This is the peer reviewd version of the followng article:

Scaling entity resolution: A loosely schema-aware approach / Simonini, Giovanni; Gagliardelli, Luca;
Bergamaschi, Sonia; Jagadish, H. V.. - In: INFORMATION SYSTEMS. - ISSN 0306-4379. - 83:(2019), pp. 145-
165.[10.1016/j.is.2019.03.006]

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

12/02/2025 06:26

(Article begins on next page)

Accepted Manuscript

Scaling entity resolution: A loosely schema-aware approach

Giovanni Simonini, Luca Gagliardelli, Sonia Bergamaschi,
H.V. Jagadish

PII: S0306-4379(18)30408-3
DOI: https://doi.org/10.1016/j.is.2019.03.006
Reference: IS 1380

To appear in: Information Systems

Received date: 3 August 2018
Revised date: 16 February 2019
Accepted date: 17 March 2019

Please cite this article as: G. Simonini, L. Gagliardelli, S. Bergamaschi et al., Scaling entity
resolution: A loosely schema-aware approach, Information Systems (2019),
https://doi.org/10.1016/].i5.2019.03.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.is.2019.03.006

Scaling Entity Resolution: A Loosely Schema aw .re
Approach

Giovanni Simonini®!, Luca Gagliardelli®, Sonia Bergamasch ’. H V. Jagadish®

“MIT CSAIL
bDepartment of Engineering “Enzo Ferrari”, University of Moden and Rey “io Emilia, Italy
¢ University of Michigan, Ann Arbor, US

Abstract

In big data sources, real-world entities are tynica. ~ rer esented with a variety
of schemata and formats (e.g., relational recor.. JSON objects, etc.). Differ-
ent profiles (i.e., representations) of an er**:- - _ contain redundant and/or
inconsistent information. Thus identifying w. ‘ch profiles refer to the same en-
tity is a fundamental task (called Ent’':- Resoludon) to unleash the value of
big data. The naive all-pairs comparisor sc’ation is impractical on large data,
hence blocking methods are employe ' to pe tition a profile collection into (pos-
sibly overlapping) blocks and limit t. » ¢ "mparisons to profiles that appear in
the same block together. Meta-b'~cking ‘s the task of restructuring a block col-
lection, removing superfluous com, ~risons. Existing meta-blocking approaches
rely exclusively on schema-agnostic few.ures, under the assumption that han-
dling the schema variety of ', 'ata does not pay-off for such a task.

In this paper, we demc istrate . ow “loose” schema information (i.e., statis-
tics collected directly from . ~ dat .) can be exploited to enhance the quality of
the blocks in a holistic /,0sely sci..ma-aware (meta-)blocking approach that can
be used to speed up y ur f .vori’ e Entity Resolution algorithm. We call it Blast
(Blocking with Loos sly-z. 7ar Schema Techniques). We show how Blast can
automatically extr -t the loose schema information by adopting an LSH-based
step for efficientl; hanu.'~g volume and schema heterogeneity of the data. Fur-
thermore, we ir .. 1uce a novel meta-blocking algorithm that can be employed
to efficiently e .ecu’ : Blast on MapReduce-like systems (such as Apache Spark).
Finally, we expc.” nentally demonstrate, on real-world datasets, how Blast out-
performs t’.e state-o.-the-art (meta-)blocking approaches.

Keywords: " mtit Resolution, Meta-blocking, Big Data Integration, Data
Cleani g, Apac..: Spark
2010 MSC:)-01, 99-00

Email iddress: giovanni@csail.mit.edu (Giovanni Simonini)
~~= sponding author

Preprint submitted to Journal of BTEX Templates February 16, 2019

1. Introduction

In the context of big data, real-world entities are typically reprc ~ntea in a
variety of formats, such as: records of relational databases, RI". . -iples, JSON
objects, etc. Moreover, the profiles (i.e., the representatior) of a 1. d-world
entity often contain overlapping, complementary and/or incow. tent informa-
tion. Hence, a fundamental task for unleashing the value .1 chis da.a is Entity
Resolution (ER) [1, 2, 3], which aims to identify and reco cile the 'ntity profiles
that refer to the same real-world entity.

Background: When the volume of the data is 1 rge chi -king all possible
profile pairs to find matches is not a practical soluuon dr e to its quadratic
complexity. For this reason, typically, signatures (o.. “king keys) are extracted
from the profiles and employed to index then into blo ks [4]. Then, the all-
pairs comparison is limited to profiles within = bio. - & |nificantly reducing the
complexity of ER.

Traditional blocking techniques typica!® __., ... a-priori schema knowledge
to devise good blocking keys by combining ati. hute values; hence suffering from
two well-known issues:

1. Given a known schema, selecting -vhich ttributes to combine requires either
domain experts or labeled data to ‘1. a classification algorithm [5].

2. If two datasets have differen. ~ . = a, a schema-alignment must be exe-
cuted before ER. Unfortunately, . '~ data is typically highly heterogeneous,
noisy (missing/inconsistent data), and large in volume of schemata, so that
traditional schema-align-ient . chniques are no longer applicable [6, 7]. For
instance, Google Base « ntains ¢ ver 10k entity types that are described with
100k unique schemat s; in . *c’. a scenario, performing and maintaining a
schema alignment ic imy actical [6].

To work around thes : issu. * < -hema-agnostic blocking has been proposed [7, 8].
This approach ex’. ~ts blocking keys from the profiles by treating them as
bags-of-words. For insu. ~ce, Token Blocking [7] considers each token in a
profile as a ble .« % key; in other words, each pair of profiles sharing at least
one token (resard’:ss to the attribute in which it appears) is considered as
a candidate ma. 2. as shown in the example of Figure 1(a-b). By placing
each profil . in ~aultiple blocks, schema-agnostic techniques on one hand reduce
the likelil ~od of 1 .ssing matches, on the other hand increase the likelihood of
placing non-1. *ciing profiles in the same blocks. This allows the achievement of
high r :call (i. ., the percentage of detected matching profiles), but at the expense
of pr-ision (e., the ratio between detected matching profiles and executed
commar.. .

To i."prove the precision of schema-agnostic blocking, meta-blocking ap-
1 -oaches 1ave been proposed [8]. Meta-blocking is the task of restructuring a
set . ".ocks to retain only the most promising comparisons. Meta-blocking
te. - onts a block collection as a weighted graph, called blocking graph, where

DATA SOURCE 2 (JSC

™”
{“customers”: m 1{"peop-

DATA SOURCE 1 (RELATIONAL) ¢ “ame”:
q {#name”: Ellen Smith}, " .

“Loc”: Main st.}

i
Name | Surname b.date P Address A !
{“year”: 85}, ! Jon Jtl, i

pl| JohnJr | Abram | Oct311985 | carseller | Main street A . {“n2”:. oram}
-5 {“additional info.”: 1 !

hire) ‘

streef . 11 {“birtn year”: 85}, |

5| Ell si May 211985 s {“Loc”: Abram st. 30, Y a
p! en imons | May - tate ave , {“job”: car retail), |
i

i

|

i

|
1
1
|
I
1
I
I
; i
p4| Ellen Smith | May 10 1985 retailer ' {”work”: retail}, |
H |
H l
1
!
I
|
I
l

BLOCKS

Pig “ || p2ee || 103 || pres || p1pe || b2 || paes ~OCKING GRAT .
plpd || pip3 || p2p3 || p2p3 || p2p3 || plp2 p3pd

(b) (c)

Figure 1: (a) A collection of entity profiles fic » a data lake where data is stored in
different formats. (b) A block collection producea -ith Token Blocking; notice that
the tokens appearing only in one profile o .. "merate any comparison (i.e., any
block). (c¢) The derived blocking graph and % effect of meta-blocking: dashed lines
represent pruned edges, and red ones . . supe duous comparisons not removed. In
this toy example, the weight of each edge ~o.. ~cting two profiles p; and p; is equal to
the number of blocks in which p; @~ n; cc occur—other weighting functions can be
employed [8]. For instance, p1 and pz “hare unly the block “Abram”, so the weight of
the edge that connects them is 1. Then, v. e pruning is performed computing a local
threshold for each profile (e.g.. *' ~ average of its edges’ weights) and keeping only the
edges having a weight higher .han th. local threshold. For instance, the weights of p1
edges are {1, 3,4} and their . -erage i 2.7, so the edge that connects p; with p2 can
be discarded, since 1 < 2.”.

each entity profile is a 1.. ‘e ar 1 an edge exists between two nodes if the corre-
sponding profiles a- bear at wast in one block together. The edges are weighted
to capture the lik .ihoc ! of a match. An example of a blocking graph is shown is
Figure 1(c), whe~~ the weight of an edge is equal to the number of co-occurrences
of its adjacent prof es in the blocks?. Then, an edge-pruning scheme is applied
to retain only .“¢ most promising ones. The most accurate strategy to prune
edges is to -onsider “or each node all its adjacent edges, and retain only those
having a veig' ¢ hicher than the local average (Figure 1(c)). At the end of the
process, eac. nair of nodes connected by an edge forms a new block.

Our \pproa *h: We observe that existing meta-blocking techniques exclusively
levera, ~ sche’ 1a-agnostic features to restructure a block collection. Inspired by
th . uttribute-match induction approaches [7, 9], our idea is to exploit schema

2 Gu-uccurrence in blocks is employed for the sake of the example; more sophisticated

we .. ug functions can be employed (see Section 3.3).

i

information extracted directly from the data for enhancing the q ~lity of the
blocks. Moreover, we argue that a holistic approach combining eta-."~cking
and loosely schema-aware techniques should be attempted. Hence, we troduce
our approach called Blast (Blocking with Loosely-Aware Sche na Techniques).
Blast can easily collect significant statistics (e.g. similarities e «d er cropies of the
values in the attributes) that approximately describe the data s. “ces schemas.
This loose schema information is efficiently extracted eve 1 from highly hetero-
geneous and voluminous datasets, thanks to a novel LSl -based 1 re-processing
step that guarantees a low time requirement. Then, the 1o~ <~ 1ema informa-
tion is exploited during both the blocking and meta-' 1ocki- - phases to produce
high quality block collections.

To get an intuition of the benefits of loose s.“ema i+ ormation, consider
the example in Figure 2. Say that, among the differe.. data sources, only the
attributes about person names have similar valuc - to som : extent. Blast clusters
together these attributes, while the others (“n..* eno. .. similar” to each other)
are grouped in a unique general cluster. Thus, 1 =an disambiguate the token
“Abram” as person name from its other us. (e.g., street name). Consequently,
the block associated to the token “Abram” is div..'~d into two new blocks (Figure
2(a)) affecting the blocking graph: the vew .. f the edges ey, —p, and ep,_p,
both decrease (Figure 2(b)). Therefore, 1. local thresholds for meta-blocking
changes, and one further superfluou. ¢ 'oe (. ,,_p,) is correctly removed in the
pruning step (Figure 2(b)). The precisi n 1.:reases, while the recall remains the
same. Yet, one superfluous compe “>o.. 7 - Sill entailed (ep,—p,) and loose schema
information can be further employe.. *o enhance the quality of the blocking.
The intuition is that some attributes are more informative than others and can

TTTTN T T T
! [L

4
1
:p_l_;:?l. ._p2 1)_4’/, | \

h MR Abram_c2
.
v
Loose Schema PZP

Info- ‘“ion

(a)

Figure 2: (a) "he ! locking key “Abram” is disambiguated by employing the loose
schema infor.. ~tio’ , as a consequence, the profiles p; and p4 share one less block than
before- -tuis meaus also that the edge e1—4 decreases its weight accordingly, from 3
to 2. (b) The =ffect on the new blocking graph weights and on the meta-blocking
proces. w.r.t. Figure 1(c): one further edge is correctly removed (ei—4, dashed red
lir ., compared to Figure 1(c). As a matter of fact, ei—4 is now pruned, since it has
¢ weight =2) lower than the local threshold of p1 (=2.3); while in Figure 1(c), the
w ight of .14 is 3, which is greater than the local threshold of p; (=2.7)—mnotice that
if the ..cight of e1_4 varies, the threshold of p; also changes, since the latter depends
ou .. former.

generate more significant blocking keys. Blast measures the informe on - ontent
of an attribute through the Shannon entropy [10]. Then, it derive~ an w, "regate
entropy measure for each cluster of attributes. Finally, it uses thesc —alues as
a multiplicative coefficient in the weighting function of the ble ki r erapn. For
our toy example, the aggregate entropies are listed in Figure ¢(a) and che final
blocking graph after the pruning phase is showed in Figure 5.3, where the
superfluous edge e;,_p, has now been correctly removed.

Loose Schema Info 2. Se | 2

~
Entropy clusterl (name) =3.5 5 1
Entropy cluster2 (other atr.) = 2.0 p
3 5~5/

(a) (b)

Figure 3: (a) Attribute entropy information v J its effect (b) on the blocking graph
pruning. In this toy example, the weig . ng fu “ction is: w(p;,p;)= ZkeKmK, H(bk),
where K; and K; are the set of blockin, ke, of p; and p; respectively, and H(by)
is the aggregate entropy of the cl» “~ to ‘hich by belongs to. In (b), the effect
on the new blocking graph weights a.. ' on tne meta-blocking process is shown w.r.t.
Figure 2(b): one further edge is correctly .emoved (e2—3, dashed red line) compared
to Figure 2(b). As a matter ¢~ ~*. ea_3 is now pruned, since it has a weight (=6)
lower than the local threshol . of p1 (:6.3).

Contributions: Overr .|, w> maxne the following main contributions:

e an approach to au’ oma. ~all extract loose schema information from a dataset
based on an attr ~ute-match induction technique;

e an unsupervised graph-oased meta-blocking approach able to leverage this
loose schem’ infc mation;

e an LSH-bsed « *‘ribute-match induction technique for efficiently scale to large
datasets wit! a high number of attributes;

e an algoritu. ~ te efficiently run Blast (and any other graph-based meta-blocking
met 10d) on MapReduce-like systems, to take full advantage of a parallel and
dis ributed :omputation;

3 For t1 » sake of the example the weights are computed starting from the blocking graph
o. Wigure (b); in the actual processing only one blocking graph is generated, and a unique
prunu., step is performed.

e the evaluation of our approach on seven real-world datasets, ¢ owi' g how
Blast outperforms the state-of-the-art meta-blocking methods.

A preliminary version of Blast was published in [11]. In thic pap r, Zlast has
been extended to take advantage of a parallel and distributea - mputation for
significantly reducing the overall execution time of the T.. proce. s, which is
typically onerous in the big data context. We propose br radcast neta-blocking
(Section 4): a novel algorithm to run any graph-based n ~ta-blc king method
(including Blast) on distributed MapReduce-like syste s, such as Apache Spark.
Finally, we provide more extensive experiments on | wge cai - datasets*, which
showcase that our solution efficiently scales on Mapriedur ~like systems and
outperforms the state-of-the-art meta-blocking metuc 's (Section 5).

