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A Framework for Affect-Based Natural Human-Robot Interaction

Valeria Villani, Lorenzo Sabattini, Cristian Secchi, Cesare Fantuzzi

Abstract— In this paper we present a general framework for
affective human-robot interaction that allows users to intuitively
interact with a robot and takes into account their mental
fatigue, thus simplifying the task or providing assistance when
the user feels stressed. Interaction with the robot is achieved
by naturally mapping user’s forearm motion, detected with a
smartwatch, into robot’s motion. High-level commands can be
provided by means of gestures. An approach based on affective
robotics is used to adapt the level of robot’s autonomy to
the cognitive workload of the user. User’s mental fatigue is
detected from the analysis of heart rate, also measured by the
smartwatch. The framework is general and can be applied
to different robotic systems. In this paper, we consider its
experimental validation on a wheeled mobile robot.

I. INTRODUCTION

Affective robotics is a growing research area that refers
to the combination of robotics and affective computing,
thus enhancing the interaction of a human with a robot
by recognizing her/his affect, such as mood and emotion.
Indeed, in recent years it has been found that monitoring and
interpreting nonverbal communication can provide important
insights about a human interacting with the robot, thus
making it possible to achieve implicit feedback about the
interaction [1]. To this end, eye gaze [2], facial expres-
sion [3], voice, linguistic and paralinguistic (e.g., utterances)
features [3], and physiological signals such as heart rate,
electrodermal activity, and facial electromyographic activity
[4] have been investigated as indices of subject’s affective
state, focus, attention and intent.

The advantages of an approach based on affective robotics
are, at least, twofold: on the one side, affective robots can
engage people in an interpersonal manner, establishing a
natural and smooth social communication with humans [1],
[5]; on the other side, by monitoring users’ anxiety and
fear, those tasks requiring human-robot interaction (HRI)
can be accomplished in a safer and efficient manner [4].
The first aspect refers to the so called socially interactive
robots, which are designed to operate in human environments
alongside people [1]. Plenty of literature has been dedicated
to this theme and social robots have been proposed for
a wide variety of applications, ranging from assistance to
the elderly or the disabled [6], to educational robots [5]
and entertainment robots [7], just to cite few application
fields. As regards the second aspect, which, to the best of
the authors’ knowledge, has been less investigated in the
literature, detecting user’s emotions such as stress, anxiety
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or fear has been found to be useful for robotic rehabilitation
tasks and for service robots [4], which are the focus of our
research. Affect detection has been also considered in [8],
but therein very little attention is given to how HRI can be
adapted accordingly.

In this paper we introduce a novel affective robotics
approach that consists in adapting the behavior of the robot
based on the cognitive workload of the user. In particular, the
idea is that of tuning the level of autonomy of the robotic
system, in order to assist the human operator. To ground
this concept, we build upon our previously presented HRI
approach based on natural interaction [9], [10] and develop
a general framework for affect-based natural interaction with
service robots.

A. Motivation and contribution

Achieving a different level of autonomy implies changing
the workload for the user [11]. Consider a fully autonomous
robotic system: in this case, the robotic system is able to
perform its task without the intervention of the user, who
hence is not requested to perform any work. Clearly, in this
case, the objectives that can be achieved are limited by the
control strategy implemented on the robot and this approach
is suited only for highly predictable and repetitive tasks.
Conversely, consider a robotic system that is completely
teleoperated, or manually guided by an operator: in this case,
it is possible to take full advantage of the flexibility that can
be achieved thanks to the presence of the human operator.
Thus, non repetitive precision tasks can be easily tackled by
combining human’s and robot’s capabilities. This increased
flexibility implies, however, an increased workload for the
operator, which can become very high for complex or critical
tasks.

Intermediate conditions represent a trade-off between com-
plete flexibility and an acceptable level of workload for
the operator. Our aim is then that of automatically reliev-
ing user’s cognitive burden when the task to accomplish
overloads her/his mental capabilities. Specifically, we aim
at tackling also those conditions in which incipient stress
causes a decrease in performance even before the user
could detect it, or the user feels discriminated to admit that
she/he is experiencing trouble and needs some assistance.
This can be achieved by implementing a sufficient level
of autonomy in the robotic system by means of different
assistive strategies, which depend on the specific application
under consideration, as discussed hereafter.

