow
regions induced by the primary vortex and secondary vortex, respectively.

alternated with smaller time spans where, on the contrary, the reverse boundary layer
induced by the primary vortex remains attached to the wall, thus forming bridges of
negative shear stress continuously flowing upstream with an average velocity Uτ ≈ −0.14
(measured as the slope of the connected regions of reverse flow). The average width of
these connected regions of reverse flow is of the order of t ≈ 8. During this time window,
the spanwise averaged secondary vortex is very weak or even absent. The overall picture is
the following. The primary vortex induces a reverse boundary layer that, under the effect
of the previously shown adverse pressure gradient, detaches giving rise to the secondary

vortex. The time life of these reverse flow detachment and hence of the secondary vortex

is here recognized to be of the order of t ≈ 25. These long periods are alternated with
shorter time windows, t ≈ 8, during which the reverse boundary layer does not detach
anymore forming a bridge of negative shear stress towards the leading-edge region. As it
will be shown in section §7, this phenomenon, in conjunction with intermittent events of
upstream advection, is induced by favourable pressure gradient conditions. Let us finally
point out that the time life of the secondary vortex, t ≈ 25, corresponds to a very large
scale phenomenon which embraces the entire flow and will be hereafter referred to as
the very large scale unsteadiness of the flow. Given the clear matching of temporal scales
with the low-frequency unsteadiness found in Kiya & Sasaki (1985) for a flat plate, and in
Le et al. (1997) for a backward-facing step, such a large-scale phenomenon is conjectured
to be an inherent general feature of separating and reattaching flows.

5. Three-dimensional spatial correlation function

The statistical signature of the previously described flow pattern can be studied by
means of two-point statistics, such as the velocity correlation function in physical space.
This observable allows us to identify the statistically dominant three-dimensional struc-
tures of the flow and to quantitatively assess their topology. For the symmetries of the
flow, the spatial correlation function for a generic quantity β can be defined as,

Rββ(x, y, rx, ry, rz) =
〈β′(x, y, z, t)β′(x+ rx, y + ry, z + rz, t)〉

〈β′β′〉(x, y)
. (5.1)
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Figure 6. Three-dimensional spatial correlation functions evaluated in the primary vortex shed-
ding region at (x, y) = (4, 0.39) corresponding to location P4 highlighted in figure 2(a). The
spatial correlation is computed for the streamwise (left plots), vertical (central plots) and span-
wise (right plots) velocity fluctuations, i.e. Ruu, Rvv and Rww, respectively. The top plots show
a three-dimensional view of the (rx, ry, rz)-space by means of two iso-surfaces of positive and
negative correlation, i.e. for Ruu = Rvv = Rww = 0.3 (red) and for Ruu = Rvv = Rww = −0.06
(cyan), respectively. The central and bottom plots show a two-dimensional section of the
iso-levels of velocity correlations for rx = 0 and rz = 0, respectively. The positive correla-
tion range of values is discretized by 9 equally spaced iso-levels (solid lines) while the negative
range is discretized by 5 equally spaced iso-levels (dashed lines).

Equation (5.1) highlights that the correlation function is defined in a 5-dimensional com-
pound space of separations (rx, ry, rz) and positions (x, y). For each position (x, y) within
the flow, the spatial correlation function allows us to define the lengths (rx, ry, rz) of the
statistically dominant coherent motions. Due to statistical inhomogeneity in the stream-
wise and vertical directions, the three-dimensional spatial correlation function (5.1) is
symmetric only in the rz-direction, i.e. Rββ(x, y, rx, ry, rz) = Rββ(x, y, rx, ry,−rz). For
obvious reasons of compactness, only three reference locations of the (x, y)-space will
be shown as representative of the primary vortex shedding region, the attached reverse

boundary layer and the detached reverse boundary layer, respectively. In describing the
correlation lengths we will use ℓj to denote the size of a given three-dimensional corre-
lation iso-surface along the j direction and dj to denote the distance between peaks of
positive and negative correlation. For a similar analysis, the reader is referred to Sillero
et al. (2014) where the three-dimensional spatial correlation is used to study the struc-
tures of turbulent boundary layers and channels.

5.1. Primary vortex shedding region

We start the analysis by considering the behaviour of the velocity spatial correlation
function in the primary vortex shedding region at (x, y) = (4, 0.39) corresponding to
location P4 highlighted in figure 2(a). In this region, the increment in the vertical direc-
tion ry is limited by the presence of the rectangular plate so that ry > −0.39 since for
ry 6 −0.39 the moving point of the correlation (x+ rx, y + ry, z + rz, t) would be inside
the rectangular plate. The measured maximum and minimum values of correlation are
1.01 and −0.37, and the correlated and anticorrelated structures are here identified with
iso-surfaces of correlation 0.3 and −0.06, respectively.

The three-dimensional correlation of the streamwise velocity fluctuation is shown in
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the left plots of figure 6. The positive correlated region, Ruu = 0.3, has an ellipsoidal
shape elongated in the streamwise direction whose lengths are ℓx ≈ 1 and ℓz ≈ 0.4.
Concerning the vertical lengths, as better highlighted by the rx = 0 and rz = 0 sections,
the positive correlation of streamwise velocity is found to extend down to the wall. Two
regions of negative correlation are also detected, Ruu = −0.06, and are found to flank the
positive correlated region in the spanwise direction. These two regions are inclined with
respect to the wall so that their upstream root is at the wall and their downstream head
points away from it. The cross flow shape is slightly stretched in the vertical direction,
see the section in the rx = 0 space. In particular, we measure ℓy ≈ 0.45 and ℓz ≈ 0.4.
The spanwise distance of their centre to the peak of positive correlation is dz ≈ 0.5.

