
01/05/2024 01:24

Enhanced pseudo-polynomial formulations for bin packing and cutting stock problems / Delorme,
Maxence; Iori, Manuel. - In: INFORMS JOURNAL ON COMPUTING. - ISSN 1091-9856. - 32:1(2020), pp. 101-
119. [10.1287/ijoc.2018.0880]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:

Enhanced Pseudo-Polynomial Formulations for Bin Packing and

Cutting Stock Problems

Maxence Delorme(1), Manuel Iori(2)

(1) DEI ”Guglielmo Marconi”, University of Bologna
(2) DISMI, University of Modena and Reggio Emilia

October 13, 2017

Abstract

We study pseudo-polynomial formulations for the classical bin packing and cutting stock problems.
We first propose an overview of dominance and equivalence relations among the main pattern-based
and pseudo-polynomial formulations from the literature. We then introduce reflect, a new formulation
that uses just half of the bin capacity to model an instance and needs significantly less constraints and
variables than the classical models. We propose upper and lower bounding techniques that make use
of column generation and dual information to compensate reflect weaknesses when bin capacity is too
high. We also present non-trivial adaptations of our techniques that solve two interesting problem
variants, namely, the variable sized bin packing problem and the bin packing problem with item
fragmentation. Extensive computational tests on benchmark instances show that our algorithms
achieve state of the art results on all problems, improving upon previous algorithms and finding
several new proven optimal solutions.

Keywords: bin packing, cutting stock, pseudo-polynomial, equivalent models, variable size, fragmen-
tation.

1 Introduction

The bin packing problem (BPP) requires to pack a set of weighted items into the minimum number
of identical capacitated bins. The cutting stock problem (CSP) is the BPP version in which all items
having the same weight are grouped together into item types. The term packing is normally adopted
for applications devoted to the minimization of the number of boxes (containers, cells, . . .) required to
allocate a set of items, and the term cutting for industrial process where stocks of a material (steel bars,
pipes, . . .) have to be cut into demanded items while minimizing waste. Apart from these applications,
the BPP and the CSP also serve in the optimization of a variety of real-world problems, including
capacitated vehicle routing, resource-constrained scheduling problems, and production systems, just to
name a few. Their wide range of applications motivated a large research interest, and, indeed, the two
problems have been tackled by almost all known combinatorial optimization techniques. We refer to
the recent surveys by Coffman et al. (2013), who focused on approximation algorithms, by Alves et al.
(2016), who studied the use of dual-feasible functions, and by Delorme et al. (2016), who reviewed and
tested exact algorithms and mathematical models.

The BPP and the CSP have also been the training ground of some mixed integer linear programming
(MILP) models, and corresponding solution algorithms, that later became useful tools for many other

1

combinatorial optimization problems. Notably, Gilmore and Gomory (1961) modeled the CSP as a set-
covering by using a pattern-based representation, and then proposed the well-known column generation
algorithm. The strength of their model comes from the very high quality of its continuous relaxation
value. Such relaxation (and other variants discussed in Section 3) are at the basis of the most effective
branch-and-price algorithms for the solution of the BPP and the CSP (see, e.g., Vanderbeck 1999 and
Belov and Scheithauer 2006), and of many generalizations of practical interest (see, e.g., Arbib et al.
2002 and Ceselli and Righini 2008).

The number of variables in the cited pattern-based models is exponential in the number of items.
A different branch of the literature focused, instead, on modeling the BPP and the CSP with pseudo-
polynomial MILP models, that is, formulations in which the numbers of variables and constraints are
polynomials in both the number of items and the bin capacity. Already in the 1960s, Shapiro (1968)
showed the connection that exists between integer programming and dynamic programming (DP), by
modeling the knapsack problem as a shortest path on a network of pseudo-polynomial size, where (i)
nodes are associated with different levels of occupation of the knapsack, (ii) items are associated with
arcs having length equal to the item weight, and (iii) decision variables are associated with arcs. Wolsey
(1977) extended this idea to the case of problems with multiple knapsack inequalities, solving the CSP
as a network flow with side constraints. The research was later continued by Valério de Carvalho
(1999), who proposed a CSP MILP model, called arc-flow, and showed that its continuous relaxation
value is equal to that of Gilmore and Gomory (1961). A related MILP model, known as one-cut, was
independently developed by Rao (1976) and Dyckhoff (1981). In contrast with arc-flow, one-cut solves
the CSP by using variables that represent the physical positions of the cuts. Items are obtained by
performing the selected cuts one at a time, either along the bin or along residual bin portions obtained
by previous cuts.

The mentioned research on pseudo-polynomial formulations had mainly a theoretical interest, be-
cause the large size of these models made them unsolvable in practice even for medium instances. In
recent years, however, the sharp development of MILP commercial software and the increase in compu-
tational power made these formulations viable tools to solve the BPP, the CSP and several other cutting
and packing (C&P) problems. Among others, Brandão and Pedroso (2016) obtained good results on
one-dimensional C&P problems by improving arc-flow, Furini et al. (2016) generalized one-cut to solve
some two-dimensional guillotine cutting problems, and Côté et al. (2014) and Delorme et al. (2017b)
used pseudo-polynomial models as stepping stones of decomposition algorithms for two-dimensional
packing problems. This research line has a great potential interest, because pseudo-polynomial models
are fairly easy to implement, thus representing a useful tool for practitioners, and appear not only in
C&P but in many other fields, including vehicle routing and scheduling (see, e.g., Macedo et al. 2011
and Pessoa et al. 2010) just to cite some.

In this paper, we continue the research on pseudo-polynomial models presenting results of both
theoretical and computational interest. We first focus on the relation that exists among well-known
pattern-based and pseudo-polynomial formulations, providing for the first time a complete picture of
equivalences and dominances among them. Then, we present a new effective formulation, called reflect,
that requires only half of the bin capacity to model a CSP instance. As happens for all pseudo-
polynomial formulations, also reflect has troubles in solving instances with very large capacities. We
thus improve it with several techniques, leading to an algorithm, called reflect+, that has an outstanding
computational performance. In detail, we provide the following contributions:

• We prove that one-cut and arc-flow formulations for the CSP are equivalent (i.e., they have the
same continuous relaxation value), closing a long-standing research gap;

• We extend the previous result and provide a clear picture of the dominance and equivalence
relations that exist among the main pattern-based and pseudo-polynomial MILP formulations

2

that have been proposed for the BPP and the CSP;

• We introduce our new formulation, reflect, and show that it improves the classical arc-flow by
needing significantly less constraints and variables;

• We develop improvement techniques based on the combined use of reflect with column generation,
dual cuts, and heuristics. We show that our heuristics are faster and more efficient than traditional
approaches based on the solution of set-covering models with restricted sets of columns;

• We extend reflect and reflect+ by devising formulations and algorithms that solve two important
BPP variants, namely, the variable-sized BPP and the BPP with item fragmentation;

• We perform extensive computational tests and show that our algorithms achieve state of the art
results, improving previous algorithms from the literature, finding several new optimal solutions
for the BPP and the CSP, and solving to optimality all attempted instances of the variable-sized
BPP and the BPP with item fragmentation.

The remainder of the paper is organized as follows. In Section 2, we give the necessary notation
and review the main formulations proposed for the BPP and the CSP. In Section 3, we establish the
full set of relations among the existing formulations. In Section 4, we present reflect and reflect+.
The variable-sized BPP is solved in Section 5, and the BPP with item fragmentation in Section 6. In
Section 7, we present the outcome of extensive computational experiments, and then, in Section 8, we
draw some conclusions. For the sake of conciseness, all proofs of our statements and some additional
algorithms and examples are reported in an appendix.

2 The BPP, the CSP, and their well-known MILP formulations

In this section, we formally describe the BPP and the CSP, give the necessary notation, and present
the main formulations developed in the literature for their solution.

2.1 Problem description and notation

In the BPP, we are given a set of n items, each having weight wj (j = 1, . . . , n), and an unlimited
supply of identical bins of capacity c. The aim is to pack all items into the minimum number of bins, so
that the sum of the item weights in any bin does not exceed the capacity. To better adapt to either the
concept of packing or that of cutting, in the following we use alternatively the terms weight or width
when referring to wj . We assume that all input values are integer and 0 < wj < c holds for any j. The
CSP has the same aim of the BPP, but, apart from the unlimited supply of stocks (bins) of capacity c,
its input consists of a set of m item types. Each item type j has a demand of dj items, all having width
wj (j = 1, . . . ,m). A CSP instance can be obtained from a BPP one by grouping into item types all
items having the same width. So, a solution method for the CSP also solves the BPP, and viceversa.
Unless stated otherwise, the formulations that we report below refer to the CSP.

We use FX to denote a generic MILP formulation. We use L(FX) to denote the continuous (linear
programming) relaxation of FX , which is obtained by dropping the integrality constraints from FX .
When no confusion arises, we also use L(FX) to denote the optimal solution value of L(FX). We say
that a formulation FX is equivalent to a formulation FY , if L(FX) = L(FY) holds for any instance.
As we deal with minimization problems, we say that a formulation FX dominates a formulation FY ,
if L(FX) ≥ L(FY) holds for any instance and L(FX) > L(FY) holds for at least one instance. If FX

dominates FY , then we also say that FX is included into FY . Suppose a given formulation contains a
variable x: We use the notation x̄ to denote the value taken by x in a given solution of that formulation.

3

2.2 Pattern-based formulations

We define a pattern p as an array (a1p, . . . , amp), with ajp being a non-negative integer that gives the
number of items of type j that are included in the pattern. Let P define the class of feasible patterns,
i.e., those patterns p for which

∑m
j=1 ajpwj ≤ c holds. Gilmore and Gomory (1961) associated with each

pattern p an integer decision variable ξp, indicating the number of times the pattern is selected, and
modeled the CSP as the following set-covering problem

(FGG)
{

min z =
∑

p∈P
ξp :

∑

p∈P
ajpξp ≥ dj for j = 1, . . . ,m, ξp ∈ N for p ∈ P

}

. (1)

Note that in (1) nothing prevents ajp from being larger than dj , and hence there could be optimal
solutions of FGG, or of its continuous relaxation L(FGG), that include patterns containing a number of
items larger than their demands. Consider the following example.

Example 1 A CSP instance with m = 3, w = (7, 4, 3), d = (1, 1, 1), and c = 11.

An optimal L(FGG) solution of Example 1 has value 4/3 and consists of selecting three patterns:
(1, 1, 0) (i.e., a pattern containing a copy of the item of width 7 and a copy of the item of width 4) with
ξ̄1 = 2/3; (1, 0, 1) with ξ̄2 = 1/3; and (0, 1, 2) with ξ̄3 = 1/3.

The proper relaxation (see, e.g., Nitsche et al. 1999) overcomes this FGG drawback by focusing on a
restricted set P ′ of feasible patterns. Each pattern p ∈ P ′ satisfies

∑m
j=1 ajpwj ≤ c and also 0 ≤ ajp ≤ dj

for j = 1, . . . ,m. The CSP can then be modeled as

(FPR)
{

min z =
∑

p∈P ′

ξp :
∑

p∈P ′

ajpξp ≥ dj for j = 1, . . . ,m, ξp ∈ N for p ∈ P ′
}

. (2)

Because P ′ ⊆ P , we can state that L(FPR) ≥ L(FGG). Consider now Example 1. An optimal
solution of L(FPR) has value 3/2 and consists of selecting the three following patterns: (1, 1, 0) with ξ̄1
= 1/2; (1, 0, 1) with ξ̄2 = 1/2; and (0, 1, 1) with ξ̄3 = 1/2. We can thus conclude with the (known) fact
that FPR dominates FGG.

Note that for most of the CSP instances the rounded-up lower bound values of the two formulations
(⌈L(FGG)⌉ and ⌈L(FPR)⌉) coincide. Still, there are cases for which ⌈L(FGG)⌉ < ⌈L(FPR)⌉. Such cases
have been investigated intensively in studies over the Mixed-Integer Round-Up (MIRUP) conjecture,
which states that both (zopt − ⌈L(FGG)⌉) ≤ 1 and (zopt − ⌈L(FPR)⌉) ≤ 1 hold for any CSP instance,
with zopt being the optimal integer solution value. For further details, we refer to, e.g., Caprara et al.
(2015) and Kartak et al. (2015). Note also that branch-and-price algorithms explicitly devoted to the
solution of the BPP are based on patterns with binary ajp values, and hence they use the proper
relaxation.

2.3 Pseudo-polynomial formulations

Pseudo-polynomial formulations involve a large number of variables and constraints, and hence they
have been usually proposed in the literature together with appropriate reduction techniques. We focus
in this section on basic models that do not make use of any reduction, and discuss existing reduction
techniques at the end of Section 3.

The one-cut formulation (FOC) was formally introduced by Rao (1976) and Dyckhoff (1981). It
simulates the physical cutting process by choosing a set of cuts, each dividing the bin (or a portion
of the bin) into two smaller pieces, a left one and a right one. While the left piece is an item, the
right piece is either an item or a residual that can be re-used to produce smaller items with successive
cuts. To describe the model, we need some additional notation. Let W = {w1, w2, . . . } define the set

4

of different item widths, and S be the set of item widths combinations not exceeding c. Set S can be
computed trough a standard DP and can be formally stated as

S =
{

w̄ =
∑m

j=1
wjxj , w̄ ≤ c, xj ∈ N for j = 1, . . . ,m

}

. (3)

Let R define the set of residual widths, computed as R = {c− w̄ : w̄ ∈ S and w̄ ≤ c−minj{wj}}. The
width of any left piece produced by a cut is in W, while the width of any right piece (including c) is in
R. For a given width q ∈ W ∪R, let Lq give the demand of q, i.e., Lq = dj if ∃ j having wj = q and
Lq = 0 otherwise. One-cut makes use of three additional sets of widths. Set A(q) contains piece widths
that can be used for producing a left piece of width q, if any: A(q) = {p ∈ R : p > q} for q ∈ W, and
A(q) = ∅ for q /∈ W. Set B(q) = {p ∈ W : p+ q ∈ R} contains item widths that, whether cut as a left
piece, would produce a right piece of width q, for q ∈ R. Set C(q) = {p ∈ W : p < q} contains item
widths that can be cut as a left piece by using a residual of width q, for q ∈ R.

One-cut uses an integer decision variable ypq giving the number of pieces of width p that are cut
into a left piece of width q. The model is then

(FOC) min z =
∑

q∈W

ycq (4)

s.t.
∑

p∈A(q)

ypq +
∑

p∈B(q)

yp+q,p ≥ Lq +
∑

r∈C(q)

yqr q ∈ W ∪R \ {c} (5)

ypq ∈ N p ∈ R, q ∈ W, p > q. (6)

While function (4) minimizes the number of bins used, constraints (5) ensure that the sum of the left
and right pieces having width q is not smaller than the demand of width q plus the number of times a
residual of width q is re-cut to produce other items.