Assistance to the user can be provided exploiting the
concept of shared autonomy [12], which consists in com-
bining user input and robot autonomy to control a robot to



achieve a goal, aiming to reduce the cognitive and physical
burden on the user [13], [14]. Classical approaches consist in
predicting user’s goal and providing assistance for that goal
by exploiting methods such as potential fields and motion
planning. However, differences in user’s abilities and desired
amount of assistance are not considered, since non user-
driven optimization metrics are typically considered. In [15]
user-driven customization of the amount of assistance is
considered for an assistive robotic arm: verbal cues about
the desired level of assistance expressed by the user are
translated into proper input for the control algorithm of the
robotic system. In the framework considered in this paper,
we aim at selecting the optimal level of assistance to provide
to the user by taking into account her/his mental fatigue
during the execution of the task and relieving the user when
the task overloads her/his capabilities. In particular, such
mental fatigue might lead to anxiety and a decrease of overall
performance and abilities, inducing distress in the user.

In order to achieve such affect-based adaptation, the user’s
cognitive workload needs to be measured in order to detect
incipient fatigue. One of the most well known methodologies
for measuring the cognitive workload is represented by the
analysis of the variability of the user’s heart rate [16].
Nowadays heart rate is customarily measured by commercial
smartwatches or wristbands for activity tracking. Thus, the
smartwatch-based approach to natural HRI presented in [9],
[10] lends itself to the purpose of this paper.

The contribution of this paper is the introduction of an
approach to HRI that allows users to intuitively interact
with a robot and takes into account user’s mental fatigue,
providing adequate support when necessary. Being general,
the approach represents a framework for HRI, since it
can be applied to different working scenarios, as discussed
hereafter considering industrial manipulators, wheeled and
aerial robots and multi-robot systems. The rule for mental
stress detection based on non-invasive monitoring of heart
rate is presented and experimentally validated. Additionally,
the experimental validation of the framework is presented
considering the interaction of different users with a mobile
robot.

II. BACKGROUND ON STRESS DETECTION
BASED ON HEART RATE VARIABILITY

Heart rate variability (HRV) refers to the variation over
time of the interval between consecutive heart beats [17]. It is
an established quantitative index to assess autonomic nervous
system function, noninvasively. The normal variability in
heart rate is due to the autonomic neural regulation of the
heart and the circulatory system. In particular, short-term
oscillations of beat-to-beat intervals reflect changes in the
relative balance between the sympathetic and parasympa-
thetic branches of the autonomic nervous system, which is
the so called sympathovagal balance [18]. Thus, the analysis
of HRV has been found to be related to a great variety of
pathological and physiological conditions [18].

The analysis of HRV relies on the analysis of RR interval
time series, which is the series of occurrence times of heart

beats. The expression RR series is due to the fact that, with
reference to the electrocardiographic (ECG) recording of
heart electrical activity, R peaks are usually considered as
the fiducial marker of each beat, since they are the portion
of ECG signals exhibiting the highest signal-to-noise ratio
[19]. Denoting by Rk the instant of occurrence of the k−th
heart beat, the RR series is then defined as:

RRk = Rk+1 −Rk, k = 1, 2, . . . (1)

Many metrics for HRV analysis have been described in the
literature. In general, HRV metrics are classified into time
domain metrics, which can be statistical or geometrical, or
frequency domain metrics, which evaluate power, or ratios
of power, in certain spectral bands. In particular, the most
common statistical time domain metrics are: the mean value
and the standard deviation, denoted by RR and SDRR in
the following, of the RR series, the root mean square of
successive differences (RMSSD), and the percentage number
of consecutive (normal) intervals differing by more than
50 ms in the entire recording (pNN50). As regards the
frequency domain metrics, the most used ones are the power
in the low frequency band (LF, 0.04 − 0.15Hz), the power
in the high frequency band (HF, 0.15 − 0.40Hz) and their
ratio (LF/HF ratio). More details can be found, for example,
in [17]. Furthermore, clinical standards require that metrics
are calculated either on a short time scale (namely short-
term HRV) of about 5 min duration, or over extremely long
periods of time (namely long-term HRV) usually lasting 24
hours [17].

