
13/08/2024 10:16

A software stack for next-generation automotive systems on many-core heterogeneous platforms /
Burgio, Paolo; Bertogna, Marko; Capodieci, Nicola; Cavicchioli, Roberto; Sojka, Michal; Houdek, Přemysl;
Marongiu, Andrea; Gai, Paolo; Scordino, Claudio; Morelli, Bruno. - In: MICROPROCESSORS AND
MICROSYSTEMS. - ISSN 0141-9331. - (2017), pp. 299-311. [10.1016/j.micpro.2017.06.016]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



 

Accepted Manuscript

A software stack for next-generation automotive systems on
many-core heterogeneous platforms

Paolo Burgio, Marko Bertogna, Nicola Capodieci,
Roberto Cavicchioli, Michal Sojka, Přemysl Houdek,
Andrea Marongiu, Paolo Gai, Claudio Scordino, Bruno Morelli

PII: S0141-9331(16)30455-0
DOI: 10.1016/j.micpro.2017.06.016
Reference: MICPRO 2586

To appear in: Microprocessors and Microsystems

Received date: 28 December 2016
Revised date: 3 June 2017
Accepted date: 21 June 2017

Please cite this article as: Paolo Burgio, Marko Bertogna, Nicola Capodieci, Roberto Cavicchioli,
Michal Sojka, Přemysl Houdek, Andrea Marongiu, Paolo Gai, Claudio Scordino, Bruno Morelli, A soft-
ware stack for next-generation automotive systems on many-core heterogeneous platforms, Micropro-
cessors and Microsystems (2017), doi: 10.1016/j.micpro.2017.06.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.micpro.2017.06.016
http://dx.doi.org/10.1016/j.micpro.2017.06.016


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A software stack for next-generation automotive
systems on many-core heterogeneous platforms

Paolo Burgioa,∗, Marko Bertogna, Nicola Capodieci, Roberto Cavicchiolia,
Michal Sojka, Přemysl Houdekb, Andrea Marongiuc, Paolo Gai, Claudio

Scordino, Bruno Morellid

aUniversity of Modena and Reggio Emilia, Italy
bCzech Technical University in Prague, Czech Republic

cSwiss Federal Institute of Technology in Zurich, Switzerland
dEvidence Srl, Pisa, Italy

Abstract

The next-generation of partially and fully autonomous cars will be pow-
ered by embedded many-core platforms. Technologies for Advanced Driver As-
sistance Systems (ADAS) need to process an unprecedented amount of data
within tight power budgets, making those platform the ideal candidate archi-
tecture. Integrating tens-to-hundreds of computing elements that run at lower
frequencies allows obtaining impressive performance capabilities at a reduced
power consumption, that meets the size, weight and power (SWaP) budget of
automotive systems. Unfortunately, the inherent architectural complexity of
many-core platforms makes it almost impossible to derive real-time guarantees
using “traditional” state-of-the-art techniques, ultimately preventing their adop-
tion in real industrial settings. Having impressive average performances with
no guaranteed bounds on the response times of the critical computing activities
is of little if no use in safety-critical applications. Project Hercules will address
this issue, and provide the required technological infrastructure to exploit the
tremendous potential of embedded many-cores for the next generation of auto-
motive systems. This work gives an overview of the integrated Hercules software
framework, which allows achieving an order-of-magnitude of predictable perfor-
mance on top of cutting-edge Commercial-Off-The-Shelf components (COTS).
The proposed software stack will let both real-time and non real-time application
coexist on next-generation, power-efficient embedded platforms, with preserved
timing guarantees.

Keywords: Autonomous Driving Assistance Systems, Many-core embedded

IThe Hercules project is funded by the EU Commission under the HORIZON 2020 frame-
work programme (GA-688860).

∗Corresponding author
Email addresses: paolo.burgio@unimore.it (Paolo Burgio ),

{first.lastname}@unimore.it (Marko Bertogna, Nicola Capodieci, Roberto Cavicchioli),
{sojkam1, houdepre}@fel.cvut.cz (Michal Sojka, Přemysl Houdek),
{a.marongiu}@iis.ee.ethz.ch (Andrea Marongiu), {pj, claudio,

b.morelli}@evidence.eu.com (Paolo Gai, Claudio Scordino, Bruno Morelli)

Preprint submitted to Microprocessors and Microsystems June 21, 2017



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

systems, Predictable Execution Models, Real-Time Systems, Parallel
programming models
2017 MSC: 00-01, 99-00

1. Introduction

In the next future, cars, and vehicles more in general, will be more and
more “intelligent”, and capable of taking independent decision on life-critical
activities. In the next future, collisions and crashes will be reduced thanks to
hazard detection and avoidance systems such as drivers’ alert buzzes, proximity5

detection systems, and drowsiness [1] and health emergency detectors (e.g.,
heart attack [2]). Crossroads and traffic light interceptions will be safer and
queues will be reduced, because cars will exchange information on-the-fly on
their speed and route before reaching the crossing point, and take decisions
accordingly [3]. Advanced features such as smart, advanced speed+distance10

control systems, will minimize the fuel consumption of a platoon of vehicles
at close following distances, thanks to reduced aerodynamic forces acting on
them [4]. We also expect that, in the next 15 years, taxi and car sharing
companies, will shift their fleets to partially or fully autonomous vehicles. This
is for instance the case of Uber [5, 6, 7].15

Two are the technological breakthroughs that in the last decade paved the
way to such an amazing future for automotive systems. On one side, the high
degree of vehicle connectivity with the internet-of-things [8, 9] will provide on-
board decision systems with a huge amount of information from the surround-
ing environment (Vehicle-to-Infrastructure) and from other vehicles (Vehicle-to-20

Vehicle), that can be used to take the most appropriate decision based on real-
time, live data. On the other side, the tremendous increase of computational
power available in the vehicle will support the hundreds of complex function-
alities [10, 11] of current Advanced Driving Assistance Systems (ADAS) and
–soon– of full-fledged self-driving cars.25

From the technological viewpoint, building a complete self-driving car is
extremely challenging, and commercializing and selling it is even harder. Luck-
ily, despite our society and legislation are not yet ready, and the idea of fully
autonomous vehicles might currently be too “futuristic” for the man in the
street, for automakers (OEM and Tier-1 companies), the path to driver-less30

cars is clear since years. Several industrial-grade prototypes exist [12, 13, 14]
and also few ones in academia [15], and technologically advanced countries such
as U.S.A. and Germany already allow (partially and with limitations) testing
of autonomous vehicles on their roads [16, 17]. We are entering right now an
exciting period of transition and transformation, where different typologies of35

cars will be developed, with different levels of automation, as Figure 1 and Ta-
ble 1 depict 1. We expect to reach fully autonomous capabilities (autonomous
Level 5) by 2030 [19].

In less distant future, the main challenge is to build ADAS that provide
partial or limited set of functionalities, such as highway autopilot, valet park-40

1Source: IHS [18]

2



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: Autonomous vehicles sales forecast (source: IHS [18]).

ADAS level Capabilities
L0 no autonomous functionalities

(traditional non-autonomous car market)
L1 one/few autonomous functionalities like cruise control

or assisted braking - The market is currently here
L2 at least 2 autonomous capabilities, like cruise control

and lane-centering - We are entering this level!
L3 safety critical functions are performed to the vehicle,

but only under certain environmental conditions. The
driver is still required and needs to be able to take
control at any time (the next generation of the market)

L4 fully autonomous, but the driver is still in charge of
performing complex activities such as overtaking, or left-turn

L5 autonomous vehicle without human control

Table 1: ADAS levels (source: IHS [18]).

ing, emergency brakes, or the aforementioned health monitoring and platoon
autopilot.

