
26/06/2024 06:22

The Static Bike Sharing Rebalancing Problem with Forbidden Temporary Operations / Bruck, Bruno; Cruz,
Fabio; Iori, Manuel; Subramanian, Anand. - In: TRANSPORTATION SCIENCE. - ISSN 0041-1655. -
53:3(2019), pp. 882-896. [10.1287/trsc.2018.0859]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

Submitted to Transportation Science

manuscript

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

The static bike sharing rebalancing problem with

forbidden temporary operations

Bruno P. Bruck
Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Italy,

bruno.petratobruck@unimore.it
Centro de Informática, Universidade Federal da Paráıba, Brazil, bruno.bruck@ci.ufpb.br

Fábio Cruz
Centro de Informática, Universidade Federal da Paráıba, Brazil, fabiocbalbuquerque@gmail.com

Manuel Iori
Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Italy, manuel.iori@unimore.it

Anand Subramanian
Centro de Informática, Universidade Federal da Paráıba, Brazil, anand@ci.ufpb.br

This paper introduces and solves the static bike rebalancing problem with forbidden temporary operations.

In this problem, one aims at finding a minimum cost route in which a vehicle performs a series of pickup and

delivery operations, while satisfying demand and capacity constraints. In addition, a vehicle can visit stations

multiple times but cannot use them to temporary store or provide bikes. Apart from bike rebalancing, the

problem also models courier service transportation and repositioning of inventory between retail stores, where

temporary operations are frequently disliked because they require additional manual work and service time.

We present some theoretical results concerning problem complexity and worst case analysis, and then propose

three exact algorithms based on different mathematical formulations. Extensive computational results on

instances involving up to 80 stations show that an exact algorithm based on a minimal extended network

produces the best average results.

Key words : Bike sharing; branch-and-cut; minimal extended network

1. Introduction

In the static bike rebalancing problem with forbidden temporary operations (SBRP-FT), we are

given a directed graph G = (V, A), where V = I ∪ {0} is the set of vertices, I = {1, ..., n} is the set

of stations, 0 is the depot, and A = {(i, j) : i, j ∈ V, i 6= j} is the set of arcs. Each arc (i, j) ∈ A is

associated with a traveling cost cij , possibly asymmetric but satisfying the triangle inequality. Each

station i ∈ V has a demand di of bikes, and is said to be in excess if di > 0, in default if di < 0, or

1

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

2 Article submitted to Transportation Science; manuscript no.

initially balanced if di = 0. We assume that the system is balanced (i.e.,
∑

i∈I di = 0) and the depot

has no demand (i.e., d0 = 0).

The SBRP-FT aims at finding a minimum cost route in which a vehicle performs a series of pickup

and delivery operations to satisfy the demand of each station, while ensuring that the following

constraints are not violated: (i) the route starts and ends at the depot with the vehicle empty; (ii)

the vehicle capacity is not exceeded (and negative loads are not allowed) at any point of the route;

(iii) the demand of each station is completely fulfilled by using one or more vehicle visits; (iv) and no

temporary operations are performed. The last constraint imposes that the vehicle cannot use stations

as depots to either temporarily dropoff bikes (and collect them later on the route) or temporarily

pickup bikes (and drop them off later on).

Furthermore, split of demands at unbalanced stations is allowed and, because we assume the

triangle inequality to hold over c and temporary operations to be forbidden, we also assume that

initially balanced stations need not be visited. Notice that, the latter assumption is not strictly

necessary, and might be removed in scenarios where all stations must be visited (i.e., for daily

inspections to the stations). In addition, note that initial unbalanced systems might be taken into

account by simply adding a dummy station positioned at the same coordinates of the depot and

having demand equal to −
∑

i∈I di (as suggested in Hernández-Pérez and Salazar-González 2004a).

The SBRP-FT is of combinatorial interest not only because it is an N P-hard problem, as the

traveling salesman problem (TSP) is a special case of it, but it is also very challenging in prac-

tice. Allowing split demands and, at the same time, forbidding temporary operations, significantly

increases the complexity of the problem and of developing efficient and robust exact algorithms. In

addition, the SBRP-FT is a general problem whose interest is not limited to bike sharing systems.

It can be used, indeed, to model many other contexts, such as courier service transportation and

the repositioning of inventory between retail stores, in the case where temporary operations are for-

bidden. Temporary dropoff/pickup operations require additional manual work and service time for

loading and unloading, as well as additional risk of damaging the products, and are thus frequently

forbidden by transportation operators.

In the context of bike repositioning, forbidding temporary operations is a typical constraint imposed

by system managers that aims at alleviating drivers’ working activities by not imposing too many

loading/unloading operations (see Dell’Amico et al. 2014). In other cases, this constraint might origi-

nate from stronger considerations, and temporary dropoff operations might be forbidden in locations

that do not fulfill certain technical requirements. This happens, for example, in the distribution of

medicinal products, in which particular attention should be paid to temperature monitoring, clean-

liness and the security of any intermediate storage facilities (Official Journal of the European Union

2013), thus imposing the installation of costly equipment. Another example can be found in the

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

Article submitted to Transportation Science; manuscript no. 3

transport of chemical products, where temporary dropoffs might require the presence of additional

protective clothing for drivers and are allowed only at sites that meet the requirements established

by regulations on risk mitigation (see Cefic–The European Chemical Industry Council 2013).

To our knowledge, this is the first work to directly approach the SBRP-

FT. However, its closest variant, called the static bicycle rebalancing problem

(SBRP), where temporary operations are allowed, has already been studied by

Chemla, Meunier, and Wolfer Calvo (2013), Erdoǧan, Battarra, and Wolfler Calvo (2015), and

Cruz et al. (2017). Salazar-González and Santos-Hernández (2015) studied a general one-commodity

pickup and delivery problem with split demands, and described how their model could be modified

to forbid temporary operations and impose zero load on the vehicle when leaving the depot. Another

realistic application close to the SBRP-FT is the bike sharing rebalancing problem, studied by

Dell’Amico et al. (2014), where multiple vehicles are used but multiple visits and demand splits

are not allowed. Details about these works are provided in the following section. Note that all the

methods that we propose could easily deal with the cases in which demand splits are not allowed

(by simply imposing each vertex to be visited once), or a service time is imposed on each delivery

(by adding the service time to the traversal time of the arcs).

By forbidding temporary pickups and deliveries, the complexity of operations at stations is reduced,

but routing costs might be higher than in the SBRP. As an illustrative example, consider Figure

1-(a), which shows an optimal solution for the SBRP on a benchmark instance. Each arc is traversed

exactly once and the flow of commodity passing through the arc is shown over the arc. Each station

is associated univocally with a vertex and the station demand is shown nearby. In the first visit to

station 11, coming from station 3, instead of performing a pickup operation the vehicle temporarily

deliveries 2 bikes and then continues with an empty load to station 12. In the second visit, coming

from station 5, the vehicle fulfills the demand of station 11 and recollects the 2 units delivered during

the first visit, thus proceeding to station 17 with a load of 7 bikes. Figure 1-(b) presents an optimal

solution for the same instance, but for the SBRP-FT. Note that forbidding temporary operations

results in a small increase in routing costs, from 6012 to 6025, but it also substantially reduces the

complexity of operations at station 11.

In this paper, we propose three exact algorithms for the SBRP-FT, all making use of a branch-

and-cut (B&C) framework, but with different emphases. The first two are based on the use of an

aggregate formulation derived from the work of Chemla, Meunier, and Wolfer Calvo (2013), where an

integer variable expresses the number of times the vehicle passes through an arc. The solution of this

formulation may be infeasible for the SBRP-FT because temporary operations might be performed

in stations visited twice or more. Thus, our first algorithm iteratively removes infeasible solutions,

one at a time, in a process that we call branch-and-reject. Our second algorithm is a direct extension

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

4 Article submitted to Transportation Science; manuscript no.

0 1

+10

2

−3

3

+8

4 −6

5

+2

6+8

7

−2

8

−6

9+2

10 −5

11

+3

12+10

13

−3

14
−7

15 −5

16

−8

17

+3 18
+2

19 +6

20 −9

0

0

10

5

7

0

8

3

9

02

10

8

2

4

10

8

0

2
7

10

9

3

0

(a) Optimal solution with temporary operations with value 6012 for instance n20C with Q = 10

0 1

+10

2

−3

3

+8

4 −6

5

+2

6+8

7

−2

8

−6

9+2

10 −5

11

+3

12+10

13

−3

14
−7

15 −5

16

−8

17

+3 18
+2

19 +6

20 −9

0

5

10

5

7

0

8

3

9

02

7

10

8

2

4

10

8

0

10

9

3

0

(b) Optimal solution with forbidden temporary operations with value 6025 for instance n20C with Q = 10

Figure 1 Example of optimal solutions for the SBRP and the SBRP-FT on a benchmark instance.

of the one presented in Erdoǧan, Battarra, and Wolfler Calvo (2015) and is built upon an expanded

arc structure that enables one to only use binary variables. With this structure, constraints on paths

can be used to easily forbid infeasibilities. Our third algorithm removes instead infeasibilities by

duplicating vertices associated with stations visited multiple times, but attempts at duplicating as

few vertices as possible. Furthermore, we also present some theoretical results on problem complexity

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

Article submitted to Transportation Science; manuscript no. 5

and worst case analysis, as well as an effective feasibility check procedure that is used by all our

algorithms.