As regards mental workload, there is large part of liter-
ature showing that stress, in general terms, and cognitive
processing in particular, influence HRV [4], [8], [16], [18].
However, there is a lack of consensus on the meaning and
operationalization of the concept of stress. In the rest of the
paper we will make no distinctions among the terms stress,
mental stress and fatigue and cognitive workload; however,
the kind of stress we measure is mental stress caused by
increased mental fatigue due to complex tasks and anxiety
due to situational pressure and/or poor user’s experience in
the task. Intense mental fatigue is typically induced by means
of arithmetical tasks, cognitive tests (such as the Stroop color
and word test [20]), or oral examination. In some works the
joint effect of other stressors, such as physical exercise or
verbalization, is considered.

The effect of stress on HRV is due to the fact that
mental stress is one of the factors contributing to sympathetic
stimulation, which is associated with the low frequency range
of heart rate. Thus, it has been found that LF is reduced
in mental stress condition, while HF is increased [8], [18].
As regards time domain metrics, the main reported changes
regard RR, SDNN and RMSSD, which are decreased under
mental stress [16].

III. PROPOSED FRAMEWORK AND WORKING SCENARIOS

In this paper we propose a general framework for natural
HRI, implementing an adaptive behavior that assists the user
by relieving her/his mental fatigue when needed. To this end,
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Fig. 1. Architecture of the proposed framework for natural affect-based
HRI. Mental workload is contributed by both environmental factors related
to the social and physical context (e.g., rushed, noisy, etc.), and the robot’s
behavior, meant as level of autonomous behavior and task to accomplish
(e.g., precision task, presence of obstacles).

the user is supposed to wear a smartwatch (or an activity
tracker wristband), which is used to acquire the motion of
her/his forearm and the heart rate. The benefits of using a
smartwatch-based system have been discussed in [9]. Fig. 1
shows the architecture of the proposed system. Specifically,
the key features of the proposed framework are twofold:

1) with respect to the control of robot’s motion, it allows
an intuitive and comprehensive interaction with a robot
such that any subject can use it, without any specific
experience. This is achieved by means of
• a natural mapping between the user’s and the

robot’s motion, and
• gestures used for imposing high-level commands to

the robot;
2) it implements an approach based on affective robotics

that adapts the level of robot’s autonomy according to
the cognitive workload of the user.

The rationale behind the natural interaction has been
firstly presented in [9], [10], where the use of a quadrotor
and a wheeled mobile robot, respectively, were considered.
Generally speaking, rotations of user’s forearm are detected
by the smartwatch and translated in velocity commands for
the robot. While the exact mapping between the motion
of the user’s forearm and the velocity command for the
robot depends on the specific operational scenario under
consideration (e.g. a flying robot and a ground robot move in
a completely different manner), some general concepts are
depicted in Fig. 2. In particular:
• changing the roll angle of the forearm is mapped into

a left/right motion command for the robot,
• changing the pitch angle of the forearm is mapped into

a forward/backward motion command for the robot,
• changing the yaw angle of the forearm is used for

changing the orientation of the robot.
Moreover, the system is able to recognize some gestures from
a predefined set [9]. These allow the user to change among
different operational modes of the robot: by performing a
gesture the user can command the robot some predefined
semi-autonomous behaviors, such as follow a trajectory or
create a map of the environment, or switch to teleoperated

Fig. 2. Mapping between user’s and robot’s motion.

mode, in which velocity commands for the robot are directly
computed as a function of the motion of the user’s forearm,
as shown in Fig. 2.

The intuitiveness of such HRI approach extends the pos-
sibility to command a robot, in principle, to any subject,
without restriction of age and prior acquaintance with robots.
However, a non negligible mental fatigue might be put on the
user, depending on the task and her/his attitude towards the
use of robots. To this end, we propose to enhance the natural
interaction approach by taking into account the user’s mental
fatigue and changing the behavior of the robot accordingly.
In particular, the subject’s heart rate is monitored through
the smartwatch and incipient mental fatigue is detected, as
discussed in Sec. IV. In this case, the behavior of the robot
is adapted by taking into account user’s mental fatigue and
simplifying interaction when it is exceeding her/his capabil-
ities, thus generating discomfort. Assistance is provided by
adapting the level of shared autonomy between the user and
the robot and assigning a (quasi-)autonomous behavior to
the robot, which relieves the user’s stamina. The way such
assistance is implemented strictly depends on the interaction
task, the goal, and the considered robot. Just to cite some
examples, assistance can be provided in terms of reduction of
robot’s maximum velocity, activation of obstacle avoidance,
or movement along a predefined trajectory.