Organization: The remainder of this papei ‘s struc' ared as follows. Sec-
tion 2 provides preliminaries. Section 3 presc *s b.. ™" and Section 4 describes
basic concepts for distributed meta-blocking on . "apReduce-like systems and
discusses Blast parallelization. Section 5 | -=sents the datasets, the evaluation
metrics, and the experiments. Section 6 exau.™mes the related work. Finally,
Section 7 concludes the paper.

2. Preliminaries

This section defines preparato. ” co...~_ ts and notation employed throughout
the paper.

2.1. Blocking for Entity Rr solutic

An entity profile is a v.»le co aposed of a unique identifier and a set of
name-value pairs {a,v) Ap is . e set of possible attributes a associated to a
profile collection P. .n r ofile collection P is a set of profiles. Two profiles
pi,p; € P are matching m;~ s;) if they refer to the same real world object;
Entity Resolution ! <R) is the task of identifying those matches given P.

The naive sol ition ‘o ER implies |P]-|P2| comparisons, where |P;| is the
cardinality of a _ “ofile coilection P;. Blocking approaches aim to reduce this
complexity by inde dng similar profiles into blocks according to a blocking key
(i.e., the index. criterion), restricting the actual comparisons of profiles to
those appe .ring in .. e same block.

Given che iata ot of Figure 1(a), an example of schema-agnostic blocking
key is show.. m F gure 1(b). Otherwise, a schema-based blocking key might be
the va’ue of the attribute “name”; meaning that only profiles that have the same
value for “nai e¢” will be compared (the dataset in Figure 1(a) would require a
schemz, ~lier aent). A set of blocks B is called block collection, and its aggregate
c rdinality is | B|= 3, .5 [bill, where [[b;] is the number of comparisons implied
1 v the bl ck b;.

“T'wo additional datasets are introduced in Section 5: citation3 and freebase.

We follow best practices to establish the quality of a block colle -ion 7, 12]:
the problem of determining if two profiles actually refer to the seme re. ' -world
object is the task of the Entity Resolution Algorithm. We assume tuL. = is such
an algorithm able to determine whether two profiles are mat nin r or not. In
fact, Blast is independent of the Entity Resolution Algorithm emr .oyea, just as
the other state-of-the-art blocking techniques compared in this . »er [12, 13].

2.1.1. Dirty ER and Clean-Clean ER

Papadakis et al. [12] have formalized two types of FR . "= Dirty ER and
Clean-Clean ER. The former refers to those scenaric, whe ER is applied to a
single data source containing duplicates; this problen. i uso] nown in literature
as deduplication [14]. In the latter, ER is applied .- twe -~ more data sources,
which are considered “clean”, i.e., each source consiac =d singularly does not
contain duplicate. This type of ER is also know. as Rec rd Linkage [14]. As in
[11, 12, 13, 15, 16], in this work, we adopt thi. ~lass...ation as well.

Notice that, in Clean-Clean ER the comparison. “mong profiles that belong
to the same data source are avoided (for . ~v underlying blocking technique)
[12]. Hence, the number of comparisons ;|| rey. ‘red for a block b; depends on
the type of ER: for Dirty ER, a block | vod .« b = (“;il), where |b;| is the
cardinality of the block and all the nossib. comparisons are considered; while,
for Clean-Clean ER, a block produce. .. = Zj\;l 2,]::]-“ b - |b¥|, where b is
the subset of PJ indexed in the block b;, and N is the number of data sources.

2.1.2. Metrics

We employ Recall and P~ _ “an to evaluate the quality of a block collection
B, as in [1]. The recall - ieasure. the portion of duplicate profiles that are
placed in at least one block, ~hile ,he precision measures the portion of useful
comparisons, i.e., those Jhat dete ¢ a match. Formally, precision and recall of a
blocking method is de ermr ned rom the block collection B that it generates:

- |DP|

precision = ——-;

el = —=
18]

where DB is “ae £t of duplicates appearing in B and DF is the set of all
duplicates in . ~ - ollection P.

Typically, .chema-agnostic blocking yields high recall, but at the expense of
precision Ths low precision is due to the unnecessary comparisons: redundant
comparisons ™te « the comparison of profiles more than once; and superfluous
comp- r1sons ~ntail the comparison of non-matching profiles (p;#p;).

Fc - instan e, considering the block collection of Figure 1(b), the pair of pro-
files (py, ») ppears in many blocks (“Car”, “Main", etc.), thus, if all the blocks
2 e eval ated as traditional blocking techniques do [4] (i.e., without performing
1 eta-blo king), p; and p3 are compared more than once—performing redundant
cow. ~=r ons. Figure 1(b) also provides examples of superfluous comparisons,

.. " as the comparisons between p, and ps, and between p, and ps5, entailed

by the block “Ellen”—we call these comparisons superfluous becau ~ ps do not
match neither with ps nor py.

Attribute-match induction® approaches can be employed to enhan. schema-
agnostic blocking by limiting the superfluous comparisons. Me a-v ocking is the
state-of-the-art approach to reduce both superfluous and redu dan’ comparisons
from an existing block collection. In the following we formally . “ne attribute-
match induction and meta-blocking.

2.2. Attribute-match Induction

The goal of attribute-match induction is to ide &ify ... 1ps of similar at-
tributes between two profile collections P; and Py fi . the iistribution of the
attribute values, without exploiting the semantics < theribute names. This
information can be exploited to support a schema-agno. “ic blocking technique,
i.e., to disambiguate blocking keys according to .. » attr’ bute group from which
they are derived (e.g. tokens “Abram” in Figw.. 1(b),.

Definition 1. Attribute-match induction. “‘iwen two profile collections Py, Ps,
attribute-match induction is the task of identifyu. > pairs {{a;, a;) | a; € Ap,,a; €
Ap,} of similar attributes according to « svm . "y measure, and use those pairs
to produce the attributes partitioning. i.e., ') partition the attribute name space
(Ap, xAp,) in non-overlapping clusy .

This task is substantially differez ..~ t. = traditional schema-matching, which
aims to detect exact matches, hiei. chies, and containments among the at-
tributes [17].

An attribute-match ind» ction “ask can be defined through four components,
formalized in the followir - (i) th walue transformation function (ii) the at-
tribute representation m odel, *i) che similarity measure to match attributes,
and (iv) the clustering algo ithm.

(i) The value tr ansto. ~ .tion function. Given two profile collections P;
and Pa, eack < tribute is represented as a tuple {a;,7(Va,)), where: a; €
Ap, is an attribuw. name; Vg, is the set of values that an attribute a;
can assur e + P;; and 7 is a value transformation function returning the
set of t msf rmed values {T(v) : v € Vg, }. The function 7 generally is
a concatenc ‘on of text transformation functions (e.g. tokenization, stop-
worc, rer woval, lemmatization). Given a 7 transformation function, the
set € v ssib’: values in the profile collections is Ty = Ta,,1 N Tap2, where

T w= LJ‘(M Ap T(Vai)'

(ii) The at1 -ibute representation model. Each attribute a; is represented
av ~ v otor T; (called the profile of a;), where each element v, € 7; is
as nciated to an element ¢, € Ty. If ¢, ¢ 7(Vy,), then v;, is equal to zero.

i

5We call attribute-match induction the general approach to group similar attributes, while
wr reter to the specific technique proposed in [7] with Attribute Clustering.

While, if ¢, € 7(Vg,), then v, assumes a value computed mpl ying a
weighting function, such as [7]: TF-IDF'(¢t,) or the binary-r-esen. of the
element t,, in 7(V,,) (i-e., vin=11if t, € 7(V4,), 0 otherwise). Fo. ~xample,
say that the value transformation function 7 is the toker .zair on function,
and that the function to weight the vector elements is t! > bir ary-presence.
Then, the attributes are represented as a matrix: rows co.. ~spond to the
attributes; the columns correspond to the possible tr <ens anpearing in the
profile collections; and each element v;, is either 1 f the to en t,, appear

in the attribute a;) or 0 (otherwise).

(iii) The similarity measure. For each possible air of ai ‘ributes (a;,ar) €
(Ap, x Ap,), their profiles T; and T, are comy ~red acce’ ding to a similarity
measure (e.g. Dice, Jaccard, Cosine). Notice tu. * the similarity measure
must be compatible with the attribute m. Jel repre entation; for instance,
the Jaccard similarity cannot be emplo; ~d w. > *.i.e TF-IDF weighting.

(iv) The clustering algorithm. The a'~- """ ___ _.kes as input the attribute
names and the similarities of their profiic. and performs the non-overlapping
partitioning of the attribute nam See Section 3.1.1 for more details).
Its output is called attributes parti. 'or ng.

2.8. Meta-blocking

The goal of meta-blocking[12” I “~ re. tructure a collection of blocks, gener-
ated by a redundant blocking techn. e, relying on the intuition that the more
blocks two profiles share, the more likely they match.

Definition 2. META-BLC KING. Given a block collection B, meta-blocking
is the task of restructuring *he <:t of blocks, producing a new block collec-
tion B’ with significar ly Figher precision and nearly identical recall, i.e.,:
precision(B')y»>precis. ()) ar . recall(B")~recall(B).

In graph-based me --blocking (or simply meta-blocking from now on), a block
collection B is rep.esen. 7 by a weighted graph Gg{Vgs, Eg, Wg} called blocking
graph. V is the .. of nodes representing all p; € P. An edge between two entity
profiles exists .f th' y appear in at least one block together: E = {e;; : Ip;, p; €
P | |Bij| > 0} 1o ae set of edges; B;; = B; n B;, where B; and B; are the set
of blocks ¢ ntaining p; and p; respectively. Wg is the set of weights associated
to the ed_es. "Jete blocking methods weight the edges to capture the matching
likelihood ot e 7 cofiles that they connect. For instance, block co-occurrence
frequ .ncy (~.k.a. CBS) [8, 18] assigns to the edge between two profiles p,, and
Py a eight ec 1al to the number of blocks they shares, i.e.: wSP% = |B,|n|B,|.
Then, ¢ '~e-—- suning strategies are applied to retain only more promising ones.
T aus, at the end of the pruning, each pair of nodes connected by an edge forms
¢ new blck of the final, restructured blocking collection. Note that meta-
ble '-»- inherently prevents redundant comparisons since two nodes (profiles)
«. ~~nnected at most by one edge.

I Aggregate |

pmemTT T >I\ Entropy ' \
. mmmmms -=- I
P Phase 1 Phase 2 Phase 3 y
1\ Loose Schema | Pqq Loosely B Loor :ly)
Information »| Schema-aware »| Schen.. "w' re B
P. ~7| Extraction Blocking Meta-blocw. <
2 ! A §
|
I e . I

! " Attribute \L
\ Partitionin !

Figure 4: Blast logical overvic v.

Two classes of pruning criteria can be employed .. met. iocking: cardinality-
based, which aims to retain the top-k edges, allowing a. a-priori determination
of the number of comparisons (the aggregate ca, “nality and, therefore, of the
execution time, at the expense of the recall; a.. 1 we.ynt-based, which aims to
retain the “most promising” edges through a wei.” * threshold. The scope of
both pruning criteria can be either node-c. ntric or global: in the first case,
for each node p; the top-k; adjacent edges (or tu. edges below a local threshold
0;) are retained; in the second case, the . ‘v-r <. ges (or the edges below a global
threshold ©) are selected among the whe' = set of edges. The combination of
those characteristics leads to four pcss™e . ~uning schemas: (i) Weight Edge
Pruning (WEP) discards all the edges wita weight lower than ©; (i) Cardi-
nality Edge Pruning (CEP) sorw. au ...~ 2dges by their weights in descending
order, and retains only the first K; (. Weight Node Pruning (WNP [12]) con-
siders in turn each node p; ar4 its adjacent edges, and prunes those edges that
are lower than a local thre nold v, (i) Cardinality Node Pruning (CNP [12])
similarly to WNP is node . "ntric, ' ut instead of a weight threshold it employs
a cardinality threshold 7; (i.e., . ~ain the top-k; edges for each node p;).

3. The Blast Apy -oac.

The main goa’, o, Rlast are: to provide an efficient, scalable and automatic
method to extract loose sc.ema information from the data; to perform a holistic
combination o blo king and meta-blocking for ER exploiting this loose schema
information.

These a ¢ the 1.. "in novelties w.r.t. other existing meta-blocking techniques,
which are com sletely schema-agnostic [8, 12, 13].

Our ap, ~ .ach ,akes as input two profile collections, and automatically gen-
erates . olock ullection. It consists of three main phases, as schematized in
Figut @ 4: loo. 2 schema information extraction, loosely schema-aware blocking,
and lo <ely s nema-aware meta-blocking. In the following we give a high-level
d- uiption of each phase, then we dedicate a subsection for the details of each
] hase in urn.

Phase 1) The loose schema information is extracted. It consists of: the at-
cributes partitioning, and the aggregate-entropy. The former describes how

10

the attributes are partitioned according to the similarity of - ~eir values;
it is the result of the attribute-match induction task (Sect'm 2..) The
latter is a measure associated to each cluster of attributes. de. ed tfrom
the attribute entropies. We also introduce a Locality-£ :ns.ime hashing
(LSH) [19] optional step to reduce the computationa’ con plexiy when
dealing with data sources characterized by a high number = attributes.

Phase 2) A traditional schema-agnostic blocking techni. ne is en ianced by ex-
ploiting the attributes partitioning to disambigus*e ke, = - _cording to the
attribute partition from which they are extre :ted .- particular, Blast
employs Token Blocking, and we call the deri. " met! od Loose Schema
Blocking.

Phase 3) A graph-based meta-blocking is applic.” +o th block collection gener-
ated in the previous phase. In particular, .”'ast meta-blocking exploits the
aggregate entropy to weight the blockine «~~~ The basic idea is the fol-
lowing. Each edge in the blocking gray.’ is associated to a set of blocking
keys. Each blocking key is associs*~d to au attribute. Each attribute has
an information content that can bc me «suied through its entropy. Hence,
the weight of an edge can be ~ropoi 'onal to the information content of
its associated attributes. For in: “a.. ~e, consider independent datasets con-
taining records about people (as i Figure 1). Generally the attribute year
of birth is less informative v. ~n wue attribute name. This is because the
number of distinct values of the .. rmer is typically lower than that of the
latter. In fact, it is mo» '-ely that two people are born in the same year,
than they have the s .me na. e. Blast tries to assess the attribute infor-
mation content emplc, ‘ng th : Shannon entropy, and assigns a weight to
each blocking key proportic .al to the entropy of the attribute from which
it is derived. T? as, - sing Blast, records that share values of their name
attributes are "1ore ‘kel- indexed together than those sharing only values
of their year f birth aveributes. This process is completely unsupervised.

3.1. Loose Sche - Information Eztraction

(Phase 1 7 « Fir are 4) In Blast, the loose schema information extraction is
performed throu, * an entropy extraction criterion applied in combination with
the Loose uttribute-slatch Induction, an attribute-match induction technique
presentec. her .. N oreover, we propose an optional LSH-based step for guar-
anteeine scai.™il'yy on large datasets, which is the main improvement w.r.t.
Attrit ate Cl stering [7].

