
12/02/2025 06:26

Scaling entity resolution: A loosely schema-aware approach / Simonini, Giovanni; Gagliardelli, Luca;
Bergamaschi, Sonia; Jagadish, H. V.. - In: INFORMATION SYSTEMS. - ISSN 0306-4379. - 83:(2019), pp. 145-
165. [10.1016/j.is.2019.03.006]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

Accepted Manuscript

Scaling entity resolution: A loosely schema-aware approach

Giovanni Simonini, Luca Gagliardelli, Sonia Bergamaschi,
H.V. Jagadish

PII: S0306-4379(18)30408-3
DOI: https://doi.org/10.1016/j.is.2019.03.006
Reference: IS 1380

To appear in: Information Systems

Received date : 3 August 2018
Revised date : 16 February 2019
Accepted date : 17 March 2019

Please cite this article as: G. Simonini, L. Gagliardelli, S. Bergamaschi et al., Scaling entity
resolution: A loosely schema-aware approach, Information Systems (2019),
https://doi.org/10.1016/j.is.2019.03.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.is.2019.03.006

Scaling Entity Resolution: A Loosely Schema-aware
Approach

Giovanni Simoninia,1, Luca Gagliardellib, Sonia Bergamaschib, H.V. Jagadishc

aMIT CSAIL
bDepartment of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Italy

cUniversity of Michigan, Ann Arbor, US

Abstract

In big data sources, real-world entities are typically represented with a variety
of schemata and formats (e.g., relational records, JSON objects, etc.). Differ-
ent profiles (i.e., representations) of an entity often contain redundant and/or
inconsistent information. Thus identifying which profiles refer to the same en-
tity is a fundamental task (called Entity Resolution) to unleash the value of
big data. The näıve all-pairs comparison solution is impractical on large data,
hence blocking methods are employed to partition a profile collection into (pos-
sibly overlapping) blocks and limit the comparisons to profiles that appear in
the same block together. Meta-blocking is the task of restructuring a block col-
lection, removing superfluous comparisons. Existing meta-blocking approaches
rely exclusively on schema-agnostic features, under the assumption that han-
dling the schema variety of big data does not pay-off for such a task.

In this paper, we demonstrate how “loose” schema information (i.e., statis-
tics collected directly from the data) can be exploited to enhance the quality of
the blocks in a holistic loosely schema-aware (meta-)blocking approach that can
be used to speed up your favorite Entity Resolution algorithm. We call it Blast
(Blocking with Loosely-Aware Schema Techniques). We show how Blast can
automatically extract the loose schema information by adopting an LSH-based
step for efficiently handling volume and schema heterogeneity of the data. Fur-
thermore, we introduce a novel meta-blocking algorithm that can be employed
to efficiently execute Blast on MapReduce-like systems (such as Apache Spark).
Finally, we experimentally demonstrate, on real-world datasets, how Blast out-
performs the state-of-the-art (meta-)blocking approaches.

Keywords: Entity Resolution, Meta-blocking, Big Data Integration, Data
Cleaning, Apache Spark
2010 MSC: 00-01, 99-00

Email address: giovanni@csail.mit.edu (Giovanni Simonini)
1Corresponding author

Preprint submitted to Journal of LATEX Templates February 16, 2019

1. Introduction

In the context of big data, real-world entities are typically represented in a
variety of formats, such as: records of relational databases, RDF triples, JSON
objects, etc. Moreover, the profiles (i.e., the representations) of a real-world
entity often contain overlapping, complementary and/or inconsistent informa-
tion. Hence, a fundamental task for unleashing the value of this data is Entity
Resolution (ER) [1, 2, 3], which aims to identify and reconcile the entity profiles
that refer to the same real-world entity.

Background: When the volume of the data is large, checking all possible
profile pairs to find matches is not a practical solution due to its quadratic
complexity. For this reason, typically, signatures (blocking keys) are extracted
from the profiles and employed to index them into blocks [4]. Then, the all-
pairs comparison is limited to profiles within a block, significantly reducing the
complexity of ER.

Traditional blocking techniques typically rely on a-priori schema knowledge
to devise good blocking keys by combining attribute values; hence suffering from
two well-known issues:

1. Given a known schema, selecting which attributes to combine requires either
domain experts or labeled data to train a classification algorithm [5].

2. If two datasets have different schemata, a schema-alignment must be exe-
cuted before ER. Unfortunately, big data is typically highly heterogeneous,
noisy (missing/inconsistent data), and large in volume of schemata, so that
traditional schema-alignment techniques are no longer applicable [6, 7]. For
instance, Google Base contains over 10k entity types that are described with
100k unique schemata; in such a scenario, performing and maintaining a
schema alignment is impractical [6].

To work around these issues, schema-agnostic blocking has been proposed [7, 8].
This approach extracts blocking keys from the profiles by treating them as
bags-of-words. For instance, Token Blocking [7] considers each token in a
profile as a blocking key; in other words, each pair of profiles sharing at least
one token (regardless to the attribute in which it appears) is considered as
a candidate match, as shown in the example of Figure 1(a-b). By placing
each profile in multiple blocks, schema-agnostic techniques on one hand reduce
the likelihood of missing matches, on the other hand increase the likelihood of
placing non-matching profiles in the same blocks. This allows the achievement of
high recall (i.e., the percentage of detected matching profiles), but at the expense
of precision (i.e., the ratio between detected matching profiles and executed
comparisons).

To improve the precision of schema-agnostic blocking, meta-blocking ap-
proaches have been proposed [8]. Meta-blocking is the task of restructuring a
set of blocks to retain only the most promising comparisons. Meta-blocking
represents a block collection as a weighted graph, called blocking graph, where

2

(a)

(b)

May 21 1985p5 SimonsEllen - State ave

p4

Name

Abram

SmithEllen

Oct 31 1985

retailerMay 10 1985

Main street

ProfessionSurname Address

John Jr car seller

b.date

Abrams
street NY

p1

DATA SOURCE 2 (JSON)

DATA SOURCE 1 (RELATIONAL)
{“people”:
 {“name”:
 {“n1”: Jon Jr},
 {“n2”: Abram}
 },
 {“birth year”: 85},
 {“job”: car retail},
 {“Loc”: Main st.}
 }

p3{“customers”:
 {“name”: Ellen Smith},
 {“year”: 85},
 {“additional info.”:
 {“work”: retail},
 {“Loc”: Abram st. 30 NY}
 }
 }

p2

BLOCKS

p1 p4

street

p1 p3

Jr

p2 p3

retail

p2 p3

85

p2 p3

st

p1 p2 p3 p4

Abram

p2 p4
p5

Ellen

p2 p4

NY

p1 p3

Main

p1 p3

Car

p1 p4

1985

p2 p4

Smith

p4 p5

May

(c)

p1 p3

p2 p4

4

4

3 4
11

p5
1 2

BLOCKING GRAPH

Figure 1: (a) A collection of entity profiles from a data lake where data is stored in
different formats. (b) A block collection produced with Token Blocking; notice that
the tokens appearing only in one profile do not generate any comparison (i.e., any
block). (c) The derived blocking graph and the effect of meta-blocking: dashed lines
represent pruned edges, and red ones the superfluous comparisons not removed. In
this toy example, the weight of each edge connecting two profiles pi and pj is equal to
the number of blocks in which pi and pj co-occur—other weighting functions can be
employed [8]. For instance, p1 and p2 share only the block “Abram”, so the weight of
the edge that connects them is 1. Then, the pruning is performed computing a local
threshold for each profile (e.g., the average of its edges’ weights) and keeping only the
edges having a weight higher than the local threshold. For instance, the weights of p1
edges are t1, 3, 4u and their average is 2.7, so the edge that connects p1 with p2 can
be discarded, since 1 ă 2.7.

each entity profile is a node and an edge exists between two nodes if the corre-
sponding profiles appear at least in one block together. The edges are weighted
to capture the likelihood of a match. An example of a blocking graph is shown is
Figure 1(c), where the weight of an edge is equal to the number of co-occurrences
of its adjacent profiles in the blocks2. Then, an edge-pruning scheme is applied
to retain only the most promising ones. The most accurate strategy to prune
edges is to consider for each node all its adjacent edges, and retain only those
having a weight higher than the local average (Figure 1(c)). At the end of the
process, each pair of nodes connected by an edge forms a new block.

Our Approach: We observe that existing meta-blocking techniques exclusively
leverage schema-agnostic features to restructure a block collection. Inspired by
the attribute-match induction approaches [7, 9], our idea is to exploit schema

2Co-occurrence in blocks is employed for the sake of the example; more sophisticated
weighting functions can be employed (see Section 3.3).

3

information extracted directly from the data for enhancing the quality of the
blocks. Moreover, we argue that a holistic approach combining meta-blocking
and loosely schema-aware techniques should be attempted. Hence, we introduce
our approach called Blast (Blocking with Loosely-Aware Schema Techniques).
Blast can easily collect significant statistics (e.g. similarities and entropies of the
values in the attributes) that approximately describe the data sources schemas.
This loose schema information is efficiently extracted even from highly hetero-
geneous and voluminous datasets, thanks to a novel LSH-based pre-processing
step that guarantees a low time requirement. Then, the loose schema informa-
tion is exploited during both the blocking and meta-blocking phases to produce
high quality block collections.

To get an intuition of the benefits of loose schema information, consider
the example in Figure 2. Say that, among the different data sources, only the
attributes about person names have similar values to some extent. Blast clusters
together these attributes, while the others (“not enough similar” to each other)
are grouped in a unique general cluster. Thus, it can disambiguate the token
“Abram” as person name from its other uses (e.g., street name). Consequently,
the block associated to the token “Abram” is divided into two new blocks (Figure
2(a)) affecting the blocking graph: the weights of the edges ep1´p4 and ep2´p3
both decrease (Figure 2(b)). Therefore, the local thresholds for meta-blocking
changes, and one further superfluous edge (ep1´p4) is correctly removed in the
pruning step (Figure 2(b)). The precision increases, while the recall remains the
same. Yet, one superfluous comparison is still entailed (ep2´p3) and loose schema
information can be further employed to enhance the quality of the blocking.
The intuition is that some attributes are more informative than others and can

p1 p3 p2 p4

Abram
p1 p3

Abram_c1

p2 p4

Abram_c2

Loose Schema
Information

(a) (b)

p1 p3

p2 p4

4

4

2 3
11

p5

1 2

Figure 2: (a) The blocking key “Abram” is disambiguated by employing the loose
schema information; as a consequence, the profiles p1 and p4 share one less block than
before—this means also that the edge e1´4 decreases its weight accordingly, from 3
to 2. (b) The effect on the new blocking graph weights and on the meta-blocking
process, w.r.t. Figure 1(c): one further edge is correctly removed (e1´4, dashed red
line) compared to Figure 1(c). As a matter of fact, e1´4 is now pruned, since it has
a weight (=2) lower than the local threshold of p1 (=2.3); while in Figure 1(c), the
weight of e1´4 is 3, which is greater than the local threshold of p1 (=2.7)—notice that
if the weight of e1´4 varies, the threshold of p1 also changes, since the latter depends
on the former.

4

generate more significant blocking keys. Blast measures the information content
of an attribute through the Shannon entropy [10]. Then, it derives an aggregate
entropy measure for each cluster of attributes. Finally, it uses these values as
a multiplicative coefficient in the weighting function of the blocking graph. For
our toy example, the aggregate entropies are listed in Figure 3(a), and the final
blocking graph after the pruning phase is showed in Figure 3(b)3, where the
superfluous edge ep2´p3 has now been correctly removed.

Entropy cluster1 (name) = 3.5
Entropy cluster2 (other atr.) = 2.0

(a)

Loose Schema Info

(b)

p1 p3

p2 p4

11

11

4 6
22

p5

3.5 5.5

Figure 3: (a) Attribute entropy information and its effect (b) on the blocking graph
pruning. In this toy example, the weighting function is: wppi, pjq“ř

kPKiXKj
Hpbkq,

where Ki and Kj are the set of blocking keys of pi and pj respectively, and Hpbkq
is the aggregate entropy of the cluster to which bk belongs to. In (b), the effect
on the new blocking graph weights and on the meta-blocking process is shown w.r.t.
Figure 2(b): one further edge is correctly removed (e2´3, dashed red line) compared
to Figure 2(b). As a matter of fact, e2´3 is now pruned, since it has a weight (=6)
lower than the local threshold of p1 (=6.3).

Contributions: Overall, we make the following main contributions:

• an approach to automatically extract loose schema information from a dataset
based on an attribute-match induction technique;

• an unsupervised graph-based meta-blocking approach able to leverage this
loose schema information;

• an LSH-based attribute-match induction technique for efficiently scale to large
datasets with a high number of attributes;

• an algorithm to efficiently run Blast (and any other graph-based meta-blocking
method) on MapReduce-like systems, to take full advantage of a parallel and
distributed computation;

3 For the sake of the example the weights are computed starting from the blocking graph
of Figure 2(b); in the actual processing only one blocking graph is generated, and a unique
pruning step is performed.

5

• the evaluation of our approach on seven real-world datasets, showing how
Blast outperforms the state-of-the-art meta-blocking methods.

A preliminary version of Blast was published in [11]. In this paper, Blast has
been extended to take advantage of a parallel and distributed computation for
significantly reducing the overall execution time of the ER process, which is
typically onerous in the big data context. We propose broadcast meta-blocking
(Section 4): a novel algorithm to run any graph-based meta-blocking method
(including Blast) on distributed MapReduce-like systems, such as Apache Spark.
Finally, we provide more extensive experiments on large-scale datasets4, which
showcase that our solution efficiently scales on MapReduce-like systems and
outperforms the state-of-the-art meta-blocking methods (Section 5).

