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Highlights

• A semi-lagrangian method combines a high-order accurate spectral approximation in space and velocity and time-marching scheme
• A Fourier-Lagrangian collocation method provides a high-order accurate representation of the phase space
• A high-order accurate approximation of the characteristic curves allows arbitrary-order Taylor developments in time
• A method-of-line approach using the Backard Differentiation Formula provides second- and third-order accurate time-advancing schemes
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Abstract

The Vlasov-Poisson system, modeling the evolution of non-collisional plasmas in the electrostatic limit, is approx-
imated by a semi-Lagrangian technique. Spectral methods of periodic type are implemented through a collocation
approach. Groups of particles are represented by the Fourier Lagrangian basis and evolve, for a single timestep,
along an high-order accurate representation of the local characteristic lines. The time-advancing technique is based
on truncated Taylor series that can be, in principle, of any order of accuracy. A variant is obtained by coupling the
phase space discretization with high-order accurate Backward Differentiation Formulas (BDF). At each timestep,
particle displacements are reinterpolated and expressed in the original basis to guarantee the order of accuracy in
all the variables at relatively low costs. Thus, these techniques combine the excellent features of spectral approx-
imations with high-order time integration. The resulting method has excellent conservation properties. Indeed, it
can be proven that the total number of particles, proportional to the total mass and charge, is conserved up to
the machine precision. Series of numerical experiments are performed in order to assess the real performance. In
particular, comparisons with standard benchmarks are examined.

1. Introduction

The Vlasov-Poisson system of equations describes the dynamics of a collisionless plasma of charged parti-
cles (electrons and ions), where the only relevant interaction is driven by the electrostatic field [10]. Although
the Vlasov-Poisson system is one of the simplest models that can be considered in plasma physics, its nu-
merical treatment is quite challenging to the numerical modelers. In fact, each plasma species is described by
a distribution function that is defined on a high-dimensional phase space. Since the beginning of numerical
plasma simulations in the ’60s, a number of methods have been proposed to the scientific community and
thoroughly investigated. We can roughly regroup them in a few big families: Particle-in-Cell (PIC) methods,
Transform methods, Eulerian and semi-Lagrangian methods.

The PIC method is very popular in the plasma physics community, as it is the most widely used method
because of its robustness and relative simplicity [8]. There, the evolution of a plasma is described by the
motion of a finite number of macro-particles in the physical space. These macro-particles are tracked along
the characteristics of the Vlasov equation and their mutual interaction is driven by a nonlinearly coupled



electric field, which solves the Poisson equation. The right-hand side of the Poisson equation depends on the
charges carried by the macro-particles. The convergence of the PIC method for the Vlasov-Poisson system
was proved in [22,55,56]. The PIC method has been successfully used to simulate the behavior of collisionless
laboratory and space plasmas and provides excellent results for the modeling of large scale phenomena
in one, two or three space dimensions [8]. Also, implicit and energy preserving PIC formulations that are
suitable to long time integration problems are available from the most recent literature [11,17,18,36,37,40,52].
Nonetheless, PIC codes suffer from intrinsic drawbacks. As proved in [22], achieving high numerical resolution
in multidimensional plasma physics simulations may require a huge number of particles, thus making such
simulations infeasible even with the most powerful supercomputers currently available. Since only a relatively
limited number of particles can be considered in practical calculations, the method is used in a suboptimal
way and tends to be intrinsically noisy. Although research has been carried out to reduce PIC noise [41],
the method remains effective mainly for problems with a low noise-to-signal ratio, and where the physics is
not driven by fine phase space structures.

Based on the seminal paper [32], an alternative approach, called the Transform method, was developed
at the end of the ’60s, which uses a spectral decomposition of the distribution function and leads to a
truncated set of moment equations for the expansion coefficients [2]. To this end, Hermite basis functions
are used for unbounded domains, Legendre basis functions for bounded domains, and Fourier basis functions
for periodic domains, see, e.g., [38,42,35,54,53]. These techniques can outperform PIC [13,14] in Vlasov-
Poisson simulations. Moreover, they can be extended in an almost straightforward way to multidimensional
simulations of more complex models, like Vlasov-Maxwell [24]. Convergence of various formulations of these
methods was shown in [29,39]. Transform methods offer a few indisputable advantages. First of all, they
may be extremely accurate since they are based on a spectral approximations of the differential operators.
Furthermore, physically meaningful discrete invariants (such as total number of particles, momentum and
total energy) can be built directly from the expansion coefficients [48,34]. The existence of such discrete
invariants implies better stability properties in long-time integration problems. However, despite their good
properties their implementation may be computational demanding. As a matter of fact, they suffer of
the “curse of dimensionality” (i.e., a bad scaling of the computational complexity with the number of
dimensions), when multidimensional basis functions are built by tensor product of one-dimensional ones.

An alternative to PIC and Transform methods is offered by the class of Eulerian and semi-Lagrangian
methods, which discretize the Vlasov equation on a grid of the phase space. Common approaches for the
implementation are: Finite Volume Methods [26,5], Discontinuous Galerkin [3,4,33], finite difference meth-
ods based on ENO and WENO polynomial reconstructions [21], or propagation of the solution along the
characteristics in an operator splitting framework [1,16,28,27,50,23]. Semi-Lagrangian methods were first
developed for the vorticity advection equation [47] and used for meteorological applications [6,7,51]. The
first semi-Lagrangian method for plasma physics application was proposed in [19]. The aim was to take ad-
vantage of both Lagrangian and Eulerian approaches. Indeed, these methods allow for a relatively accurate
description of the phase space using a fixed mesh and propagating the values of the distribution function
along the characteristics curves forward or backward in time. High-dimensionality is typically addressed by
a splitting operator strategy in order to advance the solution in time. Such a splitting makes it possible to
approximate a multi-dimensional time-dependent problem by a sequence of one-dimensional problems. For
the one-dimensional Vlasov-Poisson system, the splitting reformulates the Vlasov equation in two advec-
tion sub-problems that advance the distribution function in space and velocity independently. High-order
approximations are described in [43].

In this paper, we propose a new semi-Lagrangian method that provides the spectral accuracy of the Trans-
form methods. All the schemes of this method can be derived from what we called “basic scheme” that uses
a spectral collocation approach for the discretization in the phase space. According to the semi-Lagrangian
approach, the approximation of the distribution function is advanced in time by following backward the
characteristic curves and the basic method, as it results from our experiments, seems not to have heavy
stability restriction on the timestep. Moreover, we do not resort to any time splitting of the Vlasov equa-
tion and a high order of accuracy in time, e.g., O(Δt2) or even higher, is attained by using well calibrated
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representations of the characteristic curves. As it is true for most of the semi-Lagrangian methods, also our
basic scheme does not preserve the fundamental quantities of mass, momentum and energy. However, a new
variant substituting suitable Taylor expansion in time in place of the plain interpolation of the basic method
makes it possible to derive more sophisticated semi-Lagrangian schemes. These new schemes are unsplit.
They still combine, in a simple and natural way, spectral accuracy with on purpose time discretization
techniques, which are in principle of any order of convergence, and show excellent conservation properties.
Indeed, physical invariants as global mass and momentum can be constructed and proved to be preserved
both theoretically and numerically up to the machine precision. These remarkable properties come at the
price of partially losing the stability of the basic semi-Lagrangian method, since a CFL-like condition has
now to be considered. Nonetheless, we believe that in general such a CFL condition is not a tough restriction
since a relatively small time step is always recommended not to destroy the spectral accuracy in the phase
space, i.e., when we want to capture the finest solution structures that may develop in a time-dependent
simulation at small timescales. Finally, we note that an efficient implementation of such schemes is possible
by resorting to standard libraries such as the Discrete Fast Fourier Transform (DFT) [12]. We remark that
unsplit algorithms, like the ones that we propose in this work, are more suited to task parallelization on
multicore processors, in comparison to split algorithms proposed in some of the standard semi-Lagrangian
approaches.

The paper is organized as follows. In Section 2, we present the continuous model. In Section 3, we introduce
the spectral approximation in the phase space. To ease the exposition, we present the method in the simplest
1D-1V case. However, the formulation of these numerical schemes is the same for any space and velocity
dimension, provided we adopt the multi-index notation that is also presented in Section 3. In Section 4,
we present a semi-Lagrangian scheme based on a first-order accurate approximation of the characteristic
curves, making use of a truncated Taylor series. In Section 5, we derive more refined time discretization
schemes, built in the framework of the method-of-lines, applying second-order and third-order multi-step
Backward Differentiation Formula (BDF). To show the flexibility of our approach, we also present a single-
step second-order approximation in time. In Section 6, we investigate the conservation properties of the
method and we show that the number of particles is always an exact invariant of the method, regardless
of the order of the time discretization. Within a spectral accurate error, this is also true for momenta.
Concerning the total energy, this is conserved up to an approximation error that depends on the accuracy of
the time discretization. In Section 7, we show the predicted convergence rate in time by using a manufactured
solution. Furthermore, we assess the performance of the method on standard benchmark problems as the
two stream instability, the Landau damping and the ion acoustic wave. In Section 8, we present our final
remarks and conclusions.