The arc-flow formulation (FAF) was formally proposed for the CSP by Valério de Carvalho (1999)
and builds upon the networks in Shapiro (1968) and Wolsey (1977). Formally, let G = (V,A) be a
graph having vertex set V = {0, 1, . . . , c − 1, c} and arc set A = AI ∪ Aℓ, where AI = {(d, e) : d, e ∈
S and ∃ j ∈ {1, . . . ,m} : e− d = wj} is the set of item arcs, and Aℓ = {(d, d+1) : d = 0, 1, . . . , c− 1} is
the set of loss arcs. Items arcs model the items’ positions in the bin, accomplishing with (3), whereas
loss arcs model empty bin portions. The filling of a bin corresponds to a path from root node 0 to sink
node c. Let δ+(e) (respectively, δ−(e)) give the subset of arcs emanating from (respectively, entering)
vertex e. By introducing an integer variable xde equal to the number of times arc (d, e) is chosen, the
CSP becomes

(FAF) min z (7)

s.t.
∑

(e,f)∈δ+(e)

xef −
∑

(d,e)∈δ−(e)

xde =

z if e = 0
−z if e = c
0 for e = 1, . . . , c− 1

(8)

∑

(d,d+wj)∈A

xd,d+wj
≥ dj j = 1, . . . ,m (9)

xde ∈ N (d, e) ∈ A. (10)

Objective function (7) minimizes the number of bins, expressed by variable z, whereas constraints (8)
impose flow conservation and constraints (9) ensure that demands are fulfilled.

The dynamic programming-flow formulation (FDP) was formally introduced for the BPP by Cam-
bazard and O’Sullivan (2010), but, similarly to FAF , has origins in the early works by Shapiro (1968)
and Wolsey (1977). It can be seen as a disaggregated form of FAF that uses an expanded graph

5

obtained from a DP table. In detail, let G′ = (V ′,A′) be a DP graph, where V ′ = {(j, d) : j =
0, . . . , n; d = 0, . . . , c} ∪ {(n + 1, c)} has a vertex for each DP state plus a dummy node (n + 1, c), and
A′ = {((j, d), (j +1, e)) : (j, d) ∈ V ′; (j+1, e) ∈ V ′} contains arcs connecting two consecutive DP states.
There are two types of arcs: Those for which e = d+ wj model the selection of item j when the bin is
partially filled with d units; those having e = d discard instead the selection of j in d. All vertices (j, d)
having j = n are connected to the dummy vertex (n+1, c). A path from (0, 0) to (n+1, c) represents a
feasible bin filling. A decision variable ϕj,d,j+1,e is associated with each arc ((j, d), (j + 1, e)) ∈ A′. By
setting V ′0 = V

′ \ {(0, 0), (n + 1, c)}, the BPP can be modeled as

(FDP) min z (11)

s.t.
∑

((j,d),(j+1,e))∈δ+((j,d))

ϕj,d,j+1,e −
∑

((j−1,e),(j,d))∈δ−((j,d))

ϕj−1,e,j,d =

z if (j, d) = (0, 0)
−z if (j, d) = (n+ 1, c)
0 if (j, d) ∈ V ′0

(12)
∑

((j−1,d),(j,d+wj))∈A

ϕj−1,d,j,d+wj
= 1 j = 1, . . . , n (13)

ϕj,d,j+1,e ∈ N ((j, d), (j + 1, e)) ∈ A′. (14)

Constraints (12) force flow conservation and constraints (13) impose that each item, adopting the BPP
notation, is selected once. Variables are set to take integer values by (14), but, due to (13), variables
associated with ((j − 1, d), (j, d + wj)) arcs are binary. A CSP instance can be modeled by FDP by
splitting each item type j into dj items, obtaining a BPP instance with n =

∑m
i=1 dj items.

3 Relations among models

In this section, we prove the relations that exist among the introduced patterns-based and pseudo-
polynomial formulations. To the best of our knowledge, this is the first time that a complete character-
ization of this area of research is provided. We first need two preliminary results.

Lemma 1 (Valério de Carvalho 1999) Any solution of arc-flow or of its continuous relaxation can be
decomposed into a set of paths.

Lemma 1 is based on the decomposition of non-negative flows into paths and cycles (see Ahuja et al.
1993, Chapter 3), with the only remark that, being the arc-flow graph acyclic, only paths may occur.
Consider Example 1: An optimal L(FAF) solution, shown in Figure 1-(a), has value 4/3 and consists
of x̄0,7 = 1, x̄0,4 = 1/3, x̄4,7 = 1/3, x̄7,10 = 2/3, x̄7,11 = 2/3, and x̄10,11 = 2/3. By applying to this
solution the procedure given in Section Appendix A, one obtains the decomposed flow made by three
paths which is depicted in Figure 1-(b).

Lemma 2 Any solution of one-cut or of its continuous relaxation can be decomposed into a set of binary
trees.

Proof. Given in Section Appendix B.

Consider again Example 1: An optimal L(FOC) solution has value 4/3 and consists of ȳ11,7 = 1,
ȳ11,4 = 1/3, ȳ7,3 = 1/3, and ȳ4,3 = 2/3. By applying the procedure described in Section Appendix B,
we obtain the three trees depicted in Figure 2. The leaves of each tree correspond to either produced
items (as leaves 4, 3, and 3 in the left-most tree) or residuals (as leaf 1 in the left-most tree).

6

0 4 7 10 11

1

2/3

2/3

2/3

1/3 1/3

(a) An optimal L(FAF) solution of value 4/3

z̄3 = 2/3 0 7 11

z̄2 = 1/3 0 7 10 11

z̄1 = 1/3 0 4 7 10 11

(b) Decomposition of the L(FAF) solution above into paths (z̄p = flow on path p)

Figure 1: L(FAF) solution and path decomposition for Example 1

z̄3 = 2/3

11

7 4

z̄2 = 1/3

11

7 4

3 1

z̄1 = 1/3

11

4 7

3 4

3 1

Figure 2: An optimal L(FOC) solution of Example 1 decomposed into a set of trees (z̄t = value of tree
t)

.

Intuitively, we can state a relation between the paths of the decomposed arc-flow solution and the
trees of the decomposed one-cut solution. Figures 1 and 2 show a well-constructed example of this
relation (consider one at a time paths from top to bottom and trees from left to right). In reality, a few
cases should be considered, especially in consideration of the fact that solutions of arc-flow and one-cut
are not guaranteed to be left-aligned (as happens in the figures). We leave the technicalities to the
appendix, and provide our first result in terms of models relations.

Proposition 1 FAF is equivalent to FOC .

Proof. Given in Section Appendix C.

Note that the proof of Proposition 1 contains two algorithms to directly transform an FAF solution
into an FOC one, and viceversa. Note also that, by using the equivalence between FAF and FGG proved
in Valério de Carvalho (1999), we can observe that FOC too is equivalent to FGG.

Now, let us concentrate on FDP . An optimal L(FDP) solution of Example 1 has value 3/2 and is
shown in Figure 3. The arcs in bold lines are associated with the selected variables (whose values are
reported on the arcs). This example is useful for the second relation that we prove.

7

0, 0

1, 0

2, 0

3, 0 3, 3

2, 4

3, 4

1, 7

2, 7

3, 7 3, 10

2, 11

3, 11

4, 11

0.5 1

0.5 0.5 0.5

0.5 0.5 0.5

0.5 0.5 0.5

Figure 3: An L(FDP) solution of Example 1 (selected arcs in bold, variable values on the corresponding
arcs)

Proposition 2 FDP dominates FAF (and hence FOC).

Proof. Given in Section Appendix D.

The relations among the pseudo-polynomial formulations are graphically depicted in the right part
of Figure 4. The discussed equivalence among FAF , FOC , and FGG is depicted by the use of a dotted
line. The other dotted line depicts our next result.

Proposition 3 FDP is equivalent to FPR.

Proof. Given in Section Appendix E.

G
ilmore and Gom

or
y

proper

relaxation

arc-flow, one-c
ut

DP-flow

Pattern-based formulations Pseudo-polynomial formulations

Figure 4: Graphical representation of relations among CSP formulations.

We conclude this section with some remarks. Figure 4 does not depict the “descriptive” CSP
formulation (having integer variables for the assignments items-bins and binary variables for the use of
the bins), which is largely dominated by all other formulations. As previously noted, pseudo-polynomial
formulations were proposed together with some reduction criteria. Dyckhoff (1981) reduced the size of
set S in (3) by forcing xj ≤ dj , thus focusing on the set of normal patterns:

N =
{

w̄ =
∑m

j=1
wjxj , w̄ ≤ c, xj ∈ N, xj ≤ dj for j = 1, . . . ,m

}

. (15)

8

This improves FOC but does not make it equivalent to FPR (consider that the L(FOC) solution of
Example 1 already accomplishes with (15) but is worse than the L(FDP) solution). Valério de Carvalho
(1999) proposed a set of reduction techniques for FAF . In particular, he built the arcs by using a DP
algorithm that considers item types according to decreasing width, thus reducing symmetries. Also in
this case, the continuous relaxation of the resulting formulation is not as strong as that of FDP (once
again, the L(FAF) solution of Example 1 already accomplishes with the proposed reduction but is worse
than the L(FDP) solution). Formulation FDP provides a very strong lower bound, but requires too
many variables. The tests in Delorme et al. (2016) showed indeed that the computational performance
of FDP is much weaker than that of FAF and FOC .

Other related formulations having a good performance have been recently presented. Brandão and
Pedroso (2016) developed, among other improvements, a lifting procedure that is based on the fact that
packing an item in a position might lead to an unused space in the bin. For each arc, their procedure
estimates the minimum unused space by solving a subset sum (as in, e.g., Boschetti and Montaletti 2010
and Dell’Amico et al. 2012) and then uses this value to extend the head of the arc. They are forced to
use a multigraph, as arcs having the same widths may correspond to different items, but obtain a good
speed-up in the solution time. Clautiaux et al. (2017) proposed a method that iteratively aggregates
and disaggregates nodes of an arc-flow model to produce both upper and lower bounds, eventually
terminating with a proof of optimality. Their method was computationally evaluated on some cutting
stock and vehicle routing instances. Côté and Iori (2016) considered the normal patterns in (15), but
conveniently decreased their number by means of a meet-in-the-middle procedure. Instead of performing
a classical DP, they solved a two-way DP which created patterns starting both from the left and from
the right. They then built a reduced arc-flow formulation that required less variables, less constraints,
and a quicker solution time. These cited formulations lie in the (small) space between FAF and FDP ,
the same holds for the formulation that we present in the next section.

Côté and Iori (2016) also proposed to modify FAF by removing unit-width loss arcs (d, d + 1) and
creating longer loss arcs that connect each vertex in N to its consecutive vertex in N , and the last
vertex in N to c if c /∈ N (as shown in Figure 5). This implies reducing constraints (8) to e ∈ N ∪ {c}
and adopting a multigraph structure (because there can be item and loss arcs having the same head
and tail). We embed this straightforward improvement in all next formulations.

4 Reflect, an improved arc-flow formulation

In this section, we propose a new formulation, called reflect (FRE), which models a CSP instance by
considering only half of the bin capacity, thus resulting in a sharp decrease in the required number of
variables and constraints. The two main features of FRE are:

• In terms of vertices, FRE considers only those corresponding to partial bin fillings with size smaller
than c/2, plus an additional vertex, called R, corresponding to c/2;

• In terms of arcs, FRE considers the same ones of FAF , but: (i) “reflects” each item arc (d, e)
having d < c/2 and e > c/2 into an arc (d, c− e); (ii) removes all item and loss arcs (d, e) having
d ≥ c/2; and (iii) creates a last loss arc by connecting the right most vertex before R with R.

Intuitively, a path in FAF becomes in FRE a pair of colliding paths, i.e., two paths both starting in
0 and ending in the same vertex, but only one of the two passing through a reflection. For Example 1,
the arcs required by FAF and FRE are shown in Figure 5. FAF contains 6 items arcs and 5 loss arcs. To
build FRE , (i) we reflect item arcs (0,7) in (0,4) and (4,7) in (4,4); (ii) we remove item arcs (7,10) and
(7,11) and loss arcs (7,10) and (10,11); and (iii) we replace loss arc (4,7) with (4,R) and insert (R,R),
thus resulting in 4 item arcs and 4 loss arcs.

9

0 3 4 7 10 11

0 3 4 R

Figure 5: Multigraphs required by arc-flow (above) and reflect (below) for Example 1 (item arcs are
depicted in solid lines, loss arcs in dotted lines)

The formulation is built on a multigraph G = (V,A). The set V of vertices comprises all partial bin
fillings between 0 and c/2 that correspond to arc tails and heads. The set of arcs A is partitioned into As

and Ar, where As denotes the set of standard arcs, i.e., all those item and loss arcs that proceed from left
to right as in FAF , and Ar the set of reflected arcs, i.e., those item arcs (d, e) from FAF that have been
reflected into item arcs (d, c−e). Each arc in As is defined by the triplet (d, e, s), whereas each arc in Ar

by the triplet (d, e, r) (note that there can be standard and reflected arcs having the same head and tail).
We include in Ar an arc (c/2, c/2, r) to model pairs of paths that collide in c/2. We use (d, e, κ) to denote
a generic arc belonging to either As or Ar, and Aj = {(d, d+wj , s) ∈ As}∪ {(d, c− d−wj , r) ∈ Ar} to
define the set of item arcs associated with item type j. Let also δ−s (e) ⊆ As (respectively, δ−r (e) ⊆ Ar)
denote the set of standard (respectively, reflected) arcs entering e. By associating an integer variable
ξdeκ with each (d, e, κ) ∈ A, we can model the CSP as

(FRE) min z =
∑

(d,e,r)∈Ar

ξder (16)

s.t.
∑

(d,e,s)∈δ−s (e)

ξdes =
∑

(d,e,r)∈δ−r (e)

ξder +
∑

(e,f,κ)∈δ+(e)

ξefκ e ∈ V \ {0} (17)

∑

(0,e,κ)∈δ+(0)

ξ0eκ = 2
∑

(d,e,r)∈Ar

ξder (18)

∑

(d,e,κ)∈Aj

ξdeκ ≥ dj j = 1, . . . ,m (19)

ξdeκ ∈ N (d, e, κ) ∈ A. (20)

Objective function (16) minimizes the number of reflected arcs, which is equivalent to the number
of bins. Constraints (17) ensure that the flow on standard arcs entering a node e is equal to the flow
(on both standard and reflected arcs) emanating from e plus the flow on reflected arcs entering e.
Constraints (18) impose boundary conditions by enforcing the flow emanating from 0 to be twice the
number of bins, and constraints (19) ensure that demands are fulfilled.

An optimal L(FRE) solution of Example 1 having value 4/3 is given in Figure 6-(a), and can be
decomposed into the pairs of colliding paths shown in Figure 6-(b). The first pair is made by paths
(0, 4, s) and (0, 4, r), which collide in 4 and corresponds to a bin containing an item of width 4 and
another of width 7. The second pair is made by arcs (0, 3, s), (3, 4, s), and (4, 4, r). Note that arcs
(0, 3, s) and (3, 4, s) are both depicted twice to emphasize that the flow on them is split to form the two

10

colliding paths, the first being {(0, 3, s), (3, 4, s), (4, 4, r)} and the second {(0, 3, s), (3, 4, s)}, both with
flow 1/3. Note also that, if no reflected arc enters e, then e is just a partial filling of one or more bins
(e.g., vertex 3 in the example), if instead some reflected arcs enter e, then e is a vertex of collision for
one or more bins (e.g., vertex 4).