The three-dimensional spatial correlation of the vertical velocity fluctuation is shown in
the central plots of figure 6. Contrarily to streamwise fluctuations, the positive correlated
region Rvv = 0.3 has a tall shape elongating in the vertical directions. The lengths in
the horizontal directions are ℓx ≈ 0.55 and ℓz ≈ 0.4. As shown in the rx = 0 and rz = 0
planes, the positive iso-levels do not reach the wall, thus highlighting the detached nature
of vertical fluctuations. The positive correlation region of vertical fluctuations is found
to be flanked both in the streamwise and spanwise directions by negative correlation
regions. In the spanwise direction, the negative correlation Rvv = −0.06 takes the form
of two detached, streamwise elongated, structures whose cross-flow lengths are ℓy ≈ 0.3
and ℓz ≈ 0.2. The spanwise distance of their centre to the peak of positive correlation is
dz ≈ 0.4 and are located slightly closer to the wall dy ≈ −0.1. On the other hand, the
negative correlation regions beside the positive one in the streamwise direction, appear
to form two large spanwise structures. The upstream one is located roughly at the same
wall-distance dy ≈ 0 and its streamwise distance is dx ≈ −0.8, while, the downstream
one is centred further away from the wall dy ≈ 0.3 and for dx ≈ 0.9.

The spanwise velocity correlation is shown in the right plots of figure 6. The iso-surface
of positive correlation, Rww = 0.3, has an inclined disk-shape structure. The cross-flow
lengths are ℓy ≈ 0.28 and ℓz ≈ 0.56. As shown in the rz = 0 plane, the upstream values of
positive correlations extend down to the wall. The positive correlation is flanked by four
negative correlation structures, Rww = −0.06. The strongest anticorrelated structures
are those above and below the positive one. The outer structure is detached from the
wall and it is centred upstream and away from the wall than the positive correlated
region, dx ≈ −0.6 and dy ≈ 0.15. On the other hand, the inner structure is attached
to the wall and dx ≈ 0.1 and dy ≈ −0.3. Two weaker anticorrelated regions flank the
positive correlation in the spanwise direction for dz ≈ 0.9. These two structures are not
inclined and are clearly detached from the wall since their vertical length, ℓy = 0.3, is
small compared to the wall-distance.

Summarizing, the spatial organization of the three-dimensional velocity correlation,
consisting of negative correlation regions flanking the positive ones in the spanwise direc-
tion for the vertical velocity and in the vertical direction for the spanwise one, suggests
that the dominant flow structures of this region are quasi-streamwise vortices whose
cross-flow lengths are of the order of dy ≈ 0.3 and dz ≈ 0.4. Furthermore, the spanwise
flanking of positive and negative correlation for the streamwise velocity suggests a streaky
pattern consisting of alternating high and low streamwise velocity regions whose size is
dz ≈ 0.5. The presence of negative correlation regions beside the positive correlation of
vertical velocity in the streamwise direction, actually suggests that also spanwise rolls are
significant in this region of the flow. The combination of spanwise rolls and streamwise
vortices support the previously observed presence of hairpin-like structures, see figure 3
and 4, also from a statistical point of view. The same qualitative behaviour is observed
also in the near-wall forward boundary layer region, not shown for brevity reasons. It
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Figure 7. Three-dimensional spatial correlation functions evaluated in the attached reverse
boundary layer at (x, y) = (2.7, 0.12) corresponding to location P3 in figure 2(a). The isosurfaces
of positive and negative correlation shown in the top plots are Ruu = Rvv = Rww = 0.3 (red)
and for Ruu = Rvv = Rww = −0.07 (cyan), respectively. For further details on the structure of
the figure see the caption of figure 6.

is intended that the dominant flow structures of the forward boundary layer are again
streamwise vortices and streaks as a result of hairpin-like structures.

5.2. Attached reverse boundary layer

In figure 7, we report the behaviour of the spatial correlation function in the attached

reverse boundary layer at (x, y) = (2.7, 0.12) corresponding to location P3 highlighted
in figure 2(a). Also in this region the increment in the vertical direction ry is limited by
the presence of the rectangular plate so that ry > −0.12. The measured maximum and
minimum values of correlation are 1.06 and −0.41, and the correlated and anticorrelated
structures are identified with iso-surfaces of correlation 0.3 and −0.07, respectively.

The correlation function of streamwise velocity is shown in the left plots of figure 7. The
iso-surface of positive correlation, Ruu = 0.3, forms a streamwise elongated structure,
ℓx ≈ 1 long and ℓz ≈ 0.34 wide. As better shown in the rx = 0 plane, the iso-levels of
positive correlation extend down to the wall. Two negative correlation regions are also
detected, Ruu = −0.07. Contrary to the primary vortex shedding region shown in figure
6, the anticorrelated regions are smaller in size and are displaced not only in the spanwise
direction but also in the vertical one. In particular, we measure dy ≈ 0.55 and dz ≈ 0.85.
The correlation of vertical velocity is shown in the central plots of figure 7. The iso-

surface of positive correlation, Rvv = 0.3, forms a slightly elongated structure in the
streamwise direction differently from the primary vortex shedding region where a tall
vertical structure is observed. The horizontal lengths are ℓx ≈ 0.56 and ℓz ≈ 0.22. Two
anticorrelated regions, Rvv = −0.07, are observed beside the positive correlation in the
spanwise direction. These are streamwise elongated structures displaced in the spanwise
direction, dz ≈ 0.28, and at the same wall-distance, dy ≈ 0. Their cross-flow lengths are
ℓy ≈ 0.27 and ℓz ≈ 0.25.