1.1. Building self-driving cars

This revolutionary change in the way we build our cars requires a technolog-
ical shift also in the computing platforms, opening up a number of opportunities45

for innovation and research. All the main players of the automotive market are
spending an increasing amount of resources in this direction. Major OEM and

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Tier-1s such as BMW, Volvo, Tesla Motors, and General Motors are already
developing the necessary know-how and technological background to build the
next generation of automotive systems. Recently, even companies from other50

markets, such as Apple and Google, have entered this challenge (see the Google-
Car [12]).

ADAS system engineers face a number of unprecedented challenges and re-
quirements, which are far from being satisfied. Such a system, in fact, must:

1. manage compute-intensive sensor-fusion and image-processing;55

2. run with reduced power consumption, allowing vehicles to be equipped
with smaller batteries and renewable power sources;

3. quickly interact with the environment, requiring a prompt elaboration of
sensor data;

4. execute all the above mentioned activities in a reliable and fault-tolerant60

way to take over safety-critical human activities.

Luckily, ADAS technology has moved a long way in last years, and today
we are capable of meeting requirements 1, 3 and 4 employing powerful in-trunk
compute servers. However, as of today, systems supporting these huge compu-
tational loads are extremely power-hungry, making them practically impossible65

to commercialize. The converging needs for predictable high-performance at
low power call for a “real-time embedded super-computing platform”, i.e., a
platform capable of predictably providing real-time guarantees to applications
running on top of power-efficient embedded hardware 2.

Modern Commercial-Off-The-Shelf (COTS) heterogeneous architectures based70

on multi- and many-core accelerators can satisfy this need for energy-efficient
performance. Integrating multiple computing elements running at lower fre-
quencies allows obtaining impressive performance capabilities at a reduced power
consumption, while architectural heterogeneity enhances platform flexibility.
Examples of such platforms are the NVIDIA Tegra X1 [20], a GPU-based75

System-on-Chip – SoC (described in Figure 3), and the Xilinx Zynq Ultra-
scale [21], which also embeds programmable logic. Unluckily, their tremendous
potential in terms of performance/Watt comes at the price of increased archi-
tectural complexity, which ultimately makes writing efficient code extremely
difficult (poor programmability). Even more importantly for the automotive80

domain, established methodologies and tools to provide real-time guarantees
are born for single-core systems. When applied to many-cores, “traditional”
techniques to achieve timing predictability make poor use of parallel/heteroge-
neous hardware, due to the conservative assumptions made. For this reason, the
design methodologies and software stack for automotive systems must be heav-85

ily modified, and to some extent re-designed, to cope with the next generation
of platforms.

Another important point is that, there is a plethora of existing applications
and libraries, that must be supported in next-generation power-efficient ADAS.
In industry, safety-critical software undergoes a long development and verifi-90

cation process, hence has a longer lifetime than “traditional” software (on the

2The capability of exactly predicting the timing behavior of applications is key to provide
real-time guarantees, and ultimately to implement verifiable ADAS.

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

order of 20-25 years). It is therefore absolutely crucial to support also legacy
code, with minor or no modifications at all.

Last but not least, the software running safety-critical tasks must be devel-
oped according to certified development process, and to strict safety standards.95

This certification aims at preventing possible injuries due to misbehaving or
faulty software. In the case of automotive, in particular, the OSEK/VDK and
the newer AUTOSAR standards already establish a set of rules and constraints
for operating systems design. These standards impose the usage of a real-time
operating system (RTOS) implementing a set of well-known scheduling algo-100

rithms and techniques. Usually, the size of the RTOS is kept at a bare mini-
mum to reduce the code complexity (hence the number of possible bugs) and
the costs of the verification process. By doing so, it is possible to implement
the Freedom From Interference at the RTOS Level, as specified in the ISO26262
Part 6, annex-D [22].105

1.2. Paper positioning: the Hercules project

These are the motivations behind the Hercules (“High-Performance Real-
time Architectures for Low-Power Embedded Systems”) Project [23]. The am-
bitious goal of Hercules is to obtain an order-of-magnitude improvement in
the cost and power consumption of next generation real-time applications for110

safety-critical domains. This goal will be pursued by mixing a certified RTOS
and a full-fledged operating system on a high-performance many-core COTS
hardware.

This paper introduces the software stack envisioned in Hercules. To do so,
we show some of the design choices characterizing current automotive systems,115

guided by industrial requirements from project partners, namely Airbus Group
Innovations, Magneti Marelli S.p.A. and Pitom snc. We first describe the hard-
ware system architectural template considered in the project (Section 2), based
on existing high-performance, power-efficient COTS platforms available on the
market. In Section 3 we describe the full software stack for automotive systems120

running on top of many-core heterogeneous platforms. In Section 4 we describe
which one(s) of the existing programming models for heterogeneous many-core
platforms better suits Hercules requirements. Our choices also take into account
industrial needs, like the reuse of legacy code and libraries on heterogeneous
many-core devices without requiring heavy code re-factoring. This allows max-125

imizing the industrial impact of the Hercules framework (methodologies, tools
and software), simplifying the technological transfer to existing application sce-
narios. Section 5 shows how virtualization techniques are employed to decouple
the low-level, hardware-dependent layers of the proposed stack, and the higher
application-dependent layers. The proposed hypervisor ensures the necessary130

spatial and timing isolation to meet Real-Time high-performance requirements
of modern ADAS. The Operating Systems chosen to be part of the stack are
described and motivated in Section 6, while Section 7 introduces state-of-the-art
techniques for resource scheduling in many-core systems that are implemented
in the proposed software stack. Finally, Section 8 draws some conclusions.135

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2. Target architecture

The choice of the target computing platforms is crucial and it affects ev-
ery part of the technological stack of the project. Most of the existing real-
time systems run on embedded architectures that were not been thought to
address the predictability and analysability requirements of time-critical appli-140

cations 3. The few platforms designed for being fully timing analyzable became
quickly obsoleted by later process technologies. For this reason, Hercules em-
ploys Commercial-Off-The-Shelf (COTS) components.

The advantage of using COTS are multiple: they are cheaper than custom-
made solutions; they are usually more robust to hardware and timing faults;145

fully supported by the hardware provider; and easily available for market ex-
ploitation.

Hercules targets heterogeneous architectures, featuring a “traditional” high-
performance host core (such as 64-bit ARM Cortex-A or Intel iX ) and a many-
core accelerator, such as GPUs [20], possibly also coupled with FPGA logic [21].150

The techniques, rationales and tools developed within Hercules will be designed
to be easily portable to future platforms. This is possible thanks to the software
stack and highly expressive programming models chosen, which allow hiding the
complexity of the hardware architecture, and ensuring application portability.
Figures 2 and 3 depict these two platforms.155

Figure 2: Scheme of the ARM big.LITTLE platform.

The ARM Big.LITTLE architecture [24] (2011) represents the state-of-
the-art for the target “host” subsystem. It couples powerful “big” cores such as
Cortex-A57 and slower yet more power-efficient “little” cores such as Cortex-A53
(both implement ARMv8 ISA). Since the two subsets of cores share the on-chip

3In order to simplify platform analysis, a typical solution is e.g., to exploit only one core
of a multi-core system, leaving the other processing units disabled or – even worse for the
power consumption – completely idle. This is clearly extremely inefficient.

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

memory banks, and caches are coherent, workloads may migrate between them160

almost on-the-fly. This is typically performed transparently by the OS.
Hercules will employ a Heterogeneous Multi-Processing (HMP) model, which

allows concurrently exploiting all physical cores at once, as opposite to the
“traditional” clustered switching model, where only one subsystem is active at
each time. Tegra [20] is a family of NVIDIA SoCs explicitly targeting embedded

Figure 3: Scheme of the NVIDIA Tegra X1 platform.