0 3 4

1

1

2/3

2/3

1/3

(a) An optimal L(FRE) solution

0 4

1

1

0 3 4

1/3
1/3

1/3

1/3
1/3

(b) Decomposition of the solution above

Figure 6: An optimal L(FRE) solution of Example 1 and its decomposition into pairs of colliding paths
(selected item arcs depicted in solid lines and selected loss arcs in dotted lines, variable values on the
arcs)

The following result proves the correctness of FRE .

Proposition 4 FRE models the CSP.

Proof. Given in Section Appendix F.

For the sake of completeness, we provide in Algorithm 7, Section Appendix G, the procedure that
we use to construct the multigraph required by FRE . In the same section, we also provide in Algorithm
8 the procedure that we use to decompose a FRE (or L(FRE)) solution into pairs of colliding paths.
One can notice that Algorithm 7 does not create any reflected arc (d, e, r) having d > e (step 15 of the
algorithm). This reduction criterion is motivated by the following result.

Proposition 5 Any feasible CSP pattern can be represented in FRE by a pair of colliding paths whose
reflected arc (d, e, r) has d ≤ e.

Proof. Given in Section Appendix F.

4.1 Adapting reflect to solve large size instances: Reflect+

Even if the number of arcs used by FRE is considerably reduced with respect to those required by FAF ,
some instances with huge capacity and many small items may still generate models that contain millions
of variables and are thus too difficult to tackle. To overcome this issue, we propose some lower and
upper bounding techniques and embed them into a new algorithm, called reflect+.

Column generation. We first solve L(FPR), the linear relaxation of (2), by means of a standard
column generation technique. The reduced master problem is initialized with the identity matrix and
solved as a linear program to obtain dual variable values π̄j for each item type j. Columns with negative

11

reduced costs are found and added to the reduced master on the fly, by solving a knapsack subproblem,
until a proof of optimality is reached. For the subproblem, we make use of combo by Martello et al.
(1999), which solves the binary knapsack. We first use combo as a heuristic by feeding it with m items
j of profit π̄j and weight wj (just one item per item type). If this attempt fails in finding a negative
reduced cost column, we use combo as an exact by feeding it with the entire set of items, but invoking
a binary expansion (see, e.g., Vanderbeck and Wolsey 2010). Each item type j having demand dj is
represented by ⌊log dj⌋ + 1 items, the first items k = 0, 1, . . . , ⌊log dj⌋ − 1 have profit 2kπj and weight
2kwj , and the last item l = ⌊log dj⌋ has profit (dj − (2l − 1))πj and weight (dj − (2l − 1))wj . The first
heuristic has the purpose of avoiding patterns with many small items that can appear in early column
generation iterations and slightly deteriorate our successive upper bounding procedures.

Let PLP ⊆ P denote the set of columns that have been generated to reach linear optimality. A
classical way to obtain an upper bound from this information is to solve to optimal integrality the
restricted master problem with just the set PLP of columns. This procedure, usually known as restricted
master heuristic, is easy to implement but might produce low quality solutions (see, e.g., Sadykov et al.
2016). Here, we propose a simple yet effective improvement that consists in solving FRE on a multigraph
that contains only the arcs produced by PLP . In detail, we start with the empty FRE multigraph,
consider all items contained in a column p by non-increasing weight, and generate a single arc for each
item in that order (using the algorithm sketched in the proof of Proposition 5). We repeat the process
for all p ∈ PLP and then solve FRE on the reduced instance. Our method is motivated by the following

Remark 1 Let z(FPR(PLP)) be the optimal solution value of the restricted FPR that contains only the
columns in PLP , and z(FRE(PLP)) be the optimal solution value of the restricted FRE that contains only
the arcs produced by the columns in PLP , then z(FRE(PLP)) ≤ z(FPR(PLP)).

The remark follows from the fact that all patterns p ∈ PLP can be produced by FRE , but FRE can also
produce patterns that do not belong to PLP . Consider for example the bottom part of Figure 5. Those
arcs may be obtained through the mapping of patterns (1,0,1) and (0,1,1), but it is possible for FRE

to also produce the proper pattern (1,1,0) through arcs {(0,4,r),(0,4,s)}, and the non-proper patterns
(0,2,1) through arcs {(0,4,s),(4,4,r),(0,4,s)}, (0,1,2) through arcs {(0,4,s),(4,4,r),(0,3,s), (3,4,s)}, and
(0,0,3) through arcs {(0,3,s),(3,4,s),(4,4,r),(0,3,s),(3,4,s)}, thus providing a large number of possible
heuristic solutions.

In our implementation, we first compute Pbase ⊆ PLP as the subset of columns whose associated
variables take positive value in the linear solution. We then compute z(FRE(Pbase)), which is usually
quick, and then z(FRE(PLP)) if needed.

Node deactivation and dual cuts. We solve L(FRE) with the complete set of arcs, and then use
its linear solution ξ̄ to build the set of non-active vertices Vn = {d ∈ V : ∄ ξ̄(d,e,κ) > ǫ}. Then, we solve
FRE with the additional constraints

ξdeκ = 0 d ∈ Vn, (d, e, κ) ∈ A. (21)

Constraints (21) make the solution of the model much faster but might remove too many feasible
solutions. We experimentally noticed that better solutions could be found by allowing some large items
to be split into smaller items. To this aim, we create a set T of possible transformations (i, j, k), in
which i, j, k = 1, . . . ,m, i < j ≤ k, and wi = wj + wk. We create a family of integer variables tijk,
for (i, j, k) ∈ T , each counting how many times an item i is transformed into items j and k. We then
replace (19) with

∑

(d,e,κ)∈Aj

ξdeκ +
∑

(i,j,k)∈T

tijk +
∑

(i,k,j)∈T

tikj −
∑

(j,k,i)∈T

tjki ≥ dj j = 1, . . . ,m (22)

tijk ∈ N (i, j, k) ∈ T (23)

12

and solve model (16)–(18), (20)–(23). This procedure is reminiscent of the dual cuts by Valério de
Carvalho (2005).

Arc deactivation. Our third heuristic attempts to find a solution having exactly value L =
⌈L(FRE)⌉. To this aim, we gather in a set Az all arcs whose reduced cost is greater than L−L(FRE)+ǫ,
and restrict the FRE model by setting

ξdeκ = 0 (d, e, κ) ∈ Az. (24)

Indeed, selecting one or more of arcs in Az would imply a solution value greater than L. We then solve
model (16)–(20), (24). If no solution of value L is found, we increase L by one, update Az, and iterate.
Note that, if the MIRUP conjecture holds, then the process is iterated at most once.

The resulting reflect+ algorithm makes use of these techniques in the order in which we presented
them. An informal pseudocode is given in Algorithm 1. Although not explicitly stated, the algorithm
clearly stops as soon as upper and lower bound values are equal. Each time a model is solved as an
MILP, it is allowed only a restricted execution time, as discussed in Section 7 below.

Algorithm 1 reflect+

1: solve L(FPR) through column generation and obtain PLP , Pbase, and L = ⌈L(FPR)⌉
2: solve FRE(Pbase) and obtain U1

3: solve FRE(PLP) and obtain U2

4: solve L(FRE) and obtain ξ̄, Vn, and Az

5: solve FRE + (21) − (23) and obtain U3

6: U ← min(U1, U2, U3)
7: while U > L do

8: solve FRE + (24) and obtain U4

9: U = min(U,U4)
10: update Az and set L← L+ 1
11: end while.

5 The Variable Sized BPP

In this section, we detail the modifications that we developed to solve the variable sized bin packing
problem (VSBPP). In the VSBPP, we are given a set T of bin types, each having capacity ct, cost pt,
and a number bt of available bins, for t ∈ T . The aim is to pack all items into a set of bins of minimum
cost. The solution of the VSBPP (which is also known in the literature as multiple length CSP) has
been attempted through several methods, including arc-flow (Valério de Carvalho 2002), branch-and-
cut-and-price (Belov and Scheithauer 2002, Alves and Valério de Carvalho 2008), reformulations by
discretization (Correia et al. 2008), and methaheuristics (Hemmelmayr et al. 2012), among others.

Valério de Carvalho (2002) described how to adapt FAF to the VSBPP by using a vertex set from 0
to c, with c = maxt{ct}, and an additional family of integer variables ωt, giving the number of bins of
type t selected in the solution, for t ∈ T . The total flow emanating from 0 is set to

∑

t∈T ωt, whereas
the difference between incoming and emanating flow at each bin capacity ct is not forced anymore to
be 0, as in the other vertices, but is equal to ωt. The resulting flow can be decomposed into a set of
paths ending at a ct position and thus being associated with a specific bin type.

Such adaptation is not straightforward for reflect, where we need to enforce ωt to be equal to the
number of selected pairs of colliding paths of total length ct. We can meet this requirement, while still
using half of the nodes, by associating ωt with the reflected arcs and using the fact that just one such

13

arc is used for each colliding pair. In detail, we create a multigraph G = (V,A) that is similar to the
one adopted for FRE but contains a few relevant modifications. Apart from the vertices obtained by
item widths combinations and reflections, V now also includes the set {ct/2 : t ∈ T}. The arc set A is
still partitioned in As and Ar, where As is created as in FRE , but Ar is enlarged to take into account
reflections at all possible bin capacities, namely, Ar = ∪t∈TAr(t), where Ar(t) is the set of arcs that
have been reflected at ct/2. We also use the notation (d, e, r(t)) to denote an arc belonging to Ar(t).
The algorithm that we implemented to build G is given in Section Appendix H. We explain here the
intuition behind our formulation by means of the following example.

Example 2 A VSBPP instance with two bin types and three item types, having c = (11, 6), p = (11, 6),
b = (2, 2), w = (7, 4, 3), and d = (1, 1, 1).

The arcs required by reflect to model Example 2 are shown in Figure 7. The vertices used for
reflection are 3 (for bins of size 6) and R = c/2 (for bins of size c2 =11). Item 1 is represented by arc
(0, 4, r(1)), item 2 by arcs (0, 4, s) and (0, 2, r(2)), and item 3 by arcs (0, 3, s) and (4, 4, r(1)). Loss arcs
are created between pairs of consecutive vertices. The arc set is completed by (3, 3, r(2)) and (R,R, r(1))
to model pairs of paths that collide in 3 or in R. An optimal solution has cost 17 and consists of two
pairs of paths: (0, 4, s) and (0, 4, r(1)), which correspond to a bin of type 1 containing items 1 and 2;
and (0, 3, s), (0, 2, s), (2, 3, s), and (3, 3, r(2)), which corresponds to a bin of type 2 containing item 3.

0 2 3 4 R

Figure 7: Multigraph required by reflect for Example 2 (item arcs depicted in solid lines, loss arcs in
dotted)

By associating once more an integer variable ξdeκ to each arc, we can model the VSBPP as

(F V S
RE) min z =

∑

t∈T

ptωt (25)

s.t.
∑

(d,e,s)∈δ−s (e)

ξdes =
∑

(d,e,r)∈δ−r (e)

ξder +
∑

(e,f,κ)∈δ+(e)

ξefκ e ∈ V \ {0} (26)

∑

(0,e,κ)∈δ+(0)

ξ0eκ +
∑

(d,0,r)∈δ−(0)

ξd0r = 2
∑

t∈T

ωt (27)

∑

(d,e,r(t))∈Ar(t)

ξder(t) = ωt t ∈ T (28)

∑

(d,e,κ)∈Aj

ξdeκ ≥ dj j = 1, . . . ,m (29)

ξdeκ ∈ N (d, e, κ) ∈ A (30)

ωt ∈ {0, 1, . . . , bt} t ∈ T. (31)

Objective function (25) minimizes the cost of the selected bins, whereas constraints (26) impose flow
conservation. Constraints (27) still force the amount of flow emanating from 0 to be twice the number
of bins used, but takes into account the fact that it is now possible for a reflected arc to directly enter
vertex 0 (in case ∃ j and t for which wj = ct). Constraints (28) impose ωt to be equal to the flow on

14

the reflected arcs in Ar(t), and constraints (29) ensure that demands are met. Note that variables ωt

are not mandatory because of (28), but their use proved to be computationally useful, especially for
instances where pt values were not proportional to ct ones.

Algorithm reflect+ is adjusted to cope with the VSBPP as follows. At step 1 (refer to Algorithm
1), a VSBPP column generation procedure is invoked (we use the approach described in Section 3.1 of
Alves and Valério de Carvalho 2008, and adopt combo by Martello et al. 1999 for the solution of the
slavhee problems). At steps 2 and 3, restricted versions of F V S

RE are solved instead of FRE . At step 4,
L(F V S

RE) is invoked, whereas step 5 is skipped because of poor computational performance. The main
loop is modified by invoking F V S

RE at step 8 and increasing L to (min
∑

t∈T ptωt :
∑

t∈T ptωt > L,ωt ∈
{0, 1, . . . , bt} for t ∈ T) at step 10. We call reflectV S

+ the resulting algorithm.

6 BPP with item fragmentation

The bin packing problem with item fragmentation (BPPIF) is the BPP generalization in which items
are allowed to be fractionally packed into different bins. Several BPPIF variants have been studied
in the literature, see, e.g., Casazza and Ceselli (2016). In this section, we show how to solve the two
main problem variants: (i) minimize the number of bins used for the packing while the total number
of fragmentations is at most F (bm-BPPIF); and (ii) minimize the number of fragmentations while
the number of bins is at most B (fm-BPPIF). For both variants, we first propose an extension of the
classical arc-flow model which produces good lower bounds, and then show how to adapt F V S

RE to derive
good quality upper bounds. Without loss of generality, we suppose that wj < c holds for any j.

In our new arc-flow model, arcs can exceed c and re-enter the bin from 0. As in the previous sections,
our approach starts by constructing the multigraph G = (V,A) that is at the basis of the formulation.
In this case, set V contains vertices between 0 and c. When attempting to create an arc (d, e) having
e > c, its head e is moved to e mod c, resulting in a transposed arc. The arc set is consequently divided
in A = As ∪At, where As is the set of standard arcs and At the set of transposed arcs. Once again, for
the sake of conciseness we provide the algorithm to build G in the appendix (Section Appendix I), but
provide here a clarifying example.

Example 3 A BPPIF instance with m = 2, w = (7, 5), d = (2, 1), and c = 11.

0 1 3 5 7 8 11

Figure 8: Multigraph required by BPPIF arc-flow for Example 3 (item arcs are depicted in solid lines)

For Example 3, the arcs required by our arc-flow formulations are shown in Figure 8. A first arc
(0,7) is created by the first item of width 7. An arc (7,14) is created by the second item of width 7
and is transposed into (7,3). Then, arcs (0,5), (3,8), and the transposed (7,1) are created by the item
of width 5. Finally, loss arcs linking together consecutive vertices are added. An optimal solution for
the bm-BPPIF having F = 1 uses two bins and corresponds to arcs (0,7), (7,3), (3,8), and (8,11). The
same solution is optimal also for the fm-BPPIF having B = 2.