The remainder of this paper is organized as follows. Section 2 reviews the related literature. Section

3 presents the aggregate formulation and the branch-and-reject algorithm, whereas Section 4 discusses

the complexity of the problem and introduces the theoretical results. Section 5 and 6 describe the

binary arc formulation and the minimal extended approach, respectively. Section 7 contains the

computational results and Section 8 concludes.

2. Related work

Bike sharing systems are an important tool for supporting sustainable mobility and reducing urban

traffic and pollution. Because of this, in recent years there has been a growing trend in self-service

bike sharing systems. According to the Bike Sharing World Map (see Meddin 2016), in August of

2016 there were at least 1005 cities worldwide with a bike sharing system in operation, and more than

300 others with programs under development. This accounts for, approximately, 1.4 million shared

bikes being used on a daily basis.

The SBRP-FT belongs to the class of pickup and delivery problems (PDPs), for which we refer

to, e.g., the recent surveys by Battarra, Cordeau, and Iori (2014) and Doerner and Salazar-González

(2014). According to the classification scheme proposed by Berbeglia et al. (2007), the SBRP-FT is

a many-to-many pickup and delivery problem (M-M-PDP), in which commodities may have multi-

ple origins and destinations. In the literature, there are a few M-M-PDPs that are related to the

SBRP-FT. A notable example is the one-commodity pickup and delivery traveling salesman problem

(1-PDTSP), introduced by Hernández-Pérez and Salazar-González (2004a), where a single vehicle

must perform a series of pickups and deliveries of a single commodity. The 1-PDTSP is different from

the SBRP-FT because: (i) all customers must be visited exactly once and thus splits are not allowed;

and (ii) the depot serves as a customer and therefore the route is note forced to start and end with an

empty vehicle. Hernández-Pérez and Salazar-González (2004a) proposed a mathematical formulation

for both the symmetric and the asymmetric versions of the 1-PDTSP, as well as a B&C algorithm.

This approach was later improved by Hernández-Pérez and Salazar-González (2007), who proposed

an enhanced B&C algorithm strengthened by means of valid inequalities. Heuristic and metaheuris-

tic approaches for the 1-PDTSP were presented by Hernández-Pérez and Salazar-González (2004b),

Hernández-Pérez, Rodŕıguez-Mart́ın, and Salazar-González (2009), Wang, Lim, and Xu (2006), and

Mladenović et al. (2012).

Erdoǧan, Laporte, and Wolfler Calvo (2014) introduced a variant of the 1-PDTSP, called the static

bicycle relocation problem with demand intervals, where stations might be visited at most once and

the resulting number of bikes at stations after the rebalancing should lie within a given interval

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

6 Article submitted to Transportation Science; manuscript no.

instead of exactly corresponding to a fixed target value. The authors proposed two exact methods

to solve the problem and presented valid inequalities. Note that their methods cannot be directly

applied to the SBRP-FT because they do not contemplate multiple visits to stations.

Another related problem is the bike sharing rebalancing problem (BRP), where a fleet of vehicles

is used to serve a set of customers requests, while minimizing the routing costs. In the BRP, stations

must be visited exactly once and the vehicles may leave the depot with some initial load. The problem

has been studied by Dell’Amico et al. (2014), who presented four mathematical formulations and

B&C algorithms. Dell’Amico et al. (2016) later solved the BRP by developing a destroy and repair

heuristic, improving the best known solutions for several instances from the literature. Both papers

require initially balanced stations to be visited as well, so as to ensure a daily inspection.

A dynamic variant of the BRP was studied by Contardo, Morency, and Rousseau (2012), in which

the demand of stations is not static and the fleet of vehicles is heterogeneous. The authors presented

a mathematical formulation and proposed a solution approach based on a time-indexed formulation

on a fixed time horizon that was solved using Dantzig-Wolfe and Benders’ decompositions.

Static rebalancing of bikes was studied also by Raviv, Tzur, and Forma (2013), who aimed at

minimizing both operational costs and users’ dissatisfaction. The latter term was modeled as a

convex function that considers the expected number of shortage events (users cannot rent a bike at

an empty station or cannot return a bike at a full station). To solve the problem, they proposed

two mathematical formulations, strengthened them with valid inequalities and dominance rules, and

conducted tests on a variety of large instances based on real data, showing that small optimality

gaps could be achieved within a reasonable time. Recently, Forma, Raviv, and Tzur (2015) solved

the same problem by the use of a matching-based heuristic, obtaining good quality solutions for

instances with up to 200 stations.

Another static rebalancing variant was addressed by Schuijbroek, Hampshire, and van Hoeve

(2017). They combined two types of decisions, namely, determining service level requirements at

each bike sharing station and designing low-cost vehicle routes to rebalance the inventory. They

solved the resulting decision problem by means of a cluster-first route-second heuristic, in which a

polynomial-size clustering subproblem is invoked to simultaneously determine service level feasibility

and approximate routing costs. They tested their algorithm on realistic data from the cities of Boston

(MA) and Washington (DC).

Recently, Salazar-González and Santos-Hernández (2015) proposed the split-demand one-

commodity pickup and delivery traveling salesman problem (SD1PDTSP), which is a generalization

of the 1-PDTSP. In the SD1PDTSP, the stations and the depot might be visited multiple times by

a single vehicle. In practice, the depot is considered as a standard customer having its own demand

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

Article submitted to Transportation Science; manuscript no. 7

and capacity, and the vehicle is not forced to depart from or arrive at the depot empty. In addi-

tion, a maximum number of visits is imposed to each station, and split pickups/deliveries as well as

temporary operations are allowed. The authors modeled the SD1PDTSP on an extended network

where each station is associated to a number of vertices and each vertex is visited at most once.

They then developed a B&C algorithm and strengthened it by the use of Benders’ decomposition and

valid inequalities. They also discussed how to constraint their model to force empty load on vehicles

leaving the depot and to forbid temporary operations. Their approach could thus be used to solve

the SBRP-FT, although at the expense of the large number of variables required by the underlying

extended formulation.

To our knowledge, Chemla, Meunier, and Wolfer Calvo (2013) were the first to study the SBRP,

but under the name of single vehicle one-commodity capacitated pickup and delivery problem. The

authors proposed a complete formulation to define the problem, presented two relaxations to provide

lower bounds, and developed a tabu search algorithm to obtain feasible solutions of good quality.

The SBRP was recently heuristically solved by Cruz et al. (2017), who obtained improved results on

the existing benchmark instances by means of an iterated local search algorithm.

Erdoǧan, Battarra, and Wolfler Calvo (2015) studied the same problem addressed by

Chemla, Meunier, and Wolfer Calvo (2013), using the name SBRP, and another problem variant

that they called non-preemptive SBRP. In the non-preemptive version, a bike can be loaded on the

vehicle and unloaded at a station at most once, in contrast with the SBRP, where bikes can be

temporarily loaded and unloaded any number of times. For the solution of both problem variants

they proposed an exact algorithm based on a binary arc formulation (that we resume in Section 5).

Note that the non-preemptive SBRP allows temporary operations. Indeed, the situation depicted

in Figure 1-(a), although infeasible for the SBRP-FT, is feasible for both the preemptive and the

non-preemptive versions of the SBRP studied by Erdoǧan, Battarra, and Wolfler Calvo (2015) (the

additional bikes picked up and later delivered at vertex 11 are moved only once).

We finally mention the recent work by Bruck and Iori (2017), who presented exact algorithms to

deal with the class of one-to-many-to-one single vehicle routing problems with pickups and deliveries,

in which a vehicle is used to serve a set of customers requiring a pickup, a delivery, or both. A

notable difficulty that is encountered when solving this class of problems is that each customer can

be visited up to two times. In Section 6 we propose a non-trivial way of adapting the best algorithm

in Bruck and Iori (2017) (minimal extended network algorithm) to the case where demands may

have multiple origins and multiple destinations, and stations may be visited more than twice, so as

to efficiently deal with the SBRP-FT.

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

8 Article submitted to Transportation Science; manuscript no.

3. Aggregate formulation and branch-and-reject algorithm

In this section, we introduce an effective lower bound that is based on the aggregate formulation

by Chemla, Meunier, and Wolfer Calvo (2013), and then discuss a first algorithm that produces an

exact SBRP-FT solution.