3.1 1 .-~ attribute-Match Induction (LMI)

Follc "ing the definitions of Section 2.2, Loose attribute-Match Induction
(- MI) is ;omposed of these four components: the tokenization as value trans-
forn...lon function; the binary-presence of a token as weight for the attribute

11

representation model; the Jaccard coefficient as similarity measurc ans Algo-
rithm 1 for clustering, a variation of the one introduced as Attrib te C.. “tering
(AC) in [7].

Basically, Algorithm 1 first collects the similarities of all v uss.»le atiribute
profile pairs of two profile collections, and their maximum ~ +lues of similarity
(lines 2-8). The similarity function (line 4) measures the Jacca. ' coefficient:

__ T,
TP+ TP =TT,

where 7;,7; are the vectors representing the at ribv’_. a;,a; respectively
(see Section 2.2).

Then, (lines 9-13) LMI marks as candidate ma. ~h of .. attribute each at-
tribute that is “nearly similar” to its most similar a. ribute by means of a
threshold a (e.g.: 0.9 - maxSimValue). If an ~ttribr.e a; has attribute a;
among its candidates, then the edge (a;,a;) is < ~llecveu. Finally, the connected
components of the graph built with these edees w 'h cardinality greater than
one, represent the clusters (line 14). Optic ally, a glue-cluster can gather all
the singleton components (i.e., components that - ave cardinality equal to one),
as in [7], to ensure the inclusion of all t. » pc ss..ie tokens (blocking keys).

jaccard(T;, T;)

Algorithm 1 Loose attribute-Matct. u. 'icv.on (LMI)

Input: Attr. names: Ap,, Ap,; Attr. profiles: 7, ..., T;; threshold: «
Output: Set of attribute names clusters. <
1: edges « {} sim «— Map{K,V)

2: Max «— Map{K,V) // most similar attr. for each attr.
3: for each a; € Ap,,a; € Ap, de
4: sim.push({a;, a;), similc wty(,, T;)))
5: if sim.get({ai,a;)) > M .x.get(a;, then
6: Mazx.push({a;, sim),
7 if sim.get({a;,a;)) > Max.g. ‘2 , then
8: Max.push({aj,s n))
// matching-attr cadid.tes generation
9: for each a; € Ap,,cie. ' , do
10: if sim.get({ai,c,)) = (o ax.get(a;)) then
11: edges —ed <ua;, aj;)
12: if sim.get({¢ ,a;)). (a-Max.get(a;)) then
13: edges «— edges U {a, a;)

14: K « getCon» :cte ComponentsGrThanl(edges)
15: return K

LSH-basc ' Lc sse c tribute-Match Induction

The ~amp. "2’ .on of the similarity of all possible pairs of attribute profiles has
an ov rall ti: e complexity of O(N;-Ns), where N1 and Ny are the cardinality
of A7 and Z p,, respectively. For the dimensions commonly involved in the
seristic * .ed data of the Web (the data sources schema can commonly have
€ sen the sands of attributes) this is infeasible. However, only a few (or none)
s milar af ;ributes are expected to be found similar for each attribute; therefore,
emp. .ag techniques able to group the attributes approximately on the basis of
v .- “imilarity can significantly reduce the complexity of the attribute-match

12

inductions, without affecting the quality of the results. Hence, ~ B ast we
introduce a pre-processing step that can be optionally employed v-ith b h LMI
and AC.

LSH (Locality-Sensitive Hashing) allows to reduce the dir .en: ‘onality of a
high-dimensional space, preserving the similarity distances rec icing signifi-
cantly the number of the attribute profile comparisons. Employ._ the attribute
representation model of LMI® and Jaccard similarity, Mi- dashi~q and banding
[20] can be adopted to avoid the quadratic complexity of ompari g all possible
attribute pairs.

The set of attributes is represented as a matrix. wher- ~ach column is the
vector T; of the attribute a; (see section 2.2). Pu-r .ting the rows of that
matrix, the minhash value of one column is the .'»mer* -. that column that
appears first in the permuted order. So, applying a s.* of n hashing function
to permute the rows, each column is represente. as a ve tor of n minhash; this
vector is called minhash signature. The probav ity o. ‘clding the same minhash
value for two columns, permuting their rows, is eq. ~1 to the Jaccard similarity
of them; thus, MinHashing preserves the . -milarity transforming the matrix,
with the advantage of reducing the dimension ¢ the vectors representing the
attributes. However, even for relatively "mia, . computing the similarity of all
possible minhash signature pairs may be « ~.nputationally expensive; therefore,
the signatures are divided into bands, .. ony ~signatures identical in at least one
band are considered to be candidate p.irs ond given as input to the attribute-
match induction algorithm (adaw, 'el “~ ‘terate only through these candidate
pairs - instead of all possible pairs).

Considering n minhash valnes as signature, b bands for the banding indexing,
and r = n/b rows for band che p. bability of two attributes being identical in
at least one band is 1 — (. — s")?. This function has a characteristic S-curve
form, and its inflection point . r esents the threshold of the similarity. The
threshold can be appr xim .ted to (1/b)Y/". For instance, choosing b = 30 and
r = 5, the attribute pa. ~ chat nave a Jaccard similarity greater than ~0.5 are
considered for the 7 .tribute .atch induction. (example Figure 5).

Thus, LSH ca . be ~mployed as pre-processing step, before executing Algo-
rithm 1, for filtering out uttribute pairs that are most likely not similar, i.e.,
under a certai' thi :shold”. Furthermore, minhash values can be employed for
efficiently est.. at’ag the Jaccard similarity [20] of two attributes (line 4 in Al-
gorithm 1) Blast . lows this approach and stores minhash values in an array,
which dor inaft :s the space complexity of Algorithm 1. The space complexity of
such an ar, -~ is C n-(Ny+ N3)), where n is the number of minhash values, and
Ny anr' . are . e cardinalities of Ap, and Ap,, respectively; thus, Algorithm 1
has a O(n-(IV + N2)) space complexity.

SThe L. 11 attribute representation model can be used with Attribute Clustering [7] as well.

"For ov experiments we found that a threshold of 0.4 works well for all the dataset,
buv -e» ower thresholds can be employed; see Section 5.6 for experiments about the LSH
“brashold.

13

o
[oe]
T

Probability
of two attributes
being identical 0.4
in at least one band

estimate
threshola |

T

0.2}

0.0 | : | 1
00 02 04 07 0. 1.0

Jaccard Si nila~".y

Figure 5: The depicted curve represents the probabil. - of tv~ .ttributes to be con-
sidered “similar” (y-axis) in function of their actual simii. ‘ty (x-axis), when LSH is
employed (with the parameters r=>5 and b=30).

FEntropy Extraction

To characterize each attribute cluster g -wiavea during the attribute-match
induction, Blast employs the Shannon entropy fits attributes. The entropy of
an attribute is defined as follows [21]:

Definition 3. ENTROPY. Let X b an av vibute with an alphabet X and con-
sider some probability distribution p\~) ~f L. We define the entropy H(X)
by:

H(X) = >, p(z)logp(x)

Te. .

Intuitively, entropy repr senw. » measure of information content: the higher
the entropy of an attribute the mor significant is the observation of a particular
value for that attribute. "n ot.. = v ords, if the attribute assumes predictable val-
ues (e.g., there are only 2 eo .iprobable values), the observation of the same value
in two different entity , o .es - oes not have a great relevance; on the contrary,
if the attribute has more . > redictable values (e.g., the possible equiprobable
values are 100), o' sc. 7ing two entity profiles that have the same value for that
attribute can be conside:. 1 a more significant clue for entity resolution.

For exampl' , cc 'sidering the data source 1 of Figure 1(a), the probability for
a tuple to hav as ¢ .tribute Name the value “Ellen”, i.e., p("“Ellen”), is 2/3 = 0.67,
while the pr ,babu.~ of having “John jr" as value is 1/3 = 0.33; thus, the entropy
for the att ibu’ s Name is:

H(N me) = —p(“Ellen”) - log p(“Ellen") — p(“John jr") - log p(“John jr") = 0.63
While, [~ -atropy of the attribute Surname is 1.1, since all the tuples have

J terent values for that attribute:

T7 Qurname) = —p(“Abraham”) -log p(“Abraham”) — p(“Smith") -log p(“Smith")

14

—p(“Simons”) - log p(“Simons”) = 1.1

in this case p(z) = 1/3 = 0.33.

In Blast the importance of a blocking key is proportional t~ "he en. 2py of
the attribute from which it is derived. This is obtained weig} Jing ... hlocking
graph according to the entropies (shown in section 3.3.1). To '~ 0, an entropy
value for each group of attributes is derived by computing t' = aggre, ~te entropy.
The aggregate entropy of a group of attributes CY, is defi ed as:

_ 1 .
H(Cy) = Ol ~A;Ck H(A; (1)

When a schema-agnostic blocking (e.g. Token ™locki~~, is applied in com-
bination with attribute-match induction, each blocki., key b; is uniquely as-
sociated with a cluster Cy, b; — Cj. For insta. ~e, cons dering the example of
Figure 1(b), the token “Abram”, disambiguate. with .._.ribute-match induction,
can represent either the blocking key “Abram_cl” a.. ~ciated with the cluster C,
or the blocking key “Abram_c2” associated . *h the cluster Cy; where C is com-
posed of the attributes Name of p; and FullNam ~f p3, while C5 is composed of
the attributes addr. of po and Address ¢ py4.

For meta-blocking, Blast employs h(55," che entropy associated with a set of
blocking keys B;:

MBS hib) @)

e biEBj

where h(b;) = H(C}) is the _uuw.ny associated to a blocking key b; — C.

3.2. Loosely Schema-aware . ~cki g

(Phase 2 in Figure ¢) Ir Blast we employ Token Blocking, as in [7]. Other
blocking techniques (. . :mp'ying q-grams instead of tokens, as in [22]) can
be adapted to this s .ope as I, but comparing them is out of the scope of this
paper. For sake of p. <entation, we call Loose Schema Blocking the combi-
nation of Loose attribute Match Induction and Token Blocking. The results is
that each toke’ (1.. , blocking key) can now be disambiguated according to the
cluster of the ~ttr'oute in which it appears, while in classical Token Blocking
each token - apres. “ts a unique blocking key. The example in Figure 2 gives an
intuition . th. benefits of this approach. Disambiguating the token “Abram”
according '~ Lhe rtribute in which it appears avoids to index together some
non-m»’ hing , ~files. This affects the blocking graph weighting, and, at the
end ¢ the m. “a-blocking allows us to avoid one superfluous comparison.

3.2 Loos..y Schema-aware Meta-blocking

(Phas » 3 in Figure 4) Blast introduces a novel node-centric meta-blocking
te ‘hniqu designed to exploit loose schema information.

Papadakis et al. [12] demonstrated that node-centric blocking-graph pruning
cr'eeria (i.e., WNP and CNP) outperforms the global ones (i.e., WEP and CEP),

15

p3) | =pv (—ps)
pu (P1) ”11 () | e (2) ni+ (6)
—Pu (=p3) | 21 (3) | ma (3) na (6)

ni (7) | ny2 (5) | nyy (120

Table 1: Contingency table for p,, p,. In parentheses an example ~rir :d from blocks
in Figure 1(b).

and that weight-based pruning criteria outperform the car. ~alit -based ones in
terms of recall, but at the expense of precision. Loo ¢ sch~ma information can
be exploited to significantly enhance precision; for t. is caso ., and considering
the aforementioned results achieved by [12], as a ¢ ~ign ¢~ e, Blast employs a
weight-based, node-centric pruning criterion (i.e., Wi

In the following the two steps of Blast met. hlockin | are described. In the
first step, the blocking graph Gg{Vs, Er, Wg, ‘s gew. .ced weighting the edges
according to a weighting schema designed to captu. the relevance of the profiles
co-occurrence in the blocks, and to exploiv "ne attribute entropies. The second
step consists in a novel pruning criterion.

3.3.1. Blocking Graph Weighting

Considering two entity profiles p, « 1 p, the contingency table, describing
their joint frequency distribution in a g -en .lock collection, is shown in Table 1.
The table describes how entity p. “'ue. > and p, co-occur in a block collection.
For instance: the cell nis represents .= number of blocks in which p, appears
without p, (the absence is denoted with “—"); the cell na represents the number
of blocks in which p, is not preser. (independently of p,). These values are also
called observed values. /4 an exe nple, the values in parentheses are values
derived from the block rollectic ~ f Figure 1(b) for the profiles p; and ps.

Given this represe .tati n, Blast employs Pearson’s chi-squared test (x2)
[23] to quantify the 1. ~.end ace of p, and p, in blocks; i.e., testing if the
distribution of p,, r.ven tha. p, is present in the blocks (first row of the table),
is the same as th- a. “ribution of p,, given that p, is not present (the second
row in the table) In prac.ice, the chi-squared test measures the divergence of
observed (n;;) ana expected (u;;) sample counts (for ¢ = 1,2,j = ¢,2). The
expected valu. - ar : with reference to the null hypothesis, i.e., assuming that p,
and p, app .ar ina. ~endently in the blocks. Thus, the expected value for each
cell of the con'.ngency table is: p;; = (Nt - n45)/M4 1.

Hence, . wei ht w,, associated to the edge between the nodes representing
the en*’., proh..s p, and p, is computed as follows:

= X12w “h(Buw)
Z Z n” 'uLJ “h(Buy))

ie{1,2} je{1,2} Hij

16

Notice that Blast uses the test statistic as a measure that helps o hi _hlight
particular profile pairs (p,, p,) that are highly associated in the bl~ck co. ~ction,
and not to accept or refuse a null hypothesis. The correcting entropy —=lue just
weight the importance of the blocks in which a co-occurrence ppuar. since not
all the blocks are equally important (as discussed in section 1.1°.

3.3.2. Graph Pruning

Selecting the pruning threshold is a critical task. We . lentify : fundamental
characteristic that a threshold selection method, in WNk, - ¢ present: the
independence of the local number of adjacent edge;, to id the sensitivity
to the number of low-weighted edges in the blocking ~ aph. In fact, this issue
arises when employing threshold selection function. *hat '~ _end on the number
of edges, such as the average of the weights [12]. To illu. ‘rate this phenomenon,

P]
! {“client”: {“contact”: p

{“name”: John White}, {“name”: John White}
{”additional info.”:

{“b.day”: 28 March . "5}
{“work”: Teacher},

{“Loc”: Piermont, 3828} 1 “~-————————--. .- -

-

(a) (b)

Figure 6: (a) Two additional profiles "~ vi.c llection in Figure 1; (b) the node-centric
representation of the blocking graph for ,

consider again the example .n Figw. e 6. Figure 6(b) shows G,, , the node-centric
view of the Gg for the pro..’» py.

If the profile collect’ n (as .- figure 1(a)) is composed only of the profile
set {p1,p2,Pps,pa}, the res .ting graph G,, has only 4 nodes and 3 edges. In
this scenario the averag of t'e edge weights (the local pruning-threshold) is
slightly greater the 1 2. Thuw., only the edge between p; and ps is retained in
the pruning phas . . * if the two entity profiles in Figure 6(a) are added to
the profile coller*ion, theu two nodes and two edges are added to G,,. This
influences the .hre hold that became 1.8. Consequently, the edge between p;
and py is retawn. > .n the pruning phase. Therefore, the comparison of p; and py
depends or the pre. ~nce or absence of ps and pg in the profile collection, even
though tl : sir dari*y between those two profiles does not depend on ps and pg.