165

systems such as tablets and smartphones. Figure 3 shows that. It couples a
“host” subsystem based on ARM multi-cores, and a General Purpose GPU
(GP-GPU) in a single package. Poorly parallelizable, control-based and I/O
computations are typically executed on the host subsystem, while highly parallel
workloads are offloaded to the power-efficient many-core accelerator. The latest170

release of the family is the Tegra X1 [20] platform that embeds an octa-core host
with Big.LITTLE configuration and a Maxwell GPU with 256 CUDA cores.
The platform is claimed to achieve 1 TFLOP of computing power, within only
15 Watts. Tegra X1 is not qualified according to Functional Safety and Road
Vehicles Standard (ISO 26262 [22]). However, NVIDIA declared that the next175

version of the platform — called Drive PX2 [25], and based on the novel Parker
architecture — will be qualified at least ASIL-B [26]. Since the two platforms
are similar from the architectural point of view, the technology produced by
Hercules on the Tegra X1 will be easily ported to the Drive PX2, as soon as it
will be available, i.e., Q2 of 2017.180

The architecture depicted in this section does not cover the full spectrum
of modern heterogeneous many-core platforms, yet it is are quite representative
of current market trends and products. The Hercules project targets future
automotive and avionics systems, whose computational platforms are expected
to provide hundreds of GFLOPs within a few Watts 4. This is the main reason185

behind the selection of Tegra-like platform as one of the reference architectures
of the project.

4Giga-FLoating point OPerations-per-Watt: a well-known metric for e the computational
power of embedded computing platforms.

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3. Hercules software stack

Figure 4: The Hercules Software Stack.

Figure 4 depicts the Hercules software framework. As said, the Hercules
project is not tied to a specific system/SoC, yet it targets a specific architectural190

template, coupling a certified hard-real time platform and heterogeneous SoC
with multi-core host and many-core accelerator/GPU.

Hercules aims to support on the same architecture both real-time AUTOSAR-
like applications [27] running on top of ERIKA Enterprise [28], and non-real-
time (but high-performance) computations performed partly in the Big.LITTLE-195

like subsystem and partly in the many-core accelerator. In addition to this re-
quirement, it aims to support ISO 26262 certification [22] of some of the safety
critical parts. Then, it becomes mandatory to guarantee a proper isolation be-
tween the hard real-time parts and the rest of the system, in order to obtain
the freedom from interference required by the standard. For these reasons, the200

hard real-time subsystems have been properly “isolated”:

1. For high levels of safety requirements, the project is planning the inte-
gration of an AUTOSAR subsystem running on an external ASIL-D com-
pliant CPU, such as the Tricore AURIX [29]. The external CPU will be
connected to the many-core fabric using a predictable communication in-205

frastructure. However, this is not part of the “core” research activities of
the project.

2. For lower levels of safety requirements, the real-time subsystem will be
integrated in the Big.LITTLE cores. To ensure freedom from interfer-
ence, we will rely on a hypervisor to separate and isolate the real-time210

subsystem (run under the ERIKA Enterprise kernel) from the rest of the
system.

From the programmability viewpoint, complex many-core based systems
can easily become a nightmare even for experienced programmers, and highly-

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

expressive programming models are the keystone for extracting the full perfor-215

mance/Watt available in the platform. As an addition, predictability is a key
requirement in real-time and safety-critical applications, and it must be guar-
anteed at every level of the HW/SW platform. Unluckily, current programming
models for parallel architectures were not designed for real-time systems. They
lack of the necessary expressiveness to express, e.g., real-time task periods and220

deadlines, being inadequate for the goals of the project. For this reason, a key
contribution of Hercules is to deeply analyze the available programming models
for heterogeneous many-core systems, and discuss how they can be enhanced
with predictability extensions, to make them suitable also for the real-time
domain. We will start this discussion in the next session.225

4. Programming model

There is a plethora of de-facto or de-jure standards for programming hetero-
geneous architectures, which we want to address to ensure not only compliance
with legacy code and software libraries, but also with existing methodologies,
tools and, most of all, programmers’ expertise. In this section, we introduce the230

main advantages and drawbacks for each of them.
Hercules targets energy-efficient GPU-based platform. For this reason, CUDA

[30] and OpenCL [31] are the first choice as reference programming models. Un-
fortunately, they are extremely low-level, and designed for achieving high per-
formance, not predictability, hence they lack the necessary flexibility required235

by the project. As an addition – and this is especially the case of CUDA, it
is not easy to “customize” and extend them with appropriate extensions and
language constructs to achieve timing predictability. On the other hand, highly
expressive directive-based programming models such as OpenMP [32] and Ope-
nACC [33], specify parallelism at a much higher abstraction level, leaving a lot240

of room for compiler optimizations and code transformations. Last, but not
least, Hercules will release software “as much as possible open-source”, and this
might become an issue with proprietary/closed frameworks such as CUDA. For
all of these reasons, and in order to provide a clean and simple programming
interface, we embrace directive-based programming front-ends such as Open-245

MP/OpenACC in the project. The Hercules tool-chain will employ compiler
transformation to convert high-level directives to lower-level programming rou-
tines written in CUDA or OpenCL. We are designing a compiler infrastructure
to transform the OpenMP program into its predictable counterpart (see Sec-
tion 7), by emitting optimized code in CUDA/PTX format. As explained in the250

following Section 4.1, the Hercules ecosystem will also support legacy hard-real
time applications written for AUTOSAR [27].

4.1. Programming heterogeneous platforms

OpenMP [32] is the de-facto standard for programming shared-memory sys-
tems. OpenMP was developed at the end of 90’s to program regular, loop-based255

workload on top of symmetric multiprocessors systems (SMP) with shared-
memory. More recently [34], it evolved to deal with more irregular and dy-
namic parallelism, switching from a loop-oriented approach to a task -oriented

9



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

approach. Finally, with specifications 4.5 [32] (2011), it also embraced hetero-
geneous computing paradigm and execution model by introducing subroutines260

called target regions to be offloaded to an accelerator device, partially relaxing
the original SMP-based execution and shared-memory models. In its specifi-
cations, OpenMP is a set of APIs, pragmas and environmental variables. To
implement a full parallel software stack, it relies on a run-time which provides
basic functionalities for threading and resource allocation/management. The265

actual run-time implementation, and its set of APIs, are compiler-specific: for
instance, the most known GNU port relies on the GNU GCC-OpenMP (GOMP)
framework [35]. Although some efforts have been made [36], [37], OpenMP is
not yet suitable for real-time computing, and the standard does not include
support for real-time computing.270

The preferred solution for programming NVIDIA GP-GPUs are either CUDA
[30] or OpenCL [31]. CUDA provides a set of APIs for (massive) threading and
hooks for data movement/placing on the GPU device. Application code runs
on top of a run-time library + GPU driver which works together with the op-
erating system to provide these services. The main drawback of CUDA – and275

of all offload-based programming models in general – is an increased software
complexity with respect to, for instance plain C or C++ code, both in terms of
lines of code, and to the fact that the programmer must manually partition the
application onto computing threads and groups, and to explicitly orchestrate
data movements to/from the GPU device. From the “predictability” viewpoint,280

unfortunately, there are no implicit real-time guarantees in the CUDA standard,
and original CUDA run-time and drivers are closed and proprietary. Figure 4
shows possible “real-time CUDA extensions” which might be developed dur-
ing the project. They are marked with a star. The GPU is currently seen as
a non-preemptible, shared resource with run-to-completion semantics. In the285

project, we will explore the possibility of relaxing these assumptions by adding
preemption support and concurrent programming capabilities of a single GPU
device.

Open-Computing-Language (OpenCL [31]) is a joint effort by the Khronos
Consortium [38] for building an open language for programming accelerator-290

based platforms. Similarly to CUDA, it provides non real-time APIs for thread-
ing and memory management at the application/user level, relying on a run-
time+OS+drivers subsystem. Similarly to CUDA, OpenCL increases the com-
plexity of application code, and does not provide real-time guarantees.