The correlation of spanwise velocity is shown in the right plots of figure 7. The iso-
surface of positive correlation, Rww = 0.3, forms a slightly inclined disc-shape structure
whose lengths in the horizontal directions are ℓx ≈ 0.7 and ℓz ≈ 0.5. A single negative
correlation region is observed and takes place above the positive one, contrarily to the
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Figure 8. Three-dimensional spatial correlation functions evaluated in the detached reverse
boundary layer at (x, y) = (0.86, 0.18) corresponding to location P2 in figure 2(a). The isosur-
faces of positive and negative correlation shown in the top plots are Ruu = Rvv = Rww = 0.3
(red) and for Ruu = Rvv = Rww = −0.2 (cyan), respectively. For further details on the structure
of the figure see the caption of figure 6.

quadrupole anticorrelation structure observed for the primary vortex shedding region.
The iso-surface of anticorrelation, Rww = −0.07, takes the form of a slightly inclined
structure whose lengths are ℓx ≈ 0.78, ℓy ≈ 0.28 and ℓz ≈ 0.4. This structure is displaced
in the vertical direction by dy ≈ 0.25 and in the streamwise direction by dx ≈ −0.08.

Overall, the observed anticorrelated regions flanking the correlated ones in the span-
wise direction for the vertical velocity and the negative correlation taking place above the
positive one for the spanwise velocity, suggest that the statistically dominant structures
of the attached reverse boundary layer are quasi-streamwise vortices whose cross-flow
lengths are dy ≈ 0.25 and dz ≈ 0.28. This result is in accordance with the previous in-
stantaneous flow field analysis, see figure 3(b). The absence of upstream and downstream
negative correlations of vertical velocity as those observed in the shedding region, actually
suggest that streamwise vortices in the attached reverse flow are not part of hairpin-like
structures. A final difference with respect to the primary vortex shedding region is that
the streamwise velocity does not show an evident streaky pattern.

5.3. Detached reverse boundary layer

We analyse here the structure of the detached reverse boundary layer by considering the
spatial correlation function evaluated at (x, y) = (0.86, 0.18) corresponding to location
P2 highlighted in figure 2(a). The increment in the vertical direction ry is again limited
by the presence of the rectangular plate so that ry > −0.18. The maximum and minimum
values of correlation are 1.03 and −0.55, and the correlated and anticorrelated structures
are identified with iso-surfaces of correlation 0.3 and −0.2, respectively.

In the left plots of figure 8, the three-dimensional correlation function of streamwise
velocity is shown. The iso-surface of positive correlation Ruu = 0.3 is a compact structure
whose horizontal lengths are ℓx ≈ 1 and ℓz ≈ 0.6. No isosurfaces of negative correlation
are shown since the anticorrelation of streamwise velocity is very weak, min(Ruu) =
−0.12, compared to the other two components of velocity. However, as shown by the
iso-levels in the rx = 0 and rz = 0 planes, negative correlations are actually present.
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Although weak, three negative correlation regions are observed one on the top and two
on the spanwise sides of the positive correlation.

The spatial correlation function of the vertical velocity is shown in the central plots
of figure 8. The iso-surface of positive correlation, Rvv = 0.3 is a compact structure
stretched in the spanwise direction. Its horizontal lengths are ℓx ≈ 0.29 and ℓz ≈ 0.6. The
iso-surface of negative correlation, Rvv = −0.2, is a small spanwise elongated structure
taking place slightly above and downstream the positive one, dx ≈ 0.25 and dy ≈ 0.33.
Its streamwise and vertical lengths are ℓx ≈ 0.22 and ℓy ≈ 0.28.
In the right plots of figure 8, the three-dimensional correlation function of the spanwise

velocity is shown. The iso-surface of positive correlation, Rww = 0.3, is a large structure
elongated in the spanwise direction whose lengths in the wall-parallel directions are ℓx ≈
0.67 and ℓz ≈ 1.24. The iso-surface of negative correlation, Rww = −0.2, is a thin
structure taking place downstream the positive correlation region, dx ≈ 1.2 and dy ≈
−0.1. As clearly shown in the plane rz = 0, the iso-levels of positive correlation are
significantly stretched downstream for large vertical separations. As a consequence, the
positive correlation region is found to enclose from above the region of anticorrelation.
Summarizing, the presence of a strong anticorrelated region downstream and slightly

above the positive one for the vertical velocity suggests that the dominant structures
of the detached reverse boundary layer are spanwise vortices in accordance with the
previous analysis of the instantaneous flow field, see figure 3(b). On the other hand, the
downstream location and the size of the anticorrelated region for the spanwise velocity
suggest the presence of a wall-normal large scale vortical motion. This motion could be
understood as the statistical footprint of the phenomenon re-orienting the streamwise
vortices of the attached reverse boundary layer into the spanwise vortices observed in
the detached reverse boundary layer. Finally, the streamwise velocity does not highlight
a spanwise alternating pattern of high- and low-velocity streaks.

6. Multi-scale features

In this section we address the scale-by-scale evolution of turbulence through the differ-
ent regions of the flow. To this aim, we study the inhomogeneous behaviour of turbulent
spectra. By taking advantage of the statistical homogeneity of the flow in the spanwise
direction and in time, the spectrum of a generic quantity β can be defined as

Φββ(kz, ω, x, y) = 〈β̃(kz, ω, x, y)β̃
∗(kz, ω, x, y)〉 (6.1)

where kz and ω are the spanwise wavenumber and the frequency while (̃·) denotes the
Fourier transform with respect to the spanwise direction and time. Let us point out that
the Fourier transform in time has been performed by using the entire temporal signals
without using windowing and weighting functions. Accordingly with (6.1), the spectral
properties of the flow turn out to be statistically defined in a four dimensional space of
scales and positions (kz, ω, x, y). In order to simplify the analysis, in what follows we
consider separately the one-dimensional wavenumber and frequency spectrum defined as