15

Let Aj = {(d, d + wi) ∈ As} ∪ {(d, (d + wi) mod c) ∈ At}. The bm-BPPIF can be modeled as

(F bm
AF) min z +

∑

(d,e)∈At

xde (32)

s.t.
∑

(e,f)∈δ+(e)

xef −
∑

(d,e)∈δ−(e)

xde =

z if e = 0
−z if e = c
0 for e ∈ V, 0 < e < c

(33)

∑

(d,e)∈Aj

xde ≥ dj j = 1, . . . ,m (34)

∑

(d,e)∈At

xde ≤ F (35)

xde ∈ N (d, e) ∈ A. (36)

Objective function (32) minimizes the number of bins, which is equal to the flow emanating from 0
plus the flow on the transposed arcs. Constraints (35) ensure that the number of fragmentations is not
greater than F . The adaptation of this model to the fm-BPPIF variant is

(F fm
AF)

{

min
∑

(d,e)∈At
xde : (33), (34), (36), and z +

∑

(d,e)∈At
xde ≤ B

}

(37)

Model (37) minimizes the number of fragmentations (instead of limiting it to F , as in (35)) and imposes
a feasible flow containing all items. The last part of (37) forces the use of at most B bins.

As it will be shown by the experimental evaluation in Section 7, these formulations are useful to
obtain good quality lower bounds but quite weak in quickly finding feasible solutions. We could not find
a direct formulation of the problem based on reflect, but, with the aim of obtaining good quality upper
bounds, we implemented an approach based on tailored VSBPP instances solved by slightly modified
F V S
RE formulations. Let us describe it first for the bm-BPPIF. Let the bin types in set T be numbered

as t = 1, 2, . . . , |T |. For each bin type t, we define an arbitrarily large availability bt, a capacity ct = tc,
and a cost pt = t. Under this construction, using a bin of type t in the VSBPP corresponds to using t
bins of capacity c in the BPPIF. This derives from the fact that a fractional packing in t bins can always
be obtained by using no more than t − 1 fragmentations (see, e.g., Casazza and Ceselli 2016). Thus,
an optimal bm-BPPIF solution can be obtained by solving a modified F V S

RE that includes the additional

constraint
∑|T |

t=1(t− 1)ωt ≤ F .
When |T | is sufficiently large, this approach leads to an optimal solution. However, this may result

in a long computing time because of the consequent large capacities involved. Our approach, called
reflectIF , attempts instead different increasing values of |T | in the set {1, 2, 3}. For each value, it
invokes the modified F V S

RE with a limited time and checks whether the solution found (if any) is proven
optimal. If not, it continues to the next T value. If the three attempts are concluded without a proof
of optimality, then reflectIF invokes F bm

AF . The adaptation of this approach to the fm-BPPIF is easy,

as it only requires to modify F V S
RE by setting the objective function to

∑|T |
t=1(t− 1)ωt and imposing the

additional constraint
∑|T |

t=1 tωt ≤ B, and then invoking F fm
AF in the last step. We opted not to modify

the advanced bounding procedures for the large-size instances (Section 4.1) to cope with the BPPIF,
because, as shown in Section 6 below, the approach that we just described could optimally solve all
benchmarks.

16

7 Computational results

In this section, we computationally evaluate the proposed techniques and compare them with the existing
literature. All our experiments have been executed on an Intel Xeon 3.10 GHz with 8 GB RAM (having
CPU passmark indicator = 6594 in www.passmark.com), using Gurobi 6.5 as MILP solver. All tests
were performed with a single core and by setting the number of threads to one in the MILP solver
configuration. Due to the large number of instances attempted, in the following tables we mostly provide
aggregate information for each algorithm and each group of instances, including the two following main
indicators:

• #opt = total number of proven optimal solutions among the instances in the line; and

• sec = average of the CPU seconds elapsed across all instances in the line.

The best values of #opt in each line are highlighted in bold. When computing sec, we consider the time
limit value for all instances that were not solved to proven optimality. Lines marked total/avg report
total #opt and average sec values for groups of two or more lines.

7.1 Results on BPP and CSP

We tested our algorithms on the most-well known and challenging BPP and CSP benchmark sets:

(1) Classical: A set of 1615 instances proposed in various articles in the last decades and having
variegate characteristics (a complete description is given in Delorme et al. 2016);

(2) GI: 4 sets of 60 instances proposed by Gschwind and Irnich (2016) and involving bin capacities
up to 1 500 000;

(3) AI/ANI: 2 sets of 100 challenging instances proposed by Delorme et al. (2016).

Instances and algorithms of this section are available at the BPPLIB by Delorme et al. (2017a). We
first evaluate the entity of the improvement obtained by FRE on the classical FAF . Table 1 provides
the results obtained by running the two formulations with a time limit of 3600 seconds. The first two
columns identify the benchmark set and the corresponding number of instances. Apart from #opt and
sec, the table gives the average number of variables (nb. var.) and constraints (nb. cons.) in the models.

17

Table 1: Comparison between the classical arc-flow and the new reflect formulations on BPP/CSP
benchmarks

set of instances #inst.
arc-flow (FAF) reflect (FRE)

#opt sec nb. var. nb. cons. #opt sec nb. var. nb. cons.

Waescher 17 9 1780.5 174 722 9256 17 555.5 52 006 4257
Hard28 28 28 10.9 36 816 1134 28 19.0 10 932 635
Falkenauer U 80 80 0.1 3023 205 80 0.0 765 131
Falkenauer T 80 80 1.3 16 246 735 80 0.3 2490 332
Schwerin 1 100 100 0.9 11 636 733 100 0.3 3408 287
Schwerin 2 100 100 0.7 12 442 739 100 0.2 3664 292
Scholl 1 720 720 0.1 1735 166 720 0.0 510 113
Scholl 2 480 480 84.3 39 307 938 480 9.6 13 187 453
Scholl 3 10 10 324.2 1 529 969 49 268 10 8.6 29 938 10 923

total/avg (1) 1615 1607 46.2 26 853 913 1615 9.1 5668 367

GI AA 60 20 2699.3 4 878 777 205 208 60 179.8 82 069 23 436
GI AB 60 0 3600.0 19 852 031 441 111 0 3600.0 4 493 237 191 111
GI BA 60 20 2727.3 10 113 134 510 332 60 380.1 99 396 39 627
GI BB 60 0 3600.0 52 020 717 1 281 154 0 3600.0 11 271 290 531 165

total/avg (2) 240 40 3156.7 21 716 164 614 405 120 1940.0 3 986 498 201 288

AI 200 50 50 233.7 121 251 2249 50 45.5 42 803 1140
AI 400 50 19 2461.3 940 036 7686 21 2297.4 335 723 3768
ANI 200 50 35 1397.7 119 496 2245 50 67.2 42 021 1136
ANI 400 50 3 3474.4 935 117 7683 10 3083.6 334 149 3765

total/avg (3) 200 107 1891.8 528 975 4966 131 1373.4 188 674 2452

total/avg (1)+(2)+(3) 2055 1754 327.6 2 608 779 72 956 1866 190.3 488 393 24 035

It can be noted that FRE outperforms FAF both in terms of #opt and sec. This can be explained by
the drastic variable and constraint reductions obtained by reflect: An average 81.2% of variable reduction
(ranging from 64.5% for AI 400 up to 98% for Scholl 3); and an average 64.1% of constraint reduction
(ranging from 31.9% for Scholl 1 up to 92.2% for GI BA). However, even with these considerable
reductions, reflect cannot handle the millions of variables and the hundreds of thousands constraints
required to model the GI AB and GI BB instances.

We now analyze the performance of reflect+. We first focus on the difference between the classical
restricted master heuristics (that solve FPR with less columns) adopted many times in the literature,
and the first two new heuristics used in reflect+ (that solve FRE with less arcs). Table 2 provides the
results obtained by running FPR and FRE considering only columns/arcs from Pbase or PLP (see Section
4.1), with a time limit of 60 seconds. Apart from #opt and sec, the table provides the number of times
an execution reached the time limit (t.l.), and the average absolute gap from the best known lower
bound (a.g.=U − L).

18

Table 2: Comparison between classical restricted master heuristics (FPR(Pbase) and FPR(PLP)) and
new reflect based heuristics (FRE(Pbase) and FRE(PLP)) on BPP/CSP benchmarks

set of instances #inst.
FPR(Pbase) FPR(PLP) FRE(Pbase) FRE(PLP)

#opt sec #t.l. a.g. #opt sec #t.l. a.g. #opt sec #t.l. a.g. #opt sec #t.l. a.g.

Waescher 17 0 0.3 0 2.4 5 16.1 2 0.8 7 10.7 2 0.6 9 23.7 6 0.5
Hard28 28 0 0.2 0 2.5 5 1.0 0 0.8 0 0.0 0 1.0 15 2.7 0 0.5
Falkenauer U 80 12 0.0 0 1.1 67 0.1 0 0.2 79 0.0 0 0.0 80 0.0 0 0.0
Falkenauer T 80 10 0.6 0 2.1 17 4.5 1 0.8 10 0.1 0 0.9 80 0.6 0 0.0
Schwerin 1 100 0 0.1 0 2.3 16 21.3 8 1.0 100 0.0 0 0.0 100 0.2 0 0.0
Schwerin 2 100 0 0.2 0 2.2 44 17.1 16 0.6 100 0.0 0 0.0 100 0.1 0 0.0
Scholl1 720 287 0.0 0 0.8 529 0.2 1 0.3 717 0.0 0 0.0 720 0.0 0 0.0
Scholl2 480 9 11.5 67 3.4 111 36.4 266 2.0 474 0.9 3 0.0 475 1.6 5 0.0
Scholl3 10 0 5.0 0 8.8 0 60.1 10 5.1 10 0.3 0 0.0 10 1.9 0 0.0

total/avg (1) 1615 318 3.5 67 1.9 794 14.1 304 0.9 1497 0.4 5 0.1 1589 0.8 11 0.0

GI AA 60 4 19.3 19 2.0 32 22.1 20 0.9 60 0.5 0 0.0 60 2.5 0 0.0
GI AB 60 3 32.3 28 2.5 24 39.2 36 1.6 59 1.6 0 0.0 56 14.3 4 0.3
GI BA 60 6 17.7 16 1.9 33 22.4 20 0.8 59 0.6 0 0.0 60 2.0 0 0.0
GI BB 60 2 32.6 29 2.6 23 38.1 35 1.7 59 3.5 1 0.0 50 16.3 10 0.7

total/avg (2) 240 15 25.4 92 2.3 112 30.5 111 1.2 237 1.5 1 0.0 226 8.8 14 0.2

AI 200 50 1 0.1 0 2.5 1 1.2 0 1.0 1 0.0 0 1.0 13 2.2 0 0.7
AI 400 50 0 9.5 2 5.7 0 49.1 36 1.9 0 0.6 0 1.0 0 19.6 0 1.0
ANI 200 50 0 0.0 0 2.2 0 0.9 0 1.0 0 0.0 0 1.0 0 1.5 0 1.0
ANI 400 50 0 8.9 1 5.5 0 53.4 40 1.8 0 0.6 0 1.0 0 23.0 3 1.1

total/avg (3) 200 1 4.6 3 3.9 1 26.1 76 1.4 1 0.3 0 1.0 13 11.6 3 1.0

total/avg (1)+(2)+(3) 2055 333 6.4 359 2.0 906 16.2 615 1.0 1734 0.5 206 0.1 1815 1.9 225 0.0

Table 2 shows that, when used on a restricted set of patterns, FRE largely outperforms FPR. Some-
times, both FPR(Pbase) and FPR(PLP) are fast but tend to terminate with sub-optimal solutions (e.g.,
on Waescher), while some other times they do not finish within the time limit (e.g., on Scholl 2). Both
FRE(Pbase) and FRE(PLP) obtain good results as they solve to optimality most of the instances within
a small time, achieving a small average gap on the unsolved instances. There is not a clear dominance
between FRE(Pbase) and FRE(PLP): FRE(Pbase) is faster, especially for instances with very large capac-
ity (e.g., GI AB), but FRE(PLP) terminates more often with a proven optimal solution (e.g., Falkenauer
T). Note that no algorithm is capable of providing good results for the difficult AI/ANI instances, for
which more advanced techniques are needed.

Table 3 compares reflect and reflect+ with the best algorithms available in the BPP/CSP literature.
On the basis of the results in Delorme et al. (2016), we selected the two approaches that largely
dominated other 10 exact methods, namely, the branch-and-cut-and-price by Belov and Scheithauer
(2006), simply called Belov hereafter, and the VPSolver by Brandão and Pedroso (2016). We ran the
codes of the two methods on our machine. As required by the codes, Cplex (version 12.6) was used for
Belov and Gurobi (6.5) for VPSolver. In addition to #opt and sec, Table 3 provides for reflect+ the
number of times in which an instance was closed to optimality by FRE(Pbase) and FRE(PLP) (#U1, U2),
by FRE +(21)− (23) (#U3), and by the main algorithm’s loop (#U4). The best configuration we found
for Reflect+ is as follows: For the standard instances (nb. var. plus 10 times nb. cons. lower than
1 000 000), we gave up to 60 seconds for U1, up to 1200 for U3, and the remaining time for U4; for the
other very large instances, we gave up to 3600 seconds for computing U1, the remaining time, if any, to
U2 and then possibly to U4.