These solutions are meant as a trade-off between system
flexibility and an acceptable amount of workload for the user.
Indeed, when at rest, the user is left free to interact with the
robot with no limitations, since she/he is considered to be
fully aware of the interaction task. When mental fatigue is
detected, a reduced effort is put on the user, but, on the other
side, the objectives that can be achieved are limited by the
robot control strategy.

In the following, we consider some specific working
scenarios, providing some examples of adaptation of the level
of shared autonomy to the user’s mental stress.

Mobile robots: Driving a mobile robot by the proposed
approach has already proved being advantageous in [10]
and [21]. The use of natural mapping for motion control
according to Fig. 2 is straightforward, whereas gestures can
start predefined behaviors such as building a map of the
environment, parking in a given position, reaching a target
or following a trajectory or the walls. In particular, in [10] it
has been shown that such interaction approach proves more
effective than the use of a classical haptic device for robot
teleoperation.

As presented in Sec. V, assistance to stressed users can be



provided by implementing collision avoidance and reducing
velocity when obstacles are detected. Results in this regard
are shown in Sec. V.

Aerial robots: The case of interaction with aerial robots
has been preliminarily considered in [9]. It represents a very
interesting case of interaction with a robot by the proposed
framework, since the natural mapping described in Fig. 2
directly recalls the motion of a quadrotor and Up and Down
gestures can be given the physical meaning of taking off and
landing. Indeed, compared to a haptic device, a joypad and
a smartphone, it proved being easier to use [9].

Despite the intuitiveness of the interaction mode, consid-
erable cognitive workload might be induced by the task (i.e.
piloting an aerial robot), which is intrinsically complex, in
particular for untrained and non expert users. In this regard,
relieving the user by introducing prudential measures might
be beneficial when the task is getting too difficult, that is
when mental fatigue is detected. Examples are reducing
the maximum velocity of the robot, limiting the maximum
height, hindering hazardous manoeuvres, or activating obsta-
cle avoidance. Depending on the application scenario and in
the case of highly increased cognitive stress, forcing hovering
might also be considered.

Manipulators: The proposed framework applies also to
interaction with industrial manipulators. The natural mapping
provides a means to intuitively teleoperate the robot: using
position, rather than velocity, control, this might be the case
of programming the robot by teaching a trajectory when
physical interaction is not possible, or moving it in pick and
place tasks among unknown and unforeseen positions, when
support by a vision system is not available. Assistance to
the user when mental fatigue is detected can be provided by
implementing semi-autonomous behaviors or virtual fixtures
that guide the user along predefined paths.

Moreover, in the case of physical HRI with industrial
manipulators for walk-through programming [22], the param-
eters of the robot controller can be dynamically adapted to
increase the stiffness of the robot, thus helping the operator to
increase the precision, while reducing the overall execution
speed.

Multi-robot systems: Control of multi-robot systems has
typically been addressed considering that the robots in the
team operate autonomously. As a consequence, the objectives
that can be achieved are limited by the robots control
strategy and usually amount to basic and simple cooperative
behaviors, such as aggregation, synchronization, coverage,
or formation control. The presence of a human operator is
marginal in classical approaches. Recently, a few works have
appeared in the literature that consider the possibility of
having a human operator interacting with the multi-robot
system, thus increasing the capabilities of the system by
taking full advantage of the user’s flexibility and skills [23].
However, as a consequence of such an interaction, a high
cognitive burden is put on the human operator, who is asked
to supervise and interact with a complex system.