Φkz

ββ(kz, x, y) =

∫

Φββ(kz, ω, x, y)dω and Φω
ββ(ω, x, y) =

∫

Φββ(kz, ω, x, y)dkz , (6.2)

respectively. Due to inhomogeneity in the streamwise and vertical directions, the one-
dimensional spectra defined above still contain a huge amount of information, being a
function of the compound three dimensional space of locations and wavenumbers/frequencies
(x, y, kz/ω). For this reason, we decided to limit the analysis to two selected reduced-
space of (x, y)-locations. These two reduced-space of locations are defined by tracing the
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(x, y)-positions intercepted by two selected streamlines of mean velocity. Hence, a spec-
tral analysis of the flow along its mean evolution paths is enabled. The statistical study of
the multiscale properties of the flow is then reduced to the analysis of a two-dimensional
space (γ, kz/ω) where γ is the curvilinear coordinate length defined by the mean velocity

streamline along its path in the (x, y) space, γ =
∫

dγ with dγ =
√

dx2 + dy2.
The first reduced-space, reported in the top plot of figure 9, is a closed loop tracing the

mean flow path around the primary vortex and will be hereafter called cyclical reduced-

space. The resulting path γ allows us to study the statistical evolution of the flow along
its development in the main recirculating region. Three distinct relevant sub-regions can
be defined. In the first one, denoted in red in figure 9, we can address how fluctuations are
triggered and amplified in the leading-edge shear layer and how they develop during the
advection along the primary vortex path up to the reattachment region. In the second
part after the reattachment, denoted in blue in figure 9, we can deal with the behaviour
of the branch of motions flowing upstream through the reverse boundary layer. Finally,
in the last part, denoted in green in figure 9, we can study the final detached part of
the reverse flow up to the leading-edge shear layer, thus closing the cycle. The second
reduced-space, shown in the top plot of figure 11, starts at the leading edge, covers the
primary vortex, reaches the trailing edge and finally moves downstream along the wake.
This second reduced-space will be called open reduced-space and allows us to study the
statistical evolution of the flow along its development towards the free-flow in the wake.
Also in this case, the resulting path γ can be divided into three relevant sub-regions. The
first one, in red, traces the evolution of fluctuations from their origin at the leading-edge
shear layer up to the reattachment point. The second part, in blue, allows us to assess
the behaviour along the attached forward boundary layer while the third one, in green,
describes the development of the motion along the wake.

In what follows, we will show spectral results for the vertical velocity component only.
The spectra of the other components of velocity and of the pressure field have been
also analysed but will be not reported for brevity. However, the main differences, when
present, and the main outcomes from the other components of velocity and from the
pressure field will be explicitly highlighted in the text.

6.1. The cyclical reduced-space

Let us consider the behaviour of the flow in the cyclical reduced-space. As reported in
figure 9, the mean pressure P (x, y) shows a slight decrease from the leading-edge up
to the streamwise location of the primary vortex core corresponding to γ/γmax ≈ 0.27.
Then, the mean pressure field highlights a significant adverse pressure gradient up to the
reattachment region for 0.27 < γ/γmax < 0.5. After this region, moving upstream in the
reverse boundary layer, the mean pressure field shows an almost equivalent favourable
pressure gradient up to γ/γmax ≈ 0.7. This streamwise location is the footprint of the
low pressure levels associated with the primary vortex core, see also the iso-contours of
mean pressure shown in figure 2(b). In the final part of the path before reaching back
the leading-edge shear layer, the mean pressure shows again an adverse gradient.

In figure 9, the behaviour of the turbulent intensities, 〈u′u′〉, 〈v′v′〉 and 〈w′w′〉 is also
shown. In the first part of the path (red section) along the leading-edge shear layer, the
turbulent intensities increase. Indeed, the free-shear layer is recognized to be the site of
the instabilities first and then of the transition to turbulence in this kind of flows. For
γ = 0, the three components exhibit similar values but the streamwise fluctuations are
found to be the most amplified along the path. The increase of the turbulent intensities is
maintained up to the reattachment region with exception of the streamwise fluctuations
which show a decrease just before it. The result is that in the reattachment region
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Figure 9. Top: selected streamline for the study of the recycling mechanisms in the primary
vortex. Bottom: behaviour of turbulent intensities and of mean pressure along the path γ.

the intensity of the fluctuations is almost equally distributed in the three directions.
After the reattachment, along the reverse boundary layer (blue section), all the three
components of the turbulent intensities decrease. As expected, due to the impermeability
constraint given by the proximity of the wall, this reduction abruptly occurs for the
vertical fluctuations. Interestingly, the most intense fluctuations in the first part of the
reverse boundary layer are those in the spanwise direction. This fact could be explained
as the result of a spanwise sweeping of the three-dimensional fluctuations impinging into
the wall. In the last segment of the path (green section), the intensity of the fluctuations
further decreases before reaching the leading-edge shear layer thus closing the cycle.
Such a decrease is most significant for the streamwise fluctuations, presumably due to
the adverse pressure gradient which establishes in this final part of the path.
The multiscale nature of the flow in the cyclical reduced-space is described by means

of turbulent spectra of the vertical velocity and shown in figure 10. In the very first part
of the leading-edge shear layer (red segment), the most energetic spanwise scales of the
flow are relatively large being of the order of the rectangular plate thickness, λz = O(1).
On the contrary, the energy peak in time is located at small time scales of the order of
λt = O(10−1). Actually, a second distinct peak is present for relatively large time scales
of the order of λt = O(10). Its intensity is smaller than the first one located at small time
scales. The nature of the second smaller peak at large time scales will be analysed in the
following section. However, let us notice that, interestingly, the intensity of the second
peak becomes smaller and smaller with respect to the first one while moving downstream
along the path and almost disappears around γ/γmax ≈ 0.06. These behaviours of the
turbulent spectra are in accordance with the presence of spanwise vortex tubes as a result
of Kelvin-Helmholtz instability of the shear layer. In particular, it appears that the mean
width of these structures is of the order of the plate thickness.