Organization: The remainder of this paper is structured as follows. Sec-
tion 2 provides preliminaries. Section 3 presents Blast and Section 4 describes
basic concepts for distributed meta-blocking on MapReduce-like systems and
discusses Blast parallelization. Section 5 presents the datasets, the evaluation
metrics, and the experiments. Section 6 examines the related work. Finally,
Section 7 concludes the paper.

2. Preliminaries

This section defines preparatory concepts and notation employed throughout
the paper.

2.1. Blocking for Entity Resolution

An entity profile is a tuple composed of a unique identifier and a set of
name-value pairs xa, vy. AP is the set of possible attributes a associated to a
profile collection P. An profile collection P is a set of profiles. Two profiles
pi, pj P P are matching (pi«pj) if they refer to the same real world object;
Entity Resolution (ER) is the task of identifying those matches given P.

The naive solution to ER implies |P1|¨|P2| comparisons, where |Pi| is the
cardinality of a profile collection Pi. Blocking approaches aim to reduce this
complexity by indexing similar profiles into blocks according to a blocking key
(i.e., the indexing criterion), restricting the actual comparisons of profiles to
those appearing in the same block.

Given the dataset of Figure 1(a), an example of schema-agnostic blocking
key is shown in Figure 1(b). Otherwise, a schema-based blocking key might be
the value of the attribute “name”; meaning that only profiles that have the same
value for “name” will be compared (the dataset in Figure 1(a) would require a
schema-alignment). A set of blocks B is called block collection, and its aggregate
cardinality is }B}“ř

biPB }bi}, where }bi} is the number of comparisons implied
by the block bi.

4Two additional datasets are introduced in Section 5: citation3 and freebase.

6

We follow best practices to establish the quality of a block collection [7, 12]:
the problem of determining if two profiles actually refer to the same real-world
object is the task of the Entity Resolution Algorithm. We assume there is such
an algorithm able to determine whether two profiles are matching or not. In
fact, Blast is independent of the Entity Resolution Algorithm employed, just as
the other state-of-the-art blocking techniques compared in this paper [12, 13].

2.1.1. Dirty ER and Clean-Clean ER

Papadakis et al. [12] have formalized two types of ER tasks: Dirty ER and
Clean-Clean ER. The former refers to those scenarios where ER is applied to a
single data source containing duplicates; this problem is also known in literature
as deduplication [14]. In the latter, ER is applied to two or more data sources,
which are considered “clean”, i.e., each source considered singularly does not
contain duplicate. This type of ER is also known as Record Linkage [14]. As in
[11, 12, 13, 15, 16], in this work, we adopt this classification as well.

Notice that, in Clean-Clean ER the comparisons among profiles that belong
to the same data source are avoided (for any underlying blocking technique)
[12]. Hence, the number of comparisons }bi} required for a block bi depends on

the type of ER: for Dirty ER, a block produces }bi} “
`|bi|

2

˘
, where |bi| is the

cardinality of the block and all the possible comparisons are considered; while,
for Clean-Clean ER, a block produces }bi} “ řN

j“1

řN
k“j`1 |bji | ¨ |bki |, where bji is

the subset of Pj indexed in the block bi, and N is the number of data sources.

2.1.2. Metrics

We employ Recall and Precision to evaluate the quality of a block collection
B, as in [1]. The recall measures the portion of duplicate profiles that are
placed in at least one block; while the precision measures the portion of useful
comparisons, i.e., those that detect a match. Formally, precision and recall of a
blocking method is determined from the block collection B that it generates:

recall “ |DB|
|DP | ; precision “ |DB|

}B} ;

where DB is the set of duplicates appearing in B and DP is the set of all
duplicates in the collection P.

Typically, schema-agnostic blocking yields high recall, but at the expense of
precision. The low precision is due to the unnecessary comparisons: redundant
comparisons entail the comparison of profiles more than once; and superfluous
comparisons entail the comparison of non-matching profiles (piffpj).

For instance, considering the block collection of Figure 1(b), the pair of pro-
files pp1, p3q appears in many blocks (“Car”, “Main”, etc.), thus, if all the blocks
are evaluated as traditional blocking techniques do [4] (i.e., without performing
meta-blocking), p1 and p3 are compared more than once—performing redundant
comparisons. Figure 1(b) also provides examples of superfluous comparisons,
such as the comparisons between p2 and p5, and between p4 and p5, entailed

7

by the block “Ellen”—we call these comparisons superfluous because p5 do not
match neither with p2 nor p4.

Attribute-match induction5 approaches can be employed to enhance schema-
agnostic blocking by limiting the superfluous comparisons. Meta-blocking is the
state-of-the-art approach to reduce both superfluous and redundant comparisons
from an existing block collection. In the following we formally define attribute-
match induction and meta-blocking.

2.2. Attribute-match Induction

The goal of attribute-match induction is to identify groups of similar at-
tributes between two profile collections P1 and P2 from the distribution of the
attribute values, without exploiting the semantics of the attribute names. This
information can be exploited to support a schema-agnostic blocking technique,
i.e., to disambiguate blocking keys according to the attribute group from which
they are derived (e.g. tokens “Abram” in Figure 1(b)).

Definition 1. Attribute-match induction. Given two profile collections P1,P2,
attribute-match induction is the task of identifying pairs txai, ajy | ai P AP1

, aj P
AP2

u of similar attributes according to a similarity measure, and use those pairs
to produce the attributes partitioning, i.e., to partition the attribute name space
pAP1ˆAP2q in non-overlapping clusters.

This task is substantially different from the traditional schema-matching, which
aims to detect exact matches, hierarchies, and containments among the at-
tributes [17].

An attribute-match induction task can be defined through four components,
formalized in the following: (i) the value transformation function (ii) the at-
tribute representation model, (iii) the similarity measure to match attributes,
and (iv) the clustering algorithm.

(i) The value transformation function. Given two profile collections P1

and P2, each attribute is represented as a tuple
@
aj , τpVaj q

D
, where: aj P

APi
is an attribute name; Vaj is the set of values that an attribute aj

can assume in Pi; and τ is a value transformation function returning the
set of transformed values tτpvq : v P Vaju. The function τ generally is
a concatenation of text transformation functions (e.g. tokenization, stop-
words removal, lemmatization). Given a τ transformation function, the
set of possible values in the profile collections is TA “ TaP1

Ş
TaP2

, where
TaP “

Ť
aiPAP

τpVaiq.
(ii) The attribute representation model. Each attribute ai is represented

as a vector Ti (called the profile of ai), where each element vin P Ti is
associated to an element tn P TA. If tn R τpVaiq, then vin is equal to zero.

5We call attribute-match induction the general approach to group similar attributes, while
we refer to the specific technique proposed in [7] with Attribute Clustering.

8

While, if tn P τpVaiq, then vin assumes a value computed employing a
weighting function, such as [7]: TF -IDF ptnq or the binary-presence of the
element tn in τpVaiq (i.e., vin“1 if tn P τpVaiq, 0 otherwise). For example,
say that the value transformation function τ is the tokenization function,
and that the function to weight the vector elements is the binary-presence.
Then, the attributes are represented as a matrix: rows correspond to the
attributes; the columns correspond to the possible tokens appearing in the
profile collections; and each element vin is either 1 (if the token tn appear
in the attribute ai) or 0 (otherwise).

(iii) The similarity measure. For each possible pair of attributes paj , akq P
pAP1ˆAP2q, their profiles Tj and Tk are compared according to a similarity
measure (e.g. Dice, Jaccard, Cosine). Notice that the similarity measure
must be compatible with the attribute model representation; for instance,
the Jaccard similarity cannot be employed with the TF -IDF weighting.

(iv) The clustering algorithm. The algorithm takes as input the attribute
names and the similarities of their profiles and performs the non-overlapping
partitioning of the attribute names. (See Section 3.1.1 for more details).
Its output is called attributes partitioning.

2.3. Meta-blocking

The goal of meta-blocking[12] is to restructure a collection of blocks, gener-
ated by a redundant blocking technique, relying on the intuition that the more
blocks two profiles share, the more likely they match.

Definition 2. Meta-blocking. Given a block collection B, meta-blocking
is the task of restructuring the set of blocks, producing a new block collec-
tion B1 with significantly higher precision and nearly identical recall, i.e.,:
precisionpB1q"precisionpBq and recallpB1q»recallpBq.
In graph-based meta-blocking (or simply meta-blocking from now on), a block
collection B is represented by a weighted graph GBtVB, EB,WBu called blocking
graph. V is the set of nodes representing all pi P P. An edge between two entity
profiles exists if they appear in at least one block together: E “ teij : Dpi, pj P
P | |Bij | ą 0u is the set of edges; Bij “ Bi X Bj , where Bi and Bj are the set
of blocks containing pi and pj respectively. WB is the set of weights associated
to the edges. Meta-blocking methods weight the edges to capture the matching
likelihood of the profiles that they connect. For instance, block co-occurrence
frequency (a.k.a. CBS) [8, 18] assigns to the edge between two profiles pu and
pv a weight equal to the number of blocks they shares, i.e.: wCBSuv “ |Bu|X |Bv|.
Then, edge-pruning strategies are applied to retain only more promising ones.
Thus, at the end of the pruning, each pair of nodes connected by an edge forms
a new block of the final, restructured blocking collection. Note that meta-
blocking inherently prevents redundant comparisons since two nodes (profiles)
are connected at most by one edge.

9

Loose Schema
Information
Extraction

Loosely
Schema-aware

Blocking

Loosely
Schema-aware
Meta-blocking

Aggregate
Entropy

Attribute
Partitioning

B0B0
P1P1

P2P2

P12P12 BB
Phase 1 Phase 2 Phase 3

Figure 4: Blast logical overview.

Two classes of pruning criteria can be employed in meta-blocking: cardinality-
based, which aims to retain the top-k edges, allowing an a-priori determination
of the number of comparisons (the aggregate cardinality) and, therefore, of the
execution time, at the expense of the recall; and weight-based, which aims to
retain the “most promising” edges through a weight threshold. The scope of
both pruning criteria can be either node-centric or global : in the first case,
for each node pi the top-ki adjacent edges (or the edges below a local threshold
θi) are retained; in the second case, the top-K edges (or the edges below a global
threshold Θ) are selected among the whole set of edges. The combination of
those characteristics leads to four possible pruning schemas: (i) Weight Edge
Pruning (WEP) discards all the edges with weight lower than Θ; (ii) Cardi-
nality Edge Pruning (CEP) sorts all the edges by their weights in descending
order, and retains only the first K ; (iii) Weight Node Pruning (WNP [12]) con-
siders in turn each node pi and its adjacent edges, and prunes those edges that
are lower than a local threshold θi; (iv) Cardinality Node Pruning (CNP [12])
similarly to WNP is node centric, but instead of a weight threshold it employs
a cardinality threshold ki (i.e., retain the top-ki edges for each node pi).

3. The Blast Approach

The main goals of Blast are: to provide an efficient, scalable and automatic
method to extract loose schema information from the data; to perform a holistic
combination of blocking and meta-blocking for ER exploiting this loose schema
information.

These are the main novelties w.r.t. other existing meta-blocking techniques,
which are completely schema-agnostic [8, 12, 13].

Our approach takes as input two profile collections, and automatically gen-
erates a block collection. It consists of three main phases, as schematized in
Figure 4: loose schema information extraction, loosely schema-aware blocking,
and loosely schema-aware meta-blocking. In the following we give a high-level
description of each phase, then we dedicate a subsection for the details of each
phase in turn.

Phase 1) The loose schema information is extracted. It consists of: the at-
tributes partitioning, and the aggregate-entropy. The former describes how

10

the attributes are partitioned according to the similarity of their values;
it is the result of the attribute-match induction task (Section 2.2). The
latter is a measure associated to each cluster of attributes, derived from
the attribute entropies. We also introduce a Locality-Sensitive Hashing
(LSH) [19] optional step to reduce the computational complexity when
dealing with data sources characterized by a high number of attributes.

Phase 2) A traditional schema-agnostic blocking technique is enhanced by ex-
ploiting the attributes partitioning to disambiguate keys according to the
attribute partition from which they are extracted. In particular, Blast
employs Token Blocking, and we call the derived method Loose Schema
Blocking.

Phase 3) A graph-based meta-blocking is applied to the block collection gener-
ated in the previous phase. In particular, Blast meta-blocking exploits the
aggregate entropy to weight the blocking graph. The basic idea is the fol-
lowing. Each edge in the blocking graph is associated to a set of blocking
keys. Each blocking key is associated to an attribute. Each attribute has
an information content that can be measured through its entropy. Hence,
the weight of an edge can be proportional to the information content of
its associated attributes. For instance, consider independent datasets con-
taining records about people (as in Figure 1). Generally the attribute year
of birth is less informative than the attribute name. This is because the
number of distinct values of the former is typically lower than that of the
latter. In fact, it is more likely that two people are born in the same year,
than they have the same name. Blast tries to assess the attribute infor-
mation content employing the Shannon entropy, and assigns a weight to
each blocking key proportional to the entropy of the attribute from which
it is derived. Thus, using Blast, records that share values of their name
attributes are more likely indexed together than those sharing only values
of their year of birth attributes. This process is completely unsupervised.

3.1. Loose Schema Information Extraction

(Phase 1 in Figure 4) In Blast, the loose schema information extraction is
performed through an entropy extraction criterion applied in combination with
the Loose attribute-Match Induction, an attribute-match induction technique
presented here. Moreover, we propose an optional LSH-based step for guar-
anteeing scalability on large datasets, which is the main improvement w.r.t.
Attribute Clustering [7].

3.1.1. Loose attribute-Match Induction (LMI)

Following the definitions of Section 2.2, Loose attribute-Match Induction
(LMI) is composed of these four components: the tokenization as value trans-
formation function; the binary-presence of a token as weight for the attribute

11

representation model; the Jaccard coefficient as similarity measure; and Algo-
rithm 1 for clustering, a variation of the one introduced as Attribute Clustering
(AC) in [7].