In this regard, controlling and interacting with a fleet of
robots in a natural manner alleviates the communication

gap between the user and the robots and increases situa-
tion awareness [24]. Moreover, considering, as an example,
exploration tasks, when the user is not overloaded by the
task, she/he can command one or few robots (e.g., driving
it/them to a specific area), while the others can autonomously
explore the remaining areas. However, this increases the
complexity of the task since, while being directly involved in
the interaction with one or few robots, the user is requested
to pay attention also to the other ones. Thus, in the case
of mental fatigue, aggregated behaviors, such as the user
driving a robot and the others following it, can simplify the
task, letting the user focus on the team of robots acting as a
single one [24].

IV. REAL-TIME NON-INVASIVE STRESS DETECTION
BASED ON HRV

In this section we introduce a method for real-time de-
tection of mental stress by means of a smartwatch (or a
similar wrist-worn device). Following the discussion reported
in Sec. II, mental stress detection is based on HRV analysis:
in particular, we measure HRV in terms of mean value of
successive RR intervals, namely RR, computed on sliding
windows of fixed duration.

While standard short-term HRV analysis is usually per-
formed on 5-min recordings [17], research is considering
the opportunity of measuring HRV from shorter recordings,
aiming at a faster detection of cardiovascular associated
diseases or physiological conditions [25]. Moving along
these lines, we propose to consider non overlapping sliding
windows collecting the inter-beat intervals that have occurred
in the last T (w) = 150 s. Thus, the mean value of each
window, namely RRi, where i refers to the current window,
is computed as:

RRi =
1

Ni

∑
k∈wi

RRk (2)

where wi is the i−th window of duration T (w), whose
cardinality is Ni.

Mental workload is then detected by comparing the quan-
tities RRi and RRi−1, since an increase in the mental stress
level is reflected in a decrease of RR. Specifically, we
introduce the following stress detection law:

(RRi < RRi−1 −∆r→s) ∧ (RRi < Γr) =⇒ rest→ stress
(3)

(RRi > RRi−1 + ∆s→r) ∧ (RRi > Γs) =⇒ stress→ rest
(4)

where ∆r→s and ∆s→r are constants denoting the minimum
variation required to detect a change in mental workload level
(from rest to stress and vice versa, respectively), and Γr and
Γs are constants denoting a threshold on the value of RR: all
these parameters were defined experimentally.

In particular, 21 volunteer subjects (15 males, 6 females,
age 28.4 ± 4.1 y.o.) were involved in experimental tests1.
Each test was composed of two parts, of duration 5 min,

1Each subject was asked to read the description of the experiments, and
to sign an informed consent form.



during which heart rate was recorded. In the first part,
the subject was asked to sit and rest (i.e., she/he was not
involved in any physical nor mental activity), while in the
second part the subject was exposed to commonly adopted
stressors, namely arithmetical tasks and fast counting tests
while listening to loud music [8], [16].

Acquired data were then analyzed according to the
methodology considered in [25], extracting random segments
of duration 2.5 min from the recorded RR series, and com-
puting the value of RR. The analysis of 1000 Monte Carlo
trials (obtained randomizing the beginning of the 2.5 min RR
series) provided statistically significant difference2 between
the rest and stress conditions:

rest: RR = 0.871± 0.135
stress: RR = 0.844± 0.149

(p = 0.02 < 0.05) (5)

averaged over the extracted 21×1000 segments of RR series
of duration 2.5 min.

These data allowed us to define the parameters for the
stress detection algorithm. In particular, considering the
difference between the rest and stress conditions reported
in (5), we set ∆r→s = 0.02 s, and ∆s→r = 0.5∆r→s to
take into account the hysteresis of human body to switch
between rest and stress [19]. The values Γr and Γs are
introduced to reduce misdetection of stress: namely, if RR
is too high (low), a condition of rest (stress) is identified,
without considering increase or decrease with respect to the
previous time window. The values of the thresholds were set
to the 70th percentile of the RR values for the rest and stress
conditions recorded during the experimental tests, resulting
in Γr = 0.94 s and Γs = 0.74 s.

V. EXPERIMENTAL VALIDATION OF THE FRAMEWORK

For the experimental validation of the proposed affective
interaction approach, we considered a Pioneer P3-AT mobile
robot mounting a laser scanner on the front and a Samsung
Gear S smartwatch, which embeds an accelerometer and
a magnetometer and a heart rate monitor sensor providing
heart rate in terms of beats per minute and successive RR
intervals. Movement of the user’s forearm and gestures were
used to move the robot as presented in [10]. Two different
experiments were carried out, considering different setups
and assistance strategies to the user. All involved subjects
volunteered to participate in the tests and were properly
informed of the experimental protocol.