In Blas. ve ir ;roduce a weight threshold selection schema independent of
the nv aver of e.ges in the blocking graph.

Loca Thres 10ld Selection. In the node-centric view of the blocking graph,
the edg. it? the highest weight represents the upper bound of similarity for the
¢ mbine*ion of the underlying blocking technique and weighting function; so,
v e propo e to select a threshold independent of the number of adjacent edges

17

‘e\i\gj_

(a)

(b)

Figure 7: Weight threshold. A directed edge from p, ‘o p; indicates that the weight of
the edge e;; is higher than 0;; a directed edge from ~- - p; indicates that the weight
of the edge e;; is higher than 6;.

by considering a fraction of this upper b 1r

o, - (4)

C

where M is the local maximum -~ight, and ¢ an arbitrary constant. A value
for c¢ that has shown to be efficacious vith real dataset is ¢=2; a higher value
for ¢ can achieve higher recs’., . *t at the expense of precision.

Having determined the "ocal th1 shold for each node, the last step to perform
is the retention of the edges. Thc ugh, in node centric pruning, each edge e;;
between two nodes p; .nd »; is _elated to two thresholds: #; and €5 (Figure
7(a)); where §; and @ are the hreshold associated to p; and p;, respectively.
Hence, as depicted “1 F1y e " (b), each edge e;; has a weight that can be: (i)
lower than both # -nd 6, (1) higher than both 6, and 6;, (iii) lower than 6;
and higher than v;, or) higher than 6; and lower than 6;. Cases (i) and (ii)
are not ambigv ... therefore e;; is discarded in the first case, and retained in
the second or .. Bi ., cases (iii) and (iv) are ambiguous.

Existing mev. nlocking papers [12] propose two different approaches to solve
this ambig .ity: rede,ined WNP retains e;; if its weight is higher than at least
one of tt ~ tv o th esholds (i.e., a logical disjunction, so we cal this method
WNPor). wi.'l» eciprocal WNP retains the edge if it is greater than both the
threst old (i.r . a logical conjunction, so we cal this method WNPsnp). Here in
Blast we choc e to employ a unique general threshold, equals to:

0; +6;
Oij = ——— (5)

w.w.e d is a constant; for d = 2 the resulting threshold 6;; is equal to the
mr ... of the two involved local threshold, and has shown to perform well with

18

real datasets.

The experimental section 5.3 shows how the parameters ¢ ard d .. 9uence
the performances of Blast and in particular, the tradeoff of precision =d recall
for an ER task.

4. Distributed Meta-blocking

We now introduce basic concepts of MapReduce-like ystems and then de-
scribe what is needed to parallelize Blast for taking full ~dva. '~ _ out of parallel
and distributed computation.

4.1. MapReduce-like Systems

In MapReduce-like Systems, programs are written 1 functional style and
automatically executed in parallel on a cluster o1 . ~achi- es. These systems also
provide automatic mechanisms for load balanci. ~ ana to recover from machine
failures without recomputing the whole preeram= - yeraging on the functional
programming abstraction (e.g., lazy evaluac. » in Apache Spark [24]). In the
following, we present the main function~ ~mvloyed to formalize MapReduce-like
algorithms in this paper with a concise « nd Jspurk-like syntax. These functions
are defined w.r.t. Resilient Distribut 1 Da. set (RDD [24]), which are the basic
data structure in Apache Spark. In ~ . “tsiell, an RDD is a distributed and
resilient collection of objects (e.g : intey s, strings, etc.).

Basic Functions for MapReduce-like A._orithms

ar1N

e map (map in MapReduce [0
RDD returning a new R JD.

applies a given function to all elements of the

e mapPartitions: applizs a y -er function to each RDD partition returning a
new RDD.

e reduceByKey (recuce .~ M .pReduce [25]) reduces the elements for each key
of an RDD usins a specified commutative and associative binary function.

e groupByKey: groups tu. values for each key in the RDD into a single collec-
tion.

e join: perfor.. = a hash join between two RDDs.

e broadc: st: "roadcasts a read-only variable to each node in the cluster (which
cache 1v,

We e aploy t. is set of functions for the sake of presentation of our algorithms
for Mc ~Redu e-like systems (Section 4.2). Yet, the algorithms discussed in this
pr oor empuoying such functions are general enough to run on any MapReduce-
1 ke syste us.

In M- pReduce-like systems implementations, functions like join and groupByKey
are notoriously expensive, due to the so-called shuffling of data across the
ne.work [26]. In fact, they involve redistribution of the data across partitions

19

with the consequent overheads: data serialization/deserialization, * -ans: iission
of data across the network, disk I/O operations. For instance, ioin "mplies
that all the records that have the same key are sent to the same node. "Vhereas,
map and mapPartitions are usually fast to compute, becaus: a.ta is iocally
processed in memory, and no shuffling across the network is equ’ ed |26].

4.2. Blast on MapReduce-like Systems

4.2.1. Distributed Blocks Generation

For the loose information extraction and loosely sch- sa-u. .. c blocking (Phases
1 and 2 in Figure 4), adapting the proposed solution Hf Se w1 3 to the MapRe-
duce paradigm is straightforward. It only requires a.. under ying MapReduce-
based LSH algorithm (such as [27]). Then, adap.. ~e¢ usen Blocking to the
MapReduce paradigm is straightforward as well (it essen. ‘ally builds an inverted

index).
The main challenge for the parallelization " Blast is related to the graph-
based meta-blocking step. In fact, the blockine ~=~~ " defined in Section 2, is an

abstract model useful to formalize and devise “eta-blocking methods. However,
materializing and processing the whole F'~cking-g. aph may be challenging in the
context of big data due to the size of such a graph. For this reason, algorithms
for processing the blocking-graph ha = bee. proposed to scale meta-blocking to
large datasets on MapReduce-like sys. 2w~ [1,]. Their basic idea is to distribute
the blocking-graph processing on mult, le machines, trading a fast execution
for high resource occupation.

In the following, firstly we revise the state-of-the-art blocking-graph process-
ing algorithm, i.e., repartiti- meta-blocking®[13], discussing its limitations;
then, we present our novr. algori hm called broadcast meta-blocking, which
overcome these limitations.

4.2.2. Distributed Ble kinc grar h Processing

Repartition met: -block.. ;— At the core of repartition meta-blocking [13]
there is a full mat . “ization of the blocking graph.

Algorithm 2 describes e repartition meta-blocking with pseudocode. Firstly,
for each profil = an 1 for each of its blocking key, a pair {(key, profile) is gener-
ated (Lines 3 7). " he result can be seen as a table PX with two columns: key
and profile. Theu, ~ self-join on PX (Line 6) and a group by profile (Lines 7)
are perfor ned In oractice, this corresponds to a graph materialization, since
each node "~ .issor.ated with a copy of its local neighborhood. As a matter of
fact, e~ I elemc o of PY (Line 7) is a set of pairs (p;, p;), where p; is fixed and
p; is . profile sharing at least one blocking key with p;.

8In [1o_ this algorithm is called entity-based parallel meta-blocking (an example is shown
i. Figure 4 of [13]) and it is the state-of-the-art (i.e., fastest and efficient) algorithm for
per ~mi> _ node-centric pruning on the blocking graph; we coined the term repartition meta-
hlacking for the analogy with the repartition join algorithm [28].

20

Algorithm 2 Repartition Meta-blocking [13]

Input: P, the profile collection
Output: C, the list of retained comparisons
. PE—
C «—{} // retained comparisons
map {profiley € P
for each k € getKeys(profile) do
PX — PE U (key, profile)
P’ — PX join PX on key // self-join
P% — groupByKey (P”)
map (profileNeighborhood) € P¢
Cp < prune(profileNeighborhood)
C.append(Cp)

—
Q@

Finally, for each profile p; and its neighboi. ~od (Lines 8-10), a pruning
function computes a local threshold 6; and _ ..., vuly the edges with a weight
higher than 6; (Lines 9)°.

Optimization note— When implementi, 7 re ... ition meta-blocking, for allevi-
ating the network communication bottlene. ., blocks and profiles are represented
by their ids, as proposed in [13]. 1. mea s that, for Algorithm 2, the pair
(key, profile) (in Line 5) is a pair of 10ent.ders: the first id represents the key
(i.e., the block), the second id re, “ese...” he entity profile.

Example 1. An example of the execution steps of repartition meta-blocking is
shown in Figure 8. Five pr sfiles . ve grouped in three partitions: {p1}, {p2;ps}
and {ps;ps}. Fach partii ~n is as igned to a worker (i.e., a physical compu-
tational node) that com wutes "2 key,profiley pairs (Step 1). The resulting
set of pairs PX is the . er ploved for a self join in order to yield the bag of
all the comparison paw. ~ p;,p); this step (Step 2) requires a shuffling of the
data (P) through che nev. rk (note that only the ids of the profiles are sent
around the networ s). The comparison pairs are assigned to a worker according
to their keys, so the grouy by operator partitions them to materialize the neigh-
borhoods withic eay worker (Step 3). Thus, in parallel, each neighborhood can
be processed i. ae erate the final restructured block collection (Step 4).

The be .tler sk ot repartition meta-blocking is the join (Line 6 in Algorithm
2). In fac. F thyrdou et al. [13] describe it as a standard repartition join [28]
(a.k.a. ~~duce . * .e join), a notoriously expensive operator for MapReduce-like
syster 150, A workaround for this issue could be the employment of broadcast

9Some Hruning functions requires as input both the local threshold of the current node p;
¢ 1d the loc 1 threshold of its neighbors; in this case, (Lines 8-10) are executed two times: first,
fo. ~ompr ing all the thresholds (which are then broadcasted); then, for the actual pruning.

10V make explicit the join operator: Efthymiou et al. present their algorithms in [13] by
us! ., only map and reduce functions.

21

— K
<pl, p2> /c,‘&/‘
e <»1,p2> e
H . 1, p3: . B —_— >
: : i <p1 p3> ! o p 23,31 | <pl,,
‘<A, pl>: Y <pl, p3> LI :
i . <p2, p1>
pl={A,B,C} —» <B,pl>:
i<C, pl1>' <p2,pl> /Q,
Ml H <p2, p3> QS
m ——— 2, p3> [S prus,
i<B, p2>! <P2 P; A p2: <p2, p1>
i<C, p2>' v <P2pd> i Ip1, p1,p3,p3,p p5l ¢ <p2, p3>
p2=(B,C,D} __ i<D,p2>! z pLed o [I
p3=1{B,C E} '<B, p3> '~ ° P, P
B B _ <p3, p1> >
:<C, p3>; iy b 3 02 Bl seeeeriiierereeeesd .
I<E, p3>! =) <P3,p2> | p : -
: : @* <p3, p2> =] 4o % <p3,p2>
: : O | :Ip1pl, 2 p2p
Im <D, p4>! <p3, p4> 5 HeSiN aelse” 4
5<E, p4>
p4=1{D,E F} {<E pd>: I
RIRES S N
i <E p5>! v [RRSEEREELEEE, “NELLEN \ pruning
<G, p5>: 8 <p4, p2> p: ; <pd, p3>
T ; @ <p4, p2> 'y ™2,p3,p3 5,psl: <p4, p5>
<p4,p3> || vttt
<p4, p5>
p4,p5> || |t e pruning
<p5, p2> X . 5, pd
<p5, p4> | i 1p2,p4, pdl <p>pd>
<p5, p4> L— et

Figure 8: Repartition 1 eta- .. _king example

join [28], a join operator for MapReue like systems that is very efficient if
one of the join tables can fit ir main memory. Unfortunately, PX (Line 6
in Algorithm 2) typically cannot .." in wemory with large dataset (e.g., those
employed in our experiments in Sectica 5). Thus, broadcast join cannot be
employed in Algorithm 2.

Broadcast meta-blocki. ~— To : void the repartition join bottleneck, we pro-
pose a novel algorithm fr . para.'~1 neta-blocking inspired by the broadcast join.
The key idea of our alg rith .1 is the following: instead of materializing the whole
blocking graph, only « ~ rtior of it is materialized in parallel. This is possi-
ble by partitioning che now. . of the graph and sending in broadcast (i.e., to
each partition) al’” ti.. information needed to materialize the neighborhood of
each node one at a time. Once the neighborhood of a node is materialized,
the pruning fu- ctic 1s that can be applied are the same employed in repartition
meta-blocking "3', and (non-parallel) meta-blocking [12, 8].

The pse «docow. of broadcast meta-blocking is shown in Algorithm 3 and
described .n t! e following. Given the profile collection P the block index Ip
is generate ' Line; 1-2): it is an inverted index listing the profile ids of each
block ".2ucks a. represented through ids as well). When executing Blast, the
funct ons buw 'Blocks and buildBlockIndex also extract the loose schema infor-
matio. —i.e., Jhey basically perform what is described in Section 4.2.1. Then,
I- .. broaucasted to all workers (Line 4), in order to make it available to them.
(m each Hartition, an index Ip is built (Lines 5-6): for each profile it lists the
b. ~ck ide tifiers in which it appears. Then, for each partition and for each pro-
file, vy using the Ip and Ip indexes, a profile’s neighborhood at a time is built
lo auy (Lines 7-9): for each block id contained in Ip it is possible to obtain

22

Algorithm 3 Broadcast Meta-blocking

Input: P, the profile collection
Output: C, the list of retained comparisons
B < buildBlocks(P)
Ip < buildBlockIndex(B)
C «—{} // retained comparisons
broadcast(Ip)
map partition {part) € P
Ip « buildProfileBlockIndex(Ip)
for each profile € part do
Bias < Ip[profile.id]
profileNeighborhood<—buildLocal Graph(Bids, - 3)
Cp < prune(profileNeighborhood)
C.append(Cp)

—
= o

| Worker 1 —

pl1={A, B, C}

| worker2 I

p2=1{B,C, D}
p3=1{B, C, E}

| —— <p5, pd>
I

Worker 5

| worker3 I -
P4 = {D, E, F} : | pruning <pd, p3>
p5=1{D,E G} — PP

<p4, p5>

Figu. 9: Broadcast meta-blocking example

from Ig the ! 't of profile ids (the neighbors). Finally, it performs the pruning
(Lines 10-17)'.

Note t'.at ‘e prune function employed in Algorithm 2 (Line 9) and Al-
gorithm . ‘T ae 1)) takes as input a profile’s neighborhood and can be any
node-ce~*ric p. v ang function, e.g., the one described in Section 3.3.

Exar ‘ple 2. 4An example of the execution steps of broadcast meta-blocking is
shown . F* ure 9. In Step 1 the profiles are partitioned and assigned to the
v orkers Then, in Step 2, the inverted index of blocks (the Block Index) is

11 As for Algorithm 2, for some pruning functions, this last iteration has to be performed
tw ce: the first time for computing all the thresholds, the second for the actual pruning.