3.1. Aggregate formulation

As unbalanced stations can be visited an arbitrary number of times, the size of the route may grow

exponentially with respect to the number of stations. In the SBRP-FT, as temporary operations are

forbidden and the cost matrix satisfies the triangle inequality, a station is visited only to meet at least

a part of its demand. In the following, we thus impose that each station i ∈ I might be visited at most

βi = |di| times, accounting for the situation in which at each visit a single bike is delivered/collected.

Furthermore, under the same assumptions, any arc connecting two stations having both positive or

negative demand values is traversed at most once. In this sense, let uij be an upper bound on the

number of traversals on arc (i, j) ∈ A, defined as

uij =

{

min(|di|, |dj|), if (di > 0 and dj < 0) or (di < 0 and dj > 0),

1, otherwise.
(1)

Let us also define for any set S ∈ V , δ+(S) = {(i, j) ∈ A : i ∈ S, j ∈ V \ S}, δ−(S) = {(i, j) ∈ A : i ∈

V \ S, j ∈ S}, S̄ = V \ S, and (S̄ : S) = {(i, j) ∈ A : i ∈ S̄, j ∈ S}.

Hereafter, we assume that initially balanced stations are removed from the instances. By setting

xij as an integer variable specifying the number of times arc (i, j) ∈ A is traversed, we obtain the

following aggregate formulation (AF):

(AF) min zAF =
∑

(i,j)∈A

cijxij (2)

subject to

x(δ+(0)) = 1 (3)

x(δ+(i)) ≥ 1 ∀ i ∈ I (4)

x(δ−(i)) − x(δ+(i)) = 0 ∀ i ∈ V (5)

x(S̄ : S) ≥ max

(⌈

|
∑

i∈S di|

Q

⌉

, 1

)

∀ S ⊆ I, S̄ = I \ S (6)

xij ∈ {0, 1, .., uij} ∀ (i, j) ∈ A (7)

The objective function (2) minimizes the total distance traveled. Constraints (3) and (4) define,

respectively, the degree for the depot and the minimum degree for the stations, while constraints

(5) specify flow conservation for the vehicle. Constraints (6) are classical capacity cut constraints

in PDPs (see Hernández-Pérez and Salazar-González 2004a): Any subset S of stations should be

visited enough times to ensure deliver or collection of all bikes, and the ‘1’ in the right hand side

accounts for the case in which |
∑

i∈S di| = 0. These constraints are separated only at integer nodes

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

Article submitted to Transportation Science; manuscript no. 9

of the branching tree by a twofold procedure. First, we check the existence of subtours using a fast

inspection procedure that works by simply traversing the arcs of the solution. For each subtour found,

if any, a cut of type (6) is added to the model. In case none are found, we apply a standard max-flow

procedure that looks for violations on the vehicle capacity. Constraints (7) define the domain of the

variables. In the following, we denote G = (V, A) as the aggregate network, and a solution (z, x) to

AF as an aggregate solution.

3.2. Branch-and-reject algorithm

Formulation AF does not necessarily solve the SBRP-FT to optimality. Instead, it just provides a

valid relaxation for the problem. This happens because AF does not consider the evolution on the

number of bikes at each visit to a station. As a result, it might produce aggregate solutions with

temporary operations, and others where there are no temporary operations but the associated bike

displacements are still infeasible. An example of the second case, adapted from a similar example

in Chemla, Meunier, and Wolfer Calvo (2013), is shown in Figure 2. In the figure, I = {1, 2, 3, 4, 5},

each depicted arc is traversed just once, and the vehicle load is reported over each arc. It is easy to

see that, for Q ≥ 2, this aggregate solution satisfies all constraints (3)–(7), and is thus feasible for

AF. However, it is infeasible for the SBRP-FT, because when the vehicle arrives at station 2, starting

in 0 and passing through 1, it has only 1 bike to deliver as station 5 has not yet been visited. It

is worth mentioning that this kind of infeasibilities may only exist in aggregate solutions and when

there is at least one vertex visited more than once.

0 1

+1

2

−2

3

+2

4

−2

5

+1

0

2

0

2

0

1

0

Figure 2 Example of an aggregate solution that is feasible for AF but infeasible for the SBRP-FT.

Because the x variables are integer (not just binary), it is not possible to separate the

standard infeasible path constraints, nor the enhanced combinatorial Benders’ cuts (see, e.g.,

Codato and Fischetti 2006) to forbid infeasible aggregate solutions.

A straightforward approach to overcome this issue and define a complete problem formulation could

be achieved by solving the SBRP-FT under a so-called extended network, obtained by duplicating

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

10 Article submitted to Transportation Science; manuscript no.

each station i ∈ I into βi vertices, and imposing each vertex to be visited at most once. By doing

so, we could keep track of the evolution of the number of bikes at each station during the successive

visits, thus building extended solutions where the aforementioned infeasibilites for the SBRP-FT are

eliminated. This was indeed the approach implemented by Salazar-González and Santos-Hernández

(2015) to solve the SD1PDTSP, and one of the approaches implemented by Bruck and Iori (2017) to

solve the single vehicle routing problem with deliveries and selective pickups (a one-to-many-to-one

PDP in which deliveries are mandatory, pickups are optional but generate a revenue if performed,

and customers are visited at most twice). However, these two works showed that formulations on the

extended network become easily intractable, even for small size instances, due to the large number of

duplicate vertices and the even larger number of possible connections between the vertices. Indeed,

the maximum number of visits to a vertex is 2 in the tests in Bruck and Iori (2017), and 3 in the

tests in Salazar-González and Santos-Hernández (2015). We thus disregarded this approach from our

tests as typical βi values of our instances can be much larger than 2 or 3.

Our algorithms rely instead on the idea of building feasible SBRP-FT solutions starting from

feasible AF solutions (or from reformulations/generalizations of AF). To this aim, following the

same notation adopted for the SBRP by Chemla, Meunier, and Wolfer Calvo (2013), we say that an

aggregate solution (z̄, x̄) to AF induces a feasible SBRP-FT solution if it is possible to find a route

that travels exactly x̄ij times on each arch (i, j), has cost z̄, and satisfies all SBRP-FT constraints.

The following feasibility check is solved a number of times by our algorithms.

Definition 1. Given an aggregate solution (z̄, x̄) to AF, the disaggregation check is to determine

whether or not (z̄, x̄) induces a feasible solution for the SBRP-FT.

In the following, we call disaggregate solution a feasible SBRP-FT solution that is produced by

a disaggregation check. Our first solution approach, denoted as branch-and-reject (B&R) algorithm,

consists in solving AF under the B&C framework provided by a mixed integer linear programming

(MILP) solver, but solving the disaggregation check for any integer solution that is encountered

during the process. AF solutions inducing feasible disaggregate solutions are kept and used to possibly

update the incumbent solution. AF solutions for which the disaggregation check returned answer “no”

are instead reported to be infeasible and hence disregarded. More in detail, there are two possible

sources for an AF infeasible solution: either (i) it has been generated by the general purpose heuristics

of the MILP solver, or (ii) it originates from a current integral node of the search tree. In case (i)

the solution is simply rejected, whereas in case (ii) the corresponding node is fathomed without

adding explicit constraints. Note that, when an integer point is declared infeasible, the branching

process within a MILP solver continues, and thus B&R implicitly explores all integer points in the

polyhedron and returns an optimal solution.

Details on the method that we have implemented to solve the disaggregation check are given in

Section 6.3 and the B&R is computationally evaluated in Section 7.

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

Article submitted to Transportation Science; manuscript no. 11

4. Complexity and worst case analysis

In this section, we discuss the computational complexity of the disaggregation check and study the

worst-case performance of some important PDP problems.

4.1. Complexity of the disaggregation check

We prove the complexity of the disaggregation check by means of two consecutive results. For the

sake of conciseness, all proofs of this paper are included in the appendix.

Property 1. The disaggregation check is N P-complete.

Proof. In the appendix.

This first result derives from a similar one that has been proposed for the SBRP by

Chemla, Meunier, and Wolfer Calvo (2013), but it is based on a slightly different proof that allows

to better understand our second and stronger result.

Property 2. The disaggregation check is strongly N P-complete.

Proof. In the appendix.

4.2. Worst case analysis

In the well-known vehicle routing problem (VRP), a fleet of vehicles must visit a set of customers,

each exactly once, so as to satisfy demands and minimize costs. Archetti, Savelsbergh, and Speranza

(2006) studied the relaxation in which each customer can be visited more than once

(a.k.a. split-delivery VRP), thus allowing demand splits. In particular, they showed that

z(VRP)/z(VRP with splits) ≤ 2, where z(·) denotes the optimal solution value, and that the bound

is tight. This proves that allowing splits may halve the VRP solution cost.