4.2. Automotive programming models and AUTOSAR RTE295

The previous subsections introduced a set of programming models for non
real-time parallel software. In the automotive domain, on the other hand, we
currently see two diverging trends. On one side, the real-time, statically al-
located, statically configured AUTOSAR standard [27] proposes a complete
software stack including device MCAL drivers 5, Basic Software, RTOS and300

Run Time Environment (RTE) to implement a standard software component

5A Micro-controller Abstraction Layer is a software module that directly accesses on-chip
controller peripheral modules and external devices that are mapped to memory, and makes
the upper software layer independent of them.

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

model. On the other side, the infotainment world typically relies on non real-
time versions of Linux, Android, and proprietary solutions coexisting in the
same system.

One of the main goals of Hercules project is to harness the computational305

power of next-generation parallel embedded platforms, inside a framework where
AUTOSAR-compliant real-time applications may concurrently run along with
infotainment and non real-time software, without affecting the required timing
guarantees. For this reason, the project aims to support a subset of the AU-
TOSAR specification by extending the operating system with a minimal RTE310

support, coupled with appropriate mechanisms allowing the sharing of data as
well as the concurrent usage of common peripherals (see Section 3). From a re-
search perspective, Hercules will mainly focus on offload-based languages such
as OpenMP, CUDA and OpenCL. Despite supporting AUTOSAR is not the
main focus of the project, its adoption enables us to support legacy automotive315

code, maximizing the penetration of the produced technology in industry.
In the Hercules software stack, the operating system layer is based on ERIKA

Enterprise [39, 28], an open-source OSEK/VDX certified OS, and on the real-
time versions of the Linux kernel. They are discussed more in detail in Section 6.

By allowing the integration of AUTOSAR components together with high-320

performance software stacks, the consortium aims at ensuring portability of code
provided by several software suppliers with different degrees of real-time sup-
port. Special attention is also given to the possibility of running code certified
under the ISO 26262 automotive functional safety standard [22]. Although the
project does not aim at providing a full ASIL-D certified stack, the potential325

usage of the architecture proposed in safety applications will be analyzed, and
recommendations for the creation of a certifiable stack will be produced.

5. Virtualization in Hercules

In the Hercules software stack, we employ an hypervisor to achieve the spa-
tial and timing isolation between software components necessary to provide330

predictability and real-time guarantees. The project is currently evaluating
several options, starting from existing open-source projects. The choice of the
hypervisor will be guided by a set of requirements, such as:

1. possibility of running multiple operating systems (i.e., Linux and ERIKA
Enterprise [28]);335

2. possibility to support core assignments (pinning) to the single guest OS;
it is important to state that we are not aiming at the coexistence of a
high number of Virtual machines on the same CPU (as it happens in
cloud environments), but rather the typical setup will statically allocate a
single OS to one or more CPUs, to limit the virtualization overhead, still340

maintaining the separation needed by the safety standards;
3. possibility to share peripherals such as GPUs and communication busses;
4. possibility to be certified, which typically means choosing hypervisors

which have a minimal footprint (in the order of 10k lines of code — LoCs);
5. possibility to support heterogeneous architectures, such as the many-core345

systems used in the project.

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

We employ a virtualization mechanism, composed of one hypervisor module
that manages sub-domains in the system, hiding platform complexity to pro-
grammers, and to provide applications with spatial and timing isolation. This is
shown at the bottom of Figure 4. In order to support the HW/SW partitioning,350

predictable communication will be implemented, among the multiple hardware
sub-domains (the horizontal double-arrows in Figure 4).

5.1. Virtualization of the host subsystem
Virtualization is widely adopted in general purpose platforms, especially for

cloud computing. One of the most widely adopted open source hypervisors is355

probably Xen. A recent effort to enhance Xen with real-time capabilities is
the project RT-Xen [40] (in mainline Xen since v4.6). It implements a hierar-
chical real-time scheduling framework based on global EDF scheduling, within
approximately 100K LoCs of C code. Unfortunately, the size of the hypervisor
is crucial, as the effort for system verification, hence, certification, grows sig-360

nificantly with the number of LoCs. For this reason, micro-solutions such as
Jailhouse or Xvisor are strongly preferred in this project.
Jailhouse [41], developed mainly by Siemens, is a Linux-based hypervisor ori-
ented to real-time and safety applications—so called inmates. Jailhouse isolates
the virtual machines, called cells, with few lines of code (13513 written in C),365

removing all of the unnecessary features (e.g., hooks for diagnostic tools), and
schedules the virtual machines by pinning them to the computing cores. It also
allows running bare-metal applications alongside to Linux.
Xvisor [42] is bigger than Jailhouse (460k lines of C code) but offers many high
level features like Xen and KVM, keeping a small memory footprint (around370

2MB) and a higher performance compared to them.

5.2. Porting the Jailhouse Hypervisor on Embedded platform for automotive
During the initial part of the project, we have ported the Jailhouse hypervi-

sor on the Nvidia Tegra TX1 platform, supporting the default Linux kernel 3.10
provided by Nvidia. The source code has been made publicly available through375

the GitHub platform [43]. This activity has also created the opportunity for
improving most of the existing documentation of the original project.

On such a platform, we have experimentally measured a jitter between 8 and
10 µs for the standard Jailhouse demo consisting of a periodic timer interrupt.
The time for issuing a hypercall from a bare-metal application running on a380

dedicated core has been measured between 600 nsec and 2 µs. This time is
about the double of the time needed for issuing a Linux system call on the
platform (whose minimum duration has been measured equal to 260 nsec).

The next step will concern the porting of the ERIKA Enterprise RTOS on
the platform. This activity will let creating the AMP 6 architecture envisioned385

in Hercules, consisting of an automotive-grade RTOS alongside the Linux OS
under the supervision and enforcement of the hypervisor. We will then design
and develop efficient mechanisms for communication and synchronization be-
tween the two OSs. Such a software architecture will be also ported to different
platforms, including the Xilinx Zynq Ultrascale [21].390

6Asymmetric Multi-Processing

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.3. Proxy cells for resource sharing

With regards to mainstream hypervisors like Xen, despite the recent inter-
est in augmenting their real time capabilities with specifically designed patches
(e.g. RT-Xen [40]), they still lack proper system-wide arbitration policies for
resources other than CPU cores, resulting in unwanted interference that reduces395

the analysability and predictability of the whole platform. One of our recent
works [44] made explicit the fact that, even if RT-Xen allows us to specify a real
time domain with a global EDF virtual CPUs scheduling, systematic deadline
misses occurs when tasks belonging to the non-real time domain interfere with
resources that are used (even sporadically) by the real time domain. In particu-400

lar, we show that if a non-real time task enqueues many big IO storage requests,
the real time domain might starve for as long as a second before having its own
IO request served; this was observed to happen no matter how small is the
request coming from the critical partition. Mitigation of such effects is usually
obtained by exploiting OS-level arbitration systems, such as cgroups in Linux:405

however, such mechanisms are known to provide an insufficient level of control
granularity as cgroups rely on token bucket based mechanisms (known for their
bursty nature) or proportional sharing (also proven to be based on subopti-
mal strategies [45]). On the top of that, the additional overhead of managing
resources both at the OS level and hypervisor level poses additional problems.410

The idea of the Hercules for addressing such challenges is to exploit the in-
novative design enabled by the Jailhouse hypervisor of assigning devices in an
exclusive way either to the root cell or to one of the bare metal applications run-
ning on inmates. Inmates are known to provide extremely low latencies, hence
minimal drivers might run as bare metal applications (or on top of small foot-415

print RTOS such as Erika) to have pass through access to such resources. It is
trivial to understand that such solution (encouraged by Jailhouse “philosophy”)
represents an unacceptable restriction when we want such inmate assigned re-
sources to be used also by other cells. We tackle this with a resource sharing
mechanism we are developing, based on the concept of Jailhouse proxy cells.420

This is enabled by defining a region of shared memory that acts as a mailbox
messaging system among cells. Our solution is shown in Figure 5.