2. The continuous model

2.1. Multidimensional multispecies formulation

The distribution functions fs(t,x,v), s = 1, 2, . . . , ns, solving the Vlasov-Poisson system describe the
statistical evolution of a collection of collisionless charged particles of ns distinct species, subject to mutual
electrostatic interactions [10]. From a physical viewpoint, each fs(t,x,v)dxdv represents the probability of
finding particles of species s in an element of volume dxdv, at time t and point (x,v) in the phase space
Ω = Ωx ×Ωv, where Ωx ⊆ R

3, Ωv ⊆ R
3. The 3D-3V Vlasov equation for the s-th species with mass ms and

electric charge qs reads as:

∂fs

∂t
+ v · ∇xf

s +
qs

ms
E · ∇vf = 0, t ∈ (0, T ], x ∈ Ωx, v ∈ Ωv, (1)

where E(t,x) represents the electric field. The initial condition for fs is given by a function f̄s, so that

fs(0,x,v) = f̄s(x,v), s = 1, . . . , ns, x ∈ Ωx, v ∈ Ωv. (2)

The coupling with the electric field E(t,x) is taken into account through the divergence equation:
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ε0
(∇ ·E)

(t,x) = qs
ns∑
s=1

ρs(t,x) = qs
ns∑
s=1

∫
Ωv

fs(t,x,v)dv, t ∈ [0, T ], x ∈ Ωx, (3)

where ρs(t,x) is the charge density of species s. In (3) ε0 is the dielectric vacuum permittivity and ρ(t,x),
is the total charge density. We refer the reader interested in the theoretical analysis of the Vlasov-Poisson
model and the properties of its solutions to [9,30,25].

2.2. 1D-1V formulation of the Vlasov-Poisson system

To ease the presentation of the numerical scheme, we consider the 1D-1V Vlasov-Poisson formulation
for the electron-ion coupled system. Consistently, we restrict the domain to Ωx ⊆ R and Ωv ⊆ R. Since
positive ions (protons) are much heavier than electrons, we may assume that they do not move, so that their
density distribution function is constant over Ωx. Without altering the generality of the exposition, we can
set q = −1, m = 1, ε0 = 1. By dropping out the label s, we only have one distribution function f for the
electron species, so that the corresponding Vlasov equation and initial condition read as:

∂f

∂t
+ v

∂f

∂x
− E(t, x)

∂f

∂v
= 0, t ∈ (0, T ], x ∈ Ωx, v ∈ Ωv, (4)

f(0, x, v) = f̄(x, v), x ∈ Ωx, v ∈ Ωv, (5)

where the coupled electric field E verifies the equation:

∂E

∂x
(t, x) = 1− ρ(t, x), t ∈ [0, T ], x ∈ Ωx. (6)

We recall that ρ is the electron charge density defined by:

ρ(t, x) =

∫
Ωv

f(t, x, v)dv. (7)

We assume the constraints:∫
Ωx

E(t, x)dx = 0, which implies that

∫
Ωx

ρ(t, x)dx = |Ωx|, (8)

where |Ωx| measures the size of Ωx. By taking

E(t, x) = −∂Φ

∂x
(t, x), (9)

equation (6) can be transformed into the 1D Poisson equation for the potential field Φ(t, x):

−∂2Φ

∂x2
(t, x) = 1− ρ(t, x). (10)

As far as boundary constraints in x and v are concerned, we will assume a periodic boundary condition
for the Poisson equation and either periodic or homogeneous Dirichlet boundary conditions for the Vlasov
equation.

In the continuum setting, the total number of plasma particles is preserved. Hence, from a straightforward
calculation and using (8) it follows that:

d

dt

∫
Ω

f(t, x, v) dx dv = 0. (11)

Moreover, the distribution function f solving the Vlasov-Poisson system satisfies the so-called Lp-stability
property for p ≥ 1:

d

dt
‖f(t, ·, ·)‖pLp =

d

dt

∫
Ω

|f(t, x, v)|p dx dv = 0, (12)

which holds for any t ∈ [0, T ]. In particular, we will be concerned with p = 2. In this case, (12) implies the
L2-stability of the method [30] (sometimes called also energy stability in the literature).
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Finally, we consider the total energy of the system defined by:

E(t) = 1

2

∫
Ω

f(t, x, v) |v|2 dx dv +
1

2

∫
Ωx

|E(t, x)|2 dx, (13)

where the first term represents the kinetic energy and the second one the potential energy. The Vlasov-
Poisson model is characterized by the exact conservation of the energy, i.e.:

d

dt
E(t) = 0. (14)

If the electric field is smooth enough, for a “sufficiently small” δ > 0, the local system of characteristics
associated with (4) is given by the phase space curves (X(τ), V (τ)) solving:

dX

dτ
= −V (τ),

dV

dτ
= E(τ,X(τ)), τ ∈]t− δ, t+ δ[, (15)

with the condition that (X(t), V (t)) = (x, v) when τ = t. Under suitable regularity assumptions, there
exists a unique solution of the Vlasov-Poisson problem (4), (5), (6) and (7), see [30], which can formally be
expressed by propagating the initial condition (5) along the characteristic curves that solve (15). Therefore,
for every t ∈ (0, T ] we have that

f(t, x, v) = f̄(X(t), V (t)). (16)

By using a first-order approximation of the characteristic curves given by:

X(τ) = x− v(τ − t), V (τ) = v + E(t, x)(τ − t), (17)

the Vlasov equation is satisfied up to an error that decays as (τ − t), for τ tending to t. To achieve a
higher order of convergence, we need a more accurate approximation of the characteristic curves, such as,
for example, the one given by setting:

X(τ) = x− v(τ − t)− 1

2
E(t, x)(τ − t)2,

V (τ) = v + E(t, x)(τ − t)− 1

2

(
∂E

∂t
(t, x) + v

∂E

∂x
(t, x)

)
(τ − t)2. (18)

By direct substitution in (4), the Vlasov equation is satisfied at every point (t, x, v) up to the quadratic
remainder (τ − t)2 for τ tending to t. Of course, (18) can be replaced by other more accurate expansions
leading to a high-order remainder term proportional to (τ − t)S for some integer S > 2. Without exhibiting
the explicit formulas, which look rather involved, we point out this property as a possible extension for
further generalizations.

In view of the expression above, it is also convenient to write the time derivative of the electric field E by
arguing as follows. We evaluate the time derivative of ρ in (7) and use the Vlasov-Poisson equation:

∂ρ

∂t
(t, x) = −

∫
Ωv

v
∂f

∂x
(t, x, v) dv + E(t, x)

∫
Ωv

∂f

∂v
(t, x, v)dv = −

∫
Ωv

v
∂f

∂x
(t, x, v) dv, (19)

where we observe that the integral of ∂f/∂v is zero for a periodic function or in presence of homogeneous
Dirichlet conditions. Translated in terms of E, the above equation implies the Ampère equation, which reads
as:

∂E

∂t
(t, x) +

∫
Ωv

vf(t, x, v)dv = CA, (20)

(after an integration with respect to x). Finally, in order to preserve the conditions in (8), we must set
CA = 0 in (20).