Basically, Algorithm 1 first collects the similarities of all possible attribute
profile pairs of two profile collections, and their maximum values of similarity
(lines 2-8). The similarity function (line 4) measures the Jaccard coefficient:

jaccardpTi, Tjq“ Ti¨Tj
|Ti|2`|Tj |2´Ti¨Tj .

where Ti, Tj are the vectors representing the attributes ai, aj respectively
(see Section 2.2).

Then, (lines 9-13) LMI marks as candidate match of an attribute each at-
tribute that is “nearly similar” to its most similar attribute by means of a
threshold α (e.g.: 0.9 ¨ maxSimV alue). If an attribute ai has attribute aj
among its candidates, then the edge xai, ajy is collected. Finally, the connected
components of the graph built with these edges, with cardinality greater than
one, represent the clusters (line 14). Optionally, a glue-cluster can gather all
the singleton components (i.e., components that have cardinality equal to one),
as in [7], to ensure the inclusion of all the possible tokens (blocking keys).

Algorithm 1 Loose attribute-Match Induction (LMI)

Input: Attr. names: AP1
, AP2

; Attr. profiles: T1, . . . , Tz ; threshold: α
Output: Set of attribute names clusters: K

1: edgesÐ tu simÐMapxK,V y
2: MaxÐMapxK,V y // most similar attr. for each attr.
3: for each ai P AP1

, aj P AP2
do

4: sim.pushpxxai, ajy, similaritypTi, Tjqyq
5: if sim.getpxai, ajyq ąMax.getpaiq then
6: Max.pushpxai, simyq
7: if sim.getpxai, ajyq ąMax.getpajq then
8: Max.pushpxaj , simyq

// matching-attr. candidates generation
9: for each ai P AP1

, aj P AP2
do

10: if sim.getpxai, ajyq ě pα ¨Max.getpaiqq then
11: edgesÐ edgesY xai, ajy
12: if sim.getpxai, ajyq ě pα ¨Max.getpajqq then
13: edgesÐ edgesY xaj , aiy
14: K Ð getConnectedComponentsGrThan1pedgesq
15: return K

LSH-based Loose attribute-Match Induction

The computation of the similarity of all possible pairs of attribute profiles has
an overall time complexity of OpN1¨N2q, where N1 and N2 are the cardinality
of AP1

and AP2
, respectively. For the dimensions commonly involved in the

semi-structured data of the Web (the data sources schema can commonly have
even thousands of attributes) this is infeasible. However, only a few (or none)
similar attributes are expected to be found similar for each attribute; therefore,
employing techniques able to group the attributes approximately on the basis of
their similarity can significantly reduce the complexity of the attribute-match

12

inductions, without affecting the quality of the results. Hence, in Blast we
introduce a pre-processing step that can be optionally employed with both LMI
and AC.

LSH (Locality-Sensitive Hashing) allows to reduce the dimensionality of a
high-dimensional space, preserving the similarity distances, reducing signifi-
cantly the number of the attribute profile comparisons. Employing the attribute
representation model of LMI6 and Jaccard similarity, MinHashing and banding
[20] can be adopted to avoid the quadratic complexity of comparing all possible
attribute pairs.

The set of attributes is represented as a matrix, where each column is the
vector Tj of the attribute aj (see section 2.2). Permuting the rows of that
matrix, the minhash value of one column is the element of that column that
appears first in the permuted order. So, applying a set of n hashing function
to permute the rows, each column is represented as a vector of n minhash; this
vector is called minhash signature. The probability of yielding the same minhash
value for two columns, permuting their rows, is equal to the Jaccard similarity
of them; thus, MinHashing preserves the similarity transforming the matrix,
with the advantage of reducing the dimension of the vectors representing the
attributes. However, even for relatively small n, computing the similarity of all
possible minhash signature pairs may be computationally expensive; therefore,
the signatures are divided into bands, and only signatures identical in at least one
band are considered to be candidate pairs and given as input to the attribute-
match induction algorithm (adapted to iterate only through these candidate
pairs - instead of all possible pairs).

Considering n minhash values as signature, b bands for the banding indexing,
and r “ n{b rows for band, the probability of two attributes being identical in
at least one band is 1 ´ p1 ´ srqb. This function has a characteristic S -curve
form, and its inflection point represents the threshold of the similarity. The
threshold can be approximated to p1{bq1{r. For instance, choosing b “ 30 and
r “ 5, the attribute pairs that have a Jaccard similarity greater than „0.5 are
considered for the attribute-match induction. (example Figure 5).

Thus, LSH can be employed as pre-processing step, before executing Algo-
rithm 1, for filtering out attribute pairs that are most likely not similar, i.e.,
under a certain threshold7. Furthermore, minhash values can be employed for
efficiently estimating the Jaccard similarity [20] of two attributes (line 4 in Al-
gorithm 1). Blast follows this approach and stores minhash values in an array,
which dominates the space complexity of Algorithm 1. The space complexity of
such an array is Opn¨pN1`N2qq, where n is the number of minhash values, and
N1 and N2 are the cardinalities of AP1

and AP2
, respectively; thus, Algorithm 1

has a Opn¨pN1 `N2qq space complexity.

6The LMI attribute representation model can be used with Attribute Clustering [7] as well.
7For our experiments we found that a threshold of 0.4 works well for all the dataset,

but even lower thresholds can be employed; see Section 5.6 for experiments about the LSH
threshold.

13

Jaccard Similarity

Probability
of two attributes
being identical

in at least one band

estimated
threshold

Figure 5: The depicted curve represents the probability of two attributes to be con-
sidered “similar” (y-axis) in function of their actual similarity (x-axis), when LSH is
employed (with the parameters r“5 and b“30).

Entropy Extraction

To characterize each attribute cluster generated during the attribute-match
induction, Blast employs the Shannon entropy of its attributes. The entropy of
an attribute is defined as follows [21]:

Definition 3. Entropy. Let X be an attribute with an alphabet X and con-
sider some probability distribution ppxq of X. We define the entropy HpXq
by:

HpXq “ ´
ÿ

xPX
ppxq log ppxq

Intuitively, entropy represents a measure of information content : the higher
the entropy of an attribute, the more significant is the observation of a particular
value for that attribute. In other words, if the attribute assumes predictable val-
ues (e.g., there are only 2 equiprobable values), the observation of the same value
in two different entity profiles does not have a great relevance; on the contrary,
if the attribute has more unpredictable values (e.g., the possible equiprobable
values are 100), observing two entity profiles that have the same value for that
attribute can be considered a more significant clue for entity resolution.

For example, considering the data source 1 of Figure 1(a), the probability for
a tuple to have as attribute Name the value “Ellen”, i.e., pp“Ellen”q, is 2{3 “ 0.67,
while the probability of having “John jr” as value is 1{3 “ 0.33; thus, the entropy
for the attribute Name is:

HpNameq “ ´pp“Ellen”q ¨ log pp“Ellen”q ´ pp“John jr”q ¨ log pp“John jr”q “ 0.63

While, the entropy of the attribute Surname is 1.1, since all the tuples have
different values for that attribute:

HpSurnameq “ ´pp“Abraham”q ¨ log pp“Abraham”q´pp“Smith”q ¨ log pp“Smith”q

14

´pp“Simons”q ¨ log pp“Simons”q “ 1.1

in this case ppxq “ 1{3 “ 0.33.
In Blast the importance of a blocking key is proportional to the entropy of

the attribute from which it is derived. This is obtained weighting the blocking
graph according to the entropies (shown in section 3.3.1). To do so, an entropy
value for each group of attributes is derived by computing the aggregate entropy.
The aggregate entropy of a group of attributes Ck is defined as:

H̄pCkq “ 1

|Ck| ¨
ÿ

AjPCk

HpAjq (1)

When a schema-agnostic blocking (e.g. Token Blocking) is applied in com-
bination with attribute-match induction, each blocking key bi is uniquely as-
sociated with a cluster Ck, bi ÞÑ Ck. For instance, considering the example of
Figure 1(b), the token “Abram”, disambiguated with attribute-match induction,
can represent either the blocking key “Abram c1” associated with the cluster C1,
or the blocking key “Abram c2” associated with the cluster C2; where C1 is com-
posed of the attributes Name of p1 and FullName of p3, while C2 is composed of
the attributes addr. of p2 and Address of p4.

For meta-blocking, Blast employs hpBjq the entropy associated with a set of
blocking keys Bj :

hpBjq “ 1

|Bj | ¨
ÿ

biPBj

hpbiq (2)

where hpbiq “ H̄pCkq is the entropy associated to a blocking key bi ÞÑ Ck.

3.2. Loosely Schema-aware Blocking

(Phase 2 in Figure 4) In Blast we employ Token Blocking, as in [7]. Other
blocking techniques (e.g., employing q-grams instead of tokens, as in [22]) can
be adapted to this scope as well, but comparing them is out of the scope of this
paper. For sake of presentation, we call Loose Schema Blocking the combi-
nation of Loose attribute-Match Induction and Token Blocking. The results is
that each token (i.e., blocking key) can now be disambiguated according to the
cluster of the attribute in which it appears, while in classical Token Blocking
each token represents a unique blocking key. The example in Figure 2 gives an
intuition of the benefits of this approach. Disambiguating the token “Abram”
according to the attribute in which it appears avoids to index together some
non-matching profiles. This affects the blocking graph weighting, and, at the
end of the meta-blocking allows us to avoid one superfluous comparison.

3.3. Loosely Schema-aware Meta-blocking

(Phase 3 in Figure 4) Blast introduces a novel node-centric meta-blocking
technique designed to exploit loose schema information.

Papadakis et al. [12] demonstrated that node-centric blocking-graph pruning
criteria (i.e., WNP and CNP) outperforms the global ones (i.e., WEP and CEP),

15

pv pp3q pv p p3q
pu pp1q n11 p4q n12 p2q n1` p6q

 pu p p3q n21 p3q n22 p3q n2` p6q
n`1 p7q n`2 p5q n`` p12q

Table 1: Contingency table for pu, pv. In parentheses an example derived from blocks
in Figure 1(b).

and that weight-based pruning criteria outperform the cardinality-based ones in
terms of recall, but at the expense of precision. Loose schema information can
be exploited to significantly enhance precision; for this reason, and considering
the aforementioned results achieved by [12], as a design choice, Blast employs a
weight-based, node-centric pruning criterion (i.e., WNP).

In the following the two steps of Blast meta-blocking are described. In the
first step, the blocking graph GBtVB, EB,WBu is generated weighting the edges
according to a weighting schema designed to capture the relevance of the profiles
co-occurrence in the blocks, and to exploit the attribute entropies. The second
step consists in a novel pruning criterion.

3.3.1. Blocking Graph Weighting

Considering two entity profiles pu and pv, the contingency table, describing
their joint frequency distribution in a given block collection, is shown in Table 1.
The table describes how entity profiles pu and pv co-occur in a block collection.
For instance: the cell n12 represents the number of blocks in which pu appears
without pv (the absence is denoted with “ ”); the cell n2` represents the number
of blocks in which pu is not present (independently of pv). These values are also
called observed values. As an example, the values in parentheses are values
derived from the block collection of Figure 1(b) for the profiles p1 and p3.

Given this representation, Blast employs Pearson’s chi-squared test (χ2)
[23] to quantify the independence of pu and pv in blocks; i.e., testing if the
distribution of pv, given that pu is present in the blocks (first row of the table),
is the same as the distribution of pv, given that pu is not present (the second
row in the table). In practice, the chi-squared test measures the divergence of
observed (nij) and expected (µij) sample counts (for i “ 1, 2, j “ i, 2). The
expected values are with reference to the null hypothesis, i.e., assuming that pu
and pv appear independently in the blocks. Thus, the expected value for each
cell of the contingency table is: µij “ pni` ¨ n`jq{n``.

Hence, the weight wuv associated to the edge between the nodes representing
the entity profiles pu and pv is computed as follows:

wuv “ χ2
uv ¨ hpBuvq

“
ÿ

iPt1,2u

ÿ

jPt1,2u

pnij ´ µijq2
µij

¨ hpBuvq (3)

16

Notice that Blast uses the test statistic as a measure that helps to highlight
particular profile pairs ppu, pvq that are highly associated in the block collection,
and not to accept or refuse a null hypothesis. The correcting entropy value just
weight the importance of the blocks in which a co-occurrence appear, since not
all the blocks are equally important (as discussed in section 3.1.1).

3.3.2. Graph Pruning

Selecting the pruning threshold is a critical task. We identify a fundamental
characteristic that a threshold selection method, in WNP, must present: the
independence of the local number of adjacent edges, to avoid the sensitivity
to the number of low-weighted edges in the blocking graph. In fact, this issue
arises when employing threshold selection functions that depend on the number
of edges, such as the average of the weights [12]. To illustrate this phenomenon,

p7

p1

p3

p2

p4

4 2

1

1

1
p6

{“client”:
 {“name”: John White},
 {“additional info.”:
 {“work”: Teacher},
 {“Loc”: Piermont, 3828}
 }
 }

p6 {“contact”:
 {“name”: John White},
 {“b.day”: 28 March 1985}
 }

p7

(a) (b)
Figure 6: (a) Two additional profiles for the collection in Figure 1; (b) the node-centric
representation of the blocking graph for p1.

consider again the example in Figure 6. Figure 6(b) shows Gp1 , the node-centric
view of the GB for the profile p1.