19

Table 3: Comparison of reflect and reflect+ with the best algorithms from the BPP/CSP literature

set of instances # inst.
Belov VPSolver reflect (FRE) reflect+

#opt sec #opt sec #opt sec #opt sec #U1, U2 #U3 #U4

Waescher 17 17 0.1 16 886.2 17 555.5 17 41.3 7 8 2
Hard28 28 28 7.5 28 33.0 28 19.0 28 4.2 0 23 5
Falkenauer U 80 80 0.0 80 0.1 80 0.0 80 0.1 79 1 0
Falkenauer T 80 80 56.9 80 0.4 80 0.3 80 1.0 10 70 0
Schwerin 1 100 100 1.0 100 0.3 100 0.3 100 0.1 100 0 0
Schwerin 2 100 100 1.3 100 0.3 100 0.2 100 0.1 100 0 0
Scholl 1 720 720 0.0 720 0.0 720 0.0 720 0.1 717 3 0
Scholl 2 480 480 0.3 479 107.7 480 9.6 480 2.8 475 5 0
Scholl 3 10 10 14.1 10 8.5 10 8.6 10 3.7 10 0 0

total/avg (1) 1615 1615 3.3 1613 42.1 1615 9.1 1615 1.5 1498 110 7

GI AA 60 60 2.8 56 453.8 60 179.8 60 11.7 60 0 0
GI AB 60 60 10.9 0 3600.0 0 3600.0 60 29.6 60 0 0
GI BA 60 60 2.8 57 491.6 60 380.1 60 16.4 59 1 0
GI BB 60 60 10.5 0 3600.0 0 3600.0 60 47.5 60 0 0

total/avg (2) 240 240 6.8 113 1968.4 120 1940.0 240 26.3 239 1 0

AI 200 50 50 90.6 50 105.8 50 45.5 50 8.5 1 48 1
AI 400 50 45 699.4 36 1430.5 21 2297.4 40 1205 0 30 10
ANI 200 50 50 144.2 49 119.5 50 67.2 50 49.3 0 0 50
ANI 400 50 1 3555.6 11 3170.2 10 3083.6 17 2703.9 0 0 17

total/avg (3) 200 146 1222.5 146 1206.5 131 1373.4 157 991.7 1 78 78

total/avg (1)+(2)+(3) 2055 2001 122.3 1872 372.6 1866 190.3 2012 100.7 1738 189 85

Table 3 shows that the behavior of reflect+ is very satisfactory and that the additional techniques
help improving the results obtained by reflect alone. While U1 and U2 are effective for the first two
benchmark sets, U3 and U4 are useful for the third difficult set. On average, reflect+ consistently
outperforms VPSolver in terms of number of optimal solutions and time, especially on difficult instances
(Waescher, GI AB and BB, and AI 400). When compared to Belov, reflect+ is less powerful on the
AI 400 instances (where the issue is to find the good heuristic solution) but better for the ANI 400
instances (where it is difficult to raise the lower bound to the optimal value), and overall finds 11 more
proven optimal solutions with a slightly smaller computational effort.

7.2 Results on the VSBPP

To test F V S
RE and reflectV S

+ , we considered three VSBPP benchmark sets:

(4) Crainic: 3 sets used in Crainic et al. (2011), gathering instances from the VSBPP literature having
up to 12 bin types and 1000 items, and being rather easy because of small c values;

(5) Hemmelmayr: 2 sets of instances used in Hemmelmayr et al. (2012) and derived from previous
articles, containing up to 7 bin types and 2000 items, and having moderate difficulty;

(6) Belov: 4 sets of difficult instances proposed by Belov and Scheithauer (2002). Each set contains
50 instances with around 5000 items and bin capacity up to 10 000. The maximum number of
different bins is 2, 4, 8, and 16 for, respectively, Belov 1, 2, 3, and 4. Belov 2 is a standard
reference set also addressed by Alves and Valério de Carvalho (2008). The other three sets are
interesting to study the impact of |T |.

20

Table 4 compares our methods with the best algorithms available in the VSBPP literature, namely:
Belov, the branch-and-cut-and-price algorithm by Belov and Scheithauer (2002); Alves, the branch-and-
cut-and-price by Alves and Valério de Carvalho (2008); Hemmelmayr, the combination of lower bounds
and variable neighbourhood search by Hemmelmayr et al. (2012). We also present the results of arc-
flow, that for the VSBPP was not computationally tested up to now. All methods were executed with
a time limit of 3600 seconds on our machine, with the exception of Alves, executed on an Intel Core
Duo 1.83GHz (passmark value 728), and Hemmelmayr, executed on an Intel Pentium D 940 3.20GHz
(passmark value 710). We set the ReflectV S

+ configuration as follows: For small instances (n ≤ 500) we
executed directly U4; for the other instances, we gave up to 60 seconds for U1, up to 60 seconds for U2,
and the remaining time to U4.

Table 4: Comparison of F V S
RE and reflectV S

+ with the best algorithms from the VSBPP literature

set of instances # inst.
Belov Alves* Hemmelmayr** arc-flow reflect (FV S

RE) reflectV S
+

#opt sec #opt sec #opt sec #opt sec #opt sec #opt sec

Crainic 1 300 - - 300 0.2 - - 300 1.1 300 0.3 300 0.3
Crainic 2 60 - - - - - - 60 3.4 60 2.2 60 2.5
Crainic 3 480 - - - - - - 480 0.6 480 0.2 480 0.2

total/avg (4) 840 - - - - - - 840 1.0 840 0.4 840 0.4

Hemmelmayr 1 150 - - - - 78 13.4 150 2.7 150 1.2 150 1.1
Hemmelmayr 2 50 - - - - 50 0.7 50 1.5 50 0.5 50 0.8

total/avg (5) 200 - - - - 128 10.3 200 2.4 200 1.0 200 1.0

Belov 1 50 42 753.4 - - - - 38 1230.6 48 258.5 50 6.1
Belov 2 50 38 1058.5 47 227.5 - - 34 1679.7 41 874.3 50 4.1
Belov 3 50 37 1110.3 - - - - 31 1673.3 44 786.0 50 1.6
Belov 4 50 39 1127.0 - - - - 27 2009.2 35 1613.1 50 4.0

total/avg (6) 200 156 1012.3 - - - - 130 1648.2 168 883.0 200 3.9

total/avg (4)+(5)+(6) 1240 - - - - - - 1170 266.9 1208 142.9 1240 1.1

* executed on an Intel Core Duo 1.83GHz; ** executed on an Intel Pentium D 940 3.20GHz

Table 4 shows that pseudo-polynomial formulations are, in general, very effective for most of the
VSBPP instances. They are sufficient to solve all instances of the first two benchmark sets in just a
few seconds, finding comparable results with Alves on Crainic 1 and outmatching Hemmelmayr on the
second benchmark set. The real challenge is on the third difficult set. For example, for Belov 2 arc-flow
finds only 34 proven optima and is outmatched by the two methods based on cut and column generation
by Belov (38 optima) and Alves (47 optima). A similar behavior can be observed for Belov 1, 3, and
4. Reflect is better than Belov on average but slightly worse than Alves, whereas reflectV S

+ marks a
strong improvement, solving in about 4 seconds all 200 instances (U1 and U2 found 194 proven optimal
solutions and U4 closed the 6 remaining instances). Overall, reflectV S

+ closed all instances in a second
on average. It is also interesting to notice that parameter |T | does not influence reflectV S

+ , has a small
impact on Belov algorithm, but affects the performance of both arc-flow (from 38 to 27 optima) and
reflect (from 48 to 35 optima). This can be partially imputed to the number of variables in the models,
which for reflect increases from an average value of 37 708 for Belov 1 (maximum |T |=2) to 52 248 for
Belov 4 (maximum |T | = 16).

7.3 Results on the BPPIF

We used two BPPIF benchmark sets:

21

(7) bm-BPPIF: A set of 540 instances by Casazza and Ceselli (2016) having up to 1000 items (divided
in ranges 20–100 and 150–1000), two types of bin capacity (tight, loose), and three range of item
weights (free, large, small);

(8) fm-BPPIF: A copy of the previous set where the limit B on the number of bins has been replaced
by a limit F on the number of items.

Table 5 compares our results with those of the branch-and-price by Casazza and Ceselli (2016),
denoted as Casazza. All algorithms were run with a time limit of 3600 second, Casazza on an Intel
Core2 Duo E6850 3.00 GHz (passmark 1951). Apart from #opt and sec, the table also provides for
reflectIF the number of instances solved to proven optimality by F V S

RE with different |T | values (#|T |=1,

2, 3) and by F bm
AF /F

fm
AF (#AF).

Table 5: Comparison of new arc-flow formulations and reflectIF with the existing BPPIF literature

variant set of instances # inst.
Casazza* arc-flow (F bm

AF /F fm
AF) reflectIF

#opt sec #opt sec #opt sec #|T |=1 #|T |=2 #|T |=3 #AF

bm

20-100 loose-free 30 30 2.8 30 1.2 30 0.6 29 1 0 0
20-100 loose-large 30 30 1.8 30 3.3 30 1.4 0 30 0 0
20-100 loose-small 30 30 18.1 30 35.0 30 1.0 30 0 0 0
20-100 tight-free 30 30 4.3 30 9.3 30 1.9 11 19 0 0
20-100 tight-large 30 30 1.5 30 4.1 30 1.5 0 30 0 0
20-100 tight-small 30 30 3.5 30 7.8 30 1.6 30 0 0 0

150-1000 loose-free 60 42 1591.8 60 6.9 60 3.4 60 0 0 0
150-1000 loose-large 60 50 1205.7 60 17.5 60 7.3 0 60 0 0
150-1000 loose-small 60 30 1950.5 47 1528.2 60 16.5 60 0 0 0
150-1000 tight-free 60 44 1891.6 60 140.0 60 25.7 0 60 0 0
150-1000 tight-large 60 49 1514.8 60 19.8 60 6.4 0 60 0 0
150-1000 tight-small 60 48 1453.0 49 1176.0 60 28.5 60 0 0 0

total/avg (7) 540 443 803.3 516 324.3 540 10.2 280 260 0 0

fm

20-100 loose-free 30 30 2.1 30 6.6 30 1.3 26 4 0 0
20-100 loose-large 30 30 2.0 30 6.1 30 1.2 0 30 0 0
20-100 loose-small 30 30 0.3 30 9.6 30 1.1 30 0 0 0
20-100 tight-free 30 30 85.7 28 328.8 30 28.7 0 13 11 6
20-100 tight-large 30 30 81.4 30 55.5 30 11.1 0 0 18 12
20-100 tight-small 30 30 12.4 30 193.9 30 3.4 15 14 0 1

150-1000 loose-free 60 0 3600.0 60 24.9 60 6.1 60 0 0 0
150-1000 loose-large 60 59 1044.6 60 42.7 60 5.4 0 60 0 0
150-1000 loose-small 60 0 3600.0 60 12.2 60 5.4 60 0 0 0
150-1000 tight-free 60 11 3382.0 11 3080.6 60 217.0 0 58 0 2
150-1000 tight-large 60 39 1885.5 39 1694.6 **59 621.3 0 0 59 0
150-1000 tight-small 60 0 3600.0 27 2453.5 60 80.6 60 0 0 0

total/avg (8) 540 289 1441.3 435 845.4 539 106.6 251 179 88 21

total/avg (7)+(8) 1080 732 1122.3 951 584.9 1079 58.4 531 439 88 21

* tested on an Intel Core2 Duo E6850 3.00GHz; ** remaining instance solved to proven optimality in 4858.7 sec

The results show that our algorithms are very effective. All instances with up to 100 items are easily
solved by all methods. For the larger instances, our arc-flow formulations outmatch Casazza both in
terms of #opt and sec on both problem variants. A good improvement is then obtained by reflectIF ,
which solves to optimality all bm instances and all fm instances but one. Between the two variants,
bm is the easiest as all instances are solved by reflectIF in about 10 seconds on average, and by just
invoking F V S

RE with |T | = 1 or 2. The fm variant is harder and imposes a larger burden to all algorithms.
The only fm instance that was unsolved to proven optimality in one hour could be solved by reflectIF

in about 80 minutes. In this way, optimal solutions have been produced for all benchmark instances.

22

8 Conclusions and future research

Thanks to the sharp improvement in the performance of mixed integer linear programming solvers,
pseudo-polynomial models have recently become a useful tool for the solution of many combinatorial
optimization problems. This has raised interesting opportunities for the development of new effective
combinatorial techniques and for devising dedicated solution algorithms.

In our work, we studied pseudo-polynomial models for the classical bin packing problem (BPP)
and cutting stock problem. We gave a complete overview of the dominance and equivalence relations
among the main formulations. We then introduced a formulation that models a BPP instance on a
reduced network where source-to-sink paths are replaced by pairs of colliding paths. We improved the
computational performance of this formulation by using techniques based on column generation, dual
cuts, and heuristics, and showed the easy replicability of the proposed methods by adapting them to two
relevant BPP generalizations, namely, the variable sized BPP and the BPP with item fragmentation.
Extensive computational results proved that our algorithms are very effective, improving upon the
existing literature and providing optimal solutions for many benchmark instances that were previously
unsolved.

Research on pseudo-polynomial models is currently of great interest, because it could help improv-
ing state-of-the-art results in many decision problems of practical interest. Relevant applications could
arise in one-dimensional cutting and packing, for example in problems with loose bin capacities (Ce-
selli and Righini 2008), reusable leftovers (Arbib et al. 2002) or cardinality constraints (Sadykov and
Vanderbeck 2013), and in two-dimensional cutting and packing, for example as master problems in
primal decomposition methods (as in Côté et al. 2014 and Delorme et al. 2017b). But they could arise
also in resource-constrained and/or precedence-constrained problems, in the capacitated vehicle routing
area, as well as in single and multiple machine scheduling problems under different objective functions.
In practice, in many of those combinatorial optimization problems where capacity play a central role.
Multi-objective optimization could also be tackled, by imposing the different profits/costs on the arcs
of the network and using path reconstruction algorithms to derive Pareto optimal solutions. The de-
velopment of new advanced techniques for improving the existing models is also of great interest. For
the BPP, our pseudo-polynomial models are particularly put under strain by instances with large bin
capacities and a large number of items of small weight, and, in fact, instances with just 400 items remain
unsolved despite the application of dozens of algorithms. Future research is thus envisaged, both to
devise new applied models and improve the existing ones.

23

Appendix

In this appendix, we provide the proofs of the statements in the paper, as well as some additional
material that is useful for their comprehension. To facilitate the reader, some problem definitions and
technical notations given in the paper are also summarized here.

Appendix A Details for Lemma 1

For the sake of clarity, we provide in Algorithm 2 the procedure that we use for the decomposition into
paths of a solution of the continuous relaxation of arc-flow. The algorithm receives in input a generic
solution x̄de of L(FAF), that is, the linear programming relaxation of model (7)–(10) in which (10) is
replaced by xde ≥ 0. Let P define a generic set of paths. For short, let p define both a path and the
index of such path, for p ∈ P . Algorithm 2 selects an arc emanating from the source node 0 to initialize
a path (steps 3 and 4), iteratively extends the path until it reaches the sink node c (steps 5–8), and
sets the flow on the path as the minimum flow on the selected arcs (steps 9 and 10). Then, the path
is added to P (step 11) and the process is iterated until all variables take value 0. The set P is finally
returned. Clearly, the algorithm also works for integer FAF solutions.

Algorithm 2 DecomposeAF

1: Input: An L(FAF) solution x̄de
2: P ← ∅
3: while ∃ an arc (0, e) with x̄0e > 0 do

4: p← ∅; d← 0
5: while d 6= c do

6: select the first arc (d, e) ∈ δ+(d) with x̄de > 0 and add it to p
7: d← e
8: end while

9: z̄p ← min(d,e)∈p{x̄de}
10: for all (d, e) ∈ p do x̄de ← x̄de − z̄p
11: P ← P ∪ {p}
12: end while

13: return P

Appendix B Proof of Lemma 2

Lemma 2. Any solution of one-cut or of its continuous relaxation can be decomposed into a set of
binary trees.

Proof. The proof is based on the procedure that we use to decompose the solution into trees, given in
Algorithm 3. The algorithm receives in input a solution ȳpq of L(FOC), having objective function value
z̄. Let T define a set of binary trees. Let t define both a tree and the index of such tree, for t ∈ T . Each
tree is formed by a set of nodes, each having at most two children, a left one and a right one. Intuitively,
children nodes are created by a cut on the piece (entire piece or residual piece) corresponding to their
parent node. Let us use [p, q] to denote a cut on a piece of width p that produces a left child of size q
(and a right child of size p− q).