3. Phase-space discretization and basic semi-Lagrangian method

We propose a semi-Lagrangian method to find numerical approximations to the self-consistent solutions
of the 1D-1V Vlasov-Poisson problem defined by equations (4), (5), (6) and (7). The extension to higher-
dimensional problems, e.g., the 3D-3V case, is straightforward and is discussed at the end of this section.
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Instead, in the subsequent sections, we will analyze suitable time discretization techniques. In view of
imposing periodic boundary conditions, we start by considering the domain:

Ω = Ωx × Ωv = [0, 2π[×[0, 2π[. (21)

A function f defined in Ω is requested to be periodic in both x and v. This means that for any integer s ≥ 0
we must have:

∂sf

∂xs
(0, v) =

∂sf

∂xs
(2π, v), for every v ∈ Ωv, (22)

and

∂sf

∂vs
(x, 0) =

∂sf

∂vs
(x, 2π), for every x ∈ Ωx, (23)

where, as usual, the zero-th order derivative of the function (i.e., when s = 0) is the given function itself.
Given two positive integers N and M , we consider the equispaced points in [0, 2π[:

xi =
2π

N
i, i = 0, 1, . . . , N − 1, vj =

2π

M
j, j = 0, 1, . . . ,M − 1. (24)

Hereafter, if not otherwise indicated, we will always use the indices i and n running from 0 to N −1 to label
the grid points along the x-direction, and j and m running from 0 to M − 1 to label the grid points along
the v-direction.
Then, we introduce the Fourier Lagrangian basis functions for the x and v variables with respect to the

nodes (24), that is:

B
(N)
i (x) =

1

N
sin

(
N(x− xi)

2

)
cot

(
x− xi

2

)
, (25)

B
(M)
j (v) =

1

M
sin

(
M(v − vj)

2

)
cot

(
v − vj

2

)
. (26)

It is known that
B

(N)
i (xn) = δin and B

(M)
j (vm) = δjm, (27)

where δij is the usual Kronecker symbol.
Furthermore, we define the discrete spaces:

XN = span
{
B

(N)
i

}
i=0,1,...,N−1

and YN,M = span
{
B

(N)
i B

(M)
j

}
i=0,1,...,N−1
j=0,1,...,M−1

. (28)

In this way, any function fN,M that belongs to YN,M can be decomposed as:

fN,M (x, v) =

N−1∑
i=0

M−1∑
j=0

cij B
(N)
i (x)B

(M)
j (v), (29)

where the coefficients are given by:
cij = fN,M (xi, vj). (30)

For what follows, it will be useful to have the expression of the derivatives of the basis functions. For
instance, one has:

∂B
(N)
i

∂x
(xn) = d

(N,1)
ni =

⎧⎨
⎩
0 if i = n,

1
2 (−1)i+n cot

(
xn−xi

2

)
if i �= n,

(31)

and

∂2B
(N)
i

∂x2
(xn) = d

(N,2)
ni =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−N2

12
− 1

6
if i = n,

−1

2

(−1)i+n

sin2
(
xn−xi

2

) if i �= n.

(32)
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More generally, d
(N,s)
ni will denote the s-th derivative of B

(N)
i evaluated at point xn, which is given by:

∂sB
(N)
i

∂xs
(xn) = d

(N,s)
ni . (33)

Analogously we can define:

∂sB
(M)
j

∂vs
(vm) = d

(M,s)
mj , (34)

where d
(M,1)
mj , d

(M,2)
mj in (34) are obtained by replacing the nodes xi with the nodes vj in (31) and (32) and

setting up the indices accordingly. As a special case we set: d
(N,0)
ni = δni, d

(M,0)
mj = δmj . Moreover, it is easy

to prove that there exists a constant C, independent of N , such that (see also Appendix C) :

|d(N,1)
ni | ≤ CN. (35)

This estimate will be useful for studying the stability conditions in the time-marching schemes.
Afterwards, we remind that the following Gaussian quadrature formula:

1

2π

∫ 2π

0

φ(x) dx 	 1

N

N−1∑
i=0

φ(xi), (36)

which can be applied to any φ ∈ C[0, 2π), is exact for every φ ∈ span
{
1,

{
sinnx, cosnx

}
n=1,...,N−1

, sinNx
}
.

For more details see [15, Section 2.1.2] and [49, Section 2.1.2].
In truth, given an integer s ≥ 0, the derivative of order s + 1 is trivially obtained by applying the first

derivative matrix to the point-values of the s-th derivative of a trigonometric polynomial. Such an operation
can be performed by the fast Fourier transform (FFT) algorithm, with an excellent cost reduction when
the degree is relatively high and a power of 2. Very efficient implementations exist in freely available and
commercial software libraries.

It is clear that, with little modifications, we can handle Lagrangian basis of nonperiodic type. Among
these, the most representative ones are constructed on Legendre or Chebyshev algebraic polynomials, or
Hermite functions (i.e., Hermite polynomials multiplied by a Gaussian function). In some preliminary tests,
we observed that each one of these cases presents peculiar behavior in applications. A comparison between
the different approaches would be too lengthy for the aims of the present paper. Therefore, we prefer to
examine more deeply these extensions in a future analysis.

Now, consider the one-dimensional function EN ∈ XN . Given Δt > 0, by taking τ = t −Δt in formula
(17), we define the new set of points {(x̃nm, ṽnm)}n,m where

x̃nm = xn − vm Δt, (37)

ṽnm = vm + EN (xn)Δt, (38)

where we recall that index n is running through the range [0, N−1] and index m through the range [0,M−1].
The basic semi-Lagrangian method is obtained by the direct evaluation of the distribution function fN,M ∈

YN,M defined in (29) at the new points (x̃nm, ṽnm). To this purpose, it is sufficient to substitute the values

B
(N)
i (x̃nm) and B

(M)
j (ṽnm) in (29). The resulting method has good stability properties and poor conservation

properties, as usual for many semi-Lagrangian methods. From our numerical experiments, we known that
it is very stable even for big timestep but it is not conservative and even the simplest physical quantity
that we may consider, the total number of particles, is not preserved. An alternative way to evaluate the
distribution function fN,M ∈ YN,M at the new points (x̃nm, ṽnm) through the coefficients in (30) is by

a Taylor expansion of the functions B
(N)
i (x) and B

(M)
j (v) along the characteristic curve. In the rest of

this section and the next two sections we discuss the enormous implications that this last approach may
have concerning the high-order accuracy in time and the conservation properties of the resulting numerical
schemes.
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To go on, we first consider a sufficiently smooth function Ψ, for which we have that:

Ψ(x− vΔt, v + EN (x)Δt) = Ψ(x, v)− vΔt
∂Ψ

∂x
(x, v) + EN (x)Δt

∂Ψ

∂v
(x, v)

+
1

2
(vΔt)2

∂2Ψ

∂x2
(x, v)− vEN (x)Δt2

∂2Ψ

∂x ∂v
(x, v) +

1

2
(EN (x)Δt)2

∂2Ψ

∂v2
(x, v) + . . . . (39)

Applying (39) to Ψ(x, v) = B
(N)
i (x)B

(M)
j (v), where (x, v) = (x̃nm, ṽnm), is defined in (37), and using the

second-order truncation of expansion (29), yield

fN,M (x̃nm, ṽnm) = cnm +

∞∑
s=1

s∑
r=0

(−1)s

r!(s− r)!

⎛
⎝I r

nmJ s−r
nm

N−1∑
i=0

M−1∑
j=0

d
(N,r)
ni d

(M,s−r)
mj cij

⎞
⎠ , (40)

where we set Inm = xn− x̃nm and Jnm = vm− ṽnm. The details of this calculation are reported in Appendix
A. Finally, we truncate the summation with respect to s at the integer S ≥ 1 to have a remainder term
of order (Δt)S+1. The differentiation in the variables x and v can be computed exactly by multiplying the
corresponding derivative matrices. Therefore, no approximation is introduced if we assume that the integer
s can range from 1 to infinity in (40).

3.1. Three-dimensional extension

The three-dimensional extension of (40) is straightforward by using the multi-index notation. To this
end, we consider all indices n,m, i, j, s, r in (40) as multi-indices of order three. More precisely, n is the
triplet of nonnegative integers (n1, n2, n3) and |n| = n1 + n2 + n3 is the order of n. The position vector is
given by x = (x1, x2, x3), and, a similar notation holds for the velocity position vector v = (v1, v2, v3). A
space vector subindexed by n has to be interpreted as the grid point xn = (x1

n1
, x2

n2
, x3

n3
); a velocity vector

subindexed by m has to be interpreted as the grid point vm = (v1m1
, v2m2

, v3m3
). Consistently, we also have

the double-subindexed vectors x̃nm = (x̃1
n1m1

, x̃2
n2m2

, x̃3
n3m3

) and ṽnm = (ṽ1n1m1
, ṽ2n2m2

, ṽ3n3m3
). We use the

standard notation (w)r = (w1)r1(w2)r2(w3)r3 for any given three-dimensional vector w = (w1, w2, w3) and
multi-index r = (r1, r2, r3), and we denote the partial derivatives of order |r| of a generic function g(x)
determined by the multi-index r as:

∂|r|

∂xr
g(x) =

∂r1

∂x1,r1

∂r2

∂x2,r2

∂r3

∂x3,r3
g(x).

A similar relation holds for the partial derivatives along v. Finally, the three-dimensional basis functions are
given by the tensor product of the one-dimensional basis functions:

B
(N)
i (x) = B

(N)
i1

(x1)B
(N)
i2

(x2)B
(N)
i3

(x3), i1, i2, i3 = 0, . . . , N − 1.

Now, the three-dimensional version of equation (40) becomes:

fN,M (x̃nm, ṽnm) = cnm +

∞∑
|s|=1

|s|∑
|r|=0

(−1)|s|

|r|!|s− r|!