A related study was conducted by Nowak, Ergun, and White (2008) on the area of one-to-one

PDPs (refer again to the notation by Berbeglia et al. 2007). The authors focused on the pickup

and delivery VRP (PDVRP), a VRP generalization in which each customer demand consists of

transporting a load from a given pickup vertex to a given destination vertex, and conjectured that

z(PDVRP)/z(PDVRP with splits) ≤ 2. To the best of our knowledge this conjecture still holds.

We investigated similar properties in the area of M-M PDPs, where, in contrast to the VRP and

the PDVRP, demands may have multiple origins and destinations. We could not find a relationship

between the SBRP (that allows splits and temporary operations) and the SBRP-FT (that only allows

splits), neither between the SBRP and the SBRP variant in which only splits are forbidden. However,

we can point out the relationship that exists between the SBRP and the SBRP variant in which

both splits and temporary operations are forbidden, and show that the same result applies to the

SD1PDTSP studied by Salazar-González and Santos-Hernández (2015).

Property 3. Forbidding both the demand splitting and the use of temporary operations in the

SBRP may lead to an arbitrarily large increase in the solution cost, and the same holds for the

SD1PDTSP.

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

12 Article submitted to Transportation Science; manuscript no.

Proof. In the appendix.

It is worth mentioning that, as often happens on combinatorial problems, there is quite a large

gap between a proven worst case and what happens on average in practical cases. In fact, Cruz et al.

(2017) have empirically shown that the difference in the solution cost, when one forbids temporary

operations in the SBRP, is relatively small. They conducted experiments with and without temporary

operations, and found that the increase in the solution cost was always smaller than 4% in their tests.

5. Binary arc formulation

Erdoǧan, Battarra, and Wolfler Calvo (2015) proposed an exact algorithm to solve the SBRP and

further adapted it to the non-preemptive SBRP. In this section we present a direct extension of their

algorithm which is capable of solving the SBRP-FT.

As mentioned in Section 3, the main drawback that prevents AF from exactly solving the SBRP-

FT is the fact of not considering the evolution of the number of bikes at stations after each visit.

Provided that the triangle inequality holds, we can use (1) to transform each integer variable xij in

AF into a set of binary variables as

xij =

⌊log2(uij)⌋
∑

k=0

2kyk
ij ∀ (i, j) ∈ A (8)

where yk
ij is a binary variable assuming value 1 if arc (i, j) is traversed at least k times by the vehicle.

Equations (8) can be intuitively seen as a representation of the value of xij as a binary number,

where each variable yk
ij gives the k-th bit of the number (see, e.g., Vanderbeck and Wolsey 2010). For

the sake of simplicity, let γij = ⌊log2(uij)⌋. We now create a multigraph in which each arc (i, j) ∈ A

is replaced by a set of arcs (i, j, k) with k = 0, 1, . . . , γij . Let R be the set of routes that are infeasible

for the SBRP-FT and A′(r) be the subset of arcs in the multigraph used by route r ∈ R. We are now

ready to present the following binary arc formulation (BinArc).

(BinArc) min zBinArc =
∑

(i,j)∈A

γij
∑

k=0

cij2kyk
ij (9)

subject to

∑

i∈V

γi0
∑

k=0

2kyk
i0 = 1 (10)

∑

i∈V

γij
∑

k=0

2kyk
ij ≥ 1 ∀ j ∈ I (11)

γij
∑

k=0

2kyk
ij ≤ uij ∀ (i, j) ∈ A (12)

∑

i∈V

γij
∑

k=0

2kyk
ij −

∑

i∈V

γij
∑

k=0

2kyk
ji = 0 ∀ j ∈ V (13)

∑

i∈S̄

∑

j∈S

γij
∑

k=0

2kyk
ij ≥ max

(⌈

|
∑

i∈S di|

Q

⌉

, 1

)

∀ S ⊆ I (14)

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

Article submitted to Transportation Science; manuscript no. 13

∑

(i,j,k)∈A′(r)

yk
ij ≤ |A′(r)| − 1 ∀ r ∈ R (15)

yk
ij ∈ {0, 1} ∀ (i, j) ∈ A, k = {0, . . . , γij} (16)

The objective function (9) minimizes the total distance traveled. Constraints (10)-(12) impose

the degrees for the depot and the stations. Constraints (13) specify that each arrival at a vertex

is followed by a departure, while (14) are capacity constraints for the vehicle. Infeasible routes are

forbidden by constraints (15), whereas constraints (16) define the domain of the y variables. Note

that constraints (12) are not strictly necessary, but are used to strengthen the formulation, given

that
∑γij

k=0 2kyk
ij might be greater than uij .

In practice, the model made by (9)–(14) and (16) is a reformulation of AF, and thus a valid

relaxation, but the inclusion of (15), made possible by the use of the binary expansion, allows to

obtain a complete SBRP-FT representation. To separate (14), we first use equation (8) to aggregate

the y variables, and then we apply a standard max-flow procedure. To separate (15), we solve the

disaggregation check using the method described later in Section 6.3. In short, formulation (9)-(16)

is solved by a B&C procedure, called BinArc algorithm, that separates constraints (14) and (15) only

at integer nodes of the branching tree.

6. The minimal extended network approach

In this section, we introduce a formulation capable of modeling any state of the problem network,

from the aggregate network, where each station is associated with a single vertex, to the extended

network, where each station i is associated with βi vertices. We then use the formulation as a basis

of an iterative B&C algorithm.

6.1. General formulation

Let G′′ = (V ′′, A′′) be a complete and directed graph, where V ′′ = ∪i∈IVi ∪{0} is the set of vertices,

Vi = {i1, . . . , iβ̄i
} is the subset of vertices associated with station i ∈ I, and β̄i is a parameter satisfying

β̄i ≤ βi for each i ∈ I. In addition, let Ik specify the station associated with vertex k ∈ V ′′. To

represent the evolution that our iterative algorithm imposes on this network, set V ′′ is partitioned as

V ′′ = V a ∪ V p ∪ V f ∪ V e ∪ {0}. As an illustrative example consider the vertex set with depot and 4

stations depicted in Figure 3-(a). This set contains only aggregate vertices that belong to V a and can

be visited multiple times. Suppose that vertex 2 is duplicated by our iterative procedure, as shown in

Figure 3-(b). The initial aggregate vertex is replaced by a first extended vertex belonging to V f , and a

partially aggregate vertex belonging to V p. Vertices in V f are visited at most once, while those in V p

may be visited multiple times. Also, a partially aggregate vertex may only be visited when all other

vertices associated with the same station are also visited. Suppose now that a second duplication of

vertex 2 occurs, as shown in Figure 3-(c). This results in an extended vertex, belonging to V e, which

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

14 Article submitted to Transportation Science; manuscript no.

may be visited at most once. To better understand the difference between V e and V f , consider two

vertices, k ∈ V f and l ∈ V e, having Ik = Il = i ∈ I. The only difference between k and l is that the

former can only be visited when the latter is also visited. Additionally, in case di 6= 0, vertex k must

be visited exactly once. Subsequent duplications of the same vertex, not explicitly reported in the

figure, would maintain exactly one vertex of type f and one vertex of type p, and increase only the

number of vertices of type e.

V

0

1

2

3

4

0

a

a

a

a

(a) Initial state of the vertex set

V

0

1

2

3

4

0

a

f p

a

a

(b) First duplication of vertex 2

V

0

1

2

3

4

0

a

f e p

a

a

(c) Second duplication of vertex 2

Figure 3 Example of a vertex duplication

Similarly to AF, let xij be a set of integer variables specifying the number of times arc (i, j) in

A′′ is traversed, and let yi be a set of binary variables that define whether or not vertex i ∈ V ′′ \ {0}

is visited. In addition, let gi be an unconstrained variable that reports the quantity of demand that

has been collected/delivered during the visit to vertex i ∈ V ′′ \ {0}. We are now ready to introduce

the following general formulation (GF), which is the stepping stone of our algorithm:

(GF) min zGF =
∑

(i,j)∈A′′

cijxij (17)

subject to

x(δ+(0)) = 1 (18)

x(δ+(j)) = 1 ∀ j ∈ V f (19)

x(δ+(j)) ≥ 1 ∀ j ∈ V a (20)

x(δ+(j)) ≥ yj ∀ j ∈ V p (21)

x(δ+(j)) = yj ∀ j ∈ V e (22)

x(δ+(j)) − x(δ−(j)) = 0 ∀ j ∈ V ′′ (23)

yik
≥ yik+1

∀ i ∈ I, k ∈ {1, . . . , β̄i − 1} (24)
∑

k∈Vi

gk = di ∀ i ∈ I (25)

x(S̄ : S) ≥ max

(

−
∑

i∈S gi

Q
, 1

)

∀ S ⊆ V ′′ \ {0}, S̄ = V ′′ \ S \ {0}, S ∩ (V f ∪ V a) 6= ∅ (26)

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

Article submitted to Transportation Science; manuscript no. 15

x(S̄ : S) ≥
−

∑

i∈S gi

Q
∀ S ⊆ V ′′ \ {0}, S̄ = V ′′ \ S \ {0}, S ∩ (V f ∪ V a) = ∅ (27)

yi ≤ gi ≤ dIi
yi ∀ i ∈ V ′′ \ {0} : dIi

≥ 0 (28)

dIi
yi ≤ gi ≤ −yi ∀ i ∈ V ′′ \ {0} : dIi

< 0 (29)

xij ∈ {0, 1} ∀ i, j ∈ V ′′ : i ∈ V e ∪ V f or j ∈ V e ∪ V f (30)

xij ∈ {0, 1, . . . , uIiIj
} ∀ i, j ∈ V a ∪ V p (31)

yi ∈ {0, 1} ∀ i ∈ V ′′ \ {0} (32)

gi S 0 ∀ i ∈ V ′′ \ {0} (33)

The objective function (17) minimizes the total distance traveled. Constraints (18)-(22) define the

degree of each vertex. Constraints (23) specify flow conservation for the vehicle for each vertex in V ′′.