24

Algorithm 3 requires a simple mapping M that associates each cut [p, q] with an index mpq. At step
3, it selects a cut [c, q] with positive ȳcq value, and then, at steps 4-6, it uses the cut to initialize tree t,
the set of cuts C used to generate t, and an array L storing the leaves of the tree. As long as there is a
cut on a piece of width p stored in L, then the tree and the corresponding set of cuts are enlarged (steps
7–13). The array L is updated by removing the piece that was cut and inserting the two children. After
the process of enlarging the tree terminates, the value z̄t of the tree is set to a minimum considering
the values of the selected cuts and the number of times they appear in the tree (step 14). The residual
variables values are updated at step 15, and the process continues until all trees have been generated.

Algorithm 3 DecomposeOC

1: Input: An L(FOC) solution ȳpq and a map M that associates cut [p, q] with index mpq

2: T ← ∅
3: while ∃ a cut [c, q] with ȳcq > 0 do

4: L[0, . . . , c]← 0 ⊲ an array that keeps track of the final leafs of the tree
5: L[c]← 1; initialize t with c ⊲ a tree starts with a unique leaf c
6: C[0, . . . ,max{mpq}]← 0 ⊲ an array that keeps track of all the cuts used in the tree
7: while ∃ a cut [p, q] with L[p] > 0 and ȳpq > 0 do

8: L[p]← L[p]− 1
9: add q as left child of p in t and p− q as right child of p in t

10: L[q]← L[q] + 1
11: L[p− q]← L[p− q] + 1
12: C[mpq]← C[mpq] + 1
13: end while

14: z̄t ← min[p,q]:C[mpq]>0{ȳpq/C[mpq]}
15: for all [p, q] : C[mpq] > 0 do ȳpq ← ȳpq − z̄t · C[mpq]
16: T ← T ∪ {t}
17: end while

18: return T

Algorithm 3 clearly creates binary trees, but, to prove that it effectively decomposes a one-cut
solution, it must be shown that it also terminates with a situation in which all variables take value 0
and no uncut portions of the solution are left. This can be proved by showing that it is impossible to
find a q ∈ W ∪R \ {c} that satisfies

∑

r∈C(q)

ȳqr > 0 ∧
∑

p∈A(q)

ȳpq = 0 ∧
∑

p∈B(q)

ȳp+q,p = 0. (38)

Indeed, if (38) was satisfied, then a piece of width q different than c has to be recut (condition 1), but
q is neither produced by a left cut (condition 2), nor by a right cut (condition 3).

To this aim note that, after the variables’ update at step 15, there are two possible cases for q:

• L(q) > 0, so q belongs to the final leafs of the tree that was just built. According to step 7, this
means that for such q there is no cut [q, r] for which ȳqr > 0 (otherwise the while loop would have
been repeated), and consequently the first condition of (38) is not satisfied for this q;

• L(q) = 0, or, in other words, q does not belong to any of the final leafs of the tree. This means that,
in tree t, the amount of ȳ where q appears as a child (

∑

p∈A(q) ȳpq+
∑

p∈B(q) ȳp+q,p) is equal to the
amount of ȳ where q appears as a father (

∑

r∈C(q) ȳqr). This has the consequence of maintaining
inequality (5) satisfied during the algorithmic iterations. Indeed, (5) was initially satisfied by ȳ

25

and now remains satisfied because step 15 removes the same amount of ȳ from both sides of it.
This implies that the three conditions in (38) cannot be simultaneously satisfied for this q.

We remark that the decomposition shown in Figure 2 of Section 3 has been obtained by a slight
modification of Algorithm 3 that only creates right-sided trees. The modification, which is only needed
for the proof of equivalence of FAF with FOC , is formally discussed in Remark 3 below.

Appendix C Proof of Proposition 1 and additional examples

We first observe two simple properties that will be used in the main proof.

Remark 2 Any solution x̄de of L(FAF) can be transformed into an equivalent solution which can be
decomposed into left-aligned paths, that is, paths in which loss arcs, if any, appear at the right of all
item arcs.

Recall that, according to Lemma 1, one can decompose x̄de into paths. Remark 2 then follows from
the fact that one can select paths that are not left-aligned, and move to the left as much as possible
all their item arcs, until no more move can be made. Note that an easy way to obtain a left-aligned
solution is to replace in A each loss arc (d, d+1) with a new loss arc (d, c). These new loss arcs can only
appear at the end of a path, thus imposing a left-alignment. Then, a solution with these alternative loss
arcs can be easily mapped into an original L(FAF) solution by replacing each selected (d, c) arc with a
chain of c− d unit-width loss arcs.

Remark 3 Any solution ȳpq of L(FOC) can be transformed into an equivalent solution which can be
decomposed into right-sided trees, that is, trees in which only right children are allowed to have their
own children.

According to Lemma 2, we know that ȳpq can be decomposed into a set of trees. A decomposition
into right-sided trees can be obtained by either (i) modifying the positions of the cuts, or (ii) modifying
model (4)–(6) and Algorithm 3. Here we describe the second option, whose implementation is simpler.
It consists of adding to model (4)–(6) the inequality

∑

r∈C(q)

yqr ≤
∑

p∈B(q)

yp+q,p q ∈ W ∪R \ {c} (39)

and removing step 10 from Algorithm 3. Inequality (39) is a symmetry-breaking constraint that imposes
to select, among the equivalent solutions, one in which the number of times q is recut (left-hand side
of the inequality) is not greater than the number of times it appears as a right child (right-hand side),
thus ensuring that all recuts are performed on a right child. Then, the modification in Algorithm
3 guarantees that no left child enters the candidate list for recutting (array L), thus producing only
right-sided trees.
Proposition 1. FAF is equivalent to FOC .

Proof. We first prove that FAF is included in FOC , and then that FOC in included in FAF .

26

Arc-flow is included in one-cut.

Let us consider a generic solution x̄de of L(FAF). According to Lemma 1, x̄de can be decomposed into
paths, and, according to Remark 2. we can suppose without loss of generality that these paths are
left-aligned. We use x̄de to build a feasible and same-cost solution ȳpq of L(FOC) by using Algorithm 4.
The intuition behind the algorithm is that any item arc (d, e) becomes a cut on a piece of length (c− d)
to obtain a left piece of length (e− d).

Algorithm 4 Transform AF into OC

1: Input: A left aligned solution x̄de of L(FAF)
2: for all p ∈ R, q ∈ W, p > q do ȳpq ← 0
3: for all (d, e) ∈ AI : x̄de > 0, e < c do ȳc−d,e−d ← x̄de
4: return ȳ

We first note that, at the end of Algorithm 4 we obtain

ȳc−d,e−d = x̄de (d, e) ∈ AI. (40)

We now show that ȳ has the same cost of x̄. By using (8) and recalling that no arc enters 0, we
know that z̄ =

∑

(0,f)∈δ+(0) x̄0f . All paths in x̄de are left-aligned and so they start with one of the m
item arcs. Moreover, we can equivalently use wi for i = 1, . . . ,m or q ∈ W to express an item width.
By using these considerations, in the given order, and applying (40) to x̄0q, we get

z̄ =
∑

(0,f)∈δ+(0)

x̄0f =

m
∑

i=1

x̄0wi =
∑

q∈W

x̄0q =
∑

q∈W

ȳc−0,q−0 =
∑

q∈W

ȳcq,

which is equivalent to (4).
To prove the feasibility of ȳ, we first note that Algorithm 4 only creates non-negative variable values,

so we only have to show that constraints (5) are satisfied for any q ∈ W ∪ R \ {c}. We first focus on
the case in which q is not an item width, that is, q ∈ R \W \ {c}, which implies Lq = 0 and A(q) = ∅.
We rewrite the flow conservation at intermediate nodes e = 1, . . . , c− 1 in (8) as

∑

(d,e)∈δ−(e)

x̄de =
∑

(e,f)∈δ+(e)

x̄ef =
∑

(e,f)∈δ+(e),
f 6=c

x̄ef +
∑

(e,c)∈δ+(e)

x̄ec ≥
∑

(e,f)∈δ+(e),
f 6=c

x̄ef . (41)

We apply (40) to the leftmost and rightmost elements of (41) and obtain

∑

d∈S,e−d∈W

ȳc−d,e−d ≥
∑

e∈S,f−e∈W

ȳc−e,f−e e = 1, . . . , c− 1.

This can be modified, by using the definitions of sets B ad C (see Section 2.3), as

∑

e−d∈B(c−e)

ȳc−d,e−d ≥
∑

f−e∈C(c−e)

ȳc−e,f−e e = 1, . . . , c− 1.

Then, by setting indices q = c− e, p = e− d, and r = f − e, we obtain

∑

p∈B(q)

ȳp+q,p ≥
∑

r∈C(q)

ȳqr q = 1, . . . , c− 1,

27

which proves that (5) is satisfied for any q ∈ R \W \ {c} (as R \W \ {c} is included in {1, . . . , c− 1}).
When q ∈ W, we also need to take into account Lq and A(q). We consider again (8), but this time
focus on a vertex e = c− wi. By replacing e with c− wi, we get

∑

(d,c−wi)∈δ−(c−wi)

xd,c−wi
=

∑

(c−wi,f)∈δ+(c−wi)

xc−wi,f =
∑

(c−wi,f)∈δ+(c−wi),
f 6=c

xc−wi,f + xc−wi,c,

which we rearrange as

xc−wi,c =
∑

(d,c−wi)∈δ−(c−wi)

xd,c−wi
−

∑

(c−wi,f)∈δ
+(c−wi),

f 6=c

xc−wi,f . (42)

We now consider demand constraints (9) and rewrite their left hand side as

∑

(d,d+wi)∈A

xd,d+wi
=

∑

(d,d+wi)∈A,
d+wi 6=c

x̄d,d+wi
+

∑

(d,d+wi)∈A,
d+wi=c

x̄d,d+wi
=

∑

(d,d+wi)∈A,
d+wi 6=c

x̄d,d+wi
+ xc−wi,c.

We embed (42) into this last equation, and then use the result to rewrite (9) as

∑

(d,d+wi)∈A,
d+wi 6=c

x̄d,d+wi
+

∑

(d,c−wi)∈δ−(c−wi)

x̄d,c−wi
−

∑

(c−wi,f)∈δ
+(c−wi),

f 6=c

x̄c−wi,f ≥ di. (43)

We apply (40) to all members of (43) (
∑

(d,d+wi)∈A,d+wi 6=c x̄d,d+wi
=

∑

d∈S,wi∈W
ȳc−d,wi

,
∑

(d,c−wi)∈δ−(c−wi)
x̄d,c−wi

=
∑

d∈S,c−wi−d∈W ȳc−d,c−wi−d, and
∑

(c−wi,f)∈δ+(c−wi),f 6=c x̄c−wi,f =
∑

c−wi∈S,f−(c−wi)∈W
ȳwi,f−(c−wi)) and rewrite (43) as

∑

d∈S,wi∈W

ȳc−d,wi
+

∑

d∈S,c−wi−d∈W

ȳc−d,c−wi−d −
∑

c−wi∈S,f−(c−wi)∈W

ȳwi,f−(c−wi) ≥ di. (44)

We use the definitions of sets A, B, and C and replace di with Lwi in (44), so we obtain

∑

c−e∈A(wi)

ȳc−e,wi +
∑

c−wi−d∈B(wi)

ȳc−d,c−wi−d −
∑

f−(c−wi)∈C(wi)

ȳwi,f−(c−wi) ≥ Lwi .

We use index q ∈ W instead of wi for i = 1, . . . ,m and rewrite the variables indices, so we get

∑

p∈A(q)

ȳpq +
∑

p∈B(q)

ȳp+q,p −
∑

r∈C(q)

ȳqr ≥ Lq

which proves that (5) is also feasible for any q ∈ W and concludes the first part of the proof.

One-cut is included in arc-flow.

Let us consider a solution ȳpq of L(FOC). From Lemma 2 we know that ȳpq can be decomposed into a
set of trees, and from Remark 3 we can suppose without loss of generality that ȳpq accomplishes with
(39) and can be decomposed into a set of right-sided trees. We use ȳpq to build a feasible and same-cost
solution x̄de of L(FAF) by using Algorithm 5. The algorithm considers the alternative loss arcs (d, c)
that we introduced in Remark 2. The intuition behind Algorithm 5 is that each cut becomes either a

28

Algorithm 5 Transform OC into AF

1: Input: A solution ȳpq of L(FOC) + (39)
2: for all (d, e) ∈ A do x̄de ← 0
3: for all p ∈ R, q ∈ W, p > q : ȳpq > 0 do

4: x̄c−p,c−p+q ← x̄c−p,c−p+q + ȳpq
5: x̄c−p+q,c ← x̄c−p+q,c + ȳpq
6: if p 6= c then x̄c−p,c ← x̄c−p,c − ȳpq end-if

7: end-for

8: return x̄

path that increases the flow on two arcs or a cycle that decreases the flow on one arc and increases it
on two other arcs (two clarifying examples are provided at the end of the proof).

We first derive two equations that are useful for the proof. Algorithm 5 increases (steps 4 and 5) or
decreases (step 6) the x̄ values on the basis of the cuts selected in the solution of L(FOC) + (39). Step
4 is invoked at most once for each pair of p and q values, thus leading to

x̄c−p,c−p+q = ȳpq p ∈ R, q ∈ W, p > q. (45)

Steps 5 and 6 may instead modify multiple times the same variable xc−q,c for a given value of q. By
considering all cuts [r, s] for which r − s = q, step 5 leads to x̄c−q,c ←

∑

r∈R,s∈W ,r>s:r−s=q ȳrs =
∑

s+q∈R,s∈W ȳs+q,s. By considering all cuts [r, s] for which r = q, step 6 leads instead to x̄c−q,c ←
−
∑

r∈W ,s∈R,r>s:r=q ȳrs =
∑

q∈W ,s∈R,q>s ȳqs. By summing these two components and recalling that
B(q) = {p ∈ W : p+ q ∈ R} and C(q) = {p ∈ W : p < q}, we get

x̄c−q,c =
∑

p∈B(q)

ȳp+q,p −
∑

r∈C(q)

ȳqr q ∈ R \ {c}. (46)

To show that x̄ has the same cost of ȳ, it is enough to apply (45) to (4), obtaining

z =
∑

q∈W

ȳcq =
∑

q∈W

x̄c−c,c−c+q =
∑

q∈W

x̄0,q =
∑

(0,e)∈δ+(0)

x̄0,e

which is equivalent to (7).
We now show that constraints (8) remain satisfied during any iteration of Algorithm 5. This can

be intuitively noticed by the example presented after this proof (see Figure C1). Formally, constraints
(8) are satisfied after the initialization step as all flows take value 0. Then, let us first consider the flow
variation involved by ȳpq > 0 having p 6= c. At step 4, the flow leaving c−p is increased by ȳpq, but it is
then reduced by the same amount at step 6, resulting in no flow variation. The same observation holds
for the flow entering c at steps 5 and 6. The flows entering and leaving c− p+ q are balanced at steps
4 and 5. Now, let us consider the flow variations involved by a ȳcq > 0. Again, the flows entering and
leaving q are increased by the same amount at steps 4 and 5. At step 4, the flow leaving 0 is increased
by ȳcq, which is the same amount added to the flow entering c at step 5. Consequently, constraints (8)
are satisfied by the built x̄ values.