⎛
⎝(Inm

) r (J nm

)s−r
N−1∑
|i|=0

M−1∑
|j|=0

d
(N,r)
ni d

(M,s−r)
mj cij

⎞
⎠ ,

|n| = 0, 1, . . . , N − 1, |m| = 0, 1, . . . ,M − 1,

where we set Inm = xn − x̃nm, (Inm) r =
(
xn − x̃nm)r, J nm = vm − ṽnm, (J nm)s−r = (vm − ṽnm)s−r;

the partial derivatives of the three-dimensional basis functions are given by

d
(N,s)
ni =

∂|s|B(N)
i

∂xs
(xn) and d

(M,s)
mj =

∂|s|B(M)
j

∂vs
(vm). (41)

All considerations made in the previous sections are still true in the multidimensional context. In particular,
we can also extend the discussion about high-order characteristics (end of Section 2). To this purpose, for
the evaluation of the time derivative of the electric field, we can rely on the considerations made in [46,
Section 5.4.2].

8



4. Time discretization

Given the time instants tk = kΔt = k T/K, for any integer k = 0, 1, . . . ,K, we consider here the full
approximation of the solution fields (f,E) of the 1D-1V Vlasov-Poisson problem (4), (5), (6), (7):(

f
(k)
N,M (x, v), E

(k)
N (x)

)
	 (

f(tk, x, v), E(tk, x)
)
, x ∈ Ωx, v ∈ Ωv, (42)

where the function f
(k)
N,M belongs to YN,M and the function E

(k)
N belongs to XN . Taking into account (7),

we define:

ρ
(k)
N (x) =

∫
Ωv

f
(k)
N,M (x, v) dv 	 ρ(t(k), x). (43)

At any timestep k, we evaluate f
(k)
N,M in the following way:

f
(k)
N,M (x, v) =

N−1∑
i=0

M−1∑
j=0

c
(k)
ij B

(N)
i (x)B

(M)
j (v), (44)

where
c
(k)
ij = f

(k)
N,M (xi, vj). (45)

In particular, at time t = 0, we use the initial condition for f (see equation (5)) by setting

c
(0)
ij = f(0, xi, vj) = f̄(xi, vj). (46)

If we suppose that E
(k)
N is given at step k, we first define (take τ = t−Δt in (17)):

x̃nm = xn − vm Δt,

ṽnm = vm + E
(k)
N (xn)Δt. (47)

Since the solution f of the Vlasov-Poisson system is expected to be constant along the characteristics, the
most straightforward method is obtained by advancing the coefficients of fN,M 	 f as follows

c(k+1)
nm = f

(k)
N,M (x̃nm, ṽnm) =

N−1∑
i=0

M−1∑
j=0

c
(k)
ij B

(N)
i (x̃nm)B

(M)
j (ṽnm), (48)

where we used the representation (44). This states that the value of f
(k+1)
N,M , at the grid points and timestep

(k+1)Δt, is assumed to be equal to the previous value at time kΔt, recovered by going backwards along the

characteristics. Technically, in (47) we should use E
(k+1)
N (xn) instead of E

(k)
N (xn), thus arriving at an implicit

method. However, the distance between these two quantities is of the order of Δt, so that the replacement
has no practical effects on the accuracy of the first-order method. For higher order schemes, things must be
treated more carefully.

Between each step k and the successive one, we need to update the electric field. This can be done as
suggested here below.

Let tk be fixed. Using the Gaussian quadrature formula (36) in (43) and (45) we write:

ρ
(k)
N (xi) =

2π

M

M−1∑
j=0

f
(k)
N,M (xi, vj) =

2π

M

M−1∑
j=0

c
(k)
ij . (49)

Indeed, it is possible to compute ρ
(k)
N (x) by using the Fourier series:

ρ
(k)
N (x) = 1 +

N/2∑
n=1

[
â(k)n cos(nx) + b̂(k)n sin(nx)

]
, (50)
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where the discrete Fourier coefficients â
(k)
n and b̂

(k)
n are determined, for n = 1, 2, . . . , N/2, by the following

formulas:

â(k)n =
1

π

∫ 2π

0

ρ
(k)
N (x) cos(nx) dx 	 2

N

N−1∑
l=0

ρ
(k)
N (xl) cos

(
2nl

N
π

)
,

b̂(k)n =
1

π

∫ 2π

0

ρ
(k)
N (x) sin(nx) dx 	 2

N

N−1∑
l=0

ρ
(k)
N (xl) sin

(
2nl

N
π

)
. (51)

Actually, for n strictly smaller than N/2, the symbol “	” can be replaced by the symbol “=”.
Using equation (50) and equation (6) at t = tk, we conclude that:

E
(k)
N (x) = −

N/2∑
n=1

1

n

[
â(k)n sin(nx)− b̂(k)n cos(nx)

]
, (52)

which satisfies (as requested in (8)): ∫ 2π

0

E
(k)
N (x) dx = 0. (53)

Finally, from (51), using a standard trigonometric formula and (49), we find that:

E
(k)
N (xi) = −

N/2∑
n=1

1

n

[
â(k)n sin

(
2ni

N
π

)
− b̂(k)n cos

(
2ni

N
π

)]

	 2

N

N/2∑
n=1

1

n

N−1∑
s=0

ρ
(k)
N (xs)

[
sin

(
2sn

N
π

)
cos

(
2in

N
π

)
− sin

(
2in

N
π

)
cos

(
2sn

N
π

)]

=
2

N

N/2∑
n=1

1

n

N−1∑
s=0

ρ
(k)
N (xs) sin

(
2(s− i)n

N
π

)
=

4π

NM

N/2∑
n=1

1

n

N−1∑
s=0

M−1∑
j=0

c
(k)
ij sin

(
2(s− i)n

N
π

)
. (54)

By computing the direction of the characteristic lines according to (47), the scheme turns out to be only
first-order accurate in Δt. Consequently, it is sufficient to stop expansion (40) at s = 1. In this way, (48) is
replaced by:

c(k+1)
nm = c(k)nm +ΔtΦ(k)

nm, (55)

where

Φ(k)
nm = −vm

N−1∑
i=0

d
(N,1)
ni c

(k)
im + E

(k)
N (xn)

M−1∑
j=0

d
(M,1)
mj c

(k)
nj . (56)

Consider a sufficiently regular function g(t, x, v), which is defined on Ω for every t ∈ [0, T ]. To solve the
non-homogeneous Vlasov equation:

∂f

∂t
+ v

∂f

∂x
− E(t, x)

∂f

∂v
= g, (57)

we modify (55) as follows:

c(k+1)
nm = c(k)nm +ΔtΦ(k)

nm +Δt g(tk, xn, vm), (58)

where Φ
(k)
nm is the same as in (56). This is basically a forward Euler iteration.

We will better use the potentialities of expansion (40) in the next section to design more accurate time-
marching schemes.

10



5. More advanced time discretizations

A straightforward way to increase the time accuracy is to use a higher-order time-marching scheme. To
this end, we consider the second-order accurate two-step explicit Backward Differentiation Formula (BDF).
With the notation in (48), (56) and (58), given the time instants tk = kΔt = k T/K, k = 0, 1, . . . ,K, we
have:

f
(k+1)
N,M (xn, vm) =

4

3
f
(k)
N,M (x̃nm, ṽnm)− 1

3
f
(k−1)
N,M (˜̃xnm, ˜̃vnm) +

2

3
Δt g(tk+1, xn, vm), (59)

where, based on (47), (x̃nm, ṽnm) is the point obtained from (xn, vm) going back of one step Δt along
the characteristic lines. Similarly, the point (˜̃xnm, ˜̃vnm) is obtained by going two steps back along the
characteristic lines (replace Δt with 2Δt in (47)). Note that if g = 0, it turns out that fN,M is constant
along the characteristic lines.

From a truncated Taylor series, for any integer k = 1, 2, . . . ,K − 1 we find that:

f
(k)
N,M (x̃nm, ṽnm) = c(k)nm +ΔtΦ(k)

nm +O(Δt2),

f
(k−1)
N,M (˜̃xnm, ˜̃vnm) = c(k−1)

nm + 2ΔtΦ(k−1)
nm +O(Δt2), (60)

and, in terms of the coefficients, we end up with the scheme:

c(k+1)
nm =

4

3

(
c(k)nm +ΔtΦ(k)

nm

)
− 1

3

(
c(k−1)
nm + 2ΔtΦ(k−1)

nm

)
+

2

3
Δt g(tk+1, xn, vm)

=
4

3
c(k)nm − 1

3
c(k−1)
nm +

2

3
Δt

[
−vm

N−1∑
i=0

d
(N,1)
ni (2c

(k)
im − c

(k−1)
im )

+E
(k)
N (xn)

M−1∑
j=0

d
(M,1)
mj (2c

(k)
nj − c

(k−1)
nj )

⎤
⎦+

2

3
Δt g(tk+1, xn, vm). (61)

Despite the fact that the approximations in (60) are only first-order accurate in Δt, scheme (61) is second-
order accurate. This result can be proved with the help of Taylor series (see Appendix B for a sketch of the
proof) and will be confirmed by the numerical experiments of Section 7.