Following the development of the shear layer, the energy containing spanwise scales λz

remain almost unaltered of the order of O(1), while the time scales λt increase in accor-
dance with the formation of streamwise vortices due to the stretching and re-orientation
by mean shear of the spanwise tubes to form hairpin-like patterns. This behaviour is
retained up to γ/γmax ≈ 0.2 where a decrease of the most energetic spanwise scales
λz starts to take place while the temporal scales λt continue to increase. In fact, in a
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Figure 10. Premultiplied one-dimensional spectra of turbulent vertical fluctuations in the cycli-
cal reduced-space. Top panel: premultiplied one-dimensional wavenumber spectrum kzΦ

kz

vv as
a function of (γ, λz) where λz is the spanwise wavelength, λz = 2π/kz. Bottom panel: pre-
multiplied one-dimensional frequency spectrum ωΦω

vv as a function of (γ, λt) where λt is the
period, λt = 2π/ω. The premultiplied spectra are normalized with their local maxima, e.g.
kzΦ

kz

vv(γ, λz)/max(Φkz

vv |γ), and are shown in linear scale. To address the variation of the inten-
sity of the vertical fluctuations along the path, the reader shall refer to figure 9.

very short length, from γ/γmax ≈ 0.2 to ≈ 0.3, the energy containing spanwise scales
decrease to scales of the order of O(10−1). In this short region, transition to turbulence
definitely takes place as also shown by the levels of turbulent kinetic energy reported in
figure 2(c). For γ/γmax > 0.3 and, hence, after the streamwise location of the primary

vortex core, the peak of the turbulent spectrum remains almost at the same spanwise
scales while the time scales still show a slight increase. The main aspect is a fill up of
the spectrum which is particularly marked in the time scales. This behaviour is retained
up to the reattachment region. Across the reattachment region, in between the red and
blue segment of the path, the spanwise scales become smaller, while the time scales re-
main almost unaltered. This decrease of the spanwise lengths across the reattachment
region suggests that structures with smaller spanwise lengths are those mainly advected
upstream through the reverse boundary layer. Accordingly, through the analysis of the
instantaneous reverse flow pattern, figure 3(b), and of the spatial correlation function,
figure 7, these structures are recognized to be streamwise vortices.

Through the reverse boundary layer (blue segment) the most energetic spanwise and
temporal scales remain almost unaltered. As shown in figure 9, this section of the path
is characterized by a favourable pressure gradient up to the streamwise location of the
primary vortex core, γ/γmax ≈ 0.7. Further upstream (final part of the blue segment), a
weak adverse pressure gradient takes place leading to a longitudinal shrinking and span-
wise enlargement of flow structures as shown by the instantaneous reverse flow pattern
shown in figure 3(b). Accordingly, we observe an increase of the most energetic spanwise
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Figure 11. Top: selected streamline for the study of the free flow from the leading-edge up to
the wake. Bottom: behaviour of turbulent intensities and of mean pressure along the path γ.

scales, λz. By entering the last part of the path (green segment), the reverse boundary
layer detaches, thus forming the secondary vortex, and the enlargement of flow structures
is even more evident, thus leading to spanwise vortices as shown by the spatial correla-
tion function, figure 7 (see also the instantaneous reverse flow pattern shown in figure
3(b)). This increase of the most energetic spanwise lengths is retained up to the leading-
edge shear layer where the detached spanwise vortices are encompassed by and conform
with the even larger motion, λz = O(1), related with the Kelvin-Helmholtz instability,
thus closing the cycle. On the other hand, the temporal scales show a very interesting
double feature along the detached reverse boundary layer. While moving upstream, for
γ/γmax > 0.8 the turbulent spectrum splits into two branches of energetic scales. A
large time scale range of the order of O(10) characteristic time scales is developed si-
multaneously with the generation of a small time scale range of the order of O(10−1)
characteristic time scales. These two branches survive along the detached reverse bound-
ary layer and reach the leading-edge shear layer where only the range of small time scales
survives, thus closing the cycle.

6.2. The open reduced-space

The behaviour of the flow in the open reduced-space is shown in figure 11. We start again
the analysis by considering the behaviour of the mean pressure field. The first part of the
path (red segment) essentially matches the corresponding section of the cyclical reduced-
space. Indeed, pressure is found to slightly decrease up to the streamwise location of the
primary vortex core, then, it starts to increase. Contrarily to what happens in the cyclical
reduced-space, this adverse pressure gradient is maintained also in the second part of the
path (blue segment). Indeed, this second part corresponds to the forward boundary layer
towards the trailing edge. The mean pressure rise is observed up to γ/γmax ≈ 0.28 where
it leaves room to a small favourable pressure gradient which continues in the first part
of the last section of the path (green segment). From a relative minimum immediately
after the trailing edge around γ/γmax ≈ 0.36, the mean pressure field increases again up
to the free-stream value in the wake just after few lengths for γ/γmax ≈ 0.5.
As shown in figure 11, from the instabilities in the very first part of the leading-

edge shear layer, the turbulent intensities grow while moving around the primary vortex
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Figure 12. Premultiplied one-dimensional spectra of turbulent vertical fluctuations in the
open reduced-space. See caption of figure 10.

(red segment). A drastic decrease is then observed while approaching the reattachment
region, especially for the wall-normal fluctuations. This decrease of the fluctuations is
almost maintained in the forward boundary layer (blue segment) up to the trailing-edge
where a second shear-layer forms and develops in the wake, thus promoting the generation
of turbulent fluctuations. Indeed, in the very first part of the wake (green segment) a
strong increase of the fluctuations is observed, especially for the vertical component. This
growth is maintained for a very short length up to γ/γmax ≈ 0.4 and just downstream
the average wake vortex, a weak decrease of the fluctuations takes place following the
asymptotic behaviour of the wake.