Constraints (24) impose the order for the usage of the duplicates, stating that a vertex ik+1 can only

be visited if its predecessor ik is also visited. The demand di of each station must be served, as stated

by constraints (25), and the vehicle capacity Q must not be exceeded, as imposed by (26) and (27).

Note that constraints (26) and (27) also serve the purpose of preventing subtours and are separated

using the same procedure applied to constraints (6). The max function in the right hand side of (26)

induces a nonlinear term, which is required because −
∑

i∈S gi could be 0 or lower. We deal with this

by simply checking at each call to the separation procedure which term is the highest, and then using

it as the right hand side of the constraint that is actually added to the model. Constraints (28) and

(29) specify lower and upper bounds for the gi variables, which should be equal to 0 when yi = 0, lower

than 0 when yi = 1 and dIi
< 0, and greater than 0 when yi = 1 and dIi

< 0. It is worth mentioning

that constraints similar to (28)–(29) have been proposed by Salazar-González and Santos-Hernández

(2015) to model the SD1PDTSP. Constraints (30)-(33) define the variables domains, with gi being a

continuous variable unrestricted in sign.

This formulation has some interesting properties. In case each station is associated with a single

(aggregate) vertex, we have V ′′ = V a ∪ {0} and V p = V f = V e = ∅, which corresponds to the scenario

adopted for AF. Moreover, gj = dIj
for each j ∈ V ′′, and consequently constraints (26) and (27) are

equivalent to (6), and constraints (28) and (29) can be removed, as they become redundant. This

leads to:

Observation 1. In case each station is associated with a single vertex in G′′, GF is equivalent

to AF.

Now recall that the shortcomings that might render an aggregate solution infeasible may only exist

when there is at least one vertex being visited multiple times. By associating each station i ∈ I with

βi duplicates, we obtain the extended network, where each vertex is visited at most once. Therefore,

solving GF under this network always produces a feasible solution, and hence:

Observation 2. In case each station i ∈ I is associated with βi duplicates in G′′, an optimal

solution of GF is also an optimal solution for SBRP-FT.

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

16 Article submitted to Transportation Science; manuscript no.

6.2. MEN algorithm

Our third exact algorithm, called the minimal extended network (MEN) algorithm, generalizes

the best algorithm in Bruck and Iori (2017) to deal with the case where demands have multi-

ple origins and destinations and stations may be visited more than twice. The MEN algorithm is

based on the following two observations. Firstly, most often than not, in optimal solutions for the

SBRP-FT stations are visited no more than 2 or 3 times (this behavior was already hinted by

Salazar-González and Santos-Hernández (2015) for the related SD1PDTSP). Secondly, by perform-

ing extensive computational experiments, we have verified that quite often an optimal solution of AF

corresponds to an optimal solution for the SBRP-FT.

Algorithm MEN starts by solving GF over the pure aggregate network, where each sta-

tion is associated with a single vertex. Formulation GF is solved by using a B&C algorithm

in which constraints (26) and (27) are separated with the max-flow procedure described in

Chemla, Meunier, and Wolfer Calvo (2013). We opted to separate those constraints only at integer

nodes. A disaggregation check is then performed on the solution obtained by the B&C to determine

whether the solution is feasible for the SBRP-FT (details are provided in Section 6.3). If feasible,

then MEN terminates with an optimal SBRP-FT solution. Otherwise, we inspect the solution and

determine the number β̄i of visits to i. Each vertex i ∈ V ′′ having β̄i > 1 is duplicated into β̄i vertices.

Then, a new iteration solves GF under the modified graph. The procedure iterates until the optimal

solution found is feasible for the SBRP-FT.

Recall that AF provides a valid relaxation of the SBRP-FT. Because of this fact and of Observation

1, algorithm MEN provides at the first iteration a valid lower bound. Then, in the worst case scenario,

it iterates for
∑

i∈I βi times, performing a single duplication at each iteration, possibly improving the

lower bound value, and culminating in the extended network in the last iteration, where, because of

Observation 2, it is guaranteed to produce a feasible SBRP-FT solution. Consequently, the solution

value would be both a lower and an upper bound, and hence an optimum, so we can conclude that:

Observation 3. Algorithm MEN converges to the optimal solution of the SBRP-FT.

According to Observation 3, algorithm MEN might be as time consuming (or even more) as directly

solving the extended network. However, computational experiments indicate this is not the case and,

in practice, only a few iterations are usually necessary to converge to an optimal SBRP-FT solution.

Furthermore, to speed up convergence, at each iteration of MEN a list of the 10 best incumbent

solutions found is kept. In case the solution found is infeasible, this list is checked as an attempt of

finding a feasible upper bound. The incumbent upper bound is then used as a warm start for the next

iteration. During computational experiments we observed that, for some instances, the first iteration

of MEN produces an infeasible aggregate solution x̄, but the reverse solution x̃, having x̃ij = x̄ji for

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

Article submitted to Transportation Science; manuscript no. 17

all (i, j) ∈ A′′, is actually feasible. To take advantage of this observation, an additional feasibility test

is performed in the reverse solution of the first MEN iteration, if needed.

It is worth mentioning that an extended network approach was already used by

Salazar-González and Santos-Hernández (2015) to model the related SD1PDTSP, so the most fruitful

contribution of algorithm MEN consists in iteratively solving the problem, starting from the sim-

plest aggregate network and then iteratively extending the graph through additional vertices until

an optimum is found. To this regard, note that there is no guarantee that after the execution of

algorithm MEN the resulting graph will be of overall minimum cardinality. In fact, finding a graph

of minimal cardinality that could allow MEN to produce an optimal solution appears to be as hard

as solving the SBRP-FT itself (and also finding non-trivial bounds on such cardinality is not easy).

Even duplicating just one vertex at a time, instead of duplicating all vertices i with β̄i > 1, has no

guarantee to lead to a minimum cardinality.

It is also worth mentioning that the MEN algorithm can be easily extended to deal with the case

of rebalancing by means of a fleet of multiple vehicles. This can be obtained by simply replacing

“1” with the number of available vehicles in constraint (18). Note, indeed, that because we forbid

temporary operations there is no transshipment, and this in turn prevents synchronization issues

that could require additional constraints.

6.3. A duplicate-and-inspect procedure to solve the disaggregation check

Let (z̄, x̄, ḡ) be a solution of GF of value z̄, and let V̄ >1 = {i : i ∈ V ′′, β̄i > 1} and V̄ 1 = V ′′ \ V̄ >1.