In the same fashion, a third-order BDF scheme is obtained by setting:

c(k+1)
nm =

18

11

(
c(k)nm +ΔtΦ(k)

nm

)
− 9

11

(
c(k−1)
nm + 2ΔtΦ(k−1)

nm

)

+
2

11

(
c(k−2)
nm + 3ΔtΦ(k−2)

nm

)
+

6

11
Δt g(tk+1, xn, vm), (62)

where, now, the time index k ranges from 2 to K − 1.
The further question is to see if it is possible to propose an explicit one-step second-order scheme. The

problem is delicate, since it is not enough to consider the quadratic terms of the expansion in (A.3). It is
also necessary to work with a better representation of the characteristic lines, such as that in (18), where,
we set τ = t−Δt. This time for k = 0, 1, . . . ,K, we propose:

x̃nm = xn − vm Δt− 1

2
E

(k+1)
N (xn)Δt2,

ṽnm = vm + E
(k+1)
N (xn)Δt− 1

2

(
∂E

(k+1)
N

∂t
(xn) + vm

∂E
(k+1)
N

∂x
(xn)

)
Δt2, (63)

that corresponds to an implicit method. We apply the correction:

E
(k+1)
N = E

(k)
N +

∂E
(k)
N

∂t
Δt+O(Δt2). (64)
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Thus, up to errors of the second order, we can modify (63) as follows:

x̂nm = xn − vm Δt− 1

2
E

(k)
N (xn)Δt2 = xn − Înm,

v̂nm = vm + E
(k)
N (xn)Δt+

1

2

(
∂E

(k)
N

∂t
(xn)− vm

∂E
(k)
N

∂x
(xn)

)
Δt2 = vm − Ĵnm, (65)

where, for brevity of notation, we introduced the two quantities Înm and Ĵnm. The partial derivative of

E
(k)
N with respect to x is available and recoverable from ρ

(k)
N (see (43)). Regarding the time derivative, we

can recall (20) and set:

∂E
(k)
N

∂t
(xn) 	

∫
Ωv

vf
(k)
N,M (xn, v) dv. (66)

Successively, the integral on the right-hand side is approximated by quadrature. Once the point (x̂nm, v̂nm)
has been localized with sufficient detail, one can apply the correction of the coefficients as suggested by (A.3)
thus neglecting the terms of order higher than Δt2. In the new situation we have (see also (40) for s = 2):

c(k+1)
nm = c(k)nm − Înm

N−1∑
i=0

d
(N,1)
ni c

(k)
im − Ĵnm

M−1∑
j=0

d
(M,1)
mj c

(k)
nj

+
1

2
Î2
nm

N−1∑
i=0

d
(N,2)
ni c

(k)
im + ÎnmĴnm

N−1∑
i=0

M−1∑
j=0

d
(N,1)
ni d

(M,1)
mj c

(k)
ij +

1

2
Ĵ 2
nm

M−1∑
j=0

d
(M,2)
mj c

(k)
nj . (67)

For the non-homogeneous equation (57), suitable adjustments are required to preserve the quadratic
convergence. Indeed, in order to handle the right-hand side, we suggest to use the trapezoidal rule by
defining:

Δg(k)nm =
Δt

2
g(tk, x̃nm, ṽnm) +

Δt

2
g(tk+1, xn, vm), (68)

which is an approximation of the average value of g(t,X(t), Y (t)) for t ∈ [tk, tk+1] when moving along the

characteristic lines. The term Δg
(k)
nm is going to be added to the right-hand side of (67).

Moreover, g is also involved in the expression (20), that must be rewritten as:

∂E

∂t
(t, x) =

∫
Ωv

[vf(t, x, v)−G(t, x, v)] dv, (69)

where G is a primitive of the given function g with respect to the variable x, i.e.: ∂G/∂x = g.
In all the schemes proposed in this work, a CFL condition of stability must be imposed on Δt. In particular

the CFL condition for the explicit methods (55) and (58) is easily obtained by requiring that the point
(x̃nm, ṽnm) falls inside the box ]xn−1, xn+1[×]vm−1, vm+1[. From (47), a sufficient restriction is given by:

Δt ≤ 2π
(
N max

m
|vm|+M max

n
|E(k)

N (xn)|
)−1

. (70)

By inequality (35), this ensures that the term ΔtΦ
(k)
nm in (55) is of the same order of magnitude as c

(k)
nm. A

theoretical justification of the CFL condition for our second-order BDF scheme is given in Appendix C.

It is worthwhile to observe that, despite the fact that a BDF scheme is commonly presented in the
framework of implicit techniques, for our special equation (f constant along the characteristics) it assumes
the form of an explicit method. Due to this, the algorithm conforms to the major properties exhibited
by explicit type procedures. Among the advantages we find a very low computational cost at any iteration,
especially when the Discrete Fast Fourier Transform is used in the implementation. The disadvantage is that
our method imposes restrictions on the timestep. On the other hand, even if it was possible to implement
large time steps, we are afraid that all the good accuracy of spectral methods (used for the variables x and
v) would be lost.
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6. Conservation Properties

The discrete counterpart of (11) (i.e., number of particles/mass/charge conservation) can be proven for the
scheme (55) - (56). This is the most basic quantity to be preserved, so that the check of this relation is quite
important from the physics viewpoint. As in the previous sections let tk = kΔt = k T/K, k = 0, 1, . . . ,K.
We start by defining:

Q
(k)
N,M =

2π

N

2π

M

N−1∑
n=0

M−1∑
m=0

c(k)nm =

∫
Ω

f
(k)
N,M (x, v)dxdv ≈

∫
Ω

f(tk, x, v)dxdv, (71)

where we recalled the quadrature formula (36). The correspondence of the two integrals in (71) is true up to
an error that is spectrally accurate, due to the excellent properties of Gaussian quadrature. By using (71)
for the timestep k + 1 and (55) we find that

Q
(k+1)
N,M =

2π

N

2π

M

N−1∑
n=0

M−1∑
m=0

c(k+1)
nm =

2π

N

2π

M

N−1∑
n=0

M−1∑
m=0

(
c(k)nm +ΔtΦ(k)

nm

)
= Q

(k)
N,M +ΔQ

(k)
N,M , (72)

where

ΔQ
(k)
N,M = Δt

2π

N

2π

M

N−1∑
n=0

M−1∑
m=0

Φ(k)
nm

= −Δt
2π

M

M−1∑
m=0

vm

[
2π

N

N−1∑
n=0

∂f
(k)
N,M

∂x
(xn, vm)

]
+Δt

2π

N

N−1∑
n=0

E
(k)
N (xn)

[
2π

M

M−1∑
m=0

∂f
(k)
N,M

∂v
(xn, vm)

]

= −Δt
2π

M

M−1∑
m=0

vm

[∫
Ωx

∂f
(k)
N,M

∂x
(x, vm)dx

]
+Δt

2π

N

N−1∑
n=0

E
(k)
N (xn)

[∫
Ωv

∂f
(k)
N,M

∂v
(xn, v)dv

]
= 0. (73)

Here, we may note that the two integrals are zero as a consequence of the boundary conditions (periodic or
homogeneous Dirichlet). This shows that the quantity in (71) does not change from k to k + 1. The same
property holds for the schemes (61) and (62). The proof follows after recognizing that, for g = 0, the sum
of the coefficients on the right-hand side is equal to 1. In fact, for (61) one has: (4/3) − (1/3) = 1, and for
(62) one has: (18/11)− (9/11) + (2/11) = 1.

Concerning the scheme (67), the conservation of Q
(k)
N,M is also recovered, but one has to be a bit more

careful in the analysis. As a matter of fact, there are terms containing second derivatives in x and v,
multiplying (Δt)2. With the same arguments followed to recover (73), these parts can be transformed in
integrals by Gaussian quadrature. Their contribution is zero if appropriate boundary conditions are assumed.
For instance, in the periodic case, all the derivatives are matching across the point 2π (see (22)), therefore
we have perfect mass conservation (i.e., the discrete version of it). With homogeneous Dirichlet boundary
conditions, we have no elements to argue that the integral contribution of the second derivatives must be zero
(because the first derivatives in 0 and 2π are not necessarily equal), so that mass conservation is achieved up
to an error proportional to (Δt)2. Nevertheless, if an exponential decay of f is assumed near the boundary
(as it is commonly accepted concerning the variable v), the first derivatives will also decay in the same way,
and the integral contribution of the second derivatives can be again neglected. In the experiments of the next
sections, we assume full periodicity in the direction x, while, in the variable v, we will work with functions
exhibiting an exponential decay. Therefore, up to possible negligible effects developing at the boundaries,
mass conservation is ensured.