In particular we implemented it on the NVIDIA TK1 developer board 7.
The Tegra R© K1 System on Chip (SoC), which includes a quad-core ARM R© A-
15 CPU and an NVIDIA Kepler GPU with 192 CUDA cores. The developer kit425

comes equipped with 2 GB of RAM and many different I/O peripherals such as
UART serial port, HDMI, GPIOs, USB, etc. The lower part of the figure shows
which memory mapped devices of the board are made exclusively available to
the different Jailhouse cells. Following a simple color code, the white peripherals
(USB, Display and PCIe) are bound to the root cell, which runs Debian, while430

the rightmost one (UART) is accessible only by the inmate cell. The darker
(SHMEM) region is the shared memory that we defined in order to implement
the mailbox messaging system: here three memory location are defined (a,b and
c) that are readable and writable by both cells.

7The Tegra X1 was not available when we carried this exploration. However, the two
boards are equivalent from an architectural viewpoints.

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 5: UART virtualization by the means of Jailhouse proxy cell. Implementation on
NVIDIA TK1 board.

We set the different cell configuration mapping the different devices and435

memory to different physical addresses of the RAM. In this setup we wanted to
make the root cell able to communicate using the serial port, which is not directly
accessible because it is in exclusive use of the inmate cell. To achieve this, the
two cells communicate through the shared memory using a simple protocol:
the requester writes on memory location a the size of the data that has to be440

transmitted and the actual data on memory location b, which is of fixed size
data-size; the proxy cell reads the request (time-triggered) and starts reading
the data from memory location b, notifying at location c when it finishes. If the
size of data is greater than data-size, than the requester writes the second chunk
of data at location b and the procedure repeats. The proxy cell can eventually445

publish the data received on the UART port at the end of the transmission.
This simple scenario is just a proof-of-concept, but it is trivial to extend

the proxy cell concept to whatever device that needs low latency capabilities or
real-time constraints, provided that it is not possible to offer higher capabilities
than the ones offered by the hardware resource or by the OS capabilities of the450

requester cell.

5.4. GPU management and virtualization

As GP-GPUs became mainstream, there was a big interest of virtualizing
graphic cards, e.g., for cloud computing. Unfortunately, “hiding” one or multiple
GPUs under a hypervisor introduces a serious performance penalty for crossing455

its software layers, which ultimately might compromise the advantage of many-
core acceleration. For this reason, a common solution is to provide a so-called
pass-through mechanism for the CUDA drivers, which are allowed to bypass the
virtualization layers and directly access the device. It is depicted in Figure 6.
This mechanism is represented by the arrow in Figure 4 that directly accesses460

the GPU, and it’s currently supported on a limited set of GPUs, and for specific

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 6: GPU pass-through.

drivers8. A number of hypervisors and virtualization schemes exist for GPUs.
Interested reader might refer to [47] as a good survey.

6. Host Operating Systems: ERIKA and Linux

For the host part, we decided to start from the application requirements465

collected by the partners, in order to build an innovative infrastructure providing
good performance while supporting legacy code.

The critical tasks of automotive vehicles need to be executed by a RTOS
compliant to well-known safety standards (e.g., OSEK/VDX, AUTOSAR). Such
RTOS is typically offered by companies specialized in the automotive domain470

(e.g., Vector, ElektroBit, ETAS) under commercial royalty-based licenses.
The growing interest for using a general-purpose operating system (OS) for

the execution of real-time tasks has involved the automotive market too. Such
interest aims at both lowering the production costs and providing a higher num-
ber of functionalities. The Linux OS, for example, has recently integrated the475

real-time CPU scheduler SCHED DEADLINE [48] originally developed by Ev-
idence Srl in the context of the ACTORS FP7 project. This scheduler is based
on the Earliest Deadline First (EDF) algorithm and provides Resource Reser-
vations among the running tasks: each task is guaranteed to meet its timing
constraints regardless of the behavior of the other tasks executing in the system.480

In parallel, the Linux Foundation started financing the PREEMPT RT [49] and
the Automotive Grade [50] projects.

Unfortunately, the code size and the lack of full determinism of general
purpose OSs do not make them eligible for safety-critical tasks in the automotive
domain. Nevertheless, a number of on-going efforts (e.g., AUTOSAR Adaptive)485

aim at using such OSs for non-critical activities within the vehicle.

6.1. Why Erika Enterprise and Linux

The choice of the ERIKA Enterprise RTOS let the Hercules stack support-
ing legacy AUTOSAR applications on top of an open-source implementation.

8For instance, NVIDIA published [46] a list of applications which are certified for this
technology (called NVIDIA Grid).

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ERIKA Enterprise [28] is currently the only open-source OSEK/VDX certi-490

fied operating system, implementing a subset of the extensions specified by the
AUTOSAR OS standard. This opens the possibility to run legacy automotive
applications with minimal or no changes. For this reason, we are currently
implementing Big.LITTLE support in ERIKA Enterprise.

The Linux OS is the best candidate for running on the host core of the495

envisioned hardware architecture illustrated in Section 4. There are multiple
reasons behind this choice: the excellent throughput within reasonable response
times (that can be further reduced through additional real-time patches 9), the
high number of SoCs and peripherals already supported, the built-in support for
big.LITTLE architectures that will be further improved by next-coming patches500

by ARM and Linaro 10, the extreme customizability both at compile- and at run-
time. More in details, the project will leverage the advanced SCHED DEADLINE [48]
scheduler, recently integrated into the official Linux kernel. This component
will be further improved by integrating predictable power-management algo-
rithms (e.g., synchronization with the cpufreq’s schedutil governor) and better505

scheduling strategies (e.g., CPU reclaiming [51]), to realize an energy-efficient
real-time Linux-based run-time for the host processors.

7. Scheduling of shared resources

7.1. Memory accesses and the PRedictable Execution Model

In order to achieve predictable execution on heterogeneous many-core plat-510

forms, it is necessary to control the way how individual CPU cores and on-chip
peripherals access the shared resources such as on-chip interconnects and main
memory. Of these, the main memory is the slowest one and likely to be the
bottleneck. Hence, we focus our attention to predictable sharing of it.

The approach proposed in Hercules is inspired by the so-called PRedictable515

Execution Model (PREM) [52, 53], where the predictability of memory accesses
from single software components (tasks) is increased using prefetching tech-
niques and scheduling prefetch bursts from different cores to not interfere with
each other.

Under PREM, tasks are split into pairs of memory and computational phases.520

Figure 7 shows the distribution of memory accesses both in PREM and non-
PREM models. In a first memory phase, tasks retrieve and copy data from the
main memory into the local cache of the core they are executing on, whereas, in
the following, computational phase, they elaborate non-preemptively previously-
cached data. This execution model allows the variability of memory-contention525

latencies to be greatly reduced, by explicitly controlling memory accesses during
memory phases. As such, it allows the overall task execution times to become
much more predictable. Addressing single-core systems, a PREM-compliant
co-scheduler is proposed granting main-memory access only when the task be-
ing executed on the processor is in the computational phase, without incurring530

memory conflicts.

9E.g., PREEMPT RT, https://wiki.linuxfoundation.org/realtime/
10Energy-Aware Scheduling (EAS), https://www.linaro.org/blog/core-dump/energy-aware-

scheduling-eas-project/

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 7: PRedictable Execution Model in a parallel environment.