Let us now analyse the multi-scale features of the open reduced-space reported in
figure 12. The first part of the path (red segment) essentially matches the corresponding
region of the cyclical reduced-space and will be not described for brevity reasons. We
start then by considering the second part of the path (blue segment), i.e. from the
reattachment region down to the trailing edge. By crossing the reattachment region,
a significant decrease of the most energetic spanwise and temporal scales is observed.
Then, following the development of the forward boundary layer, the spanwise scales
remain almost unchanged while the temporal ones decrease. By crossing the trailing edge,
the relatively small spanwise and temporal scales of the boundary layer are abruptly
encompassed by the large-scale motion of the separated wake. Interestingly, the most
energetic spanwise scales rapidly evolve and reach large values of the order O(1). On the
other hand, the temporal scales do not evolve by passing the trailing-edge but are found
to be simply damped in a very short length for γ/γmax < 0.35. Indeed, the dynamics
of the wake create a separate well-defined peak at larger temporal scales, λt ≈ 7, i.e.
the shedding time scale. Hence, for γ/γmax > 0.35 only the large scale motions of the
wake survive and the resulting spectrum is not full filled contrarily to the spectrum in
the spanwise scales. Let us close the analysis of the open reduced-space by addressing
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the spectral evolution of the wake for γ/γmax > 0.4. A logarithmic (linear in the semi-
log plot) increase of the spanwise scales and a replenishment of the spectral bands is
observed. The same development of wake turbulence cannot be observed in the temporal
scales due to the intensity of the shedding spectral peak which overshadows the energy
content of the other spectral bands.

7. Self-sustaining cycle

Before discussing the self-sustaining mechanisms of the flow, it is instrumental to briefly
recall the main features of the separating and reattaching flow analysed so far. In the
very first part of the leading-edge shear layer, the instability of the flow gives rise to very
large spanwise vortex structures. The interaction with the strong shear leads to a blow
up and streamwise stretching of these structures, thus, giving rise to hairpin-like flow
pattern and to the development of streamwise vortices and high- and low-speed streaks.
Hence, transition to turbulence takes place, as highlighted by the levels of the turbulent
intensities and by the fill up of the turbulent spectrum shown in figures 9 and 10. Two
branches of turbulent structures can be identified. The first one represents detached
fluctuations which are freely convected downstream towards the wake. The second one is
given by turbulent structures moving down towards the wall. These fluctuations impinge
into the wall and a portion of these flows downstream towards the trailing edge and the
other move upstream thus forming a reverse boundary layer.

This last branch of turbulent structures accelerate first, driven by a favourable pressure
gradient associated with the low pressure levels of the primary vortex core, see the
behaviour of pressure within the blue segment shown in figure 9. These structures are
found to be essentially elongated in the streamwise direction as shown by the analysis of
the correlation function, figure 7. Then, beyond the streamwise location of the primary

vortex core, the reverse boundary layer experiences an adverse pressure gradient and
detaches thus forming a secondary vortex. In the consequent detached reverse boundary
layer, turbulent fluctuations become wider and wider as shown again by the analysis of the
correlation function, figure 8. These spanwise vortices are eventually conveyed upstream
thus triggering the leading-edge shear layer and closing the cycle. In the following, we
will provide evidence of a self-sustaining cycle at the base of the upstream rising of these
spanwise vortices and, hence, of the triggering of the leading-edge shear layer instabilities.
A careful inspection of the detached reverse boundary layer reveals that the mean

upstream advection of turbulent fluctuations is very weak in this region. Figure 13(a),
reports the probability density function of the streamwise velocity in the detached re-
verse flow at (x, y) = (0.88, 0.18) corresponding to the location P2 shown in figure 2(a).
A clear non-Gaussian behaviour is observed. In particular, the flow is recognized to be al-
most quiescent most of the time. Indeed, as shown by the long negative tail of pdf(u), the
reverse flow is found to be essentially given by rare and intense events of upstream advec-
tion. In accordance with the peak in the premultiplied frequency spectrum of streamwise
velocity shown in figure 13(b), these extreme reverse flow fluctuations belong to long time
scale motions of the order of λt ≈ 25. As a consequence of these periods of quiescence,
we recognize that turbulent structures moving upstream the reattachment region are
actually clustered in correspondence of the streamwise location of the secondary vortex

since the upstream advection is null for long periods. We argue that this clustering of
structures in the detached reverse flow would give rise to vortex reconnection phenomena
which would explain the creation of spanwise vortices from the streamwise ones observed
in the attached reverse flow, see the instantaneous flow field analysis, figure 3(b), and
the results of the spatial correlation function, figures 7 and 8.
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Figure 13. (a) Probability Density Function and (b) premultiplied frequency spectrum of the
streamwise velocity computed in the reverse flow region at (x, y) = (0.88, 0.18) corresponding
to the location P2 shown in figure 2(a). The dashed vertical line in (a) denotes the mean.

Given the clear matching of temporal scales, this intermittent phenomenon of upstream
advection is strictly related with the behaviour of the secondary vortex. Indeed, as shown
in figure 5, the time scale between two bridges of negative wall shear stress, i.e. the time
life of the secondary vortex, is t ≈ 25 actually matching the time scale of the upstream
advection in the detached boundary layer, λt ≈ 25, shown in figure 13(b). Both the
time life of the secondary vortex and the intermittency of the upstream advection of the
detached boundary layer are due to events of favourable pressure gradient conditions
that, in turn, are given by large-scale unsteadiness phenomena. In particular, we argue
that the long periods of quiescence of the detached boundary layer are due to the adverse
pressure gradient that for long time scales significantly opposes the weak reverse flow also
inducing a detachment of the boundary layer and hence creating the secondary vortex. On
the other hand, for smaller periods, the adverse pressure gradient becomes weaker, thus
allowing the reverse flow to proceed towards the leading-edge shear layer and preventing
the flow separation into the secondary vortex.