If the profile collection (as in Figure 1(a)) is composed only of the profile
set tp1, p2, p3, p4u, the resulting graph Gp1 has only 4 nodes and 3 edges. In
this scenario the average of the edge weights (the local pruning-threshold) is
slightly greater than 2. Thus, only the edge between p1 and p3 is retained in
the pruning phase. But, if the two entity profiles in Figure 6(a) are added to
the profile collection, then two nodes and two edges are added to Gp1 . This
influences the threshold that became 1.8. Consequently, the edge between p1

and p4 is retained in the pruning phase. Therefore, the comparison of p1 and p4

depends on the presence or absence of p5 and p6 in the profile collection, even
though the similarity between those two profiles does not depend on p5 and p6.

In Blast we introduce a weight threshold selection schema independent of
the number of edges in the blocking graph.

Local Threshold Selection. In the node-centric view of the blocking graph,
the edge with the highest weight represents the upper bound of similarity for the
combination of the underlying blocking technique and weighting function; so,
we propose to select a threshold independent of the number of adjacent edges

17

w pj
pi

θi
θj

pi pj pi pj pi pj pi pj

(i) (ii) (iii) (iv)

(w>θi) (w>θj) (w<θi) (w<θj) (w>θi) (w<θj) (w<θi) (w>θj)

(a)

(b)
Figure 7: Weight threshold. A directed edge from pi to pj indicates that the weight of
the edge eij is higher than θi; a directed edge from pj to pi indicates that the weight
of the edge eij is higher than θj .

by considering a fraction of this upper bound:

θi “ M

c
(4)

where M is the local maximum weight, and c an arbitrary constant. A value
for c that has shown to be efficacious with real dataset is c“2; a higher value
for c can achieve higher recall, but at the expense of precision.

Having determined the local threshold for each node, the last step to perform
is the retention of the edges. Though, in node centric pruning, each edge eij
between two nodes pi and pj is related to two thresholds: θi and θj (Figure
7(a)); where θi and θj are the threshold associated to pi and pj , respectively.
Hence, as depicted in Figure 7(b), each edge eij has a weight that can be: (i)
lower than both θi and θj , (ii) higher than both θi and θj , (iii) lower than θi
and higher than θj , or (iv) higher than θi and lower than θj . Cases (i) and (ii)
are not ambiguous, therefore eij is discarded in the first case, and retained in
the second one. But, cases (iii) and (iv) are ambiguous.

Existing meta-blocking papers [12] propose two different approaches to solve
this ambiguity: redefined WNP retains eij if its weight is higher than at least
one of the two thresholds (i.e., a logical disjunction, so we cal this method
WNPOR), while reciprocal WNP retains the edge if it is greater than both the
threshold (i.e., a logical conjunction, so we cal this method WNPAND). Here in
Blast we choose to employ a unique general threshold, equals to:

θij “
a
θi ` θj
d

(5)

where d is a constant; for d “ 2 the resulting threshold θij is equal to the
mean of the two involved local threshold, and has shown to perform well with

18

real datasets.
The experimental section 5.3 shows how the parameters c and d influence

the performances of Blast and in particular, the tradeoff of precision and recall
for an ER task.

4. Distributed Meta-blocking

We now introduce basic concepts of MapReduce-like systems and then de-
scribe what is needed to parallelize Blast for taking full advantage out of parallel
and distributed computation.

4.1. MapReduce-like Systems

In MapReduce-like Systems, programs are written in functional style and
automatically executed in parallel on a cluster of machines. These systems also
provide automatic mechanisms for load balancing and to recover from machine
failures without recomputing the whole program by leveraging on the functional
programming abstraction (e.g., lazy evaluation in Apache Spark [24]). In the
following, we present the main functions employed to formalize MapReduce-like
algorithms in this paper with a concise and Spark-like syntax. These functions
are defined w.r.t. Resilient Distributed Dataset (RDD [24]), which are the basic
data structure in Apache Spark. In a nutshell, an RDD is a distributed and
resilient collection of objects (e.g.: integers, strings, etc.).

Basic Functions for MapReduce-like Algorithms

• map (map in MapReduce [25]) applies a given function to all elements of the
RDD returning a new RDD.

• mapPartitions: applies a given function to each RDD partition returning a
new RDD.

• reduceByKey (reduce in MapReduce [25]) reduces the elements for each key
of an RDD using a specified commutative and associative binary function.

• groupByKey: groups the values for each key in the RDD into a single collec-
tion.

• join: performs a hash join between two RDDs.

• broadcast: broadcasts a read-only variable to each node in the cluster (which
cache it).

We employ this set of functions for the sake of presentation of our algorithms
for MapReduce-like systems (Section 4.2). Yet, the algorithms discussed in this
paper employing such functions are general enough to run on any MapReduce-
like systems.

In MapReduce-like systems implementations, functions like join and groupByKey

are notoriously expensive, due to the so-called shuffling of data across the
network [26]. In fact, they involve redistribution of the data across partitions

19

with the consequent overheads: data serialization/deserialization, transmission
of data across the network, disk I/O operations. For instance, join implies
that all the records that have the same key are sent to the same node. Whereas,
map and mapPartitions are usually fast to compute, because data is locally
processed in memory, and no shuffling across the network is required [26].

4.2. Blast on MapReduce-like Systems

4.2.1. Distributed Blocks Generation

For the loose information extraction and loosely schema-aware blocking (Phases
1 and 2 in Figure 4), adapting the proposed solution of Section 3 to the MapRe-
duce paradigm is straightforward. It only requires an underlying MapReduce-
based LSH algorithm (such as [27]). Then, adapting Token Blocking to the
MapReduce paradigm is straightforward as well (it essentially builds an inverted
index).

The main challenge for the parallelization of Blast is related to the graph-
based meta-blocking step. In fact, the blocking-graph, defined in Section 2, is an
abstract model useful to formalize and devise meta-blocking methods. However,
materializing and processing the whole blocking-graph may be challenging in the
context of big data due to the size of such a graph. For this reason, algorithms
for processing the blocking-graph have been proposed to scale meta-blocking to
large datasets on MapReduce-like systems [13]. Their basic idea is to distribute
the blocking-graph processing on multiple machines, trading a fast execution
for high resource occupation.

In the following, firstly we revise the state-of-the-art blocking-graph process-
ing algorithm, i.e., repartition meta-blocking8[13], discussing its limitations;
then, we present our novel algorithm called broadcast meta-blocking, which
overcome these limitations.

4.2.2. Distributed Blocking-graph Processing

Repartition meta-blocking— At the core of repartition meta-blocking [13]
there is a full materialization of the blocking graph.

Algorithm 2 describes the repartition meta-blocking with pseudocode. Firstly,
for each profile and for each of its blocking key, a pair xkey, profiley is gener-
ated (Lines 3-5). The result can be seen as a table PK with two columns: key
and profile. Then, a self-join on PK (Line 6) and a group by profile (Lines 7)
are performed. In practice, this corresponds to a graph materialization, since
each node is associated with a copy of its local neighborhood. As a matter of
fact, each element of PG (Line 7) is a set of pairs xpi, pjy, where pi is fixed and
pj is a profile sharing at least one blocking key with pi.

8In [13] this algorithm is called entity-based parallel meta-blocking (an example is shown
in Figure 14 of [13]) and it is the state-of-the-art (i.e., fastest and efficient) algorithm for
performing node-centric pruning on the blocking graph; we coined the term repartition meta-
blocking for the analogy with the repartition join algorithm [28].

20

Algorithm 2 Repartition Meta-blocking [13]

Input: P , the profile collection
Output: C, the list of retained comparisons

1: PK Ð H
2: C Ð tu // retained comparisons

3: map xprofiley P P
4: for each k P getKeyspprofileq do
5: PK Ð PK Y xkey, profiley
6: P J Ð PK join PK on key // self-join

7: PG Ð groupByKey pP Jq
8: map xprofileNeighborhoody P PG
9: Cp Ð prune(profileNeighborhood)

10: C.appendpCpq

Finally, for each profile pi and its neighborhood (Lines 8-10), a pruning
function computes a local threshold θi and retains only the edges with a weight
higher than θi (Lines 9)9.

Optimization note— When implementing repartition meta-blocking, for allevi-
ating the network communication bottleneck, blocks and profiles are represented
by their ids, as proposed in [13]. This means that, for Algorithm 2, the pair
xkey, profiley (in Line 5) is a pair of identifiers: the first id represents the key
(i.e., the block), the second id represents the entity profile.

Example 1. An example of the execution steps of repartition meta-blocking is
shown in Figure 8. Five profiles are grouped in three partitions: {p1}, tp2; p3}
and tp4; p5}. Each partition is assigned to a worker (i.e., a physical compu-
tational node) that computes the xkey, profiley pairs (Step 1). The resulting
set of pairs PK is then employed for a self join in order to yield the bag of
all the comparison pairs xpi, pjy; this step (Step 2) requires a shuffling of the
data (PK) through the network (note that only the ids of the profiles are sent
around the network). The comparison pairs are assigned to a worker according
to their keys, so the group by operator partitions them to materialize the neigh-
borhoods within each worker (Step 3). Thus, in parallel, each neighborhood can
be processed to generate the final restructured block collection (Step 4).

The bottleneck of repartition meta-blocking is the join (Line 6 in Algorithm
2). In fact, Efthymiou et al. [13] describe it as a standard repartition join [28]
(a.k.a. reduce-side join), a notoriously expensive operator for MapReduce-like
systems10. A workaround for this issue could be the employment of broadcast

9Some pruning functions requires as input both the local threshold of the current node pi
and the local threshold of its neighbors; in this case, (Lines 8-10) are executed two times: first,
for computing all the thresholds (which are then broadcasted); then, for the actual pruning.

10We make explicit the join operator: Efthymiou et al. present their algorithms in [13] by
using a only map and reduce functions.

21

G
R

O
U

P
B

Y

<p1, p2>
<p1, p2>
<p1, p3>
<p1, p3>

p1 = {A, B, C}

p2 = {B, C, D}
p3 = {B, C, E}

p4 = {D, E, F}
p5 = {D, F, G}

<A, p1>
<B, p1>
<C, p1>

<B, p2>
<C, p2>
<D, p2>
<B, p3>
<C, p3>
<E, p3>

<D, p4>
<E, p4>
<F, p4>
<D, p5>
<F, p5>
<G, p5>

<p2, p1>
<p2, p1>
<p2, p3>
<p2, p3>
<p2, p4>
<p2, p5>

<p5, p2>
<p5, p4>
<p5, p4>

<p3, p1>
<p3, p1>
<p3, p2>
<p3, p2>
<p3, p4>

<p4, p2>
<p4, p2>
<p4, p3>
<p4, p5>
<p4, p5>

SE
LF

-J
O

IN

Worker 1

Worker 3

Worker 2

Step 1

Step 2

Step 3

Net
.

p1:
[p2, p2, p3, p3]

p2:
[p1, p1, p3, p3, p4, p5]

p5:
[p2, p4, p4]

p3:
[p1, p1, p2, p2, p4]

p4:
[p2, p2, p3, p3, p5, p5]

<p1, p2>

<p2, p1>
<p2, p3>

<p3, p2>

<p4, p3>
<p4, p5>

<p5, p4>

pruning

pruning

pruning

pruning

pruning

Worker 4

Worker 5

Step 4

Figure 8: Repartition meta-blocking example

join [28], a join operator for MapReduce-like systems that is very efficient if
one of the join tables can fit in main memory. Unfortunately, PK (Line 6
in Algorithm 2) typically cannot fit in memory with large dataset (e.g., those
employed in our experiments in Section 5). Thus, broadcast join cannot be
employed in Algorithm 2.

Broadcast meta-blocking— To avoid the repartition join bottleneck, we pro-
pose a novel algorithm for parallel meta-blocking inspired by the broadcast join.
The key idea of our algorithm is the following: instead of materializing the whole
blocking graph, only a portion of it is materialized in parallel. This is possi-
ble by partitioning the nodes of the graph and sending in broadcast (i.e., to
each partition) all the information needed to materialize the neighborhood of
each node one at a time. Once the neighborhood of a node is materialized,
the pruning functions that can be applied are the same employed in repartition
meta-blocking [13], and (non-parallel) meta-blocking [12, 8].

The pseudocode of broadcast meta-blocking is shown in Algorithm 3 and
described in the following. Given the profile collection P the block index IB
is generated (Lines 1-2): it is an inverted index listing the profile ids of each
block (blocks are represented through ids as well). When executing Blast, the
functions buildBlocks and buildBlockIndex also extract the loose schema infor-
mation—i.e., they basically perform what is described in Section 4.2.1. Then,
IB is broadcasted to all workers (Line 4), in order to make it available to them.
On each partition, an index IP is built (Lines 5-6): for each profile it lists the
block identifiers in which it appears. Then, for each partition and for each pro-
file, by using the IP and IB indexes, a profile’s neighborhood at a time is built
locally (Lines 7-9): for each block id contained in IP it is possible to obtain

22

Algorithm 3 Broadcast Meta-blocking

Input: P , the profile collection
Output: C, the list of retained comparisons

1: B Ð buildBlockspP q
2: IB Ð buildBlockIndexpBq
3: C Ð tu // retained comparisons

4: broadcastpIBq
5: map partition xparty P P
6: IP Ð buildProfileBlockIndexpIBq
7: for each profile P part do
8: Bids Ð IP rprofile.ids
9: profileNeighborhoodÐbuildLocalGraphpBids, IBq

10: Cp Ð prune(profileNeighborhood)
11: C.appendpCpq

(p2, w=2)
(p4, w=1)

(p2, w=2)
(p3, w=1)
(p5, w=2)

p1 = {A, B, C}

p2 = {B, C, D}
p3 = {B, C, E}

p4 = {D, E, F}
p5 = {D, F, G}

B
ui

ld
 B

lo
ck

 I
nd

ex

Worker 1

Worker 3

Worker 2

Worker 4

Worker 5

Block Index

Block Index

Block Index

p1, p3

p2

p5

p4

pruning
<p5, p4>

<p4, p3>
<p4, p5>

pruning

Step 1

Step 2

Step 3

Net
.