In addition, define G̃ = (Ṽ , Ã) as the support graph obtained by duplicating each vertex i ∈ V̄ >1 into

β̄i duplicates, and including all vertices in V̄ 1 directly into Ṽ . Let σ(i) specify the vertex in V ′′ that

is associated with i ∈ Ṽ . We check whether or not (z̄, x̄, ḡ) leads to a disaggregate feasible solution

for the SBRP-FT by solving a formulation, called duplicate and inspect (DIF) that uses the same

variables x and g as in GF, but is defined over G̃ as follows:

(DIF) min 0 (34)

subject to

(23), (25), (26), (27)
∑

i∈Ṽ

∑

j∈Ṽ

cijxij = z̄ (35)

∑

i∈Ṽ

xij =
∑

i∈Ṽ

x̄σ(i)σ(j) ∀ j ∈ V̄ 1 (36)

∑

i∈Ṽ

xij = 1 ∀ j ∈ Ṽ \ V̄ 1 (37)

xij = x̄σ(i)σ(j) ∀ i, j ∈ V̄ 1 (38)

xij = 0 ∀ i, j ∈ Ṽ : {σ(i), σ(j)} ∩ V̄ >1 6= ∅, x̄σ(i)σ(j) = 0 (39)

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

18 Article submitted to Transportation Science; manuscript no.

0 ≤ gi ≤ dσ(i) ∀ i ∈ Ṽ : dσ(i) ≥ 0 (40)

− dσ(i) ≤ gi ≤ 0 ∀ i ∈ Ṽ : dσ(i) < 0 (41)

xij ∈ {0, 1} ∀ i, j ∈ Ṽ (42)

gi S 0 ∀ i ∈ Ṽ (43)

Constraints (35) ensure that the search is performed for a disaggregate solution of the same value z̄

of the original aggregate one, whereas constraints (36) and (37) impose that stations must be visited

the same number of times as in the original solution. Variables connecting vertices in V̄ 1 keep the

same values as in the solution of GF, as stated by constraints (38). Based on the x̄ values, constraints

(39) remove several arcs that should not be used. Consequently, because in this formulation vertices

are visited at most once, constraints (40) and (41) are enough to forbid temporary operations. In

case formulation DIF returns a feasible solution, then this is also an SBRP-FT optimal solution and

the associated route may be retrieved by simply inspecting the values assumed by the x variables.

The disaggregation check can also be used to analyze solutions from the B&R of Section 3.2 and

the BinArc of Section 5. In both cases, because each station is represented by a single vertex, the ḡ

values are simply obtained by setting ḡi = di for each i ∈ I. For BinArc, the x̄ values are computed

by using equation (8).

7. Computational experiments

Our algorithms have been coded in C++ and the computational experiments have been run on a

PC with an Intel Core i7-3770 3.40 GHz with 8 GB of RAM. A time limit of 1 hour has been given

to each execution. We have used CPLEX 12.6.2 with default options and single thread to solve the

formulations and to implement the B&C algorithms.

We first tested our algorithms on a set of instances obtained by slightly modifying those proposed

by Chemla, Meunier, and Wolfer Calvo (2013) for the SBRP. The results on these instances are

summarized in Section 7.1. We then selected our two best solution methods and used them to solve

two additional sets: a set of realistic instances proposed by Dell’Amico et al. (2014) on the basis of

a large analysis on a number of real-world bike sharing systems; and a set of particularly difficult

instances that we derived by a real-world consideration from Liu et al. (2016). The results on these

two test beds are reported in Section 7.2. Details of the results that we obtained on each single

instance appear in the appendix.

The proposed duplicate-and-inspect procedure runs quite fast on average. Nevertheless, when there

are several stations being visited multiple times, its performance tends to degrade. As a matter of

fact, because the MEN algorithm runs the feasibility check only at the end of each iteration and

the solutions checked are usually of high quality (thus containing few occurrences of multiple visits

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

Article submitted to Transportation Science; manuscript no. 19

to a station), there were no significant efficiency issues with the duplicate-and-inspect procedure.

However, this was not the case for both the B&R and the BinArc algorithms, as the check is called

every time an incumbent solution is found, and the first solutions found are likely to be of poor

quality (possibly containing several stations that are visited multiple times). We overcame this issue

by providing an initial solution of good quality. In view of this, we have adapted to the SBRP-FT

the iterated local search (ILS) algorithm proposed by Cruz et al. (2017) for the SBRP, and used it to

provide an initial solution (called UB0) for both the B&R and the BinArc algorithm. This has been

obtained by using the MIPstart procedure provided by CPLEX. The two resulting algorithms are

called B&R+MIPstart and BinArc+MIPstart below. In addition, we tested two variants for MEN: a

first one, called MEN+MIPstart, in which UB0 is used as a MIPstart when solving the GF models;

and a second one, simply called MEN, in which UB0 is only used to provide an output solution in

case MEN did not find any lower cost solution.

7.1. Computational results on SBRP benchmark instances

We have slightly modified the set of benchmark instances proposed by

Chemla, Meunier, and Wolfer Calvo (2013) for the SBRP and later used by

Erdoǧan, Battarra, and Wolfler Calvo (2015), by imposing triangle inequality on the cost matrix

(original costs were obtained by rounding down to the nearest integer euclidean distances, and this

can create small violations of the triangle inequality). To this aim, we performed a simple iterative

check that, for each triplet (i, j, k) of vertices, updates cij = cik + ckj whenever cik + ckj < cij , and

reiterates until no further update exists. We have obtained in this way 450 instances divided into

10 classes, with a number of stations n varying from 20 to 60, and a vehicle capacity Q varying

from 10 to 1000. The demand of each station is an integer number randomly chosen with uniform

distribution in the range [−10, 10]. All the instances that we tested are now available at http://

www.or.unimore.it/site/home/online-resources.html.

Due to the large number of instances, in this section we only present aggregate results, but refer

to the appendix for detailed results on each particular instance. The appendix also contains detailed

information on n, Q, and demand distribution for each instance. For each algorithm in the tables

presented hereafter, and for each group of # instances in a line, opt specifies the total number

of optimal solutions found, gap provides the average percentage gap obtained by the respective

algorithm for the instance, and sec gives the average CPU time in seconds (considering 1 hour for

instances unsolved to proven optimality). The gap values are evaluated as ((UB-LB)/UB)×100),

where UB and LB are the upper and lower bound values produced by the given algorithm (UB=UB0

if no improvement was found on the initial solution provided by the ILS). The best opt values are

highlighted in bold. For UB0 (that is, the ILS of Cruz et al. 2017) we provide in column UBopt the

http://www.or.unimore.it/site/home/online-resources.html
http://www.or.unimore.it/site/home/online-resources.html

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

20 Article submitted to Transportation Science; manuscript no.

number of times in which the provided upper bound value was equal to the proven optimal value,

and in column sec0 the average CPU time. The last line reports total values for UBopt and opt and

average values for gap and times across the entire set of instances.

Table 1 Aggregated results per instance size.

UB0 BinArc+MIPstart B&R+MIPstart MEN+MIPstart MEN

n # UBopt sec0 opt gap sec opt gap sec opt gap sec opt gap sec

20 90 89 7.06 84 0.24 250.36 86 0.07 162.06 90 0.00 2.73 90 0.00 4.31

30 90 83 24.50 71 0.46 869.47 90 0.00 11.31 88 0.15 81.91 89 0.05 41.57

40 90 80 77.64 42 1.00 2092.86 81 0.25 614.11 83 0.47 375.42 85 0.26 281.07

50 90 64 160.98 37 2.64 2220.91 66 1.29 1116.18 70 1.43 859.27 72 0.84 797.15

60 90 66 251.46 25 3.98 2613.17 53 2.69 1701.22 63 2.70 1175.04 69 1.82 962.69

total/avg 450 382 104.33 259 1.66 1609.36 376 0.86 720.98 394 0.95 498.87 405 0.59 417.36

Table 1 reports aggregate results per instance size. We can observe that the BinArc algorithm

is usually outperformed by B&R and MEN, as it found only 259 optimal solutions, whereas B&R

proved the optimality of 376 instances, and MEN with and without MIPstart managed to find 394

and 405 optimal solutions, respectively. In addition, the BinArc formulation required, on average,

more CPU time. Furthermore, the MEN algorithm has a better overall performance as the size of

the instance increases.

Two interesting comments can be made when comparing MEN+MIPstart with MEN. On one

side, it is interesting to observe that providing an initial solution for the MEN algorithm did not

improve its overall efficiency. In fact, for several instances the opposite behavior was verified. This

might be explained by the observation that GF usually finds feasible upper bounds quite fast, but

takes longer to improve the lower bound, and providing a warm start might change the branching

decisions taken by CPLEX. The fact that performing modifications in the initial conditions of a

MILP solver may lead to significant changes in the resulting performance has already been noticed

by Fischetti and Monaci (2014) and Lodi and Tramontani (2013), among others. On the other side,

there are instances for which MEN alone cannot provide any feasible solution. That happened for

2 instances with n = 40, 5 instances with n = 50, and 10 instances with n = 60 (we refer to the

appendix for details). In these cases, the use of a good initial heuristic is very important.

Table 2 shows the aggregate results per vehicle capacity. Once again MEN presents a better per-

formance, usually dominating the other algorithms in terms of number of optimal solutions, gap, and

CPU time. One exception occurred for Q = 10, where B&R found 26 optimal solutions against 24 of

MEN. From Table 2 it can be also verified that the larger the capacity, the easier the instance. In

fact, instances having Q larger than 35 are not very meaningful, as they are easily solved by both

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

Article submitted to Transportation Science; manuscript no. 21

Table 2 Aggregated results per vehicle capacity.