Similar considerations can be made regarding the conservation in time of other quantities, such as the
momentum

∫
Ω
vf(t, x, v)dxdv, which in the discrete case is defined at time tk, k = 0, 1, . . . ,K, in the following

way:

P
(k)
N,M =

2π

N

2π

M

N−1∑
n=0

M−1∑
m=0

vmc(k)nm ≈
∫
Ω

vf
(k)
N,M (x, v)dxdv. (74)
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Here, it has to be noticed that the function v is not a trigonometric polynomial, so that it is not possible
to use the quadrature formula (36) in a straightforward way. On the other hand, v can be substituted by
its projection (in the L2(Ω) norm) on the finite dimensional space YN,M (see (36)) up to an error that
decays spectrally. This procedure may however generate a Gibb’s phenomenon across the points of Ω with
v = 2π, where vf is discontinuous. The trouble can be fixed by supposing that the function f decays as an
exponential (with respect to the variable v) near the boundary. In the end, with assumptions that may be
considered standard in applications, the conservation of momentum can be achieved up to negligible errors.

A discussion can also be made regarding the discrete version of (13) at time tk, k = 0, 1, . . . ,K, i.e.:

E(tk) ≈ E(k)
N,M =

1

2

(
2π

N

2π

M

N−1∑
n=0

M−1∑
m=0

v2mc(k)nm +
2π

N

N−1∑
n=0

[
E

(k)
N (xn)

]2)
. (75)

The theoretical analysis now becomes more involved, since the above quantity is quadratic. We expect
however that conservation at each step is achieved up to an error that is at most proportional to (Δt)S ,
where S is the order of the scheme used. Exact conservation cannot be expected in this case, due to the fact
that all the time-advancing schemes we consider in this paper are of explicit type. Energy conservation is
usually a prerogative of implicit schemes (see, e.g., the Crank-Nicholson method).

Finally, we spend a few words on the treatment of the term in (13). As already observed above, the
function v2 is not a trigonometric polynomial, therefore in the theoretical analysis we need to replace it with
a suitable projection. In order to avoid possible Gibb’s phenomena at the boundary, we should rely on the
fast decay of the function f . On the other hand, these considerations must also be used in the continuous
case, because they are necessary to give a meaning to the integral

∫
Ω
v2f(t, x, v)dxdv. In addition, we also

point out that there is no proof that the quantity defined in (13) is actually a norm, since it is not guaranteed
that, if the discrete quantity fN,M 	 f is positive at time t = 0, it will remain positive in the subsequent
times. Anyway, this trouble is frequently present within the framework of any other type of approximations,
unless it is built on purpose to be sign-preserving (a rather difficult property to achieve). The possible
negativity of fN,M 	 f has not in general significant relevance in practical experiments, but makes the
theoretical aspects far more involved. For the reasons mentioned above, we omit the details of the study
of energy conservation, because they are rather complicate and out of the scopes of this paper. Numerical
confirmations of the above statements will be given in the coming sections.

7. Numerical experiments

In this section we present the results of some numerical experiments to show the behavior of the basic semi-
Lagrangian method that we introduced in Section 3 and the new derived semi-Lagrangian schemes developed
in Sections 4 and 5. In the first test case, we investigate the convergence rate and mass conservation of our
numerical schemes by solving the Vlasov-Poisson model with a special source term, so that the solution is
known. The dependence on space and velocity are numerically treated by a spectral collocation method and
the approximation error is expected to be dominated by the time discretization. To assess the conservation
properties of such schemes, we show the possible violation of the total number of particles in the plasma,
which is also proportional to the total mass and total charge. A comparison is also carried out with the
WENO-based semi-Lagrangian methods of the same order of accuracy in time that were recently proposed
in the literature, cf. [44]. Finally, to further validate the schemes of Sections 4 and 5, we tested them on
three standard test cases of plasma physics: the two-stream instability, the Landau damping and the ion
acoustic wave.

7.1. Manufactured solution benchmark

Here, we consider the non-homogeneous Vlasov-Poisson problem (57), (5), (6), (7), where we set Ωx =
[0, 2π], Ωv = [−π, π], T = 1. The right-hand side g in (57) is such that the solution fields f and E are given
by:
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Δt One-step first- Rate Second-order Rate Third-order Rate One-step second- Rate
order basic BDF basic BDF basic order basic
scheme scheme scheme scheme

0.04 8.77 10−2 2.79 10−2 3.97 10−3 4.03 10−3

0.02 4.29 10−2 1.03 6.79 10−3 2.04 5.52 10−4 2.85 1.01 10−3 2.00
0.01 2.12 10−2 1.02 1.67 10−3 2.03 7.40 10−5 2.90 2.51 10−4 2.00
0.005 1.05 10−2 1.01 4.12 10−4 2.02 9.58 10−6 2.95 6.28 10−5 2.00
0.0025 5.24 10−3 1.00 1.02 10−4 2.01 1.22 10−6 2.98 1.57 10−5 2.00
0.001325 2.62 10−3 1.00 2.55 10−5 2.00 1.56 10−7 2.96 3.93 10−6 2.00

Table 1

Relative errors in the L2(Ω) norm between the exact and the numerical distribution functions at time T = 1 by applying first-,

second-, and third-order time discretization schemes of “basic” type as introduced in Section 3. The corresponding convergence

rate is reported aside. These calculations are performed by halving the timestep from Δt = 0.04 to Δt = 0.001325 and using

the phase space resolution N = M = 25.

Δt One-step first- Rate Second-order Rate Third-order Rate One-step second- Rate
order basic BDF basic BDF basic order basic
scheme scheme scheme scheme

0.04 8.07 10−2 3.29 10−2 2.25 10−3 3.54 10−3

0.02 4.09 10−2 0.98 8.13 10−3 2.01 3.49 10−4 2.69 8.80 10−4 2.01
0.01 2.06 10−2 0.99 2.01 10−3 2.02 4.97 10−5 2.81 2.19 10−4 2.00
0.005 1.03 10−2 0.99 4.99 10−4 2.01 6.61 10−6 2.91 5.48 10−5 2.00
0.0025 5.17 10−3 1.00 1.24 10−4 2.01 8.50 10−7 2.96 1.37 10−5 2.00
0.001325 2.59 10−3 1.00 3.10 10−5 2.00 1.13 10−7 2.91 3.42 10−6 2.00

Table 2

Relative errors in the L2(Ωx) norm between the exact and the numerical electric field at time T = 1 by applying first-, second-,

and third-order time discretization schemes schemes of “basic” type as introduced in Section 3. The corresponding convergence

rate is reported aside. These calculations are performed by halving the timestep from Δt = 0.04 to Δt = 0.001325 and the

phase space resolution is given by taking N = M = 25 modes.

f(t, x, v) =
2√
π
[1− cos(2x− 2πt)] exp(−4v2), (76)

E(t, x) =
1

2
sin(2x− 2πt). (77)

We note that both f and E are 2π-periodic in the variable x. Instead, f is not periodic in the variable v but
we can effectively approximate it by periodic functions since the Gaussian function exp (−4v2) is practically
zero at the velocity boundaries v = ±π.

Tables 1 and 3 show the relative errors and the convergence rates at the final time T = 1 between the
exact solution (76) and the numerical solution obtained by applying the basic SL scheme of Section 3 or
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Δt One-step first- Rate Second-order Rate Third-order Rate One-step second- Rate
order scheme BDF method BDF method order scheme
(55) (61) (62) (67),(68),(69)

0.04 8.86 10−2 2.78 10−2 4.32 10−3 4.03 10−3

0.02 4.24 10−2 1.06 6.75 10−3 2.04 5.66 10−4 2.93 1.01 10−3 2.00
0.01 2.07 10−2 1.03 1.65 10−3 2.03 7.27 10−5 2.96 2.51 10−4 2.01
0.005 1.02 10−2 1.02 4.09 10−4 2.02 9.25 10−6 2.97 6.28 10−5 2.00
0.0025 5.08 10−3 1.01 1.02 10−4 2.01 1.17 10−6 2.99 1.57 10−5 2.00
0.001325 2.53 10−3 1.00 2.53 10−5 2.00 1.47 10−7 3.00 3.93 10−6 2.00

Table 3

Relative errors in the L2(Ω) norm between the exact and the numerical distribution functions at time T = 1 by using the

first-, second-, and third-order time discretization schemes relative to Eqs. (55), (61), (62), and (67)-(69). These calculations

are performed by halving the timestep from Δt = 0.04 to Δt = 0.001325 and the phase space resolution is given by taking

N = M = 25 modes. The corresponding convergence rate is reported aside.