Master

Figure 9: Broadcast meta-blocking example

from IB the list of profile ids (the neighbors). Finally, it performs the pruning
(Lines 10-11)11.

Note that the prune function employed in Algorithm 2 (Line 9) and Al-
gorithm 3 (Line 10) takes as input a profile’s neighborhood and can be any
node-centric pruning function, e.g., the one described in Section 3.3.

Example 2. An example of the execution steps of broadcast meta-blocking is
shown in Figure 9. In Step 1 the profiles are partitioned and assigned to the
workers. Then, in Step 2, the inverted index of blocks (the Block Index) is

11As for Algorithm 2, for some pruning functions, this last iteration has to be performed
twice: the first time for computing all the thresholds, the second for the actual pruning.

23

built—for the sake of the example, the intermediate steps to build the inverted
index are not depicted. This step requires a shuffling of data though the net-
work, but at a significantly lower extent compared to that needed for the self-join
operation of repartition meta-blocking. Then, the Block Index is broadcasted to
all the workers that perform the last phase of the processing (Step 2). Finally,
in Step 3, each worker processes a partition of the profile set: it materializes a
neighborhood at a time by exploiting the local instance of the Block Index, and
performs pruning to yield the final restructured block collection.

5. Evaluation

The experimental evaluation aims to answer the following questions:

Q1: What is the performance of Blast in terms of precision, recall, and execu-
tion time compared to the state-of-the-art [12]? (Section 5.1)

Q2: What is the contribution of each Blast component to the overall perfor-
mance (e.g., how the performance changes by employing the aggregate en-
tropy)? (Section 5.2)

Q3: What are good parameters c and d for the pruning threshold of Blast (see
Section 3.3.2) for a good recall/precision tradeoff? (Section 5.3)

Q4: How efficient is broadcast meta-blocking, compared to repartition meta-
blocking [13]? (Section 5.4)

Q5: How does Blast (with broadcast meta-blocking) scale when varying the
number of machines available for the ER processing? (Section 5.5)

Q6: How does the LSH-based step affects the Blast processing? (Section 5.6)

Q7: What is the performance of Blast w.r.t. traditional meta-blocking when no
schema-alignment is required (i.e., with a single data source with known
schema containing duplicates)? (Section 5.7)

Q8: What is the performance of Blast w.r.t. traditional meta-blocking in a
multi-data source context (i.e., when the number of data sources is greater
than 2)? (Section 5.8)

Experimental Setup

Hardware and Software—All the experiments are performed on a ten-node
cluster; each node has two Intel Xeon E5-2670v2 2.50 GHz (20 cores per node)
and 128 GB of RAM, running Ubuntu 14.04. All the software is implemented
in Scala 2.11.8 and available at [29]. To assess the performance of the state-of-
the-art meta-blocking methods we re-implemented all of them for running on
Apache Spark as well. We employ Apache Spark 2.1.0, running 3 executors on

24

Size |P1| ´ |P2| |A1| ´ |A2| |DP |
articles1 (*) small 2.6k - 2.3k 4 - 4 2.2k
articles2 (*) small 2.5k - 61k 4 - 4 2.3k
products (*) small 1.1k - 1.1k 4 - 4 1.1k
movies small 28k - 23k 4 - 7 23k
articles3 (*) large 1.8M - 2.5M 7 - 7 0.6M
dbpedia large 1.2M - 2.2M 30k - 50k 0.9M
freebase large 4.2M - 3.7M 37k - 11k 1.5M

Table 2: Dataset characteristics: number of entity profiles, number of attribute names,
and number of existing matches. An exact schema alignment can be achieved only on
starred “(*)” datasets.

each node, reserving 30 GB of memory for the master node. We set the default
parallelism to twice the number of cores as suggested by best practice12.

Datasets—Table 2 lists the 7 real-world datasets employed in our experiments.
They have different characteristics and are from a variety of domains. The
small datasets (i.e., articles1, articles2, products, and movies) are used
only when evaluating the performance in terms of recall and precision, since their
time performance on distributed setting is not significant. (Table 4 reports the
definition of precision and recall from Section 2.)

All the datasets match two different data sources for which the ground truth
of the real matches is known. From [30]: articles1 matches scientific articles
extracted from dblp.org and dl.acm.org; articles2 matches scientific articles
extracted from dblp.org and scholar.google.com. products matches products
extracted from Abt.com and Buy.com. From [7]: movies matches movies
extracted from imdb.com and dbpedia.org; dbpedia matches entity profiles from
two different snapshots of DBpedia (2007 and 2009)13. From [31]: articles3

matches scientific articles extracted from Citeseer and DBLP. Finally, freebase
is derived from the Billion Triple Challenge 2012 Dataset [32]: it is composed
by two datasets, one contains the data of DBpedia 3.7, the other one the data of
Freebase; we cleaned these two datasets keeping only the information in English,
removing other languages; the ground truth is represented by the owl:sameAs
relationships between them.

Methods Configurations and Results Analysis—For each dataset, the ini-
tial block collection is extracted through a redundant blocking technique (either
Token Blocking or Loose Schema Blocking). Then, the block collection is pro-
cessed with Block Purging and Block Filtering [12], which aim to remove/shrink
the largest blocks in the collection. Block Purging discards all the blocks that
contain more than half of the entity profiles in the collection, corresponding
to highly frequent blocking keys (e.g. stop-words). Block Filtering removes

12https://spark.apache.org/docs/latest/tuning.html
13Only 25% of the name-value pairs are shared among the two snapshots, due to the constant

changes in DBpedia, therefore the ER is not trivial.

25

each profile pi from the largest 20% blocks in which it appears14. The time
required by both Block Purging and Block Filtering is negligible compared to
the meta-blocking phase, thus not listed in the experimental results.

The schema-agnostic meta-blocking methods can be executed on blocks gen-
erated with both Token Blocking and with Loose Schema Blocking, while Blast
is compatible with the latter only, since it exploits the loose schema information.

For the schema-agnostic meta-blocking methods, we report the average val-
ues of recall, precision, F1-score15 and time obtained by executing each method
in combination with each of the five weighting schemas proposed in [7]16. We
also report that no traditional weighting schema and pruning strategy combi-
nation performs better than the other on the considered datasets, confirming
the results of [7].

Finally, for the time measurement, we report the values obtained by averag-
ing the times recorded for five runs. Table 3 summarizes the acronyms used in
this Section.

5.1. Blast vs. State-of-the-art Meta-blocking

Table 3 summarizes the acronyms and configurations employed in this ex-
periment. WNP and CNP is applied on block collections generated both with
Token Blocking (TB) and Loose Schema Blocking (LSB), and employing both
redefined (WNPOR/CNPOR) and reciprocal (WNPAND/CNPAND) approaches
(see Section 3.3.2).

Figure 11 shows the result of the execution of Blast and traditional meta-
blocking on all the datasets. Compared to WNP approaches, Blast achieves
significantly higher precision and basically the same level of recall on all the
datasets. In particular Blast always outperforms LSB+WNPOR/AND, demon-
strating that the Blast weight-based pruning is actually more effective than the
traditional ones.

Compared to TB+CNPOR/AND, Blast achieves higher precision on all the
datasets, with the exception of articles2 and freebase, where CNPAND has
a higher precision (Figure 11(i) and Figure 11(n)). Notice though that on
articles2 and on freebase Blast achieves a recall significantly higher (Fig-
ure 11(b) and Figure 11(g)). On all the other datasets, the recall of Blast is
almost the same of TB+CNPOR/AND (Figure 11(a-g)), or slightly higher (Fig-
ure 11(b) and Figure 11(g)). Similarly, Blast outperforms LSB+CNPOR/AND

14This heuristic has shown to not affect recall in practice, while lighting the blocking-graph
handling [12].

15 Hand et al. [33] have recently discussed how F1-score may be an unreliable measure for
comparing different ER algorithms. We report F1-score for the sake of completeness—it has
been used in many related works [5, 34, 35]—yet we draw conclusions on the basis of precision
and recall only.

16Among the weighting schemas proposed in [7], we did not identify an overall best performer
and an overall worst performer, confirming the results reported in [13], for this reason we report
the average precision, recall, F1-score and execution time.

26

Blocking

TB Token Blocking [7] (see Section 1)

LSB Loose-Schema Blocking (see Section 3.2)

Meta-blocking

WNP Weight Node Pruning [12] (see Section 2.3)

CNP Cardinality Node Pruning [12] (see Section 2.3)

WNPORpCNPORq
The redefined WNP (CNP) approach [12] (see Section 3.3.1).
An edge is not pruned if it weight is greater than any of
its adjacent node’s local thresholds (OR condition)

WNPANDpCNPANDq
The reciprocal WNP (CNP) approach [12] (see Section 3.3.1).
An edge is not pruned if it weight is greater than both of
its adjacent node’s local thresholds (AND condition)

Blast

Blastχ2
Blast approach, without employing the aggregate entropy
to compute the weights of the edges (see Section 3.3.1).

BlastH
Blast approach, using the weighting schema proposed in [12]
instead of χ2 to weight the edges (see Section 3.3.1). The entropy is used.
The results reported are the average of all the weighting schema.

BlastHχ2 (or simply Blast) Blast approach (i.e., with χ2 and aggregate entropy, see Section 3).

Table 3: Acronyms and configurations.

}B} Number of comparisons entailed by a block collection B

|DP | Number of duplicates (matches) in a profile collection P

|DB| Number of duplicates (matches) indexed in at least one block b P B
recallpBq |DB|{|DP |

precisionpBq |DB|{}B}

Table 4: Metrics.

in terms of precision on all the datasets but articles2 and freebase (Fig-
ure 11(i) and Figure 11(n)). Yet, on these datasets Blast yields a higher recall
(Figure 11(b) and Figure 11(g)).

We also considered the overall execution time of the methods. For the com-
parison, we employed our Spark implementation of them, employing broadcast-
meta-blocking as core blocking-graph processing algorithm, running on a sin-
gle node (for scalability and performance on multiple nodes see Section 5.5).
In such a configuration, for the small datasets the results are not reported:
the overhead introduced by Spark in each execution does not allow to prop-
erly record the actual time efficiency of such configuration when the size of

27

(a)
0

20

40

60

Ex
ec

ut
io

n
tim

e
(m

in
)

articles3

TB+WNPAND

TB+WNPOR

LSB+WNPAND

LSB+WNPOR

TB+CNPAND

TB+CNPOR

LSB+CNPAND

LSB+CNPOR

BLAST

(b)
0

20

40

60

80

dbpedia

(c)
0

100

200

300

freebase

Figure 10: Execution time of the different methods applied on blocks obtained with
the Token Blocking (TB+WNPADN/OR/CNPADN/OR) and with the Loose Schema
Blocking (LSB+WNPADN/OR/CNPADN/OR). The execution time is referred to the
meta-blocking, and it was taken on a single node on the biggest datasets.

the data is small17. The results are shown in Figure 10. Blast is always sig-
nificantly faster than CNPOR/AND on all the considered datasets and all the
configurations (up to 3.8ˆ on dbpedia in Figure 10(b)). It is also faster than
TB+WNPOR/AND on dbpedia (2.8ˆ in Figure 10(b)) and freebase (1.6ˆ in
Figure 10(c)); while, on articles3 is slightly slower (Figure 10(a)). Compared
to LSB+WNPOR/AND, Blast has almost the same execution time on dbpedia

(Figure 10(b)) and freebase (Figure 10(c)); while on articles3 is slightly
slower (Figure 10(a)).

Overall, we conclude that Blast yields the same recall and a significantly
higher precision of the best performing schema-agnostic meta-blocking meth-
ods [12], on each dataset 18. The only exception is LSB+CNPOR/AND, which
achieves higher recall than Blast on two of the seven considered datasets (Fig-
ure 11(i) and Figure 11(n)), but at the same time has lower recall (Figure 11(b)
and Figure 11(g)) and is always slower than Blast Figure 10. Finally, we also
observe that Blast has time performance similar to the fastest schema-agnostic
method.

17In [11] the time for these datasets are reported for the Java implementation and the results
are analogous.

18 The differences between Blast and WNP/CNP are statistically significant according to
Student’s T-Test (with p-value ă 0.05).