UB0 BinArc+MIPstart B&R+MIPstart MEN+MIPstart MEN

Q # UBopt sec0 opt gap sec opt gap sec opt gap sec opt gap sec

10 50 21 122.50 14 7.45 2672.03 26 5.17 1830.23 23 5.81 2052.99 25 3.78 1842.37

15 50 32 118.45 23 2.78 1932.07 34 1.59 1198.13 32 1.90 1324.73 38 1.22 974.71

20 50 38 109.40 28 1.12 1675.96 41 0.43 760.39 42 0.67 705.37 44 0.29 589.17

25 50 46 104.31 31 0.61 1397.53 48 0.07 362.22 49 0.06 185.51 49 0.00 110.16

30 50 47 99.62 35 0.53 1188.45 48 0.02 286.59 49 0.09 106.57 49 0.04 156.48

35 50 48 94.74 34 0.57 1268.70 46 0.10 404.36 49 0.04 81.92 50 0.00 49.58

40 50 50 97.34 32 0.53 1451.79 45 0.07 516.47 50 0.00 6.48 50 0.00 6.45

45 50 50 97.12 32 0.65 1378.32 44 0.13 554.08 50 0.00 16.46 50 0.00 15.13

1000 50 50 95.49 30 0.73 1519.34 44 0.15 576.31 50 0.00 9.84 50 0.00 12.18

total/avg 450 382 104.33 259 1.66 1609.36 376 0.86 720.98 394 0.95 498.87 405 0.59 417.36

MEN+MIPstart and MEN. In addition, it is visible that all algorithms have a quite inferior overall

performance for Q = 10 and Q = 15, mainly because the number of multiple visits increases as the

capacity of the vehicle decreases, and this negatively affects the efficiency of the exact algorithms

presented in this work.

7.2. Computational results on realistic benchmark instances

We also tested our best algorithms on a set of real-world instances that were first proposed by

Dell’Amico et al. (2014). These instances are derived from a large analysis on a number of real-

world bike sharing systems, involving between 13 and 116 stations. Dell’Amico et al. (2014) studied

the case in which multiple homogeneous vehicles can be used and each station is visited once. We

adapted the instances to the SBRP-FT by assuming that a single vehicle is used, removing initially

balanced stations, and allowing the unbalanced stations to be visited more than once. In addition,

to deal with the fact that, originally, these instances are not balanced (i.e.,
∑

i∈I di 6= 0), we added a

dummy station at the same coordinates of the depot and set its demand as −
∑

i∈I di. The vehicle

capacity was kept as in Dell’Amico et al. (2014), who attempted up to 3 different values for each

graph. Note that we limited our study to the 56 instances having at most 80 stations, because this

is the computational limit of our exact methods and also because it is unrealistic to consider that a

single vehicle can visit more stations in a single day.

Table 3 presents aggregate results for UB0, MEN+MIPstart, and MEN, by grouping instances

according to the original graph (i.e., city). Detailed results for each instance are provided in the

appendix. In general, MEN still performs well, proving 43 out of 56 optimal solutions against 41 of

MEN+MIPstart. However, in 7 cases MEN was not able to find a feasible solution, while MEN+UB0

always guaranteed that at least one is found. It is interesting to point out that the instances associated

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

22 Article submitted to Transportation Science; manuscript no.

with Buenos Aires have a small number of stations, but seem harder to solve than some larger

instances. This is probably due to the fact that the demands of stations in Buenos Aires are very

high, and the vehicle capacity is very tight, and this makes the problems more difficult to solve. On

the other hand, instances associated with Guadalajara have a larger number of stations but very low

demand values, and are easier to solve. In Table 4 we aggregate the results by value of Q. Also here

one can notice that small vehicle capacities tend to increase the solution difficulty. We also performed

an additional test by attempting Q=1000, and could solve all instances with both MEN+MIPstart

and MEN in at most a few minutes.

Table 3 Aggregate results per city for the real-world instances.

UB0 MEN+MIPstart MEN

city n # UBopt sec0 opt gap sec opt gap sec

Bari 13 3 3 0.39 3 0.00 0.01 3 0.00 0.01

Reggio Emilia 14 3 2 0.65 3 0.00 0.03 3 0.00 0.05

Bergamo 15 3 3 0.65 3 0.00 0.02 3 0.00 0.08

Parma 15 3 3 0.54 3 0.00 0.02 3 0.00 0.02

Treviso 18 3 3 0.85 3 0.00 0.04 3 0.00 0.02

La Spezia 20 3 0 1.00 3 0.00 0.31 3 0.00 0.34

Buenos Aires 21 2 0 2.13 0 0.72 t.lim. 1 7.67 1802.24

Ottawa 21 3 3 1.13 3 0.00 0.20 3 0.00 0.34

San Antonio 23 3 0 2.10 3 0.00 0.11 3 0.00 0.10

Brescia 27 3 0 3.53 3 0.00 7.08 3 0.00 4.71

Roma 28 3 0 4.44 2 0.13 1206.20 2 1.40 1203.90

Madison 28 3 1 2.99 2 0.33 2401.25 2 0.62 2135.80

Guadalajara 41 3 0 7.81 3 0.00 0.92 3 0.00 3.11

Dublin 45 3 0 11.41 1 1.74 2403.12 1 1.70 2403.15

Denver 51 3 0 18.42 3 0.00 118.96 3 0.00 124.79

Rio de Janeiro 55 3 0 21.69 0 4.56 t.lim. 0 14.00 t.lim.

Boston 59 3 0 31.84 2 0.56 2251.36 2 6.17 1755.28

Torino 75 3 0 54.32 2 6.47 1894.57 2 12.59 1576.50

Toronto 80 3 0 55.12 0 33.84 t.lim. 0 36.83 t.lim.

total/avg 56 18 11.80 42 2.58 1065.22 43 4.20 943.38

Table 4 Aggregate results per vehicle capacity for the real-world instances.

UB0 MEN+MIPstart MEN

Q # UBopt sec0 opt gap sec opt gap sec

[10,20) 18 5 9.93 13 3.17 1185.50 13 5.67 1104.26

20 19 7 10.78 13 2.79 1248.02 14 5.27 1156.63

30 19 6 14.60 15 1.80 768.48 16 1.74 577.71

total/avg 56 18 11.80 42 2.58 1065.22 43 4.20 943.38

We also decided to perform additional tests that follow the observation by Liu et al. (2016), who

pointed out that in many practical applications the demand distribution is usually geographically

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

Article submitted to Transportation Science; manuscript no. 23

unbalanced. For example, as people usually leave their residencies in the morning, residential areas

are expected to have a shortage of bikes in this moment of the day, while commercial regions

have a surplus. Similarly, in the late afternoon this scenario is usually reversed. To tackle this

type of scenarios, we created a new set of instances where the demand of stations is distributed

unevenly. These instances were generated by modifying the demands of the instances proposed by

Chemla, Meunier, and Wolfer Calvo (2013) using the following procedure. For each instance, we first

divide the geographic space into four quadrants as in the two-dimensional Cartesian system. Next,

stations in quadrants 1 and 3 are assigned a large pickup demand equal to a random value in the

interval [⌈Q/2⌉, ⌊3Q/2⌋], whereas stations in quadrants 2 and 4 are assigned a large delivery demand

equal to a random value in the interval [⌈−3Q/2⌉, ⌈−Q/2⌉]. We selected the instances of classes A to

E, with n = {20, 30, 40, 50, 60} and Q = 25 (the same capacity value used in Liu et al. 2016), resulting

in a new set of 25 instances with realistic spatial distribution of demand. Note that the procedure

we adopted tends to generate demands with values that are much higher than those of the other

instances that we tested. The resulting instances are expected to be very challenging because split

deliveries are forced by the fact that some demands are larger than the vehicle capacity.

The outcome of the computational experiments performed on this new set of instances is presented

in Table 5. Detailed results are reported in the appendix. As expected, the instances are more

challenging to solve. This can be noted by the reduced quality of the initial upper bound provided by

the heuristic, which now never manages to reach the value of a proven optimal solution, and by the

reduced scalability of the MEN algorithm, which now can solve to optimality only instances having

40 stations or less. The positive aspect is that the developed algorithms can directly tackle instances

with demands that are higher than the vehicle capacity, showing a good adaptability to a wide range

of problems.

Table 5 Aggregated results per instance size for instances with realistic spatial demand distribution.

UB0 MEN+MIPstart MEN

n # UBopt sec0 opt gap sec opt gap sec

20 5 0 0.06 5 0.00 0.56 5 0.00 0.53

30 5 0 0.22 4 7.45 1581.93 4 4.19 99.09

40 5 0 0.48 1 9.07 2984.77 2 14.15 2711.78

50 5 0 0.87 0 21.93 t.lim. 0 18.25 t.lim.