Δt One-step first- Rate Second-order Rate Third-order Rate One-step second- Rate
order scheme BDF method BDF method order scheme
(55) (61) (62) (67),(68),(69)

0.04 8.18 10−2 3.21 10−2 2.78 10−3 3.56 10−3

0.02 4.16 10−2 0.98 7.95 10−3 2.01 3.88 10−4 2.84 8.86 10−4 2.01
0.01 2.10 10−2 0.99 1.97 10−3 2.02 5.20 10−5 2.90 2.21 10−4 2.00
0.005 1.05 10−2 0.99 4.88 10−4 2.01 6.75 10−6 2.95 5.52 10−5 2.00
0.0025 5.27 10−3 1.00 1.22 10−4 2.01 8.59 10−7 2.98 1.38 10−5 2.00
0.001325 2.64 10−3 1.00 3.03 10−5 2.00 1.08 10−7 3.00 3.45 10−6 2.00

Table 4

Relative errors in the L2(Ωx) norm between the exact and the numerical electric field at time T = 1 by using the first-, second-,

and third-order time discretization schemes relative to Eqs. (55), (61), (62), and (67)-(69). These calculations are performed by

halving the timestep from Δt = 0.04 to Δt = 0.001325 and the phase space resolution is given by taking N = M = 25 modes.

The corresponding convergence rate is reported aside.

the new SL schemes proposed in Sections 4 and 5. These calculations are performed with a fixed number of
spectral modes (N = M = 25). We decreased the timestep by halving the initial value Δt = 0.04 at each
refinement. The first column reports the timestep. The other columns report the relative errors in the L2(Ω)
norm and the corresponding convergence rates, when using the various schemes. The results of Tables 2
and 4 pertain to the error of the electric field. They confirm the convergence rates shown in Tables 1 and 3.
In all these tests we assumed that the time discretization error dominates the approximation error of the
phase space. Indeed, even for the relatively small number of degrees of freedom N = M = 25, the resolution
in x and v is excellent, due to the convergence properties of the spectral approximations.

To assess the behavior of our methods, we compare their performance with that of the WENO-based
semi-Lagrangian scheme proposed in [44]. In that paper, a high-order backward tracking of the character-
istics is coupled with WENO interpolation of the fifth order. Such schemes also present similarities with
that suggested in [45], where spline interpolation is used. The second- and third-order methods in [44] are
variants of the two- and three-stage TVD Runge-Kutta schemes proposed in [31]. A remarkable aspect of
our discretizations is that they do preserve the number of particles, hence, mass and charge, up to the
machine precision, while the WENO-based methods here considered for comparison do not. For the WENO-
based methods, the right-hand side g in (57) is treated by evaluating g(tk, x̃nm, ṽnm) at the first step and
1
2g(t

k, x̃nm, ṽnm) + 1
2g(t

k+1, xn, vm) at the second step. The parameters related to the nonlinear weights
in the high-order WENO interpolation are the same as those selected in [44]. The periodic electric field is
handled as suggested in the present paper, which is basically the same strategy adopted in [44].

Tables 5-6, compare the performance of the first- and the second-order schemes for different space-velocity
resolutions from N = M = 23 to N = M = 26. We consider the relative errors, which are measured in the
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One-step first- One-step first- First-order

N,M order basic scheme
∣∣Q(K)

N,M −Q
(0)
N,M

∣∣ order scheme
∣∣Q(K)

N,M −Q
(0)
N,M

∣∣ WENO-based
∣∣Q(K)

N,M −Q
(0)
N,M

∣∣
(55) scheme

23 9.52 10−2 3.13 10−3 9.55 10−2 3.55 10−15 3.13 10−1 1.68
24 5.22 10−3 3.11 10−3 5.24 10−3 8.88 10−15 1.13 10−1 1.68 10−1

25 2.09 10−3 3.14 10−3 2.03 10−3 2.66 10−15 1.63 10−2 3.54 10−2

26 2.09 10−3 3.14 10−3 2.00 10−3 5.32 10−15 3.51 10−3 1.22 10−3

Table 5

Relative errors in the L2(Ω) norm at time T = 1 between the exact and the numerical distribution functions, together with

mass discrepancy, by using different first-order time discretization schemes. The timestep is Δt = 10−3 and the resolution of

the phase space resolution is doubled from N = M = 23 to N = M = 26 modes as reported in the first column.

Second-order Second-order Second-order

N , M BDF basic method
∣∣Q(K)

N,M −Q
(0)
N,M

∣∣ BDF method
∣∣Q(K)

N,M −Q
(0)
N,M

∣∣ WENO-based
∣∣Q(K)

N,M −Q
(0)
N,M

∣∣
(61) method

23 9.57 10−2 3.45 10−6 9.57 10−2 4.88 10−14 3.13 10−1 1.68
24 4.99 10−3 4.62 10−6 4.99 10−3 7.90 10−14 1.14 10−1 1.17 10−1

25 1.63 10−5 4.92 10−6 2.03 10−3 2.66 10−15 1.72 10−2 3.86 10−2

26 1.63 10−5 5.46 10−6 1.61 10−5 5.68 10−14 8.81 10−4 1.96 10−3

Table 6

Relative errors in the L2(Ω) norm at time T = 1 between the exact and the numerical distribution functions, together with

mass discrepancy, by using different second-order time discretization schemes. The timestep is Δt = 10−3 and the resolution

of the phase space resolution is doubled from N = M = 23 to N = M = 26 modes as reported in the first column.

One-step first- One-step first- First-order

Δt order basic scheme
∣∣Q(K)

N,M −Q
(0)
N,M

∣∣ order scheme
∣∣Q(K)

N,M −Q
(0)
N,M

∣∣ WENO-based
∣∣Q(K)

N,M −Q
(0)
N,M

∣∣
(55) scheme

0.04 8.77 10−2 1.31 10−1 8.86 10−2 4.44 10−15 1.39 10−1 8.67 10−2

0.02 4.29 10−2 6.40 10−2 4.24 10−2 1.15 10−14 6.91 10−2 2.46 10−2

0.01 2.12 10−2 3.16 10−2 2.07 10−2 3.55 10−15 3.50 10−2 6.85 10−3

Table 7

Relative errors in the L2(Ω) norm at time T = 1 between the exact and the numerical distribution functions, together with

mass discrepancy, by using different first-order time discretization schemes. The timestep is Δt = 10−3 and the resolution of

the phase space resolution is doubled from N = M = 23 to N = M = 26 modes as reported in the first column. To ease the

comparison, in this table we reproduced the second column of Table 1 and the fourth column of Table 3 in the same positions.

L2(Ω) norm with respect to the manufactured solution at time T = 1, and the mass discrepancy at the final
time (i.e., after K time iterations), i.e., ∣∣∣Q(k)

N,M −Q
(0)
N,M

∣∣∣ , (78)

where Q
(k)
N,M is defined in (71). All the calculations are carried out by using the timestep Δt = 10−3, which

implies K = 1000.
Table 7 compares the behavior of the our first-order method and the one proposed in [44] when we refine

the timestep for an assigned space-velocity resolution (N = M = 25). Here, we compare again the relative
error in the L2(Ω)-norm and the mass discrepancy.

From these results, it is clear that the spectral approximation normally provides better accuracy than the
WENO-interpolation and that the number of particles is conserved up to the machine precision. The results
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concerning the electric field, which we do not show here, are in perfect agreement with those relative to the
numerical distribution functions.

In terms of computational costs, it is not easy in general to compare spectral methods with local type
techniques. This case is however rather clear. Derivatives with Fourier spectral methods can be implemented
by using the FFT, which implies a cost of the order of N logN (for N = M). Therefore, by applying the
derivative matrices as entire blocks (and not as explicit matrix-vector multiplications as shown in (61))
the number of arithmetic operations that are needed to compute the updated coefficients turns out to be
proportional to N2 logN (for N = M). Instead, the cost of the WENO interpolation grows as N2 (N being
the global number of grid points), but the proportionality constant depends on the square of the number
of grid nodes involved in each local one-dimensional stencil. Therefore, there is no real difference between
the computational complexity of the two methods. Nonetheless, the overall comparison between them is
certainly favorable to our schemes, since our approach provides better accuracy at the same cost and better
preserves relevant quantities as such mass, momentum and energy.