23

built—for the sake of the example, the intermediate steps to build he i werted
index are not depicted. This step requires a shuffling of data tF- ugh .“2 net-
work, but at a significantly lower extent compared to that needed for v. self-join
operation of repartition meta-blocking. Then, the Block Index s v oadcasted to
all the workers that perform the last phase of the processing 'Ste: 2). Finally,
in Step 3, each worker processes a partition of the profile set: 1. ~aterializes a
neighborhood at a time by exploiting the local instance o’ the Black Index, and
performs pruning to yield the final restructured block col. ction.

5. Evaluation
The experimental evaluation aims to answer the “ollo...ug questions:

Q1: What is the performance of Blast in terms ~f preci ion, recall, and execu-
tion time compared to the state-of-the-ar. '12)r section 5.1)

Q2: What is the contribution of each Bl + component to the overall perfor-
mance (e.g., how the performance change. hy employing the aggregate en-
tropy)? (Section 5.2)

@3: What are good parameters ¢ a: ' 4 foir the pruning threshold of Blast (see
Section 3.3.2) for a good recall/p ec. ‘on tradeoff? (Section 5.3)

Q4: How efficient is broadcast n. *a-uiocking, compared to repartition meta-
blocking [13]% (Section 5.4)

Q5: How does Blast (with broac ~ast meta-blocking) scale when varying the
number of machines . -ailable ‘or the ER processing? (Section 5.5)

Q6: How does the LSF -bas d step affects the Blast processing? (Section 5.6)

Q7: What is the pe jormw e of Blast w.r.t. traditional meta-blocking when no
schema-align: . mt is required (i.e., with a single data source with known
schema coniuining wlicates)? (Section 5.7)

Q8: What is .he - 2rformance of Blast w.r.t. traditional meta-blocking in a
multi-data - urce context (i.e., when the number of data sources is greater
than 7)? (Sectv.n 5.8)

FExperimentu. Set p

Hard ware ¢ nd Software—All the experiments are performed on a ten-node
cluste : each 1 ode has two Intel Xeon E5-2670v2 2.50 GHz (20 cores per node)
and 125 7™ of RAM, running Ubuntu 14.04. All the software is implemented
i . Scala 2.11.8 and available at [29]. To assess the performance of the state-of-
t e-art m 2ta-blocking methods we re-implemented all of them for running on
Apoa.' opark as well. We employ Apache Spark 2.1.0, running 3 executors on

24

Size | [Pi[—[Pe[[[Ai[—[A2[| [Dp]]
articlesl (*) | small 2.6k - 2.3k 4-4 2.2k J
articles2 (*) | small 2.5k - 61k 4-4 2.3k
products (*) small 1.1k - 1.1k 4-4 1.1 j
movies small 28k - 23k 4-7 "3k
articles3 (*) | large | 1.8M - 2.5M T-7).6M
dbpedia large | 1.2M - 2.2M 30k - 50k 0.
freebase large | 4.2M - 3.7TM 37k - 11k | 1.5M |

Table 2: Dataset characteristics: number of entity profiles, nu 1ber of « tribute names,
and number of existing matches. An exact schema alignment ¢ n be 2 nieved only on
starred “(*)” datasets.

each node, reserving 30 GB of memory for the masu. - nouc. We set the default
parallelism to twice the number of cores as suggested by best practice'2.

Datasets—Table 2 lists the 7 real-world datase. > employed in our experiments.
They have different characteristics and are o~ variety of domains. The
small datasets (i.e., articlesl, articlesz, ~roducts, and movies) are used
only when evaluating the performance ir +erms ot , ecall and precision, since their
time performance on distributed setting ‘s v st significant. (Table 4 reports the
definition of precision and recall fror~ Sect. m 2.)

All the datasets match two differe. * < ta sources for which the ground truth
of the real matches is known. From [30, articlesl matches scientific articles
extracted from dblp.org and dl.ac.~ org, articles2 matches scientific articles
extracted from dblp.org and scholar.g. bgle.com. products matches products
extracted from Abt.com ap” Puy.com. From [7]: movies matches movies
extracted from imdb.com a .d dbpe 'ia.org; dbpedia matches entity profiles from
two different snapshots of . Roedi . (2007 and 2009)'3. From [31]: articles3
matches scientific articl s extrac. Jd from Citeseer and DBLP. Finally, freebase
is derived from the B’ lior Iriy'e Challenge 2012 Dataset [32]: it is composed
by two datasets, one zon.. ‘ns * ae data of DBpedia 3.7, the other one the data of
Freebase; we cleans ‘ these two datasets keeping only the information in English,
removing other lc agua, ~s; the ground truth is represented by the owl:sameAs
relationships be’ = ~en them.

Methods Coun.”- arations and Results Analysis—For each dataset, the ini-
tial block ¢ sllection ... extracted through a redundant blocking technique (either
Token BJ ckir g or Loose Schema Blocking). Then, the block collection is pro-
cessed with . ‘nck Purging and Block Filtering [12], which aim to remove/shrink
the 1o gest b'ocks in the collection. Block Purging discards all the blocks that
conta n more shan half of the entity profiles in the collection, corresponding
to higl’ - fre juent blocking keys (e.g. stop-words). Block Filtering removes

“https- /spark.apache.org/docs/latest/tuning.html
130n1y 25% of the name-value pairs are shared among the two snapshots, due to the constant
ch: .o in DBpedia, therefore the ER is not trivial.

25

each profile p; from the largest 20% blocks in which it appears'? T} 2 time
required by both Block Purging and Block Filtering is negligible com, +ed to
the meta-blocking phase, thus not listed in the experimental results.

The schema-agnostic meta-blocking methods can be execut d o\ hlocks gen-
erated with both Token Blocking and with Loose Schema Bl “kin |, wiule Blast
is compatible with the latter only, since it exploits the loose schei.. - information.

For the schema-agnostic meta-blocking methods, we r port the average val-
ues of recall, precision, F1-score!® and time obtained by « ecuting each method
in combination with each of the five weighting schemas p. —oe (4 in [7]16. We
also report that no traditional weighting schema ar (pri- 'ng strategy combi-
nation performs better than the other on the consi 'ev.d de jasets, confirming
the results of [7].

Finally, for the time measurement, we report the va. “es obtained by averag-
ing the times recorded for five runs. Table 3 su. ~marize , the acronyms used in
this Section.

5.1. Blast vs. State-of-the-art Meta-blocku.

Table 3 summarizes the acronyms »nd conhy irations employed in this ex-
periment. WNP and CNP is applied o1 ble x collections generated both with
Token Blocking (TB) and Loose Schema 1" ocking (LSB), and employing both
redefined (WNPor/CNPor) and recv. val (WNPanp/CNPanp) approaches
(see Section 3.3.2).

Figure 11 shows the result o1 “e cac_ution of Blast and traditional meta-
blocking on all the datasets. Compa. 1 to WNP approaches, Blast achieves
significantly higher precisior ~»d basically the same level of recall on all the
datasets. In particular Bl: st alwa, s outperforms LSB+WNPggr/anD, demon-
strating that the Blast wely *-base . pruning is actually more effective than the
traditional ones.

Compared to TB~+ CNF gr; ~np, Blast achieves higher precision on all the
datasets, with the ercep. ' ¢ articles2 and freebase, where CNPsnp has
a higher precision :Figure .1(i) and Figure 11(n)). Notice though that on
articles2 and ¢ 1 fi. ~base Blast achieves a recall significantly higher (Fig-
ure 11(b) and F' e 11(g)). On all the other datasets, the recall of Blast is
almost the sar.e of TB+CNPog/anp (Figure 11(a-g)), or slightly higher (Fig-
ure 11(b) ana i< are 11(g)). Similarly, Blast outperforms LSB+CNPogr/aND

14This heu.. ic he shown to not affect recall in practice, while lighting the blocking-graph
handlin- |_2].

15 P nd et a. [33] have recently discussed how F1l-score may be an unreliable measure for
compa ing differ nt ER algorithms. We report F1-score for the sake of completeness—it has
been usc ' in m ay related works [5, 34, 35]—yet we draw conclusions on the basis of precision
ar . recall only.

16 Amon, the weighting schemas proposed in [7], we did not identify an overall best performer
a dan ove all worst performer, confirming the results reported in [13], for this reason we report
the . -~ _e precision, recall, Fl-score and execution time.

26

Blocking

TB Token Blocking (7] (see Section 1)

LSB Loose-Schema Blocking (see Section 3.2)

Meta-blocking

WNP Weight Node Pruning [12] (see Section 2.3)
CNP Cardinality Node Pruning [12] (see Section 2.3,
The redefined WNP (CNP) approach [17 (see Section 3.3.1).
WNPor(CNPoR) An edge is not pruned if it weight is gr ater ' .n < y of

its adjacent node’s local thresholds (OR - .ition)

The reciprocal WNP (CNP) approac 2] (se~ € _tion 3.3.1).
WNPAsnp(CNPanD) An edge is not pruned if it weight is gre«. = than both of

its adjacent node’s local thresholds (AND c¢ dition)

Blast

Blast approach, without employing "= aggregate entropy

to compute the weights of ** ' Section 3.3.1).

Blast approach, using the w. ~hting schema proposed in [12]

Blast™ instead of x? to weight the edges “~ee Section 3.3.1). The entropy is used.
The results reported =~ ~verage of all the weighting schema.

Blast,.

Blastj("2 (or simply Blast) | Blast approach (i.e., wit.. » and aggregate entropy, see Section 3).

Table 3: Acronyms na configurations.

[B]l | Number of comparisons «. lailed by a block collection B
|DP| | Number ¢ uup. ~tes (matches) in a profile collection P
|DB| | Numbe of duplicat s (matches) indexed in at least one block b e B

recall(B) | |DB! DP|

precision(B) | |T *

e

Table 4: Metrics.

in terms of p:cisi n on all the datasets but articles2 and freebase (Fig-
ure 11(i) and 1 "~ re 11(n)). Yet, on these datasets Blast yields a higher recall
(Figure 11/)) and 1 “sure 11(g)).

We al-) co .side "ed the overall execution time of the methods. For the com-
parison, we . nple yed our Spark implementation of them, employing broadcast-
meta-' iocking as core blocking-graph processing algorithm, running on a sin-
gle n de (for scalability and performance on multiple nodes see Section 5.5).
In suc. a ce figuration, for the small datasets the results are not reported:
t! ¢ overhead introduced by Spark in each execution does not allow to prop-
¢ ly reco 4 the actual time efficiency of such configuration when the size of

27

articles3 dbpedia freeNace

300-Er EE -

200 1 _—1 It
N~

EEEt

(a) (c)

z71 TB+WNPsnp E=23 LSB+WNP, B22 1 LSB+CNPanp
E==3 TB+WNPor EHEH TB+CNPy,. 4 LSB+CNPor
KX LSB+WNPanp XXJ TB+CNPog E BLAST

Execution time
(min)

Figure 10: Execution time of the different methe 's ap,.”” 4 on blocks obtained with
the Token Blocking (TB+WNPspn/or/CNPapn/or, and with the Loose Schema
Blocking (LSB+WNP spn/or/CNPaADN/OR). ue execution time is referred to the
meta-blocking, and it was taken on a single node « ~ the biggest datasets.

the data is small'”. The results arc .“own ‘n Figure 10. Blast is always sig-
nificantly faster than CNPor/anp on all he considered datasets and all the
configurations (up to 3.8x on d. ..2'~ 1. Figure 10(b)). It is also faster than
TB+WNPgogr/anp on dbpedia (2.5, in Figure 10(b)) and freebase (1.6x in
Figure 10(c)); while, on articles3 is slightly slower (Figure 10(a)). Compared
to LSB+WNPor/anD, Ble ¢ has ~lmost the same execution time on dbpedia
(Figure 10(b)) and free! ~se (Fig we 10(c)); while on articles3 is slightly
slower (Figure 10(a)).

Overall, we conclu' e tF it Blast yields the same recall and a significantly
higher precision of the W st p- cforming schema-agnostic meta-blocking meth-
ods [12], on each drcaset * The only exception is LSB+CNPog/anp, which
achieves higher re a.. *han Blast on two of the seven considered datasets (Fig-
ure 11(i) and Figure 11(1,}, but at the same time has lower recall (Figure 11(b)
and Figure 11/)) . nd is always slower than Blast Figure 10. Finally, we also
observe that . ‘'ast nas time performance similar to the fastest schema-agnostic
method.

7In [11] the «. ~e ‘)1 these datasets are reported for the Java implementation and the results

are ans ogous.
18 T e differe ces between Blast and WNP/CNP are statistically significant according to
Studern ’s T-Tes (with p-value < 0.05).

28

VZA TB+WNPanp [T LSB+WNPog B8 LSB+CNPan.
E= TB+WNPog EEl TB+CNPanp B8 LSB+CNP -
X3 LSB+WNPanp KXN TB+CNPor I BLAST

articlesl articlesl arti .. 7
1.00 71N o < 0.6 °
= 0.751 d ks) 0.41 = 0.6{
& 0-501AENE e 20-
& 0.251 X 20.23 EIQEEE:‘
0.00 0.0- L0
(a) (h)
articles2 articles2
1.007m85 X c 0.4l ’
= 0.751 X s
s X i)
8 0.501 2 8 0.2
& 0.251 X s
0.00 HAEHE 0.0
(b) (i)
1007 products o) products by
= 0.75 .g ' I‘
g 0:501 CO0lipy n E
@ 0.251 L EE T -!
0.001k 0.0- 4T
(c) .
movies . vies movies
1.00 o5 0p - £ 0.2 003!
=0.751 : S go.
9 0.50 5 Lo 9 0.21
= 0.25{(|ENE £ o 0-17
0.00 0.0 0.0-
(d) (k) (r)
articles3 articles3 articles3
1.00 1~ s ’ _ 0.07 o 0.06
= 0.751 X <} =
S 0.50. X ' @ 0.021 S 0.041
o : 4 .01 % 0.02
< .25 X 2 .01 = 0.
0.00 - 0.00- 0.00-
(e ()] (s)
1.00- dbyedia dbpedia dbpedia
= 0.75{08" ap § 0151 .
S d ©0.10 g
£ 0.50+ 5 v} a
o 0.25 Et e § 0.051 o 0.1
0.00- - 0.00- 0.0-
(f) (m) (t)
free Jase freebase freebase
100 - 0.04
=075 3 2 o g 0.06
§ 050 35 0.02 % 0.04
@~ 25 X L o 0.02
0.Uu 0.00 0.00

(9) (n) (u)

F ~ure 11° Recall and precision achieved by the considered methods on all the datasets.
Trau....ual meta-blocking (WNPapn/or and CNPapn/or) has been combined both
wi .. “oken Blocking (TB+WNP spn/or/CNPapn/or) and Loose Schema Blocking
7.SB+WNPpn/or/CNPapN/or). Blast is based on Loose Schema Blocking for the
e.. vaction of the loose schema information, thus it is not applicable on block collection
generate with Token Blocking. 29

5.2. Blast Components Evaluation

10 articlesl 10 articles2 10 products 10, Movies 10 articles3 10 dbpedla‘ N freebase
_ o8 0.8 0.8 0.8 0.8 0.8 § ’ ‘ 0.8{
T 06 0.6 0.6 0.6 0.6 0.6{8 TR
Qoa 0.4 0.4 0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2 0.2 021N\ 0.2
0.0 0.0 0.0 0.0 0.0 = 0.0
(a) (b) (c) (d) (9)
articlesl articles2 products movies artlcles3 dbpeo freebase
c 06 0.05 0.20 0.20 0.03 0.003
S 0.04 0.15
G 04 0.03 013 0.02 0.101 0.002
h’) 0'02 0.10 0.10 ‘
0.2 - .
o 001 0.05 0.05 0 01 "SL 0-001
0.0 0.00 7 0.00 7 0.00 o.oo- < 0.00 0.000
(h) (i) (0)] (k)) (n)
articlesl articles2 products movies articie dbpedla freebase
0.10 0.06
0.3 0.3 T 0.25 0.006
v 0.6 0.08 0.20
5 .
Q04 0.06 0.2 0.2 0.15 0.004
o2 004 01 0.1 8 0.10 0.002
: 0.02 0.05
0.0 0.00 0.0 0.0 non 0.00 0.000
(o) (p) (q) (r) (s) (t) (u)

Blast: Ez Blast B Blast)

Figure 12: Blast running: without consic. ting .. aggregate entropy (Blast,2); in
combination with traditional schema-agnostic * eighting functions (Blast™); standard
configuration (Blastgz).