Due to the limited computation capabilities of the elabora-
tion unit utilized for the control of the mobile robot, gesture
recognition and HRV analysis were performed on an external
computer, and the architecture was implemented by means
of ROS. Wi-Fi was used for communicating with the robot
and the smartwatch.

In the first experiment, 12 first time users (2 females, 10
males, age 26.7 ± 3.6 y.o.) were asked to drive the mobile
robot through the tight cluttered environment shown in Fig. 3,
consisting of seven plastic pins placed on the ground. In
particular, the users were instructed to follow the red path,

2p < 0.05 in 854 out of 1000 runs, of which 436 gave p < 0.01

Fig. 3. Experimental setup of the first experiment.

Baseline recording at rest (2.5 min)

Adaptation of the robot’s behavior
to the user’s mental workload

3 laps, average duration ~ 11.5 min

No adaptation of the robot’s behavior
3 laps, average duration ~ 6.6 min

Fig. 4. Test session with the robot in the first experiment.

without touching any pin or barrier. The experiment was
organized in two parts, which are represented in Fig. 4. In
each of them, the users were asked to drive the robot along
the path for three continuous laps, for a total of six laps.
In the first part, no adaptation of the robot’s behavior was
considered; thus, the robot was controlled according to [10].
In the second part of the experiment, the robot’s behavior
was adapted on the basis of the detected user’s mental
workload and its velocity was halved when mental stress
was found. Additionally, the second part of the experiment
was anticipated by an initial baseline recording of duration
2.5 min, aiming at recording the subject specific value of
RR at rest. The order of the two sessions was randomized
to compensate any learning effect. In the session of the
experiment when adaptation of the robot’s behavior was
provided, HRV was computed on recording windows of
2.5 min.

Fig. 5 shows the detected cognitive status of each user
during the experiment in the scenario of affective robotics3.
The green rectangles denote the time windows following
the detection of a stress level, during which the robot’s
velocity was limited. The white rectangles denote the rest
condition. The duration of the task was variable depending
on the detected rest-stress pattern and on the driving attitude
of the involved users. The figure highlights that, for all
the users, an increase in mental workload was measured
2.5 min (8 users out of 12) or 5 min (4 users out of 12)
after the beginning of the driving task. This is due to the
fact that a noticeable amount of concentration is required
to move the robot in such a tight area. For the majority of
the participants, the adaptation of the robot’s behavior to the
detected increase of stress was beneficial since it took to
a reduction in stress during the following monitoring time
window. With reference to Fig. 5, this means that all the
participants could recover to a rest condition, exception made

3Each driving session was started considering users at rest.
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TABLE I
RESULTS OF ADAPTING ROBOT’S BEHAVIOR DUE TO STRESS DETECTION

WHILE DRIVING THROUGH A CLUTTERED ENVIRONMENT IN THE FIRST

EXPERIMENTAL SETUP.

Rest Stressed
robot’s velocity as in [10] reduced robot’s velocity

Touched pins 32 6
Visited pins 186 174

Ratio 17.2% 3.4%

for users 2 and 6 who completed the experiment in the stress
condition.

To quantitatively assess the effectiveness of the proposed
affective interaction system, we considered the number of
touched pins over the total of visited pins, both in the case
of calm user (robot’s velocity given by [10]) and stressed
user (reduced robot’s velocity). The results are summarized
in Table I, which shows that, when the user is experiencing
mental stress, she/he finds it difficult to accomplish the task
correctly. Reducing the robot’s velocity is of help since the
user is then able to accomplish the task more effectively,
i.e., touching a much smaller number of pins. However,
the reduction of robot’s velocity has the clear drawback of
requiring more time to accomplish the task, thus reducing the
user’s efficiency. In this regard, adapting the robot’s behavior
according to the user’s needs represents a more appropriate
solution than considering a fixed reduced robot’s velocity.