To prove that demand constraints (9) are also satisfied, we start by considering (5) for q ∈ W as

∑

p∈A(q)

ȳpq +
∑

p∈B(q)

ȳp+q,p −
∑

r∈C(q)

ȳqr ≥ Lq q ∈ W,

29

which, by applying (45) and (46), can be modified into

∑

(c−p,c−p+q)∈A′,
c−p+q 6=c

x̄c−p,c−p+q + x̄c−q,c ≥ Lq q ∈ W.

We now set wi = q and e = c− p, replace Lwi with di, and obtain the desired result

∑

(e,e+wi)∈A,
e+wi 6=c

x̄e,e+wi + x̄c−wi,c =
∑

(e,e+wi)∈A

x̄e,e+wi ≥ di i = 1, . . . ,m.

For what concerns non-negativity, this may be an issue only for variables xc−q,c, the only ones
affected by step 6. We can notice, however, that the right-hand side of (46) is forced to be non-negative
by the additional constraint (39) that we imposed, and thus x̄c−q,c ≥ 0 holds (an example of a solution
that does not satisfy (39) and leads to a negative x̄ value is shown in Figure C2). This shows that x̄ is
a feasible L(FAF) solution and concludes the proof.

For the sake of clarity, we provide two examples that clarify some details of the proof. In Figure
C1, we depict the four steps performed by Algorithm 5 when applied to the ȳpq solution of Example 1
discussed in Lemma 2. The solution consists of four cuts (ȳ11,7 = 1, ȳ11,4 = 1/3, ȳ7,3 = 1/3, and ȳ4,3
= 2/3) and so requires four iterations, shown in the figure from top to bottom. Suppose the algorithm
selects the cuts in the order above. At iteration 1, it selects [11, 7] and sets x̄0,7 = x̄7,11 = 1, obtaining
the first path. At iteration 2, it selects [11, 4], thus setting x̄0,4 = x̄4,11 = 1/3 and creating the second
path. At iteration 3, it processes [7, 3], and, because p = 7 6= c, it sets x̄4,7 = 1/3, increases x̄7,11 to
4/3, and decreases x̄4,11 to 0, thus moving the precedent flow on (4,11) to (4,7) and (7,11). At the last
iteration, it selects [4, 3], thus imposing x̄7,10 = x̄10,11 = 2/3 and x̄7,11 = 2/3, moving part of the flow
on (7,11) to (7,10) and (10,11).

ȳ11,7 = 1 0 7 11

1

1

ȳ11,4 = 1/3 0 4 7 11

1

1

1/3
1/3

ȳ7,3 = 1/3 0 4 7 11

1

4/3

1/3 1/3

ȳ4,3 = 2/3 0 4 7 10 11

1

2/3

1/3 1/3 2/3

2/3

Figure C1: Construction of an L(FAF) solution of Example 1 through Algorithm 5. Each iteration,
from top to bottom, processes the cut associated with the ȳ variable given on the left

The second example that we present in Figure C2 shows that, without the additional constraint
(39), negative flows could appear in the solution produced by Algorithm 5. Indeed, let us consider an
optimal L(FOC) solution of Example 1 having value 4/3 and consisting of ȳ11,7 = 4/3, ȳ7,3 = 1/3, and

30

Algorithm 6 Transform DP into AF

1: Input: A solution ϕ̄j,d,j+1,e of L(FDP)
2: for all (d, e) ∈ AI do x̄de ←

∑n
j=1 ϕ̄j,d,j+1,e

3: for all (d, d+ 1) ∈ Aℓ do x̄d,d+1 ←
∑d

e=1 ϕ̄n,e,n+1,c

4: return x̄

ȳ4,3 = 2/3. The three iterations, one per cut, produced by Algorithm 5 are graphically depicted in
the figure. It can be noticed that x̄4,11 = −1/3, which, intuitively, corresponds to a cycle in the flow
decomposition.

ȳ11,7 = 4/3 0 7 11

4/3

4/3

ȳ7,3 = 1/3 0 4 7 11

4/3

5/3

-1/3

1/3

ȳ4,3 = 2/3 0 4 7 10 11

4/3

1

-1/3

1/3 2/3

2/3

Figure C2: An infeasible L(FAF) solution of Example 1 with a negative flow (cycle), obtained by
executing Algorithm 5 on an input L(FOC) solution not satisfying simmetry-breaking constraints (39)

Appendix D Proof of Proposition 2

Proposition 2. FDP dominates FAF (and hence FOC).

Proof. We first prove that FDP is included in FAF , and then give an example that shows that FAF is
not included in FDP . For the first part, we make use of Algorithm 6. The algorithm takes in input an
optimal L(FDP) solution ϕ̄j,d,j+1,e and uses it to create a feasible L(FDP) solution x̄de. The idea, whose
hint is in Delorme et al. (2016), is to vertically “shrink” all states with the same partial bin filling into a
single node, and merge all arcs entering (resp. emanating) from the node into a unique entering (resp.
emanating) arc. Consider again Example 1 of Section 2.2 and the optimal L(FDP) solution depicted
in Figure 3: By applying Algorithm 6, we obtain the feasible L(FAF) solution shown in Figure D3-(a).
Formally, (i) the variables associated to item arcs in FAF are obtained in step 2 and become equal to
the sum of the values of the merged variables from FDP , and (ii) the variables associated to the loss arcs
(d, d+ 1) in FAF are derived in step 3 by mapping the final arcs of FDP (which, we recall, connect any
node (n, d) with the dummy node (n + 1, c)). The resulting x̄de values satisfy constraints (8) because
ϕ̄j,d,j+1,e satisfy (12), and also constraints (9) because ϕ̄j,d,j+1,e satisfy (13). This proves that FDP is
included in FAF .

The same example can be used to show that FAF is not included in FDP . The optimal L(FAF)
solution discussed in Section 3 is graphically depicted in Figure D3-(b) and has value 4/3 < 3/2. The
reason of this AF discrepancy is that the partial filling of value 7 can be created by either the use of
item 7 or the combined used of items 4 and 3. Consequently, the path (0,4,7,10,11) cannot be obtained
in FDP but can be easily produced by FAF .

31

0 4 7 10 11

1

1/2

1/2

1

1/2
1/2

(a) A feasible L(FAF) solution of value 3/2 obtained by Algorithm 6 on an optimal L(FDP) solution

0 4 7 10 11

1

2/3

2/3

2/3

1/3
1/3

(b) An optimal L(FAF) solution of value 4/3

Figure D3: Two fractional solutions of Example 1 that show that FAF is not included in FDP

Appendix E Proof of Proposition 3

Proposition 3. FDP is equivalent to FPR.

Proof. We first prove that FPR is included in FDP , and then that FDP in included in FPR. For the
first part, we use the same idea of Lemma 1 and decompose an L(FDP) solution into a set of paths.
Then, we show that for each path p in FDP , there is a pattern p′ (i.e., a column) in FPR. The idea is
shown in Figure E4: Each vertical stage for p corresponds to a binary ajp′ value of p′. If at stage j the
arc in the path is vertical (i.e., ϕj,d,j+1,d is selected), then ajp′ = 0. If instead the arc is diagonal (i.e.,
ϕj,d,j+1,d+wj

is selected), then ajp′ = 1.

0, 0

1, 0

2, 0

3, 0 3, 3

2, 4

3, 4

1, 7

2, 7

3, 7 3, 10

2, 11

3, 11

4, 11

0.5

0.5

0.5

0.5

1

0

1

p′p

Figure E4: Transforming a path p of an L(FDP) solution (left) into a pattern p′ for L(FPR) (right)

As FDP is dedicated to the BPP, the transformation produces binary columns. It is possible to
recreate afterwards integer columns for the CSP by summing the binary values ajp′ associated with the
same item type. As constraints (13) are satisfied in the solution of L(FDP), they are also satisfied in
the transformed patterns of L(FPR). The reverse process is very similar: A BPP pattern of L(FPR)
can be easily mapped in a pattern for the CSP and then transformed into a path for L(FDP). Any

32

path created in this way satisfies flow conservation constraints (12). Constraints (13) are also satisfied,
because demand constraints are satisfied in the L(FPR) solution. Remark that, to maintain the “ = ”
in (13) (instead of a “ ≥ ”) one should possibly have to remove some redundant item copies from the
solution.

Appendix F Proofs of Propositions 4 and 5

Proposition 4. FRE models the CSP.

Proof. Consider a generic solution of a CSP instance. We show that any pattern (bin filling) p in the
solution can be transformed in reflect into a pair of paths that start in 0 and collide at a given vertex.
To this aim, we sort items in p by non-increasing weight and divide them into two subsets, I1 and I2.
We start by filling I1 with the items in the computed order until their total width is either greater than
or equal to c/2 or until there are no more items in p. We insert the rest of the items, if any, in I2. For
simplicity, suppose that items are numbered from 1 to |I1| in I1 and from |I1| + 1 to |I1| + |I2| in I2.
We can distinguish three cases:

(1)
∑

i∈I1
wi < c/2, so I1 has not been filled up to c/2 and thus I2 is empty. The pattern can be

represented by a pair of paths colliding in c/2: (i) a path p1 made by standard arcs corresponding
to the items in I1 (namely, (0, w1, s), (w1, w1 +w2, s), . . .), then loss arcs up to c/2, and then the
reflected arc (c/2, c/2, r); and (ii) a path p2 containing only loss arcs from 0 to c/2.

(2)
∑

i∈I1
wi = c/2. The pattern can be created by a pair of paths in which: (i) path p1 is formed

by standard arcs associated with the items in I1, so ending in c/2, and a last arc (c/2, c/2, r);
and (ii) path p2 is formed by standard arcs associated with the items in I2 (if any) and possibly
concluded by loss arcs until c/2 is reached. Once more the two paths collide in c/2.

(3)
∑

i∈I1
wi > c/2. In this case the total width of the items in I1 exceeds c/2, and hence: (i) path p1

is formed by standard arcs associated with the first |I1| − 1 items and a last reflected arc (d̄, ē, r),
where d̄ =

∑

i=1,...,|I1|−1wi and ē = c − d̄ − w|I1|; and (ii) path p2 is formed by standard arcs
associated with the items in I2 (if any), possibly followed by loss arcs until ē is reached. The
pattern is then represented by the pair of paths p1 and p2, which collide in ē.

The opposite procedure also holds, as any pair of colliding paths in reflect can be transformed into a
feasible pattern, and this concludes the proof.

Proposition 5. Any feasible CSP pattern can be represented in FRE by a pair of colliding paths whose
reflected arc (d, e, r) has d ≤ e.

Proof. Proof We need to prove that reflect can model any CSP pattern p by using a reflected arc whose
tail is at the left of its head. In other words, this means that at least half of the item width modeled by the
reflected arc is packed before reflection. Once again, we sort items in p by non-increasing weight, divide
them into I1 and I2, and consider the three cases in the proof of Proposition 4 above. The statement
is clearly satisfied for cases (1) and (2), where the reflected arc is (c/2, c/2, r). Let us focus on case (3)
and consider d > e. We obtain an equivalent pair of paths that satisfies the statement by modifying the
way in which we fill I1 and I2. We fill I1 with the first |I1| − 1 items as before, but then insert the item
|I1| in I2. We then scan items one at a time in the given order. Let j define the index of the current
item. We insert j in I1 if at least half of its width fits within c/2, namely, if wj/2 +

∑

i∈I1
wi ≤ c/2

holds, as this would correspond to either a standard arc or a reflected arc accomplishing with d ≤ e.

33

Otherwise, we insert it in I2. We proceed with all items. Let now j be the item that, either packed in
I1 or I2, would require a reflection, if any. One of the two possible reflections satisfies the statement,
because otherwise we would have wj/2 +

∑

i∈I1
wi > c/2 and wj/2 +

∑

i∈I2
wi > c/2. But that would

imply wj +
∑

i∈I1∪I2
wi =

∑

i∈p wi > c, which is impossible as p is a feasible pattern.

Appendix G Algorithms for reflect

In Algorithm 7, we detail how to build the multigraph G = (V,A) that is at the basis of FRE . Recall
that the set of arcs is partitioned into standard arcs (d, e, s) ∈ As and reflected arcs (d, e, r) ∈ Ar. The
algorithm uses an array M to keep track of the possible arc tails. For a given item type, it also uses
an array H to keep track of the possible arc tails that were already processed, to avoid unnecessary
operations. For each item type i (step 5) and for each item j of type i (step 7), it scans all possible tails
l that were not already processed (steps 8–9), and attempts to create an arc from l to l+wj . In case of
a standard arc (step 11), (l, l + wj, s) is stored in As and l + wj becomes both a vertex and a possible
tail (steps 12–14). In case of a reflected arc not removed by the reduction procedure in Proposition 5
(step 15), (l, c − (l + wi), r) is stored in Ar and c − (l + wi) becomes a vertex but not a possible tail
(steps 16–17). Finally, vertex c/2 is added to V, a loss arc between each pair of consecutive vertices is
created, and arc (c/2, c/2, r) is added to Ar (steps 23–25).

Algorithm 7 Create reflect multigraph

1: Input: c: Bin capacity, m: Number of item types, w: Item widths, d: Item demands
2: As ← ∅ ; Ar ← ∅ ; V ← ∅
3: M [0 . . . c/2]← 0 ⊲ an array that keeps track of the possible tails
4: M [0]← 1 ⊲ node 0 is a possible tail
5: for i = 1 to m do

6: H[0 . . . c/2]← 0 ⊲ an array that keeps track of the tails already processed
7: for j = 1 to di do
8: for l = c/2− 1 down to 0 do

9: if H[l] = 0 and M [l] = 1 then ⊲ if l is a possible tail and was not processed yet
10: H[l] = 1 ⊲ l is now processed
11: if l + wi ≤ c/2 then ⊲ if the arc is standard
12: As ← As ∪ (l, l + wi, s)
13: V ← V ∪ {(l + wi)}
14: M [l + wi]← 1
15: else if l ≤ c− (l + wi) then ⊲ if the arc is reflected + reduction procedure
16: Ar ← Ar ∪ (l, c− (l + wi), r)
17: V ← V ∪ {(c − (l + wi))}
18: end if

19: end if

20: end for

21: end for

22: end for

23: V ← V ∪ {c/2}
24: for i ∈ V do As ← As ∪ {(i, j, s): j = min(l ∈ V : l > i)} ⊲ loss arcs
25: Ar ← Ar ∪ (c/2, c/2, r) ⊲ allow paths that collide in c/2
26: return V,As, Ar

34

Note that Algorithm 7 would provide a valid multigraph to FRE even if step 15 were replaced by
a simple “else”. Indeed, that would result in a larger graph, not accomplishing with the reduction of
Proposition 5, but having all required arcs to model a CSP instance. Note also that the algorithm works
for even values of c. In case c is an odd number, an easy adaptation is to double the capacity of the bin
and the width of all item types. It is worth noticing that this operation does not affect the number of
possible item widths combinations, and thus does not increase the number of variables and constraints
in FRE . Otherwise, an additional dummy node R can be created and taken into explicit consideration
in the algorithm.