To enforce this scheduling policy, the co-scheduler relies on the presence of
a Real-Time Bridge, which arbitrates the access to memory in a time-sharing
fashion. This is however not the case of Hercules, whose approach is completely
on the software point of view, i.e., it does not need additional hardware other535

than the one which is usually already shipped embedded in a board (e.g., one
or more DMA engines). To apply the PREM approach to the SoCs selected
for the project, it is not sufficient to deal with software running on the CPUs
but one has to take into account other on-chip peripherals accessing the main
memory, such as GPUs, Ethernet, Video Input (VI) etc. The following sections540

describe how this is done in Hercules.

7.1.1. Memory accesses from host CPUs
On the CPU side, scheduling of PREM-based prefetch bursts leads to pre-

dictable execution only when the application can actually be converted to the
PREM-compatible way of execution. This is however not a trivial task, because,545

for instance, several ADAS applications already leverage a host-accelerator
model, where data transfers among the two subsystems are made explicit, e.g.,
with buffers (OpenCL or CUDA) or code annotations (OpenMP/OpenACC
pragmas). As an addition, data prefetching is widely employed as a performance
booster for embedded applications, and code written with such techniques nat-550

urally tends itself to PREM. On the other hand, there are certainly cases where
either the conversion is not possible/straightforward, or the application might
not follow the PREM rules due to bugs. The Hercules software stack handles
these cases by providing a throttling mechanism for preventing uncontrolled
memory access. The mechanism is inspired by the MemGuard tool [54], that555

was proven to increase system predictability by providing timing and spatial
isolation among software components in real-time systems. The difference be-

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

tween the work in [54], and the Hercules approach, is that we will implement
throttling within the hypervisor on Tegra’s ARM sub-domain, rather than the
Linux kernel running on x86 processor.560

The MemGuard-like throttling mechanism uses performance counters to
monitor cache misses made by virtual machines (VM). Whenever the VM ex-
ceeds the cache miss budget allocated to it, an interrupt is generated and the
hypervisor pauses the VM execution to protect other VMs from unwanted in-
terference.565

To implement the MemGuard-like throttling on the ARM platform, it is nec-
essary to select the proper performance event to be counted by the performance
counter. Performance events are defined in ARMv8 reference manual [55], but
quite a lot of details is left implementation defined. It is therefore crucial to
properly analyze the semantics of performance events on the given ARM imple-570

mentation – NVIDIA Tegra X1 in our case.
The following events are candidates for using in the throttling mechanism:

L2D CACHE REFILL, L2D CACHE WB11 and BUS ACCESS. From our ex-
periments, we conclude that L2D CACHE REFILL can be used for counting
of memory reads, L2D CACHE WB for memory writes and BUS ACCESS for575

both reads and writes. BUS ACCESS is the best candidate for use in throt-
tling. One has to be aware that, as follows the our experiments, there are four
BUS ACCESS events per a single memory access.

7.1.2. Memory accesses from on-chip peripherals
Contention among CPUs is not the only source of non-predictability. Most580

on-chip peripherals can access the main memory as well and interfere with the
CPUs. A conceptual diagram of how these controllers might interact is shown
in Figure 8. A part of the problem is that, it is not easy to control when

Figure 8: Conceptual diagram of NVIDIA Tegra X1 memory controller and its on-chip clients.

the memory is accessed. For example, the Ethernet controller stores incoming
packets to the main memory when they arrive and the CPU has little control585

over this process. To eliminate this source of unpredictability, we studied the

11WB stands for write-back

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

details of the Memory Controller (MC) on the Tegra X1. Figure 9 describes the
memory hierarchy of the platform, and highlights possible source of contention.
This is part of the analysis carried on in [56]. The MC can be reconfigured to
limit the memory bandwidth allocated to non-CPU clients and use this to limit590

the interference from the selected memory clients.

Figure 9: A simplified overview of the Tegra X1 memory hierarchy, with notable memory
contention points: 1) L2 cache shared by the four cores; 2) contention of memory bus from
different cores; 3) coherency protocol on Last-Level Cache (LLC), and 4) access arbitration
and traffic shaping by memory controller.

Figure 10 shows the results of our experiments with throttling the GPU. The
horizontal axis shows the level of throttling and the vertical axis the memory
bandwidth consumed by a simple memory-bound GPU kernel. One thing the
graph shows is that the memory bandwidth available to the GPU, which is595

inversely proportional to the kernel execution time, depends on the memory
activity of the CPU(s), i.e. the memory accesses from the CPU have priority
over GPU accesses12. By changing the memory controller configuration, it is
possible to limit the GPU memory bandwidth so that the GPU kernel execution
time is independent of CPU activity (throttle value of 8 in Fig. 10).600

7.1.3. Summarizing memory scheduling
We are currently implementing a system where the throttling mechanisms

described in the previous sections is used together with the goal of limiting
the interference caused by uncoordinated accesses to the shared memory. In
other words, we will co-schedule the applications and hardware resources via605

the run-time reconfiguration of the throttling mechanisms implemented in the
hypervisor module. The results will be not only the increased predictability,
but also resistance of the system to potentially misbehaving application.

The co-scheduling is based on several sources of information – off-line anal-
ysis made by the compiler (with the hints from programmers) and on-line in-610

formation based on light-weight tracing of run-time activity (e.g. performance
counters).

12Unfortunately, it is not possible to change memory client priority on Tegra X1

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1  2  4  8  16  32

G
P

U
 m

em
or

y 
ba

nd
w

id
th

 [
G

B
/s

]

Memory Controller's throttle value

Interference from 1 CPU
Interference from 2 CPUs
Interference from 3 CPUs

Figure 10: Throttling of GPU client at the memory controller level.

Exploiting all available information about the application together with us-
ing hardware features of the modern platforms, allows us to improve the pre-
dictability of the overall system.615

8. Conclusions

This paper describes the goals and organization of the Hercules H2020
project [23], a first attempt of building a complete software stack for auto-
motive systems based on commercial-off-the-shelf components, that is also able
to interface with an ASIL-D certified subsystem for running legacy, hard-real620

time workload.
As a summary, we hide the complexity of the underlying platforms by means

of virtualization, and provide support for two kind of operating systems. On
one side, a statically configured instance of ERIKA Enterprise, pinned to one
of the “LITTLE” cores, allows running static real-time applications typical of625

the automotive market. On the other side, Linux with RT extensions (typi-
cally running on all the remaining CPUs of the “Big” subsystem) is devoted
to more computationally intensive dynamic workloads. The small footprint of
the adopted hypervisor (few lines of code) opens the possibility of a functional
safety certification path following the ISO 26262 specification [22].630

The integration of hypervisor, operating system and run-time libraries en-
ables the Hercules framework to provide predictable real-time guarantees for
next-generation safety-critical applications, supported by a lightweight pragma-
based application programming interface. Widely-adopted programming models
for heterogenous architectures, such as OpenMP and OpenACC, will be ex-635

tended with real-time semantic constructs. The ultimate goal of the project is
to enable parallel, non real-time and hard/soft real-time workloads to run side-
by-side on the same platform, while preserving the required timing guarantees
of safety-critical applications with different performance requirements.

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References640

[1] Laukkonen, J, Drowsiness Detection: Waking Up Fatigued Drivers ,
LifeWire blog.
URL https://www.lifewire.com/drivers-alter-systems-534806

[2] Golgowski, N, Self-Driving Car Takes Man To Hospital After He Suffers
Pulmonary Embolism, The Huffington Post.645

URL http://www.huffingtonpost.com/entry/tesla-drives-man-to-
hospital us 57a8aee8e4b0b770b1a38886

[3] D. Carlino, S. D. Boyles, P. Stone, Auction-based autonomous intersec-
tion management, in: 16th International IEEE Conference on Intelligent
Transportation Systems (ITSC 2013), IEEE, 2013, pp. 529–534.650

[4] D. K. Murthy, A. Masrur, Braking in close following platoons: The law
of the weakest, in: 2016 Euromicro Conference on Digital System Design
(DSD), 2016, pp. 613–620. doi:10.1109/DSD.2016.78.