In the second set of experiments, 15 first time users
(2 females, 13 males, age 26.1 ± 6.7 y.o.) were asked to

GATE

Fig. 6. Experimental setup of the second experiment.

drive the mobile robot through a tight cluttered environment,
consisting of 11 gates placed on the ground, as shown in
Fig. 6. In particular, the users were instructed to move along
a slalom path, visiting the gates without touching any pin.
Each experiment lasted 10 min, during which users were
able to complete from 3 to 5 laps, depending on their own
confidence with the system. The experiment was anticipated
by an initial baseline recording of duration 2.5 min, aiming
at recording the subject specific value of RR at rest. When an
increased mental strain was found according to (3), obstacle
avoidance was activated: in particular, when an obstacle was
detected by the laser scanner, linear and angular velocities
of the robot were reduced to 1/3 of their nominal value if
the distance d between the robot and the obstacle was less
than 70 cm; the linear velocity was then put to zero for
d ≤ 30 cm.

To characterize in quantitative terms the experiments, we
considered the task speed s, measured as average number of
gates visited per minute, and the error e, measured as average
number of touched pins per visited gate, per minute.

Fig. 7 depicts, as an example, the performance of a user
among those considered in the tests. In the first 2.5 min of the
experiment, the motion of the robot was unrestricted, since
the experiment started considering the user at rest for all
test subjects. The user performed quite well since he visited
a large number of gates (11 gates, panel (b)), although he
hit 3 obstacles (panel (c)). No increase in mental strain was
measured in this first recording window, thus unrestricted
motion was continued until the next computation of stress.
The user was fast also in the second temporal window, since
10 gates were visited, but 5 touched pins were recorded and
an increased mental strain, due to intense focusing on the
task, was found according to (3). Thus, after 5 min from the
beginning of the experiment obstacle avoidance was activated
(as shown at time 5 min in panel (a)). This helped the user to
perform the task more carefully, while reducing the necessary
concentration. Indeed, no pins were touched from time 5 min
to the end of experiment, when rest condition was restored,
and 8 gates were visited in each of the two windows.

Moreover, we considered the average execution speed and
error achieved by all the test subjects. We compared them to
the same quantities computed extracting the temporal win-
dows in which the users were found at rest and affected by
mental strain. Given a total of 60 temporal windows during
which affective robotics was considered (15 test subjects,
duration of the test 10 min, duration of a temporal window
for stress detection 2.5 min), 40 temporal windows with users
at rest were found, whereas mental strain was measured in 20
windows. Table II reports the achieved results, which show
that adapting the behavior of the robot to the detected user’s
affects provides a trade off, in terms of execution speed and
error, between the two alternative conditions of no support
given to the user (when the user is at rest) and support
provided in terms of obstacle avoidance (when mental stress
is measured).
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Fig. 7. Example of performance in the second experiment.

TABLE II
RESULTS OF ADAPTING ROBOT’S BEHAVIOR DUE TO MENTAL FATIGUE

DETECTION WHILE DRIVING THROUGH A CLUTTERED ENVIRONMENT.
TASK SPEED AND ERROR ARE IN [MIN−1].

No support Obstacle avoidance Adaptive behavior
Speed s 3.38 2.66 3.14
Error e 0.13 0.03 0.1

VI. CONCLUSION

In this paper we presented a framework based on affective
robotics for natural HRI. Interaction with the robot is enabled
by a smartwatch that is worn by the user and allows a
natural mapping between user’s and robot’s motion. Thus,
the user can intuitively interact with the robot. Moreover,
the behavior of the robot is adapted based on the user’s
cognitive workload: when an increase is measured, assistive
strategies are activated in order to simplify the task. The
framework is general and can be applied in different working
scenarios. In this paper we considered its application with
industrial manipulators, wheeled and aerial robots and multi-
robot systems.

The algorithm for detecting increased user’s cognitive
workload was presented. It relies on the analysis of the
variability of user’s heart rate, which is measured by the
smartwatch in a non-invasive manner. Experimental results
showed that the algorithm is able to detect changes in mental
workload. The framework was tested considering, as a case
study, the interaction with a wheeled robot.

Further studies will aim at considering more intriguing
task scenarios, thus assessing the effect of lack of interest
and physical fatigue during the execution of the task.
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