Algorithm 8 Reconstruct reflect solution

1: Input: A solution ξ̄deκ of L(FRE)
2: P ← ∅; S[0, . . . , c/2]← ∅; R[0, . . . , c/2]← ∅
3: while ∃ an arc (0, e, κ) with ξ̄0eκ > 0 do ⊲ build the paths and store them in R and S
4: p← ∅; d← 0
5: while ∃ an arc (d, e, κ) with ξ̄deκ > 0 and ∄(d, e, r) ∈ p do

6: select the first arc (d, e, κ) ∈ δ+(d) with ξ̄deκ > 0 and add it to p
7: d← e
8: end while

9: z̄p ← min(d,e,κ)∈p{ξ̄deκ}
10: for all (d, e, κ) ∈ p, ξ̄deκ ← ξ̄deκ − z̄p
11: if ∃(d, e, r) ∈ p then R[d]← R[d] ∪ {p} else S[d]← S[d] ∪ {p}
12: end do

13: for d = 1 to c/2 do ⊲ match the pairs of colliding paths and store them in P
14: while ∃p1 ∈ R[d] with z̄p1 > 0 do

15: select the first path p2 ∈ S[d] with z̄p2 > 0
16: p← p1 ∪ p2
17: z̄p ← min(z̄p1, z̄p2)
18: z̄p1 ← z̄p1 − z̄p; z̄p2 ← z̄p2 − z̄p
19: P ← P ∪ p
20: end do

21: end do

22: return P

Algorithm 8 shows how to reconstruct a solution after FRE has been solved. The algorithm uses a set
P of colliding paths, as well as two arrays of sets of standard and reflected paths, S and R, respectively.
After initialization, it creates a path from 0 to its colliding node d (steps 3-12), and stores it either in
R[d] if it contains a reflected arc, or in S[d] otherwise (step 11). The process is iterated until no more
paths can be found. Then, for each possible colliding node d (step 13), the algorithm selects two paths
from R[d] and S[d] (steps 14–15) and merge them to reconstruct a pair p (steps 16–19). Such merging
is ensured by constraints (17), that guarantee that each selected reflected path can be matched with a
selected standard path. For the sake of completeness, we remark that such merging is guaranteed if all
item types i have wi < c, accomplishing with our initial assumption in Section 2.1. Otherwise, there
could be a selected reflected arc (0, 0, r) corresponding to an item of size c that could not be matched
with any standard path. Clearly, any item type having wi = c can be removed from the instance in a
preprocessing phase.

35

Appendix H Algorithm for VSBPP

In Algorithm 9, we detail how to build the multigraph G = (V,A) used within F V S
RE to solve the VSBPP.

We recall that c stands for the maximum capacity of a bin, and that the arc set A is partitioned into
the set As of standard arcs and the set Ar of reflected arcs. Moreover, T is the set of bin types, and
Ar = ∪t∈TAr(t), where Ar(t) is the set of arcs that have been reflected at ct/2. Algorithm 9 is quite
similar to Algorithm 7. It makes use of an array M to store the possible arcs tails, and of an array
H to keep track of the possible arc tails that were already processed. After initialization, it considers
in turn each item type i, each item j, and each possible tail l that was not already processed (steps
5–9). When processing l, it first attempts to create a standard arc from l to l + wj (steps 11–15), and
then attempts to create reflected arcs for all possible bin types in T (steps 16–21). It then concludes
by creating all required sets at steps 26–28.

Algorithm 9 Create reflect multigraph VSBPP

1: Input: ct: Bin capacities, c: Largest bin capacity, m: Number of item types, w: Item widths, d:
Item demands

2: V ← ∅; As ← ∅; for t ∈ T do Ar(t)← ∅
3: M [0, . . . , c/2]← 0 ⊲ an array that keeps track of the possible tails
4: M [0]← 1 ⊲ node 0 is a possible tail
5: for i = 1 to m do

6: H[0, . . . , c/2]← 0 ⊲ an array that keeps track of the tails already processed
7: for j = 1 to di do
8: for l = c/2− 1 down to 0 do

9: if H[l] = 0 and M [l] = 1 then ⊲ if l is a possible tail and was not processed yet
10: H[l] = 1 ⊲ l is now processed
11: if l + wi ≤ c/2 then ⊲ if the arc is standard
12: As ← As ∪ (l, l + wi, s)
13: V ← V ∪ {(l + wi)}
14: M [l + wi]← 1
15: end if

16: for t ∈ T do ⊲ for each bin type
17: if l + wi > ct/2 and l ≤ ct − (l + wi) then ⊲ reflection in ct/2
18: Ar(t)← Ar(t) ∪ (l, ct − (l + wi), t)
19: V ← V ∪ {(ct − (l + wi))}
20: end if

21: end for

22: end if

23: end for

24: end for

25: end for

26: for t ∈ T do V ← V ∪ {ct/2}
27: for i ∈ V do As ← As ∪ {(i, j, s): j = min(l ∈ V : l > i)} ⊲ loss arcs
28: for t ∈ T do Ar(t)← Ar(t) ∪ (ct/2, ct/2, r(t)) ⊲ allow paths that collide in ct/2
29: return V,Ar(1), . . . ,Ar(|T |),As

36

Appendix I Algorithm for BPPIF

In Algorithm 10, we describe the way in which we build the multigraph G = (V,A) used in our arc-flow

formulations for the BPPIF, in particular, by F bm
AF for the bm-BPPIF and by F fm

AF for the fm-BPPIF.
We recall that At contains all the transposed arcs. Algorithm 10 is similar to the previous Algorithm
7 described for reflect (see Section Appendix G), so we only highlight the differences between them.
The arrays M and H now consider the entire range from 0 to c instead of 0 to c/2 (steps 3 and 6).
Also step 8 is extended by taking into consideration all possible arc tails up to c − 1. The standard
arcs are created as done for the BPP (and for the VSBPP as well), but the creation of the transposed
arcs, performed at steps 16–18, takes into account the fact that if l + wj > c then the head of the arc
is transposed into (l +wj) mod c.

Algorithm 10 Create arcflow multigraph BPPIF

1: Input: c: Bin capacity, w: Item widths, d: Item demands
2: As ← ∅ ; At ← ∅ ; V ← ∅
3: M [0 . . . c]← 0 ⊲ an array that keeps track of the possible tails
4: M [0]← 1 ⊲ node 0 is a possible tail
5: for i = 1 to m do

6: H[0 . . . c]← 0 ⊲ an array that keeps track of the tails already processed
7: for j = 1 to di do
8: for l = c− 1 down to 0 do

9: if H[l] = 0 and M [l] = 1 then ⊲ if l is a possible tail and was not processed yet
10: H[l] = 1 ⊲ l is now processed
11: if l + wi ≤ c then ⊲ if the arc is standard
12: As ← As ∪ (l, l + wi)
13: V ← V ∪ {(l + wi)}
14: M [l + wi]← 1
15: else ⊲ the arc is transposed
16: At ← At ∪ (l, (l + wi) mod c)
17: V ← V ∪ {((l + wi) mod c)}
18: M [(l + wi) mod c]← 1
19: end if

20: end if

21: end for

22: end for

23: end for

24: V ← V ∪ {c}
25: for i ∈ V do As ← As ∪ {(i, j): j = min(l ∈ V : l > i)} ⊲ loss arcs
26: return V,As,At

Acknowledgements

We gratefully acknowledge support by MIUR-Italy under Grant PRIN 2015. We also thank Gleb Belov
for helping us in running his optimization code.

37

References

Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications (Upper Saddle
River, NJ, USA: Prentice-Hall).

Alves C, Clautiaux F, Valério de Carvalho J, Rietz J (2016) Dual-Feasible Functions for Integer Programming and
Combinatorial Optimization. EURO Advanced Tutorials on Operational Research (Springer International
Publishing).

Alves C, Valério de Carvalho J (2008) A stabilized branch-and-price-and-cut algorithm for the multiple length
cutting stock problem. Computers & Operations Research 35:1315–1328.

Arbib C, Marinelli F, Rossi F, Di Iorio F (2002) Cutting and reuse: An application from automobile component
manufacturing. Operations Research 50:923–934.

Belov G, Scheithauer G (2002) A cutting plane algorithm for the one-dimensional cutting stock problem with
multiple stock lengths. European Journal of Operational Research 141:274–294.

Belov G, Scheithauer G (2006) A branch-and-cut-and-price algorithm for one-dimensional stock cutting and
two-dimensional two-stage cutting. European Journal of Operational Research 171:85–106.

Boschetti M, Montaletti L (2010) An exact algorithm for the two-dimensional strip-packing problem. Operations
Research 58:1774–1791.

Brandão F, Pedroso J (2016) Bin packing and related problems: General arc-flow formulation with graph com-
pression. Computers & Operations Research 69:56–67.

Cambazard H, O’Sullivan B (2010) Propagating the bin packing constraint using linear programming. Principles
and Practice of Constraint Programming–CP 2010, volume 6308 of Lecture Notes in Computer Science,
129–136 (Springer-Verlag).

Caprara A, Dell’Amico M, Dı́az Dı́az J, Iori M, Rizzi R (2015) Friendly bin packing instances without integer
round-up property. Mathematical Programming 150:5–17.

Casazza M, Ceselli A (2016) Exactly solving packing problems with fragmentation. Computers & Operations
Research 75:202–213.

Ceselli A, Righini G (2008) An optimization algorithm for the ordered open-end bin-packing problem. Operations
Research 56:425–436.

Clautiaux F, Hanafi S, Macedo R, Voge ME, Alves C (2017) Iterative aggregation and disaggregation algorithm
for pseudo-polynomial network flow models with side constraints. European Journal of Operational Research
258:467–477.

Coffman E, Csirik J, Galambos G, Martello S, Vigo D (2013) Bin packing approximation algorithms: Survey and
classification. Pardalos P, Du DZ, Graham R, eds., Handbook of Combinatorial Optimization (Springer New
York).

Correia I, Gouveia L, Saldanha-da-Gama F (2008) Solving the variable size bin packing problem with discretized
formulations. Computers & Operations Research 35:2103–2113.

Côté JF, Dell’Amico M, Iori M (2014) Combinatorial Benders’ cuts for the strip packing problem. Operations
Research 62:643–661.

Côté JF, Iori M (2016) The meet-in-the-middle principle for cutting and packing problems. Technical Report
CIRRELT-2016-28, CIRRELT, Montreal, Canada.

Crainic T, Perboli G, Rei W, Tadei R (2011) Efficient lower bounds and heuristics for the variable cost and size
bin packing problem. Computers & Operations Research 38:1474–1482.

Dell’Amico M, Dı́az-Dı́az J, Iori M (2012) The bin packing problem with precedence constraints. Operations
Research 60:1491–1504.

Delorme M, Iori M, Martello S (2016) Bin packing and cutting stock problems: Mathematical models and exact
algorithms. European Journal of Operational Research 255:1–20.

Delorme M, Iori M, Martello S (2017a) BPPLIB: A library for bin packing and cutting stock problems. Optimiza-
tion Letters Forthcoming.

Delorme M, Iori M, Martello S (2017b) Logic based Benders’ decomposition for orthogonal stock cutting problems.
Computers & Operations Research 78:290 – 298.

38

Dyckhoff H (1981) A new linear programming approach to the cutting stock problem. Operations Research
29:1092–1104.

Furini F, Malaguti E, Thomopulos D (2016) Modeling two-dimensional guillotine cutting problems via integer
programming. INFORMS Journal on Computing 28:736–751.

Gilmore P, Gomory R (1961) A linear programming approach to the cutting-stock problem. Operations Research
9:849–859.

Gschwind T, Irnich S (2016) Dual inequalities for stabilized column generation revisited. INFORMS Journal on
Computing 28:175–194.

Hemmelmayr V, Schmid V, Blum C (2012) Variable neighbourhood search for the variable sized bin packing
problem. Computers & Operations Research 39:1097–1108.

Kartak V, Ripatti A, Scheithauer G, Kurz S (2015) Minimal proper non-IRUP instances of the one-dimensional
cutting stock problem. Discrete Applied Mathematics 187:120–129.

Macedo R, Alves C, Valério de Carvalho J, Clautiaux F, Hanafi S (2011) Solving the vehicle routing problem
with time windows and multiple routes exactly using a pseudo-polynomial model. European Journal of
Operational Research 214:536–545.

Martello S, Pisinger D, Toth P (1999) Dynamic programming and strong bounds for the 0-1 knapsack problem.
Management Science 45:414–424.

Nitsche C, Scheithauer G, Terno J (1999) Tighter relaxations for the cutting stock problem. European Journal of
Operational Research 112:654–663.

Pessoa A, Uchoa E, Poggi de Aragão M, Rodrigues R (2010) Exact algorithm over an arc-time-indexed formulation
for parallel machine scheduling problems. Mathematical Programming Computation 2:259–290.

Rao M (1976) On the cutting stock problem. Journal of the Computer Society of India 7:35–39.

Sadykov R, Vanderbeck F (2013) Bin packing with conflicts: A generic branch-and-price algorithm. INFORMS
Journal on Computing 25(2):244–255.

Sadykov R, Vanderbeck F, Pessoa A, Tahiri I, Uchoa E (2016) Primal Heuristics for Branch-and-Price: the assets
of diving methods, URL https://hal.inria.fr/hal-01237204, working paper or preprint.

Shapiro J (1968) Dynamic programming algorithms for the integer programming problem-I: The integer program-
ming problem viewed as a knapsack type problem. Operations Research 16:103–121.

Valério de Carvalho J (1999) Exact solution of bin-packing problems using column generation and branch-and-
bound. Annals of Operations Research 86:629–659.

Valério de Carvalho J (2002) LP models for bin packing and cutting stock problems. European Journal of Oper-
ational Research 141:253–273.

Valério de Carvalho J (2005) Using extra dual cuts to accelerate column generation. INFORMS Journal on
Computing 17:175–182.

Vanderbeck F (1999) Computational study of a column generation algorithm for bin packing and cutting stock
problems. Mathematical Programming 86:565–594.

Vanderbeck F, Wolsey L (2010) Reformulation and decomposition of integer programs. Jünger M, Liebling T,
Naddef D, Nemhauser G, Pulleyblank W, Reinelt G, Rinaldi G, Wolsey L, eds., 50 Years of Integer Pro-
gramming 1958-2008: From the Early Years to the State-of-the-Art, 431–502 (Berlin, Heidelberg: Springer
Berlin Heidelberg).

Wolsey L (1977) Valid inequalities, covering problems and discrete dynamic programs. Annals of Discrete Math-
ematics 1:527–538.

39