28

(a)
0.00
0.25
0.50
0.75
1.00

Re
ca

ll

articles1

TB+WNPAND

TB+WNPOR

LSB+WNPAND

LSB+WNPOR

TB+CNPAND

TB+CNPOR

LSB+CNPAND

LSB+CNPOR

BLAST

(h)
0.0
0.2
0.4
0.6

Pr
ec

isi
on

articles1

(o)
0.0
0.2
0.4
0.6

F1
 sc

or
e

articles1

(b)
0.00
0.25
0.50
0.75
1.00

Re
ca

ll

articles2

(i)
0.0

0.2

0.4

Pr
ec

isi
on

articles2

(p)
0.0
0.2
0.4
0.6

F1
 sc

or
e

articles2

(c)
0.00
0.25
0.50
0.75
1.00

Re
ca

ll

products

(j)
0.0

0.1

0.2

Pr
ec

isi
on

products

(q)
0.0
0.1
0.2
0.3

F1
 sc

or
e

products

(d)
0.00
0.25
0.50
0.75
1.00

Re
ca

ll

movies

(k)
0.0

0.1

0.2

Pr
ec

isi
on

movies

(r)
0.0
0.1
0.2
0.3

F1
 sc

or
e

movies

(e)
0.00
0.25
0.50
0.75
1.00

Re
ca

ll

articles3

(l)
0.00
0.01
0.02
0.03

Pr
ec

isi
on

articles3

(s)
0.00
0.02
0.04
0.06

F1
 sc

or
e

articles3

(f)
0.00
0.25
0.50
0.75
1.00

Re
ca

ll

dbpedia

(m)
0.00
0.05
0.10
0.15

Pr
ec

isi
on

dbpedia

(t)
0.0
0.1
0.2

F1
 sc

or
e

dbpedia

(g)
0.00
0.25
0.50
0.75
1.00

Re
ca

ll

freebase

(n)
0.00

0.02

0.04

Pr
ec

isi
on

freebase

(u)
0.00
0.02
0.04
0.06

F1
 sc

or
e

freebase

Figure 11: Recall and precision achieved by the considered methods on all the datasets.
Traditional meta-blocking (WNPADN/OR and CNPADN/OR) has been combined both
with Token Blocking (TB+WNPADN/OR/CNPADN/OR) and Loose Schema Blocking
(LSB+WNPADN/OR/CNPADN/OR). Blast is based on Loose Schema Blocking for the
extraction of the loose schema information, thus it is not applicable on block collection
generate with Token Blocking. 29

5.2. Blast Components Evaluation

(a)
0.0
0.2
0.4
0.6
0.8
1.0

Re
ca

ll

articles1

(b)
0.0
0.2
0.4
0.6
0.8
1.0 articles2

(c)
0.0
0.2
0.4
0.6
0.8
1.0 products

(d)
0.0
0.2
0.4
0.6
0.8
1.0 movies

(e)
0.0
0.2
0.4
0.6
0.8
1.0 articles3

(f)
0.0
0.2
0.4
0.6
0.8
1.0 dbpedia

(g)
0.0
0.2
0.4
0.6
0.8
1.0 freebase

(h)
0.0

0.2

0.4

0.6

Pr
ec

isi
on

articles1

(i)
0.00
0.01
0.02
0.03
0.04
0.05

articles2

(j)
0.00
0.05
0.10
0.15
0.20

products

(k)
0.00
0.05
0.10
0.15
0.20

movies

(l)
0.00

0.01

0.02

0.03
articles3

(m)
0.00

0.05

0.10

0.15
dbpedia

(n)
0.000

0.001

0.002

0.003
freebase

(o)
0.0

0.2

0.4

0.6

F1
 sc

or
e

articles1

Blast 2 Blast Blast 2

(p)
0.00
0.02
0.04
0.06
0.08
0.10

articles2

(q)
0.0

0.1

0.2

0.3

products

(r)
0.0

0.1

0.2

0.3

movies

(s)
0.00

0.02

0.04

0.06
articles3

(t)
0.00
0.05
0.10
0.15
0.20
0.25

dbpedia

(u)
0.000

0.002

0.004

0.006
freebase

Figure 12: Blast running: without considering the aggregate entropy (Blastχ2); in
combination with traditional schema-agnostic weighting functions (BlastH); standard
configuration (BlastHχ2).

In this experiment we evaluate the contribution provided by each component
characterizing Blast: the aggregate entropy and the weighting function. The
results are reported in Figure 12.

We compare three different configurations of meta-blocking performed on a
block collection generated through Loose Schema Blocking : Blastχ2 , BlastHχ2 ,

BlastHχ2 , as described in Table 3.

Aggregate Entropy

The comparison of Blastχ2 and BlastHχ2 allows us to assess the contribution

of the aggregate entropy. The result in Figure 12(h-n) shows that by employing
the aggregate entropy precision increases from 1.6 (Figure 12(h)) to 3.7 times
(Figure 12(n)). At the same time, recall is almost the same on all datasets
(Figure 12(a-g)). On freebase, BlastHχ2 even achieves both recall and precision

significantly higher than Blastχ2 (Figure 12(g) and Figure 12(n)).
We conclude that aggregate entropy actually enhances meta-blocking.

Chi-squared weighting

Blast employs a weighting function derived from the chi-squared (χ2) sta-
tistical test designed to quantify the significance of the co-occurrences (see Sec-
tion 3.3). For assessing the performance of this weighting function, BlastH

is compared with BlastHχ2 . The result is shown in Figure 12. Recall is al-

most the same for all the datasets for BlastH and BlastHχ2 (Figure 12(a-g)),

while BlastHχ2 achieves a considerably higher precision (Figure 12(h-n)), e.g. on

30

dbpedia (Figure 12(m)) precision has a 16ˆ improvement. The only exceptions
are articles2 and freebase: on the former, BlastHχ2 achieves almost the same

recall and precision yielded by BlastH (Figure 12(b) and Figure 12(i)); on the
latter, BlastH has a 4.6% higher recall, yet BlastHχ2 yields a precision more than

twice higher than BlastH (Figure 12(n)).
We conclude that our weighting function actually enhances meta-blocking

performance.

5.3. Blast sensitivity to parameters

From Section 3.3.2, to perform the graph pruning, Blast computes a local
threshold θi for every profile pi. This local threshold is computed as θi “ M

c
(from Equation 4), where M is the local maximum weight, and c is an arbitrary
constant. Then, for retaining an edge between two profiles pi, pj , a unique

threshold θij is computed as θij “
?pθ2i`θ2j q

d (from Equation 5), where d is an
arbitrary constant.

The constants c and d can be reduced to a unique constant t “ c ¨ d, as
shown below:

2 3 4 5 6 7 8 9 10
t

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

articles2

2 3 4 5 6 7 8 9 10
t

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

products

2 3 4 5 6 7 8 9 10
t

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

movies

2 3 4 5 6 7 8 9 10
t

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

articles3

2 3 4 5 6 7 8 9 10
t

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

dbpedia

Precision Recall F1 score

2 3 4 5 6 7 8 9 10
t

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

freebase

Figure 13: Blast sensitivity: these charts shown the variations of precision, recall, and
F1 score in function of the t parameter.

θij “ 1

c
¨
d

pθi
d
q
2

` pθj
d
q
2

“ 1

c
¨
d
θ2
i

d2
` θ2

j

d2
“ 1

c
¨
c

1

d2
¨ pθ2

i ` θ2
j q

“ 1

c ¨ d ¨
b
θ2
i ` θ2

j “
1

t
¨
b
θ2
i ` θ2

j (6)

31

We perform a preliminary experiment by varying t in the range p2, 10q in
order to choose the best values for c and d. Notice that it is not possible to set
t ď 1, otherwise θij ą maxpθi, θjq, so every edge will be pruned. Furthermore,
we limit t ě 2 because, in practice, lower values of t yields very poor recall for
many of the analyzed datasets.

The results are shown in Figure 13. In general, we observe that the recall
increases as t increases, but at the expense of precision. As a trade-off for
precision and recall, for all the experiments in this paper, we employ t “ 4
(setting c “ 2 and d “ 2). As a matter of fact, on all the datasets, increasing t
above 4 the loss of precision is traded for a little gain in the recall.

5.4. Broadcast vs. Repartition Meta-blocking

The goal of this experiment is to compare the efficiency of broadcast meta-
blocking (Algorithm 2) and repartition meta-blocking (Algorithm 3). Both the
algorithms can be employed as core graph-processing algorithms for any meta-
blocking method. Thus, we evaluate them in combination with WNP and CNP,
in order to analyze how they perform on both family of meta-blocking, i.e.,
those based on weight-threshold, and those based on cardinality-threshold (see
Section 2.3). To minimize additional overhead, we run them in combination
with the computationally cheapest weighting function, i.e., block co-occurrence
frequency (we record analogues trends with other weighting functions). The
experiment was performed on 10 nodes. We consider only the large datasets
since the overhead introduced by Spark does not pay off on the small ones on
multiple nodes. Notice that both algorithms perform the same logical operation,
that is the final recall and precision are the same on all the datasets, hence not
reported here.

(a)
0

10

20

30

Ex
ec

ut
io

n
tim

e
(m

in
)

Citations

Broadcast WNP
Repartition WNP

Broadcast CNP
Repartition CNP

(b)
0

10
20
30
40

DBpedia

(c)
0

50

100

150
Freebase

Figure 14: Repartition vs. Broadcast meta-blocking. For each dataset we report two
different strategies for the prune functions, i.e., the weight- and cardinality-based
pruning. This times was taken on 10 nodes.

The results are reported in Figure 14: broadcast meta-blocking is faster
than repartition meta-blocking from 4.9 to 12.7 times for WNP, and from 7.7
to 10.1 times for CNP. To analyze the scalability of the algorithms, we report
in Figure 15 their execution times in function of the number of nodes (from 1 to

32

10) on freebase (the largest dataset). In our setting, repartition meta-blocking
is not able to run with less than 7 nodes; whereas broadcast meta-blocking on
a single node is 3 to 4 times faster than the execution time of the repartition
meta-blocking on 10 nodes.

1 3 5 7 10
Number of nodes

101

102

Ex
ec

ut
io

n
tim

e
(m

in
)

 lo
ga

rit
hm

Broadcast WNP
Broadcast CNP
Repartition WNP
Repartition CNP

Figure 15: Scalability comparison: repartition vs. broadcast meta-blocking on
freebase.

We conclude that the broadcast meta-blocking is always faster than the
repartition meta-blocking.

5.5. Parallel-blast scalability

Finally, we assess the scalability of parallel Blast by varying the number of
nodes in the cluster (1, 3, 5, 7 and 10 nodes). For this experiment we employ
freebase, which is the heaviest dataset to process due to the huge number of
comparisons yielded by the blocking phase (2.23ˆ 1013 comparisons), and to
its large number of attributes (47, 945 distinct attributes).

Figure 17 shows the scalability of each blocking step, i.e.: Loose Schema
Blocking (LSB, which is composed of Loose attribute-Match Induction in combi-
nation of Token Blocking), and Loose Schema Meta-Blocking (LS-MB). Figure
16 shows the speedup of each blocking step, which is sub-linear to the number
of nodes in the cluster (i.e. 10x nodes, the overall speedup do not reach 5).
For each step, we observe at least a 50% reduction of execution time from 1
to 3 nodes. Then, the execution times continuously decrease until reaching an
overall speedup on 10 nodes of 4.2ˆ.

The time and speedup reported so far only consider the blocking and meta-
blocking phase of an ER process. In practice, all the comparisons generated
through any blocking process have to be compared by means of an Entity Res-
olution Algorithm, which is a binary function that takes as input two profiles
and decides whether or not they are matching [36, 5]. Such a function is typi-
cally expensive, e.g., involving string similarity computations, calls to external

33

resources or even human intervention (i.e., crowdsourcing). Thus, the more the
employed function is expensive, the more useful a good blocking (and meta-
blocking) method is; in other words: the resources saved avoiding superfluous
comparisons are proportional to the complexity of the Entity Resolution Al-
gorithm. Hence, we now compare Blast and WNP using a näıve (i.e., cheap)
Entity Resolution Algorithm for showing that Blast significantly reduce the over-
all execution time of a complete ER process. We employ as Entity Resolution
Algorithm the computation of the Jaccard Similarity of the two profiles involved
in each comparison19.

1
2
3
4
5

Freebase

1
2
3
4
5

Sp
ee

du
p

1
2
3
4
5

1 3 5 7 10
Number of nodes

1
2
3
4
5

LMI TB LS-MB OVERALL

Figure 16: Speedup of Blast on freebase.

19In a real-world scenario, a threshold would be required to discriminate between matching
and non-matching pairs.

34

1 3 5 7 10
Number of nodes

0

50

100

150

200

250
Ex

ec
ut

io
n

tim
e

(m
in

) Freebase

LMI TB LS-MB
Figure 17: Execution time of Blast on freebase.

Figure 18 shows the execution time of Blast and WNP in combination with
the näıve Entity Resolution Algorithm20 and by varying the number of nodes.
We observe that the meta-blocking phase of Blast is slower than standard
schema-agnostic WNP. This is not surprising, since Blast performs an addi-
tional step compared to WNP (i.e., Loose attribute-Match Induction). Yet, the
overall ER process employing Blast is significantly faster that employing WNP,
since it retains much fewer comparisons (3.80 ¨ 108 of Blast vs. 2.17 ¨ 1010 of
WNP). Please, recall that Blast and WNP, on freebase, achieve the same
recall (Figure 11(g)).

20The average comparison time on freebase is 0.05 ms.

35

1 3 5 7 10
Nodes number

(a)

0

5

10

15

20

25
Ex

ec
ut

io
n

tim
e

(h
)

2.17 1010

comparisons executed

Schema agnostic
(meta-)blocking

TB+WNP Blast Entity Resolution algorithm

1 3 5 7 10
Nodes number

(b)

0

5

10

15

20

25

Ex
ec

ut
io

n
tim

e
(h

)

3.80 108

comparisons executed

Loosely schema-aware
(meta-)blocking

Figure 18: Execution time of the complete ER process on freebase, varying the
number of execution nodes in the cluster. The whole ER process is composed of a
blocking phase, which generates candidate pairs that are compared through an Entity
Resolution Algorithm. In (a), the blocking method employed is Token Blocking in
combination with WNP meta-blocking. In (b), the blocking method employed is Blast.

5.6. LSH-based Loose Schema Blocking

This section aims at assessing the benefit of the LSH-based step. To do that,
consider the worst case scenario: when Loose Schema Blocking (see Section 3.2)
does not identify any similar attribute, all the attributes are grouped in a unique
all-encompassing cluster (the glue cluster [7]). In this scenario, the blocks gen-
erated combining Loose Schema Blocking are identical to those generated with
Token Blocking alone. On the other hand, if Loose Schema Blocking correctly
groups some similar attributes, separating them from the glue cluster, the pre-
cision of the produced block collection increases, while recall remains almost the
same.