In this experiment we evaluate “ne oo ribution provided by each component
characterizing Blast: the aggregate ¢, *ropy and the weighting function. The
results are reported in Figure 12,

We compare three diffe' ent co. Ggurations of meta-blocking performed on a
block collection generated .“rough Loose Schema Blocking: Blast,z, Blast?z,

Blastj{é, as described ir Table o.

Aggregate Entropy

The comparisor f Blast,2 and Blast;"2 allows us to assess the contribution
of the aggregate catropy. The result in Figure 12(h-n) shows that by employing
the aggregate e ... my precision increases from 1.6 (Figure 12(h)) to 3.7 times
(Figure 12(n) . A the same time, recall is almost the same on all datasets
(Figure 12(a-g),. In freebase, Blast’, even achieves both recall and precision
significant’ ; hic her tnan Blast,> (Figure 12(g) and Figure 12(n)).

We cc ~clv ie t} at aggregate entropy actually enhances meta-blocking.

Chi-s uared ~eighting

B. st emp oys a weighting function derived from the chi-squared (x?) sta-
tist*~al v uesigned to quantify the significance of the co-occurrences (see Sec-
ton 3.3, For assessing the performance of this weighting function, Blast™
i compa ed with Blastyg. The result is shown in Figure 12. Recall is al-
mosy wie same for all the datasets for Blast’™ and BloLsth2 (Figure 12(a-g)),
w'.1le Blast;"‘2 achieves a considerably higher precision (Figure 12(h-n)), e.g. on

30

dbpedia (Figure 12(m)) precision has a 16 x improvement. The onl, exc ptions
are articles2 and freebase: on the former, Blastx achieves alvost . ~ same
recall and precision yielded by Blast™ (Figure 12(b) and Figure 12(1,"* on the
latter, Blast™ has a 4.6% higher recall, yet Blast?, yields a pr cisic» more than
twice higher than Blast’ (Figure 12(n)).

We conclude that our weighting function actually enb~~ces 1. ~ta-blocking
performance.

5.3. Blast sensitivity to parameters

From Section 3.3.2, to perform the graph pruni g, ".as. computes a local
threshold 6; for every profile p;. This local thresholu 1s co” iputed as 6; = 2
(from Equation 4), where M is the local maximum w.'~ht, and ¢ is an arbitrary
constant. Then, for retaining an edge betwe-n two p ofiles p;,p;, a unique

threshold 6;; is computed as 0;; = —V(giw’g) om JCLaation 5), where d is an
arbitrary constant.

The constants ¢ and d can be reduceu “o a unique constant t = ¢ - d, as
shown below:

articles2 proa. =’ s movies
1.0 1.0 1.0
0.9 0.9 -~ == 0.9
0.8 0.8 0.8
07 07 (07
8.6 8.6 R 8.6
.5 .5 .5
0.2 0.2 \\ 0.2
0.3 0.3 0.3
0.2 0.2 T 02
0.1 0.1 0.1
.0 ++—1—""m5m—"m-———"m——"——7—"7—"70 -—+ —/——m——rm——m—————— 0.0 f4——F—T—F—F——1
2 3 45 6 7 8 910 2 3 45 6 7 8 910 2 3 45 6 7 8 910
t t t
articles3 dbpedia freebase
LT T 11 - 1o T T 1.0
0.9 1 "9 0.9 1
0.8 1.8 0.8
0.7 1 0.7 0.7 1
0.6 RGE 0.6
0.5 1 O.C 0.5 A1
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 1 | 0.1 0.1
0.0 t—T—"7—"7"=" 0.0 0.0 ‘T
2 3 4 5 7 2 3 4 5 6 7 8 9 10 2 3 45 6 7 8 910
) t t
—— Precision —— Recall —— F1 score

Figure 13- Blas . sen‘ ‘tivity: these charts shown the variations of precision, recall, and
F1 score in 1. <tio . of the ¢t parameter.

1
Oij = /\l E] /\/ \/ﬁ-(9$+9§)
~ /07 + 63

(6)

31

We perform a preliminary experiment by varying ¢ in the ran_= (2 10) in
order to choose the best values for ¢ and d. Notice that it is not 1assiL. to set
t < 1, otherwise 0;; > max(0;,0;), so every edge will be pruned. Fu. hermore,
we limit ¢ > 2 because, in practice, lower values of ¢ yields ve' y p or recall for
many of the analyzed datasets.

The results are shown in Figure 13. In general, we observe ™"at the recall
increases as t increases, but at the expense of precisio. As « trade-off for
precision and recall, for all the experiments in this paj er, we « mploy ¢ = 4
(setting ¢ = 2 and d = 2). As a matter of fact, on all the « *2¢~ 3, increasing ¢
above 4 the loss of precision is traded for a little gai. in t* recall.

5.4. Broadcast vs. Repartition Meta-blocking

The goal of this experiment is to compare the efficic "cy of broadcast meta-
blocking (Algorithm 2) and repartition meta-blo. -ing (.Jgorithm 3). Both the
algorithms can be employed as core graph-proc -sing algorithms for any meta-
blocking method. Thus, we evaluate them in comhs tion with WNP and CNP,
in order to analyze how they perform on . ~th family of meta-blocking, i.e.,
those based on weight-threshold, and thase base. on cardinality-threshold (see
Section 2.3). To minimize additional ¢ -erb au, we run them in combination
with the computationally cheapest veight. g function, i.e., block co-occurrence
frequency (we record analogues tren's ~ith other weighting functions). The
experiment was performed on 10 node. We consider only the large datasets
since the overhead introduced by 'main _0es not pay off on the small ones on
multiple nodes. Notice that both algor..xms perform the same logical operation,
that is the final recall and pr~-*~ion are the same on all the datasets, hence not
reported here.

Citatior , DBpedia Freebase

QE) 30 — 150
= "‘ 40

g E 20 30 100
§§ 10 20 50
b 10

) 0 W45 0 0-

\a) (b) (c)

EB. Broadcast WNP EEE Broadcast CNP
Br 4 Repartition WNP R Repartition CNP

Figure .4: Revar.tion vs. Broadcast meta-blocking. For each dataset we report two
differc 1t strate jies for the prune functions, i.e., the weight- and cardinality-based
prunin, This imes was taken on 10 nodes.

The -esults are reported in Figure 14: broadcast meta-blocking is faster
tran rep: rtition meta-blocking from 4.9 to 12.7 times for WNP, and from 7.7
to .7 ' .mes for CNP. To analyze the scalability of the algorithms, we report

—

. re 15 their execution times in function of the number of nodes (from 1 to

32

10) on freebase (the largest dataset). In our setting, repartition m *a-b ocking
is not able to run with less than 7 nodes; whereas broadcast met~-blo.. ing on
a single node is 3 to 4 times faster than the execution time of the . »artition
meta-blocking on 10 nodes.

% —+— Brr.dcast VNP

< 102/ —+— B oadcas: CNP
§ c —— Rep_*+*on WNP
gg —& Re e tition CNP
B

s8

o 10!;

[,

x

L

|
. | | | .
1 3 5 7 10
Number of node

Figure 15: Scalability comparison: repart: on vs. broadcast meta-blocking on
freebase.

We conclude that the broadc. * mecva-blocking is always faster than the
repartition meta-blocking.

5.5. Parallel-blast scalabili y

Finally, we assess the sca.. hilit of parallel Blast by varying the number of
nodes in the cluster (1 3, 7, 7 and 10 nodes). For this experiment we employ
freebase, which is tl ~ he wies, dataset to process due to the huge number of
comparisons yielded by 1. F.ocking phase (2.23 x 10'® comparisons), and to
its large number ¢ *tributes (47,945 distinct attributes).

Figure 17 shows the -calability of each blocking step, i.e.: Loose Schema
Blocking (LSB. wu h is composed of Loose attribute-Match Induction in combi-
nation of Tok a B ,cking), and Loose Schema Meta-Blocking (LS-MB). Figure
16 shows th= spe. Fup of each blocking step, which is sub-linear to the number
of nodes i". thr cluswer (i.e. 10x nodes, the overall speedup do not reach 5).
For each *er, we observe at least a 50% reduction of execution time from 1
to 3 nodas. 1.~ | the execution times continuously decrease until reaching an
overa'. speec 'p on 10 nodes of 4.2x.

T. = time : nd speedup reported so far only consider the blocking and meta-
ble~ing ' .se of an ER process. In practice, all the comparisons generated
tirough ~ny blocking process have to be compared by means of an Entity Res-
¢ 'ution £ gorithm, which is a binary function that takes as input two profiles
anua ' .udes whether or not they are matching [36, 5]. Such a function is typi-
ca ., XxXpensive, e.g., involving string similarity computations, calls to external

33

resources or even human intervention (i.e., crowdsourcing). Thus, t ‘= i sre the
employed function is expensive, the more useful a good blockir~ (an.’ meta-
blocking) method is; in other words: the resources saved avoiding s. ~erfluous
comparisons are proportional to the complexity of the Enti’; h <olution Al-
gorithm. Hence, we now compare Blast and WNP using a raivs (i.e., cheap)
Entity Resolution Algorithm for showing that Blast significantly 1. Tuce the over-
all execution time of a complete ER process. We emplor as Ertity Resolution
Algorithm the computation of the Jaccard Similarity of tl1 = two pr files involved

in each comparison'?.

Freebase
2 " u
3 i
2 B &
1 3
5
4 &
o3
31 4
g 5
&3 e
3 S
2 V/V/'
1
5
4
3
2
1
1 3 5 7 10
N mber of nodes
LMI . T4 LS-MB #- OVERALL

Fi ,ure ~6: S~eedup of Blast on freebase.

191n a real-world scenario, « “hreshold would be required to discriminate between matching
and non-matching pa. 3.

34

Freebase

_.250
€ 200 (

~

(0]
£150 |

nt

o

Executi

1 3 5 7 10
Number of nodes
LMI Bl TB wme L>-MB

Figure 17: Execution time of Blast on fre ‘base.

Figure 18 shows the execution time of R'~~* ~~- "WNP in combination with
the naive Entity Resolution Algorithm?° an. b varying the number of nodes.
We observe that the meta-blocking ph~<e of riast is slower than standard
schema-agnostic WNP. This is not sur, “isi g, since Blast performs an addi-
tional step compared to WNP (i.e., " ose « “tribute-Match Induction). Yet, the
overall ER process employing Blast is sig ificantly faster that employing WNP,
since it retains much fewer comnarison. (3.80 - 10% of Blast vs. 2.17-10'° of
WNP). Please, recall that Blast .~d vwv.NP, on freebase, achieve the same
recall (Figure 11(g)).

20The average comparison ti.. on fre base is 0.05 ms.

35

Schema agnostic Loosely schema-- war.
(meta-)blocking (meta-)blocking

25 25 ‘
< 20 < 20 |
£ £
= 157 S 154
c c
Q. .© 0l
E 10 2.17-10%° 3 1 50100
0] comparisons executed 0] ¢’ .nparisons executed
X X
w57 w51

0 2 Ohb-_
1 3 5 7 10 1 . 5 7 10
Nodes number Nc les number
(a) (b)
v, TB+WNP B Blast Entii. Resolution algorithm
Figure 18: Execution time of the comp] '~ FR process on freebase, varying the

number of execution nodes in the cluster. Thr wnole ER process is composed of a
blocking phase, which generates candid ~te pai. ' that are compared through an Entity
Resolution Algorithm. In (a), the bloc u.. me hod employed is Token Blocking in
combination with WNP meta-blocking. In b), vhe blocking method employed is Blast.

5.6. LSH-based Loose Schem~ Rlocking

This section aims at ass ssing t. e benefit of the LSH-based step. To do that,
consider the worst case scew. "io: w .en Loose Schema Blocking (see Section 3.2)
does not identify any sir 1lar att.." ute, all the attributes are grouped in a unique
all-encompassing clust or (t".e gl :e cluster [7]). In this scenario, the blocks gen-
erated combining Lcose .. “her a Blocking are identical to those generated with
Token Blocking alc 'e. On tne other hand, if Loose Schema Blocking correctly
groups some simi’ar av. ibutes, separating them from the glue cluster, the pre-
cision of the pre "’ ~ed block collection increases, while recall remains almost the
same.

Ideally, the ~ore the similar attributes are correctly grouped, the higher
the precisir a of the _enerated blocks is, without affecting the recall. Hence, to
demonstr te t'«e ar vantage of LSH-based Loose Schema Blocking, we perform
a set of exp. “me its “disabling” the glue cluster and varying the threshold of
LSH. "_nis means that, without the glue cluster, all the attributes that are not
index :d in a ¢ "oup of similar attributes are discarded, and so are the tokens of
their v 'mes. "I significant tokens are not employed as blocking key, the recall of
t' e final blocks is negatively affected. So, varying the threshold of LSH changes
{1e grouy of similar attributes. In fact, if two attributes are less similar?! than

-Jaccard similarity, since we are employing min-hash.

36

the threshold, Loose Schema Blocking does not consider them as - ca’ didate
pair, and they cannot be indexed in the same group.

Figure 19 shows how LSH affects the final results of Blast com. ~ed with
Loose Schema Blocking in terms of recall on dbpedia (othe deasets yields
analogous resutls). Table 5 reports the execution times of t} » ex eriment. We
consider the recall of the block collection produced with Loose Sc. »ma Blocking
only, without considering the meta-blocking phase. Basic .ly, up to a threshold
value of 0.35 (i.e., Jaccard similarity equals to 0.35), th recall 1 not affected
(recall = 99.99%), meaning that (almost??) all the matci. ~o = ofile pairs are
successfully indexed in the block collection. The pre zisior "~ not reported, but
for the points where recall = 99.99% is identical, i.. . is 1 >t affected by the
LSH threshold. For a threshold greater than 0.3. on t“~ contrary, the tech-
niques start failing to index some profile pairs, entai... 9 a degradation of the
final result. In other words, for thresholds ti.* exclu . too many attribute
comparisons, Loose Schema Blocking fails to -ecog..’ ¢ similar attributes and
produces an incomplete cluster of attributes. Neve. “heless, even for a conserva-
tive threshold (e.g. 0.10), the execution 0. '.0ose Schema Blocking, overall, is
under 2h (instead of ~12h).