To clarify this point, let us consider the frequency spectrum of the streamwise location
of an iso-level of low pressure evaluated at the wall defined as

Φω
xlowxlow

(ω) =

∫

〈x̃low(kz, ω)x̃
∗
low(kz, ω)〉dkz (7.1)

where xlow = xlow(z, t) is computed as the upstream streamwise location satisfying the
following condition

pwall(xlow, z, t) = plow (7.2)

where plow ≡ 0.45Pmin = −0.014. In figure 14(a) the premultiplied frequency spectrum
ωΦω

xlowxlow
is shown. A well defined peak at large time scales, λt ≈ 7, is present which

exactly matches the frequency of the large-scale vortex detachment in the wake, λt ≈ 7,
see the peak of the premultiplied frequency spectrum of the vertical velocity in the wake
shown in the inset of figure 14(a). Actually, as already shown in figure 5 and 12, also the
shedding of large-scale vortices from the primary vortex is locked at the same time scale.
Hence, we conjecture that the characteristic time scale of the streamwise oscillation of low
pressure levels is a footprint at the wall of the shedding of large-scale vortices from the
primary vortex whose characteristic time scale is exactly t ≈ 7. However, in figure 14(a),
a second spectral peak at even larger time scales, λt ≈ 25, is observed thus highlighting
that the most intense fluctuations of xlow for λt ≈ 7 are superimposed to a weaker
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Figure 14. (a) Premultiplied frequency spectrum of the streamwise movement of low pressure
levels at the wall, ωΦω

xlowxlow
. Inset: premultiplied frequency spectrum of vertical velocity, ωΦω

vv,
evaluated in the wake at a location corresponding to the point P5 shown in figure 2(a). (b)
Correlation function Rxt

low
xb

low

(τ), equation (7.3).

fluctuation of xlow characterized by an even larger period corresponding to almost four
times the vortex shedding period, λt ≈ 25. Let us consider now the temporal cross-
correlation between the streamwise location of low wall-pressure in the top and bottom
sides of the rectangular plate, xt

low and xb
low respectively,

Rxt

low
xb

low

(τ) =
〈xt′

low(z, t
′)xb′

low(z, t
′′)〉

〈x′2
low〉

(7.3)

where τ = t′′−t′. As shown in figure 14(b), Rxt

low
xb

low

(τ) shows a clear anti-correlation for
τ = 0, thus highlighting that, on average, an upstream fluctuation of low wall-pressure
on one side corresponds to a downstream fluctuation on the opposite side. This negative
correlation is retained up to τ ≈ 9. For larger time scales, the correlation becomes posi-
tive and reaches a maximum around τ ≈ 11 which is then recognized to be the period of
inversion of the upstream/downstream fluctuations of low pressure in the two sides of the
plate. Let us point out that the time scale of positive maximum of correlation of two sig-
nals in phase opposition, corresponds to half the period of the dominant harmonic. Hence,
τ ≈ 11 corresponds in spectral space to the peak of ωΦω

xlowxlow
at λt ≈ 25. This fact

suggests a superimposition of the intense fluctuations of xlow at λt ≈ 7 with those weaker
at λt ≈ 25. Summarizing, the low wall pressure levels fluctuate in space by following the
detachment of large-scale vortices from the primary vortex. This upstream/downstream
movement of low pressure is superimposed to a very slow phenomenon such that the
most effective upstream fluctuations of plow actually occur for periods corresponding to
that of the very large scale unsteadiness of the flow, i.e. λt ≈ 25.
The low-frequency upstream and downstream oscillation of low levels of wall pres-

sure is responsible for the very intermittent upstream advection of turbulent structures
within the detached reverse boundary layer shown in figure 13(a). In fact, given the
adverse pressure gradient and the small values of momentum associated with the de-
tached reverse boundary layer (green segment of figure 9), turbulent fluctuations are
able to reach the leading-edge shear layer only when the pressure levels are favourable,
i.e. when xlow << 〈xlow〉. Accordingly, the frequency spectrum of streamwise velocity
in the detached reverse boundary layer reported in figure 13(b) shows a clear peak at
large temporal scales matching the large scale period of fluctuations of xlow at λt ≈ 25.
The same matching of scales is observed also with the characteristic time scale of the
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Figure 15. (a) Temporal signal and (b) premultiplied frequency spectrum of vertical velocity in
the leading-edge shear layer, location P1 of figure 2(a). The thick line in (a) reports the filtered
signal (7.4). (c) Correlation function Rv̄v̄(τ), equation (7.5).

secondary vortex shown in figure 5. Given the alternate nature of the process in the two
opposite sides of the plate, we argue that turbulent structures along the detached reverse
boundary layer are clustered in one side of the plate where the secondary vortex holds
and are advected upstream in the opposite side where, on the contrary, the secondary

vortex is absent or very weak. On average, this clustering and advection is maintained
for a relatively long period, and, then reverses in the two sides of the plate. In accordance
with the peak of correlation shown in figure 14(b), this period of inversion is of the order
of O(10) characteristic time scales. Hence, the system conforms of trains of small scale
structures able to reach the leading-edge shear alternatively in the two sides of the plate.

In accordance with this picture, the time signals of the fluctuating vertical velocity
evaluated in the leading-edge shear layer (location P1 reported in figure 2(a)) show
packages of high frequency fluctuations alternating with relative unperturbed periods as
shown in figure 15(a). The premultiplied frequency spectrum of vertical velocity shown
in figure 15(b) highlights that, on average, these packages are characterized by a range
of high frequencies centred at time scales of the order λt ≈ 0.7. In accordance with the
time signal reported in figure 15(a), ωΦω

vv(ω) shows also a range of large temporal scales
centred at λt ≈ 25 which actually denotes the periodic appearance of these packages. This
period matches the large period of the streamwise fluctuations of low wall-pressure shown
in figure 14(a) and of the upstream advection events in the detached reverse boundary
layer shown in figure 13(b), thus supporting the physical connection between pressure
fluctuations, upstream advection and triggering of the leading-edge shear layer.
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Let us consider the filtered signal of the absolute value of vertical velocity,

v̄(x, y, z, t) =

∫

G∆t(t− t∗)|v(x, y, z, t∗)|dt∗ . (7.4)

As shown in figure 15(a), the filtered signal, with G∆t the Gaussian filter function and
with a filter time scale ∆t = 4, allows to nicely detect the packages of small scale fluctu-
ations triggering the shear layer. By computing the temporal cross-correlation function
of the filtered signal (7.4) evaluated in the top and bottom shear layer,