Ideally, the more the similar attributes are correctly grouped, the higher
the precision of the generated blocks is, without affecting the recall. Hence, to
demonstrate the advantage of LSH-based Loose Schema Blocking, we perform
a set of experiments “disabling” the glue cluster and varying the threshold of
LSH. This means that, without the glue cluster, all the attributes that are not
indexed in a group of similar attributes are discarded, and so are the tokens of
their values. If significant tokens are not employed as blocking key, the recall of
the final blocks is negatively affected. So, varying the threshold of LSH changes
the group of similar attributes. In fact, if two attributes are less similar21 than

21Jaccard similarity, since we are employing min-hash.

36

the threshold, Loose Schema Blocking does not consider them as a candidate
pair, and they cannot be indexed in the same group.

Figure 19 shows how LSH affects the final results of Blast combined with
Loose Schema Blocking in terms of recall on dbpedia (other datasets yields
analogous resutls). Table 5 reports the execution times of the experiment. We
consider the recall of the block collection produced with Loose Schema Blocking
only, without considering the meta-blocking phase. Basically, up to a threshold
value of 0.35 (i.e., Jaccard similarity equals to 0.35), the recall is not affected
(recall “ 99.99%), meaning that (almost22) all the matching profile pairs are
successfully indexed in the block collection. The precision is not reported, but
for the points where recall “ 99.99% is identical, i.e., it is not affected by the
LSH threshold. For a threshold greater than 0.35, on the contrary, the tech-
niques start failing to index some profile pairs, entailing a degradation of the
final result. In other words, for thresholds that exclude too many attribute
comparisons, Loose Schema Blocking fails to recognize similar attributes and
produces an incomplete cluster of attributes. Nevertheless, even for a conserva-
tive threshold (e.g. 0.10), the execution of Loose Schema Blocking, overall, is
under 2h (instead of „12h).

Figure 19: Recall with different LSH configurations in combination with Loose Schema
Blocking on dbpedia. In the legend number of rows and number of bands for LSH are
in parenthesis, and t is the estimated threshold.

´ LSH0.10 LSH0.22 LSH0.32 LSH0.41 LSH0.55 LSH0.64

12.5 h 1.9 h 1.5 h 1.3 h 1.2 h 0.9 h 0.7 h

Table 5: Loose Schema Blocking run time varying the LSH threshold. The leftmost
column reports the execution time of Loose Schema Blocking without employing LSH
(i.e., computing the Jaccard similarity of all possible pair of attributes).

22Loose Schema Blocking (as any other blocking technique) may yield false negative, i.e.,
pairs of profile that are not indexed in any block; for this reason the recall is not 100%.

37

Blast WNPOR WNPAND CNPOR CNPAND

recallp%q 74.7 78.3 68.3 84.4 78.7
precisionp%q 8.90 8.02 11.5 8.8 14.2

F1 0.1590 0.1448 0.1965 0.1608 0.2361
1k profiles, Ground Truth: 300 matches

(5 attributes - 2 clusters with Loose Schema Blocking)
(a) census

Blast WNPOR WNPAND CNPOR CNPAND

recallp%q 82.1 90.3 81.2 66.9 46.2
precisionp%q 84.0 53.8 69.4 65.7 82.4

F1 0.8302 0.6726 0.7377 0.6637 0.5917
1k profiles, Ground Truth: 17k matches

(12 attributes - 4 clusters with Loose Schema Blocking)
(b) cora

Blast WNPOR WNPAND CNPOR CNPAND

recallp%q 93.7 97.3 96.1 96.8 94.9
precisionp%q 0.13 0.03 0.04 0.08 0.18

F1 0.0027 0.0005 0.0008 0.0015 0.0036
10k profiles, Ground Truth: 600 matches

(106 attributes - 16 clusters with Loose Schema Blocking)
(c) cddb

Table 6: Dirty ER results.

5.7. Dirty ER

Loose Schema Blocking is designed to identify similar attributes among data
sources that have different schemas (e.g. to identify which attributes refers
to person names in the example of Figure 1). There is a particular class of
Entity Resolution problems, called dirty ER, where single data source with
known schema is considered, as outlined in [12] (see Section 2.1.1). In this
scenario, there is inherently no need to perform loose attribute-match induction
(or schema-alignment), because there is only a single source involved that has
a unique schema. However, grouping similar attributes (if any) and extracting
aggregate entropy is possible; thus, we modified Loose Schema Blocking to work
with dirty ER (see Section 2.1.1). For the meta-blocking phase, there is no need
for changes.

To evaluate the performance of Blast we compared it against traditional
meta-blocking techniques on 3 real-world benchmark datasets [1]. Both Blast
and traditional meta-blocking are applied in combination with Loose Schema
Blocking23.

23Traditional meta-blocking in combination with Token Blocking has always worse perfor-
mances, thus we do not report here the results. The execution times for these datasets are
of the order of milliseconds and Loose Schema Blocking does not significantly affect the total
execution times.

38

#profiles #attributes
IMDB 6.4k 12
Rotten 7.3k 16
Amazon 5.3k 6
TMD 10k 5

#duplicates
Amazon-TMD 760
Amazon-Rotten 5
Amazon-IMDB 2
IMDB-Rotten 876
IMDB-TMD 53
TMD-Rotten 72

Table 7: Dataset characteristics: number of entity profiles, and number of attribute
names. On the right side, the number of duplicates between each dataset.

Results

The characteristics of the datasets and the results are listed in Table 6.
Besides recall and precision, we also consider F1-score, which is the harmonic
means of the two. This helps us to discuss the comparison of two methods that
show significantly different values of both recall and precision. Blast achieves
higher precision and F1-score than traditional WNP, and a slightly lower recall.

The only exception is on cora, where WNPOR achieves „8% higher recall
(though Blast has a „30% higher precision). Compared to CNP, Blast outper-
forms CNPOR on cora and cddb, while falls behind it on census. On census

and cddb, CNPAND outperforms Blast, but in cora its recall is considerably
low (46%).

Overall, for dirty ER, Blast can be an effective blocking technique when
the priority is to achieve high precision, without giving up a high level of re-
call (e.g., to save computational resources performing ER in a cloud-computing
environment).

5.8. Multiple Data Sources

In this experiment we want to explore the multi-data source scenario [18],
i.e. when the number of input datasets is greater than 2.

The datasets employed in this experiment have been collected from the Mag-
ellan repository [31], in particular we consider a collection of heterogeneous
records gathered online from IMDB.com, RottenTomatoes.com, TMDmoviez.com
and Amazon.com, all about movies. These datasets have been used for evaluat-
ing ER algorithms in [5]. Considered singularly, none of these datasets contains
duplicates; thus, this ER problem can be formalized as a Clean-Clean ER prob-
lem (a.k.a. Record Linkage) [14, 12] (see Clean-Clean ER in Section 2.1.1).
Thus, Blast and meta-blocking can be employed without any modification for
this experiment. Notice that if each dataset considered singularly could con-
tain duplicates, the overall problem can be reduced to a Dirty ER problem
(see Section 2.1.1) on a single dataset that is the union of all the considered
datasets [12].

The datasets characteristics are reported in Table 7. All the considered
datasets have different schemas [5]. The ground truth has been generated using
the Magellan framework [5], the number of identified duplicates between each
dataset are reported in Table 7.

39

Figure 20 reports the achieved results. Blast obtains better results both in
term of recall and precision w.r.t the standard meta-blocking (Figure 20(a-b)).

(a)
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

TB+WNPAND

TB+WNPOR

LSB+WNPAND

LSB+WNPOR

TB+CNPAND

TB+CNPOR

LSB+CNPAND

LSB+CNPOR

BLAST

(b)
0.00

0.01

0.02

0.03

0.04

0.05

Pr
ec

isi
on

(c)
0.00

0.02

0.04

0.06

0.08

0.10

F1
 sc

or
e

Figure 20: Recall and precision achieved by the considered methods on the multi-
source datataset.

6. Related Work

Blocking techniques have been commonly employed in Entity Resolution
(ER) [37, 38, 14, 5, 39, 40, 41, 42, 43], and can be classified into two broad cat-
egories: schema-based (Suffix Array [22], q-grams blocking [44], Canopy Clus-
tering [45]), and schema-agnostic (Token Blocking [7], Progressive ER [16, 46,
47, 48, 49, 50], and Attribute-match induction [7, 9]).

Attribute-match induction—Among the schema-agnostic techniques, At-
tribute Clustering (AC) [7] and TYPiMatch [9] try to extract statistics to define
efficient blocking keys. AC relies on the comparison of all possible pairs of at-
tribute profiles of two datasets to find the pairs of those most similar; this is a in-
efficient process, because the vast majority of comparisons are superfluous. Our
LSH-based preprocessing step aims to address this specific issue. TYPiMatch
tries to identify the latent subtypes from generic attributes (e.g. description,
info, etc.) frequent on generic dataset on the Web, and uses this information to
select blocking keys; but it cannot efficiently scale to large dataset.

Block manipulation—In this paper, we tackled the problem of meta-blocking,
i.e., how to restructure (manipulate) an existing blocking collection, for improv-
ing the quality of the overall ER process. The state-of-the-art, unsupervised and
schema-agnostic meta-blocking has been presented in [12]. Blast was shown to
outperform them in Section 5. Supervised meta-blocking [51, 52] extends the
blocking graph model by representing each edge as a vector of schema-agnostic
features (e.g. graph topological measures), and treats the problem of identi-
fying most promising edge as a classification problem; hence, a training set of
labeled data (matching/non-matching pairs) is required. Blast exploits the loose
schema information and does not require any training set (i.e., it is completely
unsupervised).

40

Recently, in the context of multi data-source ER, Ranbaduge et al. [18]
have proposed a blocking manipulation method for identifying entities whose
profiles span among g data sources, where g is a user bounded parameter. In
order to do that, given a block collection, the proposed method selects and
combines (manipulate) blocks that are the most promising for finding profiles
of g data sources that match together. The user can also specify a set F of
data sources, and the final result is required to have matches that involves that
set F of data sources. In [18], this task is called Multidatabase record linkage
(MDRL). Formalizing MDRL by employing the blocking graph model (Section
2.3): MDRL is the task of identifying the hyperedges of the blocking graph
that span among g nodes that belong to g distinct sources, and that are have
high weight (remember that the weight in the blocking graph corresponds to the
matching likelihood). Hence, the scope of MDRL is orthogonal to the scope of
meta-blocking [12] (and thus Blast), which tries to prune edges that correspond
to not-promising comparisons. Furthermore, the existing MDRL solution [18]
has been applied only in the context of structured data sources with well known
schemas; while Blast does not require a predefined schema (since it relies on
the loose schema information). Thus, the combination of the two methods is
not trivial, but it is surely a future direction that we aim to explore, since the
promising results achieved by Blast in the multi source scenario of Section 5.8
(where the g and F parameters are not considered).

Metadata exploitation—There is excellent related work in the semantic Web
community [17, 53, 54, 55]. For instance, LIMES [53] (an ER approach for the
Web of Data), and LOV [54] (a system attempting to standardize vocabularies)
propose techniques to exploit metadata, which may also be valuable to our
problem, but are orthogonal to our approach. In fact, Blast addresses the
blocking problem based purely on the attribute values, without considering the
semantics of the schema at all.

Entity Resolution with MapReduce-like Systems—Parallel and distributed
versions of traditional (schema-based) blocking techniques have been extensively
studied in [56, 57]. Altowim and Mehrota [58] have investigated how to gen-
erate candidate profile pairs on MapReduce-like systems in pay-as-you-go (i.e.,
progressive) fashion. Their proposed solution relies on the definition of schema-
based blocking keys. Finally, Efthymiou et al. [13] have proposed the repar-
tition meta-blocking algorithm to run graph-based meta-blocking methods on
MapReduce. In Sections 4 and 5, we extensively compare it against our pro-
posed broadcast meta-blocking algorithm.

Araújo et al. [59] have proposed a novel schema-agnostic pruning strategy
called Global Weighted Node Pruning (GWPN) that combines a local thresh-
old with a global one. The local threshold is computed for each profile as for
the WNP, while the global one is computed as the average of all the edges
weights. This strategy aims to discard the edges with a low weight that con-
nects only profiles with a very low local threshold. Compared to traditional
WNP, GWNP improves precision of 0.01%, while achieving the same recall, on
DBpedia dataset [59]. Araújo et al. also discuss a Spark implementation for

41

their strategy, which is based on the MapReduce parallel meta-blocking pro-
posed in [13], and suffers from the same limitations (see Section 4.2.2).

7. Conclusion and Future Work

In this paper we presented a holistic (meta-)blocking approach, Blast, able
to automatically collect and exploit loose schema information (i.e., statistics
gathered directly from the data for approximately describing the data source
schemas). We explained how this loose schema information can be extracted
efficiently even from highly heterogeneous and voluminous datasets through an
LSH-based step. We proposed a novel algorithm for efficiently running any
meta-blocking technique on MapReduce-like Systems. Finally, we experimen-
tally evaluated it on real-world datasets. The experimental results showed that:
(i) Blast outperforms the existing state-of-the-art meta-blocking approaches in
terms of quality of the results; (ii) our broadcast meta-blocking is always faster
than the existing state-of-the-art when leveraging on distributed and parallel
computation of MapReduce-like Systems.

Relevant research problem can be explored as future directions: in the con-
text of multi-data source ER, we aim to investigate how to combine our Loose-
Schema Aware (meta-)blocking method with MDRL solution [18] (presented in
Section 6). In the context of progressive ER (a.k.a. pay-as-you-go ER) [47], we
aim to investigate how to exploit broadcast meta-blocking to yield progressive
results, maximizing the recall on the basis of a limited resource budget (e.g.,
limited execution time, and/or computational resources). Finally, we are plan-
ning to combine our blocking technique for scaling to large data set advanced
similarity functions that leverage on external knowledge bases, such as [60], with
other MapReduce-like systems [61], and on real-world applications, such as the
deduplication of web pages tags [62].