[5] Fred Lambert, Uber and Mercedes agreement.
URL https://electrek.co/2016/03/18/uber-order-mercedes-655

100000-autonomous-cars/

[6] Anand S. Rao and Mehrad Ahari, PwC Impact of Car Sharing, Automated
Driver Assistance, Autonomous Cars on Insurance.
URL https://www.pwc.com/ca/en/insurance/publications/pwc-
impact-of-driverless-cars-2015-12-en.pdf660

[7] Limer, E, Uber’s first self-driving car hits the street, Road And Track
blog.
URL http://www.roadandtrack.com/new-cars/car-technology/
a29229/uber-first-self-driving-car/

[8] Meola, A, Automotive Industry Trends: IoT Connected Smart Cars and665

Vehicles, The Business Insider.
URL http://uk.businessinsider.com/internet-of-things-
connected-smart-cars-2016-10?r=US&IR=T

[9] Davidson, L, How connected cars are driving the Internet of Things, The
Telegraph.670

URL http://www.telegraph.co.uk/finance/newsbysector/industry/
engineering/11372205/How-connected-cars-are-driving-the-
Internet-of-Things.html

[10] 2025 AD, Japans Olympic dream: driverless cars on the road for 2020, 2025
AD blog.675

URL https://www.2025ad.com/in-the-news/blog/japan-driverless-
cars-in-2020/

[11] The Boston Consulting Group, The Autonomous Vehicle: The Car of the
Future.
URL http://www.bcg.com/expertise/industries/automotive/680

autonomous-vehicle-car-future.aspx

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[12] Google, inc., Google Self-Driving Car Project.
URL https://www.google.com/selfdrivingcar/

[13] Tesla, Tesla’s self driving cars.
URL https://www.tesla.com/blog/all-tesla-cars-being-produced-685

now-have-full-self-driving-hardware

[14] O’ Kane, S and Goode, L, George Hotz is giving away the code behind his
self-driving car project, The Verge webzine.
URL http://www.theverge.com/2016/11/30/13779336/comma-ai-
autopilot-canceled-autonomous-car-software-free690

[15] A. Broggi, Automatic vehicle guidance: the experience of the argo au-
tonomous vehicle (1999).

[16] The Guardian, Germany ready to test self-driving cars on the road and
remove legal barriers , The Guardian.
URL https://www.theguardian.com/world/2016/apr/12/germany-695

self-driving-cars-angela-merkel

[17] O’ Kane, S, California gives Nvidia the go-ahead to test self-driving cars
on public roads, The Verge webzine.
URL http://www.theverge.com/2016/12/9/13902704/california-dmv-
permit-nvidia-autonomous-car-testing700

[18] IHS, ADAS Current and Future Perspectives.
URL https://www.ihs.com/pdf/IHS-ADAS-Current-and-Future-
Perspectives 227834110913052332.pdf

[19] Muoio, D, Toyota exec: ’We are not even close’ to fully self-driving cars,
The Business Insider.705

URL http://uk.businessinsider.com/toyota-gill-pratt-unveils-
self-driving-plans-concept-car-at-ces-2017-1?r=US&IR=T

[20] NVIDIA, The Tegra X1 Platform (2015).
URL http://www.nvidia.com/object/tegra-x1-processor.html

[21] Xilinx, Inc., , The Xlinx Ultrascale Architecture.710

URL http://www.xilinx.com/support/documentation/data sheets/
ds890-ultrascale-overview.pdf

[22] I. O. for Standardization / Technical Committee 22 (ISO/TC 22), ISO/DIS
26262-1 - Road vehicles Functional safety, Tech. rep., International Or-
ganization for Standardization / Technical Committee 22 (ISO/TC 22),715

Geneva, Switzerland (Jul. 2009).

[23] The Hercules Consortium, Hercules – High-Performance Real-time Archi-
tectures for Low-Power Embedded Systems.
URL http://hercules2020.eu/

[24] ARM Ltd., The Big.LITTLE architecture.720

URL https://www.arm.com/products/processors/technologies/
biglittleprocessing.php

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[25] NVIDIA, Drive PX2 – The AI Car Computer for Self-Driving Vehicles.
URL http://www.nvidia.com/object/drive-px.html

[26] Gavin Kistner, Developing Next Generation Human Machine Interfaces725

(HMI).
URL http://on-demand.gputechconf.com/siggraph/2013/
presentation/SG3110-Developing-Generation-Human-Machine-
Interfaces.pdf

[27] The AUTOSAR Consortium, AUTomotive Open System ARchitecture.730

URL http://www.autosar.org/index.php

[28] Evidence srl, ERIKA Enterprise RTOS.
URL http://erika.tuxfamily.org

[29] Infineon Technologies AG, Tricore AURIX Family.
URL http://www.infineon.com/cms/en/product/735

channel.html?channel=db3a30433727a44301372b2eefbb48d9&ic=
0101033

[30] NVIDIA Corporation, NVIDIA CUDA Compute Unified Device Architec-
ture Programming Guide, NVIDIA Corporation, 2007.

[31] Kronos Group, The OpenCL 1.1 Specifications (2010).740

URL http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[32] OpenMP Application Program Interface v4 (2011).
URL http://www.openmp.org/mp-documents/OpenMP3.1.pdf

[33] OpenAcc Specifications 2.5 (2015). [link].
URL http://www.openacc.org/sites/default/files/OpenACC 2pt5.pdf745

[34] OpenMP Application Program Interface v.3.1 (2009).
URL http://www.openmp.org/mp-documents/OpenMP3.1.pdf

[35] FSF - The GNU Project, GOMP - An OpenMP implementation for GCC.
URL http://gcc.gnu.org/projects/gomp/

[36] L. M. Pinho, V. Nélis, P. M. Yomsi, E. Quiñones, M. Bertogna, P. Bur-750

gio, A. Marongiu, C. Scordino, P. Gai, M. Ramponi, M. Mardiak, P-
SOCRATES: A parallel software framework for time-critical many-core
systems, Microprocessors and Microsystems - Embedded Hardware Design
39 (8) (2015) 1190–1203. doi:10.1016/j.micpro.2015.06.004.
URL http://dx.doi.org/10.1016/j.micpro.2015.06.004755

[37] D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill, C. Lu, A real-time
scheduling service for parallel tasks, in: Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), 2013 IEEE 19th, 2013, pp.
261–272. doi:10.1109/RTAS.2013.6531098.

[38] The Khronos Group. [link].760

URL http://www.khronos.org/

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[39] P. Gai, E. Bini, G. Lipari, M. D. Natale, L. Abeni, Architecture for a
portable open source real time kernel environment, in: In Proceedings of
the Second Real-Time Linux Workshop and Hand’s on Real-Time Linux
Tutorial, 2000, pp. 866–875.765

[40] S. Xi, M. Xu, C. Lu, L. T. X. Phan, C. Gill, O. Sokolsky, I. Lee, Real-time
multi-core virtual machine scheduling in xen, in: Proceedings of the 14th
International Conference on Embedded Software, EMSOFT ’14, ACM, New
York, NY, USA, 2014, pp. 27:1–27:10. doi:10.1145/2656045.2656066.
URL http://doi.acm.org/10.1145/2656045.2656066770

[41] Siemens, The Jailhouse Hypervisor.
URL https://github.com/siemens/jailhouse

[42] A. Patel, M. Daftedar, M. Shalan, M. W. El-Kharashi, Embedded hypervi-
sor xvisor: A comparative analysis, in: 2015 23rd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, IEEE,775

2015, pp. 682–691.