60 5 0 1.54 0 28.93 t.lim. 0 21.51 t.lim.

total/avg 25 0 0.64 10 13.48 2353.45 11 13.12 2002.28

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

24 Article submitted to Transportation Science; manuscript no.

8. Conclusions

In this paper, we have introduced the static bike rebalancing problem with forbidden temporary

operations (SBRP-FT), a pickup and delivery problem that arises in bike rebalancing, courier service

transportation, and repositioning of inventory cases in which temporary dropoff/pickup of products

is forbidden. We have presented some theoretical results related to computational complexity and

worst case analysis and proposed three exact algorithms. The first one consists of a branch-and-reject

(B&R) algorithm that builds upon an incomplete integer programming formulation. The second one

is an integer programming model, denoted as BinArc formulation, that is based on a binary network

expansion. The third one is based on the so-called minimum extended network (MEN) algorithm,

which iteratively enlarges a relaxed formulation by duplicating as few vertices as possible.

We have first performed extensive computational experiments with the proposed exact methods

on a set of 450 benchmark instances. Although the BinArc formulation is usually outperformed by

the other two approaches, it is capable of proving the optimality of 278 solutions, while B&R and

MEN (using its best configuration) obtain 376 and 402 optimal solutions, respectively. The good

behavior of the MEN algorithm was also proven by a second set of tests that we performed on realistic

instances taken from the bike sharing literature.

Future work includes the application of the MEN algorithm to other routing problems with split

demands, and the development of hybrid algorithms by combining heuristic and exact approaches

to find improvements for the SBRP-FT open instances. Such instances are mainly those with small

capacity values and in practice they tend to be harder to solve because the feasible solutions usually

contain several multiple visits to the stations.

Acknowledgments

The authors acknowledge financial support by the Brazilian research agencies CAPES (Coordenação de

Aperfeiçoamento de Pessoal de Nı́vel Superior) under grant PVE no. A007/2013 and CNPq (Conselho

Nacional de Desenvolvimento Cient́ıfico e Tecnológico), under grant no. 305223/2015-1, and by the Italian

ministry MIUR under grant PRIN 2015. We finally thank two anonymous referees, whose comments helped

improve the quality of the paper.

References

Archetti C, Savelsbergh M, Speranza M, 2006 Worst-Case Analysis for Split Delivery Vehicle Routing Prob-

lems. Transportation Science 40(2):226–234.

Battarra M, Cordeau JF, Iori M, 2014 Pickup and delivery problems for goods transportation. Toth P,

Vigo D, eds., Vehicle Routing: Problems, Methods, and Applications, 161–192, MOS-SIAM Series on

Optimization (SIAM), 2nd edition.

Berbeglia G, Cordeau JF, Gribkovskaia I, Laporte G, 2007 Static pickup and delivery problems: aÂăclassi-

fication scheme and survey. Top 15(1):1–31.

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

Article submitted to Transportation Science; manuscript no. 25

Bruck B, Iori M, 2017 Non-elementary formulations for single vehicle routing problems with pickups and

deliveries. Operations Research 65:1597–1614.

Cefic–The European Chemical Industry Council, 2013 Best practice guidelines for safe (un)loading of road

freight vehicles. available at http://www.cefic.org (last accessed December 2017).

Chemla D, Meunier F, Wolfer Calvo R, 2013 Bike sharing systems: Solving the static rebalancing problem.

Discrete Optimization 10(2):120–146.

Codato G, Fischetti M, 2006 Combinatorial Benders’ Cuts for Mixed-Integer Linear Programming. Opera-

tions Research 54(4):756–766.

Contardo C, Morency C, Rousseau LM, 2012 Balancing a dynamic public bike-sharing system. Technical

Report CIRRELT-2012-09, Universitè de Montrèal, Montrèal, Canada.

Cruz F, Bruck B, Subramanian A, Iori M, 2017 A heuristic algorithm for a single vehicle static bike sharing

rebalancing problem. Computers & Operations Research 79:19–33.

Dell’Amico M, Hadjicostantinou E, Iori M, Novellani S, 2014 The bike sharing rebalancing problem: Mathe-

matical formulations and benchmark instances. Omega 45:7–19.

Dell’Amico M, Iori M, Novellani S, Stützle T, 2016 A Destroy and Repair Algorithm for the Bike sharing

Rebalancing Problem. Computers & Operations Research 71:149–162.

Doerner K, Salazar-González JJ, 2014 Pickup and delivery routing problems for people transportation. Toth

P, Vigo D, eds., Vehicle Routing: Problems, Methods, and Applications, 193–212, MOS-SIAM Series on

Optimization (SIAM), 2nd edition.

Erdoǧan G, Battarra M, Wolfler Calvo R, 2015 An exact algorithm for the static rebalancing problem arising

in bicycle sharing systems. European Journal of Operational Research 245(3):667–679.

Erdoǧan G, Laporte G, Wolfler Calvo R, 2014 The static bicycle relocation problem with demand intervals.

European Journal of Operational Research 238(2):451–457.

Fischetti M, Monaci M, 2014 Exploiting Erraticism in Search. Operations Research 62(1):114–122.

Forma I, Raviv T, Tzur M, 2015 A 3-step math heuristic for the static repositioning problem in bike-sharing

systems. Transportation Research Part B: Methodological 71:230–247.

Hernández-Pérez H, Rodŕıguez-Mart́ın I, Salazar-González JJ, 2009 A hybrid GRASP/VND heuristic for

the one-commodity pickup-and-delivery traveling salesman problem. Computers & Operations Research

36(5):1639–1645.

Hernández-Pérez H, Salazar-González JJ, 2004a A branch-and-cut algorithm for a traveling salesman problem

with pickup and delivery. Discrete Applied Mathematics 145(1):126–139.

Hernández-Pérez H, Salazar-González JJ, 2004b Heuristics for the One-Commodity Pickup-and-Delivery

Traveling Salesman Problem. Transportation Science 38(2):245–255.

http://www.cefic.org

Bruck, Cruz, Iori, and Subramanian: The static bike sharing rebalancing problem with forbidden temporary operations

26 Article submitted to Transportation Science; manuscript no.

Hernández-Pérez H, Salazar-González JJ, 2007 The one-commodity pickup-and-delivery traveling salesman

problem: Inequalities and algorithms. Networks 50(4):258–272.

Liu J, Sun L, Chen W, Xiong H, 2016 Rebalancing bike sharing systems: A multi-source data smart opti-

mization. Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, 1005–1014, KDD ’16 (New York, NY, USA: ACM).

Lodi A, Tramontani A, 2013 Performance Variability in Mixed-Integer Programming, chapter 1, 1–12. TutO-

Rials in Operations Research (INFORMS).

Meddin R, 2016 The bike-sharing world map. http://www.bikesharingmap.com, accessed: April, 2018.

Mladenović N, Urošević D, Hanafi S, Ilić A, 2012 A general variable neighborhood search for the one-

commodity pickup-and-delivery travelling salesman problem. European Journal of Operational Research

220(1):270–285.

Nowak M, Ergun O, White C, 2008 Pickup and Delivery with Split Loads. Transportation Science 42(1):32–43.

Official Journal of the European Union, 2013 Guidelines of 7 march 2013 on good distribution practice of

medicinal products for human use (2013/c 68/01). available at http://ec.europa.eu/ (last accessed

December 2017).

Raviv T, Tzur M, Forma I, 2013 Static repositioning in a bike-sharing system: models and solution approaches.

EURO Journal on Transportation and Logistics 2(3):187–229.

Salazar-González JJ, Santos-Hernández B, 2015 The split-demand one-commodity pickup-and-delivery trav-

elling salesman problem. Transportation Research Part B: Methodological 75:58–73.

Schuijbroek J, Hampshire R, van Hoeve WJ, 2017 Inventory rebalancing and vehicle routing in bike sharing

systems. European Journal of Operational Research 257(3):992 – 1004.

Vanderbeck F, Wolsey L, 2010 Reformulation and decomposition of integer programs. Jünger M, Liebling T,

Naddef D, Nemhauser G, Pulleyblank W, Reinelt G, Rinaldi G, Wolsey L, eds., 50 Years of Integer

Programming 1958-2008: From the Early Years to the State-of-the-Art, 431–502 (Berlin, Heidelberg:

Springer Berlin Heidelberg).

Wang F, Lim A, Xu Z, 2006 The one-commodity pickup and delivery travelling salesman problem on a path

or a tree. Networks 48(1):24–35.

http://www.bikesharingmap.com
http://ec.europa.eu/

	Introduction
	Related work
	Aggregate formulation and branch-and-reject algorithm
	Aggregate formulation
	Branch-and-reject algorithm

	Complexity and worst case analysis
	Complexity of the disaggregation check
	Worst case analysis

	Binary arc formulation
	The minimal extended network approach
	General formulation
	MEN algorithm
	A duplicate-and-inspect procedure to solve the disaggregation check

	Computational experiments
	Computational results on SBRP benchmark instances
	Computational results on realistic benchmark instances

	Conclusions