1.0
__ (59)t=0.64
0.8 1| __ (5,20) t=0.55
Probability (3,15) t=0.41
of two attributes 0.6 —
being identical _ (3,30)t=0.32
in at least one band 0.4 (3,90) t=0.22
0.2 , 1l (2,99)t=0.10
[& ®RECALL
0.0 —— L

0.0 0.2 04 06 0.8 1.0
Jaccard Similarity

Figure 19: Recall with a..”r .nt L H configurations in combination with Loose Schema

Blocking on dbpedia In the. - :nd number of rows and number of bands for LSH are

in parenthesis, and . *he estimated threshold.

— |'LSFy10 | LSHo22 | LSHos2 | LSHoa1 | LSHos5 | LSHoea
125 h . 'h 1.5h 1.3 h 1.2 h 09h 0.7 h

Table 5: I sose schema Blocking run time varying the LSH threshold. The leftmost
column rep. -t the xecution time of Loose Schema Blocking without employing LSH
(i.e., com~uting 7 ¢ Jaccard similarity of all possible pair of attributes).

“Loose Schema Blocking (as any other blocking technique) may yield false negative, i.e.,
1 airs of pr. file that are not indexed in any block; for this reason the recall is not 100%.

37

Blast WNPOR WNPAND CNPOR CNPAND
recall(%) TAT 78.3 68.3 84.4 8.7
precision(%) | 8.90 8.02 11.5 8.8 14.2
Fy 0.1590 | 0.1448 0.1965 0.1608 0.2361

1k profiles, Ground Truth: 300 matches
(5 attributes - 2 clusters with Loose Schema Blocking)

(a) census
Blast WNPOR WNPAND CNPOR CN. AND
recall(%) 82.1 90.3 81.2 66.9 46.°
precision(%) | 84.0 53.8 69.4 65.7 2.4
" 0.8302 | 0.6726 0.7377 0.6637 = 0.5 . J

1k profiles, Ground Truth: 17k matches
(12 attributes - 4 clusters with Loose Schema Blo. " “ng)

(b) cora
Blast WNPOR WNPAND C\TPOR e ‘PAND
recall(%) | 93.7 97.3 96.1 9.c | 949
precision(%) | 0.13 0.03 0.04 o 0.18
I 0.0027 | 0.0005 0.0008 | " 0015 ‘ 0.0036

10k profiles, Ground Truth: A00 match.
(106 attributes - 16 clusters with Loos Scu ... Blocking)
(c) cddb

Table 6: L 'v,, ER results.

5.7. Dirty ER

Loose Schema Blocking is “~signed to identify similar attributes among data
sources that have differen’ schen. s (e.g. to identify which attributes refers
to person names in the ea mple ¢! Figure 1). There is a particular class of
Entity Resolution prob’ems, c.™.d dirty ER, where single data source with
known schema is con'.der d, o= outlined in [12] (see Section 2.1.1). In this
scenario, there is inb=re,.” v nc need to perform loose attribute-match induction
(or schema-alignme 1t), because there is only a single source involved that has
a unique schema. fHow. “ver, grouping similar attributes (if any) and extracting
aggregate entror= is possivle; thus, we modified Loose Schema Blocking to work
with dirty ER see ection 2.1.1). For the meta-blocking phase, there is no need
for changes.

To eval .ate the »erformance of Blast we compared it against traditional
meta-blor <ing cechziques on 3 real-world benchmark datasets [1]. Both Blast
and traditic al o sta-blocking are applied in combination with Loose Schema
Blocki .g 3.

2" . raditioual meta-blocking in combination with Token Blocking has always worse perfor-

1 ances, u. '1s we do not report here the results. The execution times for these datasets are
¢ 'the orde of milliseconds and Loose Schema Blocking does not significantly affect the total
exe “tior (imes.

38

H#duplic: .es |

#profiles | #attributes Amazon-TMD 760

IMDB 6.4k 12 Amazon-Rotten o 4‘
Rotten 7.3k 16 Amazon-IMDB 2

Amazon 5.3k 6 IMDB-Rotten 87 ‘

TMD 10k 5 IMDB-TMD I I

TMD-Rotten T2 |

Table 7: Dataset characteristics: number of entity profiles, ¢ «d nunber of attribute
names. On the right side, the number of duplicates between ach data et.

Results

The characteristics of the datasets and the r=suits are listed in Table 6.
Besides recall and precision, we also consider Fj-sco. which is the harmonic
means of the two. This helps us to discuss the ~mparisc n of two methods that
show significantly different values of both re-all a. 1 r ecision. Blast achieves
higher precision and F}-score than traditional W. P. and a slightly lower recall.

The only exception is on cora, where ~. ... g achieves ~8% higher recall
(though Blast has a ~30% higher precision). ~mpared to CNP, Blast outper-
forms CNPpgr on cora and cddb, whil ..~ hehind it on census. On census
and cddb, CNP4np outperforms Blast, “v, in cora its recall is considerably
low (46%).

Overall, for dirty ER, Blast can . e .- effective blocking technique when
the priority is to achieve high p _~i=ion, without giving up a high level of re-
call (e.g., to save computational resc “rces performing ER in a cloud-computing
environment).

5.8. Multiple Data Source

In this experiment w : wan. “o explore the multi-data source scenario [18],
i.e. when the number - (in” at datasets is greater than 2.

The datasets emplo, > 1n t! is experiment have been collected from the Mag-
ellan repository [37,, in pa '.cular we consider a collection of heterogeneous
records gathered r aw. » from IMDB.com, RottenTomatoes.com, TMDmoviez. com
and Amazon.com. all abou. movies. These datasets have been used for evaluat-
ing ER algorit! ms 1 [5]. Considered singularly, none of these datasets contains
duplicates; th. = t’as ER problem can be formalized as a Clean-Clean ER prob-
lem (a.k.a. Reco. ' Linkage) [14, 12] (see Clean-Clean ER in Section 2.1.1).
Thus, Ble .t ar 4 meta-blocking can be employed without any modification for
this exper. ~ at. Jotice that if each dataset considered singularly could con-
tain d- _licates, .he overall problem can be reduced to a Dirty ER problem
(see {ection . 1.1) on a single dataset that is the union of all the considered
datasc s [12].

~he aavasets characteristics are reported in Table 7. All the considered
 atasets -ave different schemas [5]. The ground truth has been generated using
tu > Mag dan framework [5], the number of identified duplicates between each
dataseu are reported in Table 7.

39

Figure 20 reports the achieved results. Blast obtains better res ‘1ts ' oth in
term of recall and precision w.r.t the standard meta-blocking (Fi-nwe .. /a-b)).

° ©
o o
5 O

Precision
o
2

F1 score

(a) (b)
vzA4 TB+WNPAND A LSB+WNP’:R [SSE5S) _SB+CNPAND
B3 TB+WNPor EEH TB+CNPanp @ LSB+CNPor
KXY LSB+WNPanp KXX TB+CNPng A Wl BLAST

Figure 20: Recall and precision achieved by the “onsiac.ed methods on the multi-
source datataset.

6. Related Work

Blocking techniques have been —mmo. ly employed in Entity Resolution
(ER) [37, 38, 14, 5, 39, 40, 41, 42, 43], \n. ~an be classified into two broad cat-
egories: schema-based (Suffix A- =7 122, g-grams blocking [44], Canopy Clus-
tering [45]), and schema-agnostic | Z~ken Blocking [7], Progressive ER [16, 46,
47, 48, 49, 50], and Attribute-match inauction [7, 9]).

Attribute-match induc’.on—: mong the schema-agnostic techniques, At-
tribute Clustering (AC) [7] .~d TY ’iMatch [9] try to extract statistics to define
efficient blocking keys. 1C relic on the comparison of all possible pairs of at-
tribute profiles of two atas ts t~ find the pairs of those most similar; this is a in-
efficient process, becaus. ne v .st majority of comparisons are superfluous. Our
LSH-based preproc :ssing step aims to address this specific issue. TYPiMatch
tries to identify ‘.e i “ent subtypes from generic attributes (e.g. description,
info, etc.) freque=* on generic dataset on the Web, and uses this information to
select blocking key: , but it cannot efficiently scale to large dataset.

Block maripuic ion—In this paper, we tackled the problem of meta-blocking,
i.e., how tr rest ucture (manipulate) an existing blocking collection, for improv-
ing the qu. it of t".e overall ER process. The state-of-the-art, unsupervised and
schema-~2nos.’~ neta-blocking has been presented in [12]. Blast was shown to
outpe form {“em in Section 5. Supervised meta-blocking [51, 52] extends the
block. g grap . model by representing each edge as a vector of schema-agnostic
fert—res | . graph topological measures), and treats the problem of identi-
f ing mu "t promising edge as a classification problem; hence, a training set of
l. beled d ta (matching/non-matching pairs) is required. Blast exploits the loose
sche..... information and does not require any training set (i.e., it is completely
W .., crvised).

40

Recently, in the context of multi data-source ER, Ranbadug et ... [18]
have proposed a blocking manipulation method for identifying ~ntitic. whose
profiles span among ¢ data sources, where g is a user bounded pare ~eter. In
order to do that, given a block collection, the proposed me noc <elects and
combines (manipulate) blocks that are the most promising ‘v fi .ding profiles
of g data sources that match together. The user can also spe. v a set F of
data sources, and the final result is required to have matc ies thet involves that
set F' of data sources. In [18], this task is called Multid tabase 3zcord linkage
(MDRL). Formalizing MDRL by employing the blocking y. ~»k .aodel (Section
2.3): MDRL is the task of identifying the hypered ses of “he blocking graph
that span among g nodes that belong to g distinct - ces, wnd that are have
high weight (remember that the weight in the bloc.. »g gr~=". corresponds to the
matching likelihood). Hence, the scope of MDRL is oi."ogonal to the scope of
meta-blocking [12] (and thus Blast), which tries '~ prune edges that correspond
to not-promising comparisons. Furthermore, "e ex. ..ng MDRL solution [18]
has been applied only in the context of structured . “ta sources with well known
schemas; while Blast does not require a .. ~detined schema (since it relies on
the loose schema information). Thus, the con.. nation of the two methods is
not trivial, but it is surely a future dirc *tio. .” .t we aim to explore, since the
promising results achieved by Blast in th. aulti source scenario of Section 5.8
(where the g and F' parameters are . -,. ~on: dered).

Metadata exploitation—Ther~ is excd 'lent related work in the semantic Web
community [17, 53, 54, 55]. For in. ~nce, LIMES [53] (an ER approach for the
Web of Data), and LOV [54] (a system «ttempting to standardize vocabularies)
propose techniques to explr’, . etadata, which may also be valuable to our
problem, but are orthoge .al to ¢ r approach. In fact, Blast addresses the
blocking problem based purd’ - on - ne attribute values, without considering the
semantics of the schem . at ll.

Entity Resolution w. » Ma’' Reduce-like Systems—Parallel and distributed
versions of traditior 1l (schei. ~based) blocking techniques have been extensively
studied in [56, 57 . . 'tfowim and Mehrota [58] have investigated how to gen-
erate candidate nrofile pa..s on MapReduce-like systems in pay-as-you-go (i.e.,
progressive) fa nion Their proposed solution relies on the definition of schema-
based blockin, ke, s. Finally, Efthymiou et al. [13] have proposed the repar-
tition meta Dlocku.> algorithm to run graph-based meta-blocking methods on
MapRedv e. T1 Sections 4 and 5, we extensively compare it against our pro-
posed broa.'- ist r eta-blocking algorithm.

Are 4,0 et a. |59] have proposed a novel schema-agnostic pruning strategy
callec Globai, Weighted Node Pruning (GWPN) that combines a local thresh-
old w. h a gl pal one. The local threshold is computed for each profile as for
th. NNFr, while the global one is computed as the average of all the edges
' eights. This strategy aims to discard the edges with a low weight that con-
n.~ts on’y profiles with a very low local threshold. Compared to traditional
WNF, GWNP improves precision of 0.01%, while achieving the same recall, on
D'pedia dataset [59]. Aratjo et al. also discuss a Spark implementation for

41

their strategy, which is based on the MapReduce parallel meta-b" cki- g pro-
posed in [13], and suffers from the same limitations (see Section # 2.2).

7. Conclusion and Future Work

In this paper we presented a holistic (meta-)blocking a~~roac. Blast, able
to automatically collect and exploit loose schema infor iation ‘i.e., statistics
gathered directly from the data for approximately desci bing th : data source
schemas). We explained how this loose schema infor~—atic.. . be extracted
efficiently even from highly heterogeneous and volur mor .« tasets through an
LSH-based step. We proposed a novel algorithm .. effici ntly running any
meta-blocking technique on MapReduce-like Syste. <. Il.ally, we experimen-
tally evaluated it on real-world datasets. The experimen al results showed that:
(i) Blast outperforms the existing state-of-the-a. meta- slocking approaches in
terms of quality of the results; (ii) our broadca. - meva-blocking is always faster
than the existing state-of-the-art when leveracine 1 distributed and parallel
computation of MapReduce-like Systems.

Relevant research problem can be evnlored a. future directions: in the con-
text of multi-data source ER, we aim to ‘nve ;uigate how to combine our Loose-
Schema Aware (meta-)blocking method w. 1 MDRL solution [18] (presented in
Section 6). In the context of progress ve ©R (a.k.a. pay-as-you-go ER) [47], we
alm to investigate how to exploit broac ~ast meta-blocking to yield progressive
results, maximizing the recall ou “he ve..s of a limited resource budget (e.g.,
limited execution time, and/or compu. tional resources). Finally, we are plan-
ning to combine our blockin~ *~chnique for scaling to large data set advanced
similarity functions that ler :rage o. external knowledge bases, such as [60], with
other MapReduce-like syste s [61] and on real-world applications, such as the
deduplication of web pe ses tags |.2].

[1] P. Christen, A su. “v of mdexing techniques for scalable record linkage
and deduplica’.on, IEr.. transactions on knowledge and data engineering
24 (9) (2012 1b.7-1555.

[2] X. L. Donr, L. Srivastava, Big data integration, Synthesis Lectures on Data
Manager ~nt * (1) (2015) 1-198.

[3] S. Ber samaschy, D. Beneventano, F. Mandreoli, R. Martoglia, F. Guerra,
M. € rsin’, L. 20, M. Vincini, G. Simonini, S. Zhu, et al., From data in-
tegratio. to oig data integration, in: A Comprehensive Guide Through
t’.e 1talinn Database Research Over the Last 25 Years, Springer, 2018, pp.
< 3-59.