Rv̄v̄(τ) =
〈v̄′(x, ỹ, z, t′)v̄′(x,−ỹ, z, t′′)〉
√

〈v̄′v̄′〉(x, ỹ)〈v̄′v̄′〉(x,−ỹ)
(7.5)

with τ = t′′ − t′, we can confirm the alternate nature of the small scale triggering of the
leading-edge shear layer in the top and bottom sides of the rectangular plate. Indeed, as
shown in figure 15(c) the trains of small scale structures detected by the filtered vertical
velocity v̄ are correlated in the two sides of the plates for τ ≈ 11 matching the time scale
of the streamwise rising/descent of low pressure levels along the body. It is worth noting
that for τ = 0 the correlation is almost zero and not negative as it would be expect from
a phenomenon of alternation of two signals. The reason is that the alternation is between
quiescence and triggering and, hence, simultaneously (τ = 0) the average product of this
two processes in the two shear layers is zero.

We can now give an explanation of the two branches of energetic scales previously
observed in section §6 and shown in figure 10. In the final portion of the cyclical reduced-
space (green segment of figure 10), the turbulent structures advected upstream through
the detached reverse boundary layer have been shown to be spanwise vortices whose
spectral footprint is the branch of energetic small temporal scales. On the other hand,
the second branch, corresponding to very large temporal scales, can be now understood
as the spectral footprint of the observed alternation between top and bottom sides of long
periods of quiescence and rising towards the leading-edge of small scales structures. As
a consequence, the second spectral branch is actually a footprint of the very large scale
unsteadiness of the flow which promote/suppress the upstream rising of packages of small
scale fluctuations towards the leading-edge shear layer through streamwise fluctuations
of low pressure levels. Hence, we argue that trains of structures characterized by small
time scales and relatively large spanwise lengths, trigger the leading-edge shear layer
alternatively in the top and bottom sides for relatively long periods. Indeed, we observe
that, while in the first part of the leading-edge shear layer (red segment of figure 10)
both spectral branches appear, only the branch of small temporal scales, corresponding
to the evolution of the turbulent structures of the reverse boundary layer, is amplified.

8. Conclusions

The separating and reattaching flow over blunt bluff bodies can be considered as charac-
terized by seven different but physically connected phenomena: i) the laminar separation
at the sharp leading-edge; ii) the free-shear layer instability and transition to turbulence;
iii) the shedding of large scale vortices from the separated region; iv) the impinging of
turbulent motions on the wall in the reattachment region; v) the reverse flow associ-
ated with the large scale recirculation; vi) the shedding of large scale vortices in the
wake; vii) the turbulent wake development. The mutual interaction of these phenomena
gives rise to a self-sustaining cycle whose features characterize the main unsteadinesses
and the turbulent fluctuations of the flow. The strongly inhomogeneous character of the
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above mentioned mechanisms challenge for a rational approach able to give a clear pic-
ture of the interrelated physical processes. To this aim, here we study the multi-scale
features of the flow by means of a spectral decomposition along two reduced spaces of
locations: (i) a closed loop encompassing the flow recirculation and (ii) an open path
starting at the leading-edge, moving above the flow recirculation and, finally through the
attached boundary layer flows through the wake. The rationale of this choice is given
by the mean velocity field which is used to trace these two reduced-spaces. They allow
us to track, scale-by-scale, the phenomena experienced by the flow along its paths. The
picture emerging from such analysis consists of a coupling mechanism where the leading-
edge shear layer instabilities, the recirculating turbulent structures and the large-scale
vortex shedding interact each other forming a self-sustaining cycle as follows.

The instability of the leading-edge shear layer gives rise to large spanwise vortex tubes
which, under the action of the strong mean shear, evolve in hairpin-like structures and
turbulence. The flow pattern is then characterized by turbulent fluctuations which are
predominantly aligned in the streamwise direction. As shown by the analysis of the three-
dimensional spatial correlation functions, they consist of quasi-streamwise vortices and
high and low streamwise velocity streaks. By following the paths of the mean velocity
field, we recognize that some turbulent fluctuations are freely convected downstream
towards the wake region while others are conveyed towards the wall where they finally
impinge giving rise to a downstream and upstream turbulent boundary layer. As shown
by the analysis of the three-dimensional spatial correlation functions, the branch flowing
upstream is characterized first by streamwise vortices and, in the final part, by spanwise
vortices. Due to the action of adverse pressure gradients, these structures are found to
form a very intermittent periodic system. Indeed, pressure fluctuations of long periods are
found to alternatively promote/suppress the reverse flow separation (secondary vortex )
and the upstream recirculation. As a result, turbulent fluctuations are clustered within
the primary vortex in one side of the plate and advected upstream towards the leading-
edge in the other side. The self-sustaining cycle thus consists of trains of small scale
structures triggering the leading-edge shear layer for relatively long period of the order
of O(10) characteristic time scales. These packages of fluctuations are followed by periods
of the same order O(10) of almost quiescence. These processes appear on the two sides
of the rectangular plate in phase opposition. In conclusion, a feedback loop through the
primary vortex takes place which is mediated by a large scale phenomenon of long period
connecting the top and bottom sides of the rectangular plate. It consists of a leading-
edge shear layer instability locked at the frequency of small scale structures which were
originally created by the leading-edge shear-layer itself, thus closing the cycle.

Let us close the work by pointing out some relevant open issues. It is known that
variations of the Reynolds number, corner geometry and the presence of free-stream
turbulence have an impact on the recirculating flow topology. Hence, a systematic vari-
ations of these parameters is demanded in order to analyse how the observed coupling
phenomenon between large-scale unsteadiness and upstream rising of trains of small scale
structures is modified by these changes. Also the nature of the large scale unsteadiness
itself deserves further investigations. In this context, emerging tools based on global
stability techniques (Theofilis 2011), dynamic mode decompositions (Schmid 2010) and
proper othogonal decompositions (Rigas et al. 2014) could help to clarify its origin.
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