[43] Evidence Srl, Jailhouse for TX1.
URL https://github.com/evidence/linux-jailhouse-tx1

[44] I. Sañudo, R. Cavicchioli, N. Capodieci, P. Valente, M. Bertogna, A survey
on shared disk i/o management in virtualized environments under real time780

constraints, ACM SIGBED Review, accepted, to appear.

[45] P. Valente, M. Andreolini, Improving application responsiveness with the
BFQ disk I/O scheduler, in: Proceedings of the 5th Annual International
Systems and Storage Conference, ACM, 2012, p. 6.

[46] NVIDIA, NVIDIA GRID Remote Workstation Certifications.785

URL http://www.nvidia.com/content/cloud-computing/pdf/GRID-
certification-microsite-v2.pdf

[47] Y. Suzuki, S. Kato, H. Yamada, K. Kono, GPUvm: why not virtualizing
GPUs at the hypervisor?, in: 2014 USENIX Annual Technical Conference,
2014, pp. 109–120.790

[48] J. Lelli, C. Scordino, L. Abeni, D. Faggioli, Deadline scheduling in the linux
kernel, Software: Practice and Experience 46 (6) (2016) 821–839, spe.2335.
doi:10.1002/spe.2335.
URL http://dx.doi.org/10.1002/spe.2335

[49] Linux Foundation, The Real Time Linux collaborative project.795

URL https://wiki.linuxfoundation.org/realtime

[50] Linux Foundation, Automotive Grade Linux.
URL https://www.automotivelinux.org/

[51] C. Scordino, G. Lipari, A resource reservation algorithm for power-aware
scheduling of periodic and aperiodic real-time tasks, IEEE Transactions on800

Computers 55 (12) (2006) 1509–1522. doi:10.1109/TC.2006.190.

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[52] P. Burgio, A. Marongiu, P. Valente, M. Bertogna, A memory-centric ap-
proach to enable timing-predictability within embedded many-core acceler-
ators, in: Real-Time and Embedded Systems and Technologies (RTEST),
2015 CSI Symposium on, 2015, pp. 1–8. doi:10.1109/RTEST.2015.7369851.805

[53] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, R. Keg-
ley, A predictable execution model for COTS-based embedded systems,
in: Proceedings of the 17th IEEE International Real-Time and Embedded
Technology and Applications Symposium, RTAS ’11, 2011, pp. 269–279.

[54] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, L. Sha, MemGuard: Memory810

bandwidth reservation system for efficient performance isolation in multi-
core platforms, in: Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2013 IEEE 19th, IEEE, 2013, pp. 55–64.

[55] ARM Architecture Reference Manual ARMv8, for ARMv8-A architecture
profile, a.k Edition (9 2016).815

URL http://www.arm.com

[56] R. Cavicchioli, N. Capodieci, M. Bertogna, Memory interference charac-
terization between cpu cores and integrated gpus in mixed-criticality plat-
forms,, in: Proceedings of 22nd IEEE International Conference on Emerg-
ing Technologies and Factory Automation (IEEE ETFA), 2017, p. to ap-820

pear.

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Paolo Burgio got a M.S. degree in Computer Engineering from the University
of Bologna in 2007, and a Ph.D in Electronics Engineering jointly between the
University of Bologna and the University of Southern-Brittany, in 2013. He825

now holds a post-doc position at University of Modena and Reggio Emilia. His
main research interests are embedded many-core architectures and programming
models, heterogeneous architectures, HLS, virtual platforms, and real-time sys-
tems. He is currently doing research on predictable many-core architectures for
next-generation real-time systems.830

Marko Bertogna is Associate at the University of Modena, Italy. He previ-
ously was Assistant Professor at the Scuola Superiore Sant’Anna of Pisa, Italy,
where he also received (cum laude) a Ph.D. in Computer Engineering. He has835

authored over 60 papers in international conferences and journals in the field of
real-time and multiprocessor systems, receiving six Best Paper Awards and one
Best Dissertation Award. He served in the Program Committees of the major
international conferences on real-time systems.

840

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Nicola Capodieci is a post-doc at the university of Modena. He got his M.Sc
and Ph.D in Computer Engineering at UNIMORE, however, he did most of
his research activity in different institutions such as Univ. of Groningen (NL)
for his M.Sc thesis, Univ. of New Brunswick (CAN) as a research internship845

and Edinburgh Napier Uni. (UK) for his Ph.D Thesis. His main research in-
terests are Bio-inspired AI, Multi-Agent and Self-Organizing Systems, but also
languages, architectures and everything else related to GPUs.

850

Roberto got his Master Degree and Ph.D. in Computer Science. His research
has been focused in Numerical Optimization and Parallelization of algorithms
on multicore systems and GPU. In particular the target was mainly to speed
up computations for Image Reconstruction algorithms by exploiting High Per-
formance Computing systems, both traditional (MPI and OpenMp) and hybrid855

with accelerators (NVidia GPU).

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Michal Sojka is assistant professor at Czech Technical University in Prague.
His research interests include design and verification of real-time systems and860

communication protocols, real-time and microkernel-based operating systems
and hypervisors, real-time middleware platforms, model-driven engineering, safety
and security in embedded systems and robotics.

865

Přemyslobtained an M.S. degree in Computer Engineering from the Czech
Technical University (CTU) in Prague, Czech Republic, in 2016, where he is
currently working toward the Ph.D. degree in Robotics and Control Engineer-
ing. He is Research Fellow with Industrial Informatics group. Přemysl is inter-
ested in embedded devices, operating systems, real-time and safety. His other870

interests include algorithms, AI and communication. Přemysl is currently work-
ing on a hypervisor for multi-core systems with isolation properties.

Andrea Marongiu received the PhD degree in electronic engineering from the875

University of Bologna, Italy, in 2010. He currently is a postdoc researcher at
ETHZ, Zurich. He also holds a postdoc position at University of Bologna. His
research interests concern parallel programming model and architecture design
in the single-chip multiprocessors domain, with special emphasis on compilation
for heterogeneous architectures, efficient usage of on-chip memory hierarchies880

and SoC virtualization.

28



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Dr. Paolo Gai CEO, graduated (cum laude) in Computer Engineering at
University of Pisa in 2000 with a graduation thesis developed at the ReTiS885

Laboratory of the Scuola Superiore SantAnna on the development of the mod-
ular real-time kernel SHaRK. He obtained the PhD from Scuola Superiore
Sant’Anna in 2004. Since 2000, he founded the ERIKA Enterprise project, an
open-source RTOS which recently reached the OSEK/VDX certification, and
which is currently used by various industries and universities. Since 2002 he is890

CEO and founder of Evidence Srl, a SME working on operating systems and
code generation for Linux- and ERIKA- based industrial products in the au-
tomotive and white goods market. His research interests include development
of hard real-time architectures for embedded control systems, multi-processor
systems, object-oriented programming, real-time operating systems, scheduling895

algorithms and multimedia applications.

Claudio Scordino obtained Master Degree and PhD in Computer Engineer-
ing from the University of Pisa in 2003. In 2007 he obtained the PhD from the900

same university, with a thesis about power-aware real-time scheduling. His re-
search activities include operating systems, real-time scheduling, energy saving
and embedded devices. He collaborates with the Linux kernel community since
2008, having several patches integrated in the official Linux kernel. He currently
works as Project Manager at Evidence Srl.905

29



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Dr. Bruno Morelli received Master Degree in Computer Engineering at Uni-
versity of Pisa in 2007. He is expert of the whole Linux ecosystem, from the
development of Linux kernel drivers to the integration and modification of li-910

braries and development tools. He has a good knowledge of C/C++ languages,
bash scripting, ARM and x86 assembler. He works as Linux Software Engineer
at Evidence Srl since 2007.

30