. R. Baxter, P. Christen, T. Churches, et al., A comparison of fast blocking
met, ods for record linkage, in: ACM SIGKDD, Vol. 3, Citeseer, 2003, pp.
25— 17.

42

[5]

[9]

P. Konda, S. Das, P. Suganthan GC, A. Doan, A. Ardalan 1. T.. Bal-
lard, H. Li, F. Panahi, H. Zhang, J. Naughton, et al., Mag-llan: Toward
building entity matching management systems, Proceedings ot .= VLDB
Endowment 9 (12) (2016) 1197-1208.

J. Madhavan, S. R. Jeffery, S. Cohen, X. Dong, D. Ko, L. " u, A. Halevy,
Web-scale data integration: You can only afford t- pay as jou go, in:
Proceedings of CIDR, 2007, pp. 342-350.

G. Papadakis, E. Ioannou, T. Palpanas, C. Niede~ >, W. 27;dl, A blocking
framework for entity resolution in highly heterog 2nec .- . formation spaces,
IEEE Transactions on Knowledge and Data E. _.neeriig 25 (12) (2013)
2665—2682.

G. Papadakis, G. Koutrika, T. Palpanas, V,” Nejdl, veta-blocking: Taking
entity resolution to the next level, IEEE Trans. _.ions on Knowledge and
Data Engineering 26 (8) (2014) 1946-1960.

Y. Ma, T. Tran, Typimatch: Type-spec.. ~ unsupervised learning of keys
and key values for heterogeneous - .. *~*a integration, in: Proceedings of
the sixth ACM international confer. 1¢ : on Web search and data mining,
ACM, 2013, pp. 325-334.

C. E. Shannon, A mathematical t. eory of communication, SIGMOBILE
Mob. Comput. Commun. Re. 5 (1, (2001) 3-55. doi:10.1145/584091.
584093.

G. Simonini, S. Berga iasch., H. Jagadish, Blast: a loosely schema-aware
meta-blocking appro. h for e tity resolution, Proceedings of the VLDB
Endowment 9 (12) 2016, "1 3-1184.

G. Papadakis, G. ay stef .natos, T. Palpanas, M. Koubarakis, Scaling en-
tity resolution ’o larg. t :terogeneous data with enhanced meta-blocking.,
in: EDBT, 20 .0 op. 221-232.

V. Efthym* G. Papadakis, G. Papastefanatos, K. Stefanidis, T. Pal-
panas, Pr alle meta-blocking for scaling entity resolution over big hetero-
geneous de ~ Information Systems 65 (2017) 137-157.

P. C cistr 1, Data Matching - Concepts and Techniques for Record Link-
age, k.. “ "¢y R solution, and Duplicate Detection, Data-Centric Systems and
A- _licatio.. ,, Springer, 2012. doi:10.1007/978-3-642-31164-2.

\" Christ yphides, V. Efthymiou, K. Stefanidis, Entity resolution in the web
of u..' , Synthesis Lectures on the Semantic Web 5 (3) (2015) 1-122.

G. S monini, G. Papadakis, T. Palpanas, S. Bergamaschi, Schema-agnostic
nre_ressive entity resolution, IEEE Trans. Knowl. Data Eng. (2018)doi:
10.1109/TKDE.2018.2852763.

43

[17]

[18]

[19]

[20]

[21]

P. Shvaiko, J. Euzenat, Ontology matching: state of the art and future
challenges, IEEE Transactions on knowledge and data engi»eerin, 25 (1)
(2013) 158-176.

T. Ranbaduge, D. Vatsalan, P. Christen, A scalable and -ffici .av . bgroup
blocking scheme for multidatabase record linkage, in: Pac.” -Asia Confer-
ence on Knowledge Discovery and Data Mining, Sprir scv, 2010, pp. 15-27.

A. Z. Broder, On the resemblance and containment o. documr ats, in: Com-
pression and complexity of sequences 1997. proc- ding., ~«EE, 1997, pp.
21-29.

J. Leskovec, A. Rajaraman, J. D. Ullman, ~"ining -. massive datasets,
Cambridge university press, 2014.

T. M. Cover, J. A. Thomas, Elements c¢* int.. m2’.on theory, John Wiley
& Sons, 2012.

T. De Vries, H. Ke, S. Chawla, P. Chr.. “en, Robust record linkage block-
ing using suffix arrays, in: Proce~dings ot .he 18th ACM conference on
Information and knowledge manage ner ., ACM, 2009, pp. 305-314.

A. Agresti, M. Kateri, Categoric v 'ata ‘nalysis, in: International encyclo-
pedia of statistical science, Spring., »J11, pp. 206-208.

M. Zaharia, M. Chowdhury, 1. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, I. Stoica, hesilient distributed datasets: A fault-
tolerant abstraction fo - ~emory cluster computing, in: Presented as
part of the 9th USE™ IX Syn >osium on Networked Systems Design and
Implementation (NSD1 .M. UsSENIX, San Jose, CA, 2012, pp. 15-28.

J. Dean, S. Ghe iaw: ¢, Mapreduce: simplified data processing on large
clusters, Comm mic. ‘ons of the ACM 51 (1) (2008) 107-113.

[link].
URL httos://spurk.apache.org/docs/2.1.0/programming-guide.
html#shu fle -operations

A. S. Das, ... Datar, A. Garg, S. Rajaram, Google news personalization:
scalal .e o7 line collaborative filtering, in: Proceedings of the 16th interna-
tione. <o fere .ce on World Wide Web, ACM, 2007, pp. 271-280.

S Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, Y. Tian, A com-
1 arison o join algorithms for log processing in mapreduce, in: Proceedings
ot ‘he 2,10 ACM SIGMOD International Conference on Management of
dat~, ACM, 2010, pp. 975-986.

[lin} .
URL http://stravanni.github.io/blast/

44

[30]

31)

[36]

[41]

H. Képcke, A. Thor, E. Rahm, Evaluation of entity resolutior app vaches
on real-world match problems, Proceedings of the VLDB Endawme. + 3 (1-
2) (2010) 484-493.

S. Das, A. Doan, P. S. G. C., C. Gokhale, P. Knde .’ ¢ mag-
ellan data repository, https://sites.google.com/sit. ‘ mhaidgroup/
projects/data.

A. Harth, Billion triples challenge data set (2012).

D. Hand, P. Christen, A note on using the f-me .sure © - evaluating record
linkage algorithms, Statistics and Computing 2. (?, (20 8) 539-547.

M. Ebraheem, S. Thirumuruganathan, S. Joty, ..~ Ouzzani, N. Tang, Dis-
tributed representations of tuples for entit-" resolut »n, Proceedings of the
VLDB Endowment 11 (11) (2018) 1454-"46'.

S. Mudgal, H. Li, T. Rekatsinas, A. Doan VvV + rk G. Krishnan, R. Deep,
E. Arcaute, V. Raghavendra, Deep leai. ‘ng for entity matching: A design
space exploration, in: Proceedings ~f the 20,3 International Conference on
Management of Data, ACM, 2018, , ». ~y—od.

O. Benjelloun, H. Garcia-Moli. =, D. . fenestrina, Q. Su, S. E. Whang,
J. Widom, Swoosh: a generic ap, roach to entity resolution, The VLDB
Journal—The International . ‘w...-'+ 1 Very Large Data Bases 18 (1) (2009)
255-276.

H. Képcke, E. Rahm, F e -orks for entity matching: A comparison, Data
& Knowledge Engine’ -ing 69 2) (2010) 197-210.

F. Naumann, M. H rschel, . - Introduction to Duplicate Detection, Synthe-
sis Lectures on I" ita ".[ans gement, Morgan & Claypool Publishers, 2010.
doi:10.2200/8702c D1 01Y201003DTMO003.

M. Stonebral cr, ™ Bruckner, I. F. Ilyas, G. Beskales, M. Cherniack, S. B.
Zdonik, A. Pagan, 5. Xu, Data curation at scale: The data tamer system,
in: CIDR .01: Sixth Biennial Conference on Innovative Data Systems Re-
search, A. lor .ar, CA, USA, January 6-9, 2013, Online Proceedings, 2013.

G. Pz padrkis, L. Tsekouras, E. Thanos, G. Giannakopoulos, T. Palpanas,
M. | ~utarak 5, The return of jedai: End-to-end entity resolution for
strecturel @ ad semi-structured data, PVLDB 11 (12) (2018) 1950-1953.
0i:10.'4778/3229863.3236232.

V. “fth- miou, G. Papadakis, K. Stefanidis, V. Christophides, Simplifying
entty resolution on web data with schema-agnostic, non-iterative matching,
in: ¢ Ith IEEE International Conference on Data Engineering, ICDE 2018,
Pa- 3 France, April 16-19, 2018, 2018, pp. 1296-1299.

TTRL https://doi.org/10.1109/ICDE.2018.00134

45

[42]

[43]

[45]

A. D. Sarma, A. Jain, A. Machanavajjhala, P. Bohannon, C* O K: an
automatic blocking mechanism for large-scale de-duplicatior tasks., CoRR
abs/1111.3689. arXiv:1111.3689.

URL http://arxiv.org/abs/1111.3689

U. Draisbach, F. Naumann, A generalization of blocking - 1d windowing
algorithms for duplicate detection, in: 2011 Interne’.vaal Ceo..ference on
Data and Knowledge Engineering, ICDKE 2011, M’ ano, It: 'y, September
6, 2011, 2011, pp. 18-24. doi:10.1109/ICDKE.2011. 305397 .

L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. T.oud ., Y. Muthukrishnan,
D. Srivastava, Approximate string joins in a dat.” ase (+ .most) for free, in:
VLDB 2001, Proceedings of 27th Internationa. “on.c.ence on Very Large
Data Bases, September 11-14, 2001, Roma, Italy, = 01, pp. 491-500.

A. McCallum, K. Nigam, L. H. Ung.- k.l lent clustering of high-
dimensional data sets with application to rete. mce matching, in: Proceed-
ings of the sixth ACM SIGKDD intc mational conference on Knowledge
discovery and data mining, Boston, MA, UYA, August 20-23, 2000, 2000,
pp. 169-178. doi:10.1145/34709¢ s« -7,

G. Simonini, G. Papadakis, T. 7 . '™man« = S. Bergamaschi, Schema-agnostic
progressive entity resolution, in: 34. IEEE International Conference on
Data Engineering, ICDE 20" ° Par. France, April 16-19, 2018, 2018, pp.
53-64. doi:10.1109/ICDE.20.> 00015.

S. E. Whang, D. Marn»- -~ H. Garcia-Molina, Pay-as-you-go entity res-
olution, IEEE Trans. Knowl. Data Eng. 25 (5) (2013) 1111-1124. doi:
10.1109/TKDE.2012.a.

T. Papenbrock, /. Hr.se, F. Naumann, Progressive duplicate detection,
IEEE Trans. Kno..' Oat- Eng. 27 (5) (2015) 1316-1329. doi:10.1109/
TKDE.2014.23".9666.

D. Firmani, 3. Saha, D. Srivastava, Online entity resolution using an oracle,
PVLDB 9 o, 2016) 384-395. doi:10.14778/2876473.2876474.
URL htt »:// mw.vldb.org/pvldb/vol9/p384-firmani.pdf

D. Fir nani, S. Jalhotra, B. Saha, D. Srivastava, Robust entity resolution
usin® a ¢ owd- racle, IEEE Data Eng. Bull. 41 (2) (2018) 91-103.
URL hev »:/ sites.computer.org/debull/A18june/p91.pdf

(.. Papau akis, G. Papastefanatos, G. Koutrika, Supervised meta-blocking,
I 7LDB (14) (2014) 1929-1940. doi:10.14778/2733085.2733098.

G. (2l Bianco, M. A. Gongalves, D. Duarte, Bloss: Effective meta-blocking
with almost no effort, Information Systems 75 (2018) 75-89.

46

[53]

[58]

A. N. Ngomo, S. Auer, LIMES - A time-efficient approach fc larr :-scale
link discovery on the web of data, in: IJCAI 2011, Proce~ding. of the
22nd International Joint Conference on Artificial Intelligence, ."~rcelona,
Catalonia, Spain, July 16-22, 2011, 2011, pp. 2312-2317 a.i:10.5591/
978-1-57735-516-8/IJCATI11-385.

P. Vandenbussche, B. Vatant, Linked open vocabu’...es, Ei.CIM News
2014 (96).

S. Bergamaschi, D. Ferrari, F. Guerra, G. Simoni~~ Y. . grakis, Provid-
ing insight into data source topics, J. Data Sem: ntics o 1) (2016) 211-228.
doi:10.1007/s13740-016-0063-6.

L. Kolb, A. Thor, E. Rahm, Dedoop: Efficient dewu ‘vlication with hadoop,
PVLDB 5 (12) (2012) 1878-1881. doi:10. 1778/2 ;67502 .2367527.

S. Das, P. S. G. C.,; A. Doan, J. F. Naug. “on, G. Krishnan, R. Deep,
E. Arcaute, V. Raghavendra, Y. Park T..cou. wcaling up hands-off crowd-
sourced entity matching to build cloud sex ‘ces, in: Proceedings of the 2017
ACM International Conference or ..” ~~oement of Data, SIGMOD Con-
ference 2017, Chicago, IL, USA, M. v 14-19, 2017, 2017, pp. 1431-1446.
d0i:10.1145/3035918.30359€

Y. Altowim, S. Mehrotra, Parallel L. -ogressive approach to entity resolution
using mapreduce, in: 33rd 1.k wucernational Conference on Data Engi-
neering, ICDE 2017, San Diego, A, USA, April 19-22, 2017, 2017, pp.
909-920. doi:10.1109/7""F.2017.139.

T. B. Aratjo, C. E. . Pires, . P. da Nébrega, Spark-based streamlined
metablocking, in: Zompw. ~ 5 and Communications (ISCC), 2017 IEEE
Symposium on, IF K. 2017, pp. 844-850.

F. Benedetti, T . Bewn. e tano, S. Bergamaschi, G. Simonini, Computing
inter-docume’ . ~imilarity with context semantic analysis, Inf. Syst. 80
(2019) 136-147. do. 10.1016/j.is.2018.02.009.

S. Bergar .ascl ., L. Gagliardelli, G. Simonini, S. Zhu, Bigbench workload
executed b, * sing apache flink, Procedia Manufacturing 11 (2017) 695-702.

F. G err7, G. Simonini, M. Vincini, Supporting image search with tag
clouas. A p eliminary approach, Adv. in MM 2015 (2015) 439020:1-
427.,20:10. .01:10.1155/2015/439020.

47

Highlights

e Anunsupervised graph-based meta-blocking approach (called Blast) able to leverage this
loose schema information;

e an LSH-based attribute-match induction technique for efficiently scale co . \rge datasets
with a high number of attributes;

e an algorithm to efficiently run Blast (and any other graph-based '.ic. 2-blocking method) on
MapReduce-like systems, to take full advantage of a parallel an “ dic.ributed computation;

e the evaluation of our approach on seven real-world dataset ;, show 'ng how Blast
outperforms the state-of-the-art meta-blocking methods.