[1] P. Christen, A survey of indexing techniques for scalable record linkage
and deduplication, IEEE transactions on knowledge and data engineering
24 (9) (2012) 1537–1555.

[2] X. L. Dong, D. Srivastava, Big data integration, Synthesis Lectures on Data
Management 7 (1) (2015) 1–198.

[3] S. Bergamaschi, D. Beneventano, F. Mandreoli, R. Martoglia, F. Guerra,
M. Orsini, L. Po, M. Vincini, G. Simonini, S. Zhu, et al., From data in-
tegration to big data integration, in: A Comprehensive Guide Through
the Italian Database Research Over the Last 25 Years, Springer, 2018, pp.
43–59.

[4] R. Baxter, P. Christen, T. Churches, et al., A comparison of fast blocking
methods for record linkage, in: ACM SIGKDD, Vol. 3, Citeseer, 2003, pp.
25–27.

42

[5] P. Konda, S. Das, P. Suganthan GC, A. Doan, A. Ardalan, J. R. Bal-
lard, H. Li, F. Panahi, H. Zhang, J. Naughton, et al., Magellan: Toward
building entity matching management systems, Proceedings of the VLDB
Endowment 9 (12) (2016) 1197–1208.

[6] J. Madhavan, S. R. Jeffery, S. Cohen, X. Dong, D. Ko, C. Yu, A. Halevy,
Web-scale data integration: You can only afford to pay as you go, in:
Proceedings of CIDR, 2007, pp. 342–350.

[7] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederee, W. Nejdl, A blocking
framework for entity resolution in highly heterogeneous information spaces,
IEEE Transactions on Knowledge and Data Engineering 25 (12) (2013)
2665–2682.

[8] G. Papadakis, G. Koutrika, T. Palpanas, W. Nejdl, Meta-blocking: Taking
entity resolution to the next level, IEEE Transactions on Knowledge and
Data Engineering 26 (8) (2014) 1946–1960.

[9] Y. Ma, T. Tran, Typimatch: Type-specific unsupervised learning of keys
and key values for heterogeneous web data integration, in: Proceedings of
the sixth ACM international conference on Web search and data mining,
ACM, 2013, pp. 325–334.

[10] C. E. Shannon, A mathematical theory of communication, SIGMOBILE
Mob. Comput. Commun. Rev. 5 (1) (2001) 3–55. doi:10.1145/584091.

584093.

[11] G. Simonini, S. Bergamaschi, H. Jagadish, Blast: a loosely schema-aware
meta-blocking approach for entity resolution, Proceedings of the VLDB
Endowment 9 (12) (2016) 1173–1184.

[12] G. Papadakis, G. Papastefanatos, T. Palpanas, M. Koubarakis, Scaling en-
tity resolution to large, heterogeneous data with enhanced meta-blocking.,
in: EDBT, 2016, pp. 221–232.

[13] V. Efthymiou, G. Papadakis, G. Papastefanatos, K. Stefanidis, T. Pal-
panas, Parallel meta-blocking for scaling entity resolution over big hetero-
geneous data, Information Systems 65 (2017) 137–157.

[14] P. Christen, Data Matching - Concepts and Techniques for Record Link-
age, Entity Resolution, and Duplicate Detection, Data-Centric Systems and
Applications, Springer, 2012. doi:10.1007/978-3-642-31164-2.

[15] V. Christophides, V. Efthymiou, K. Stefanidis, Entity resolution in the web
of data, Synthesis Lectures on the Semantic Web 5 (3) (2015) 1–122.

[16] G. Simonini, G. Papadakis, T. Palpanas, S. Bergamaschi, Schema-agnostic
progressive entity resolution, IEEE Trans. Knowl. Data Eng. (2018)doi:
10.1109/TKDE.2018.2852763.

43

[17] P. Shvaiko, J. Euzenat, Ontology matching: state of the art and future
challenges, IEEE Transactions on knowledge and data engineering 25 (1)
(2013) 158–176.

[18] T. Ranbaduge, D. Vatsalan, P. Christen, A scalable and efficient subgroup
blocking scheme for multidatabase record linkage, in: Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining, Springer, 2018, pp. 15–27.

[19] A. Z. Broder, On the resemblance and containment of documents, in: Com-
pression and complexity of sequences 1997. proceedings, IEEE, 1997, pp.
21–29.

[20] J. Leskovec, A. Rajaraman, J. D. Ullman, Mining of massive datasets,
Cambridge university press, 2014.

[21] T. M. Cover, J. A. Thomas, Elements of information theory, John Wiley
& Sons, 2012.

[22] T. De Vries, H. Ke, S. Chawla, P. Christen, Robust record linkage block-
ing using suffix arrays, in: Proceedings of the 18th ACM conference on
Information and knowledge management, ACM, 2009, pp. 305–314.

[23] A. Agresti, M. Kateri, Categorical data analysis, in: International encyclo-
pedia of statistical science, Springer, 2011, pp. 206–208.

[24] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing, in: Presented as
part of the 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), USENIX, San Jose, CA, 2012, pp. 15–28.

[25] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Communications of the ACM 51 (1) (2008) 107–113.

[26] [link].
URL https://spark.apache.org/docs/2.1.0/programming-guide.

html#shuffle-operations

[27] A. S. Das, M. Datar, A. Garg, S. Rajaram, Google news personalization:
scalable online collaborative filtering, in: Proceedings of the 16th interna-
tional conference on World Wide Web, ACM, 2007, pp. 271–280.

[28] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, Y. Tian, A com-
parison of join algorithms for log processing in mapreduce, in: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of
data, ACM, 2010, pp. 975–986.

[29] [link].
URL http://stravanni.github.io/blast/

44

[30] H. Köpcke, A. Thor, E. Rahm, Evaluation of entity resolution approaches
on real-world match problems, Proceedings of the VLDB Endowment 3 (1-
2) (2010) 484–493.

[31] S. Das, A. Doan, P. S. G. C., C. Gokhale, P. Konda, The mag-
ellan data repository, https://sites.google.com/site/anhaidgroup/

projects/data.

[32] A. Harth, Billion triples challenge data set (2012).

[33] D. Hand, P. Christen, A note on using the f-measure for evaluating record
linkage algorithms, Statistics and Computing 28 (3) (2018) 539–547.

[34] M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, N. Tang, Dis-
tributed representations of tuples for entity resolution, Proceedings of the
VLDB Endowment 11 (11) (2018) 1454–1467.

[35] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep,
E. Arcaute, V. Raghavendra, Deep learning for entity matching: A design
space exploration, in: Proceedings of the 2018 International Conference on
Management of Data, ACM, 2018, pp. 19–34.

[36] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang,
J. Widom, Swoosh: a generic approach to entity resolution, The VLDB
Journal—The International Journal on Very Large Data Bases 18 (1) (2009)
255–276.

[37] H. Köpcke, E. Rahm, Frameworks for entity matching: A comparison, Data
& Knowledge Engineering 69 (2) (2010) 197–210.

[38] F. Naumann, M. Herschel, An Introduction to Duplicate Detection, Synthe-
sis Lectures on Data Management, Morgan & Claypool Publishers, 2010.
doi:10.2200/S00262ED1V01Y201003DTM003.

[39] M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales, M. Cherniack, S. B.
Zdonik, A. Pagan, S. Xu, Data curation at scale: The data tamer system,
in: CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Re-
search, Asilomar, CA, USA, January 6-9, 2013, Online Proceedings, 2013.

[40] G. Papadakis, L. Tsekouras, E. Thanos, G. Giannakopoulos, T. Palpanas,
M. Koubarakis, The return of jedai: End-to-end entity resolution for
structured and semi-structured data, PVLDB 11 (12) (2018) 1950–1953.
doi:10.14778/3229863.3236232.

[41] V. Efthymiou, G. Papadakis, K. Stefanidis, V. Christophides, Simplifying
entity resolution on web data with schema-agnostic, non-iterative matching,
in: 34th IEEE International Conference on Data Engineering, ICDE 2018,
Paris, France, April 16-19, 2018, 2018, pp. 1296–1299.
URL https://doi.org/10.1109/ICDE.2018.00134

45

[42] A. D. Sarma, A. Jain, A. Machanavajjhala, P. Bohannon, CBLOCK: an
automatic blocking mechanism for large-scale de-duplication tasks, CoRR
abs/1111.3689. arXiv:1111.3689.
URL http://arxiv.org/abs/1111.3689

[43] U. Draisbach, F. Naumann, A generalization of blocking and windowing
algorithms for duplicate detection, in: 2011 International Conference on
Data and Knowledge Engineering, ICDKE 2011, Milano, Italy, September
6, 2011, 2011, pp. 18–24. doi:10.1109/ICDKE.2011.6053920.

[44] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,
D. Srivastava, Approximate string joins in a database (almost) for free, in:
VLDB 2001, Proceedings of 27th International Conference on Very Large
Data Bases, September 11-14, 2001, Roma, Italy, 2001, pp. 491–500.

[45] A. McCallum, K. Nigam, L. H. Ungar, Efficient clustering of high-
dimensional data sets with application to reference matching, in: Proceed-
ings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, Boston, MA, USA, August 20-23, 2000, 2000,
pp. 169–178. doi:10.1145/347090.347123.

[46] G. Simonini, G. Papadakis, T. Palpanas, S. Bergamaschi, Schema-agnostic
progressive entity resolution, in: 34th IEEE International Conference on
Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018, 2018, pp.
53–64. doi:10.1109/ICDE.2018.00015.

[47] S. E. Whang, D. Marmaros, H. Garcia-Molina, Pay-as-you-go entity res-
olution, IEEE Trans. Knowl. Data Eng. 25 (5) (2013) 1111–1124. doi:

10.1109/TKDE.2012.43.

[48] T. Papenbrock, A. Heise, F. Naumann, Progressive duplicate detection,
IEEE Trans. Knowl. Data Eng. 27 (5) (2015) 1316–1329. doi:10.1109/

TKDE.2014.2359666.

[49] D. Firmani, B. Saha, D. Srivastava, Online entity resolution using an oracle,
PVLDB 9 (5) (2016) 384–395. doi:10.14778/2876473.2876474.
URL http://www.vldb.org/pvldb/vol9/p384-firmani.pdf

[50] D. Firmani, S. Galhotra, B. Saha, D. Srivastava, Robust entity resolution
using a crowdoracle, IEEE Data Eng. Bull. 41 (2) (2018) 91–103.
URL http://sites.computer.org/debull/A18june/p91.pdf

[51] G. Papadakis, G. Papastefanatos, G. Koutrika, Supervised meta-blocking,
PVLDB 7 (14) (2014) 1929–1940. doi:10.14778/2733085.2733098.

[52] G. dal Bianco, M. A. Gonçalves, D. Duarte, Bloss: Effective meta-blocking
with almost no effort, Information Systems 75 (2018) 75–89.

46

[53] A. N. Ngomo, S. Auer, LIMES - A time-efficient approach for large-scale
link discovery on the web of data, in: IJCAI 2011, Proceedings of the
22nd International Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, 2011, pp. 2312–2317. doi:10.5591/

978-1-57735-516-8/IJCAI11-385.

[54] P. Vandenbussche, B. Vatant, Linked open vocabularies, ERCIM News
2014 (96).

[55] S. Bergamaschi, D. Ferrari, F. Guerra, G. Simonini, Y. Velegrakis, Provid-
ing insight into data source topics, J. Data Semantics 5 (4) (2016) 211–228.
doi:10.1007/s13740-016-0063-6.

[56] L. Kolb, A. Thor, E. Rahm, Dedoop: Efficient deduplication with hadoop,
PVLDB 5 (12) (2012) 1878–1881. doi:10.14778/2367502.2367527.

[57] S. Das, P. S. G. C., A. Doan, J. F. Naughton, G. Krishnan, R. Deep,
E. Arcaute, V. Raghavendra, Y. Park, Falcon: Scaling up hands-off crowd-
sourced entity matching to build cloud services, in: Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD Con-
ference 2017, Chicago, IL, USA, May 14-19, 2017, 2017, pp. 1431–1446.
doi:10.1145/3035918.3035960.

[58] Y. Altowim, S. Mehrotra, Parallel progressive approach to entity resolution
using mapreduce, in: 33rd IEEE International Conference on Data Engi-
neering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, 2017, pp.
909–920. doi:10.1109/ICDE.2017.139.

[59] T. B. Araújo, C. E. S. Pires, T. P. da Nóbrega, Spark-based streamlined
metablocking, in: Computers and Communications (ISCC), 2017 IEEE
Symposium on, IEEE, 2017, pp. 844–850.

[60] F. Benedetti, D. Beneventano, S. Bergamaschi, G. Simonini, Computing
inter-document similarity with context semantic analysis, Inf. Syst. 80
(2019) 136–147. doi:10.1016/j.is.2018.02.009.

[61] S. Bergamaschi, L. Gagliardelli, G. Simonini, S. Zhu, Bigbench workload
executed by using apache flink, Procedia Manufacturing 11 (2017) 695–702.

[62] F. Guerra, G. Simonini, M. Vincini, Supporting image search with tag
clouds: A preliminary approach, Adv. in MM 2015 (2015) 439020:1–
439020:10. doi:10.1155/2015/439020.

47

Highlights
 An unsupervised graph-based meta-blocking approach (called Blast) able to leverage this

loose schema information;

 an LSH-based attribute-match induction technique for efficiently scale to large datasets
with a high number of attributes;

 an algorithm to efficiently run Blast (and any other graph-based meta-blocking method) on
MapReduce-like systems, to take full advantage of a parallel and distributed computation;

 the evaluation of our approach on seven real-world datasets, showing how Blast
outperforms the state-of-the-art meta-blocking methods.