7.2. Two-stream instability

In the two-stream instability problem, we set Ωx = [0, 4π], Ωv = [−5, 5] in (4), (5), (6), (7). The initial
guess is given by:

f̄(x, v) =
1

2α
√
2π

[
exp

(
−

(
v − β

α
√
2

)2
)

+ exp

(
−

(
v + β

α
√
2

)2
)]

[1 + ε cos (κx)] , (79)

with α = 1/
√
8, β = 1, ε = 10−3, κ = 0.5. The exact solution is approximated by periodic functions in the

variables x and v. We integrate in time up to time T = 30 using the second-order one-step scheme (67) with
timestep Δt = 10−2. This value is sufficiently small to guarantee stability, since the CFL condition (70)
requires Δt to be proportional to 1/max{N,M}. The results of our simulations are presented in Figures 3,
1, 2, 4 and 5. In particular, in Figure 1, calculations are carried out for different values of the discretization
parameters N and M . The plots on the left show the interpolations of the initial solution (79) with respect
to the variable v at x = 0. Only in the top one there is a little disagreement, since the degrees of freedom
look not sufficient, which has, of cour se, a negative reflection on the final solution. The plots on the right
show the corresponding numerical distribution at the final time T = 30. The choice N = M = 25 already
gives reliable approximation results but to completely eliminate the wiggles it is recommendable to increase
M up to 27. Note, however, that the global number of degrees of freedom 25 × 27 = 32× 128 is rather low.

In Figure 2, we plot the time evolution of the (log of the) first Fourier mode of the electric field E
(k)
N

in (54), for different values of the discretization parameters. According to (51), this is given by |â(k)1 |. In
particular, the plots show |â(k)1 | versus time, when N = 25, M = 27, Δt = 10−2 and T = 100. These results
are in agreement with the behavior expected from the theory. In particular, the slope of the numerical curves
in the initial part of the dynamics, where the two-streams instability starts developing, matches well the
slope predicted by the linear theory. The stability of the numerical method is shown by the “plateau” up to
the final time T = 100, which implies that the method is also suitable for long-time integration.

To study the capability of the proposed new schemes to preserve physical invariants, we compute the
variation with respect to the initial value of the mass discrepancy of Eq. (78) and the momentum discrepancy∣∣∣P (k)

N,M − P
(0)
N,M

∣∣∣ , (80)

where the formulas for the discrete number of particles Q
(k)
N,M and the discrete momentum P

(k)
N,M are defined

in (71) and (74), respectively. The results of this study are given in Figures 3 and 4, for different time-
marching schemes. The former figure shows the violation of the physical quantities defined above when we
consider the basic semi-Lagrangian scheme introduced in Section 3. The latter figure shows the result found
by applying the new semi-Lagrangian schemes of Section 4. The plots show (in a semi-log diagram) the
variation versus time of the number of particles and the momentum, with respect to their initial values,
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when N = 25, M = 27, T = 10 and Δt = 5 · 10−3. The schemes of Section 4 display excellent conservation
properties. Instead, we recall that the basic semi-Lagrangian scheme is very poor concerning this aspect. We

note that the variations of Q
(k)
N,M and P

(k)
N,M in the panels on top of Figure 4 are within the machine precision.

In the other panels of Figure 4, a weak growth in time is observed, probably due to the accumulation of
rounding errors.

While it is obvious that we cannot expect that total energy is conserved when using the basic Lagrangian
method, it may be worth investigating how the new semi-Lagrangian schemes behave in this respect. To
study the conservation of the total energy, we computed the relative variation of the discrete energy with
respect to the initial value: ∣∣∣E(k)

N,M − E(0)
N,M

∣∣∣∣∣∣E(0)
N,M

∣∣∣ , (81)

where E(k)
N,M is defined in (75). The results of Figure 5 show (in a semi-log diagram) the behavior of the above

quantities for different values of the timestep Δt, for N = 25, M = 27 and T = 10. Here, we implemented
the second-order BDF scheme and the third-order BDF scheme. The energy is not perfectly preserved, but
the discrepancy decays fast by diminishing Δt, according to the accuracy of the method. Indeed, these plots
show that the decay rate for the first scheme is quadratic, while that of the second scheme is cubic. It has
to be observed that this last method requires a more restrictive condition on the timestep. First of all, this
is true because of the smaller domain of stability of BDF high-order methods. Secondly, because in the
build-up of the method we trace back the characteristic curves of several multiples of Δt (see, for instance,
the second relation in (60)).

7.3. Landau damping

In the following numerical tests, the proposed numerical schemes are applied in order to capture the
Landau damping phenomenon. Landau damping is a classical kinetic effect in warm plasmas due to the
resonance of the particles with an initial wave perturbation. In this classical and well-studied example, the
continuous filamentation process in velocity space occurs.

We initialize the electron Maxwellian distribution with a suitable perturbation as follows:

f(0, x, v) =
1√
2π

[1 + γ cos (κx)] exp(−v2/2), (82)

where γ is the size of the perturbation and κ is the wave-number. For this test, we set Ωx = [0, 4π] and
Ωv = [−10, 10]. The size of Ωv ensures that the values attained by f at v = ±10 are negligible.

7.3.1. Linear Landau damping
In this example, we set γ = 0.01 and κ = 0.5 in (82). Here, the perturbation is small and therefore the

plasma behaves according to the linear Landau theory. The solution is computed up to time T = 40 by using
the second-order BDF scheme in time with Δt = 2.5 ·10−3 and N = M = 25 (left), N = 25, M = 27 (right).

Figure 6 shows the behaviour in time of the first Fourier mode of the electric field E
(k)
N (see |â(k)1 | in (54))

in the log scale. The recurrence phenomenon starting at time t ≈ 12 is clearly visible on the left plot, which
is due to an insufficient resolution of the velocity domain. This effect can be mitigated by increasing the
accuracy of the velocity approximation (we recall that we do not have any artificial dissipation term in these
schemes). The plot on the right actually shows how the method performs when M = 27 degrees of freedom
are used. A similar behavior has been observed also for the other discretization schemes proposed in this
paper. From our experiments it turns out that the values of the discretized distribution function are mainly
strictly positive up to a possible small tolerance. It may happen however that, in the interpolation process
(needed to visualize the solution at points that do not belong to the main grid), some negative values are
attained, due to the tendency of trigonometric polynomials to exhibit oscillations. We checked that this
phenomenon tends to disappear by increasing the number of degrees of freedom.

19



7.3.2. Nonlinear Landau damping
The initial distribution is again the function in (82), but this time we set γ = 0.5. The other parameters

are the same as in the linear Landau damping. Therefore, a larger amplitude of the initial perturbation is
used. In this situation, the Landau linear theory does not hold, because the nonlinear effects become relevant.
Nevertheless, several results obtained numerically are available in the literature, since the nonlinear Landau
damping is often used to assess the performance of Vlasov-Poisson solvers.

Figure 7 shows the plots at different times for the computation relative to the second-order BDF scheme.
In this example, we work with N = 25, M = 27, Δt = 2.5·10−3, and T = 40. In these plots, the filamentation
effect is clearly evident and it is due to the fact that we do not have any explicit artificial dissipation term
in the method. The one-step second-order scheme provides identical results when is applied with the same
parameters. However, the latter method has less restriction on the timestep than the former one (see also
the comments at the end of Section 7.2). Therefore, we can run the same simulation with Δt = 5 · 10−3.
The results are shown in Figure 8. Filamentation is still visible, but less evident probably because of some
numerical diffusion due to the choice of a larger timestep.

Finally, in Figure 9 we show the first Fourier mode of the electric field E
(k)
N in the log-scale computed

with the second-order BDF scheme for Δt = 2.5 · 10−3, and using N = 25, M = 27 on the right and
N = M = 25 on the left. Again, the different behavior when more degrees of freedom are used for the
velocity representation is deducible from the comparison of the corresponding curves.

7.3.3. Ion acoustic wave
We conclude the experimentation section by considering a truly multiscale example in kinetic plasma

physics, i.e., the evolution of an ion acoustic wave where both electrons and ions dynamics is considered.
In this example, the right-hand side of equation (3) depends on the distribution functions of electrons and
ions:

∂E

∂x
(t, x) =

∫
Ωv

fi(t, x, v)dv −
∫
Ωv

fe(t, x, v)dv. (83)

For the parameters of the calculation, we refer to [20]. In particular, we set Ωx = [0, 10], Ωv = [−5, 5] and
we initialize a perturbation in the electron distribution function (2) at t = 0 as:

fe(0, x, v) =
1√
2π

[1 + ζ cos (νx)] exp(−(v − v∗)2/2), (84)

while the ion distribution function in (2) is unperturbed and given by:

fi(0, x, v) =
1√
2πς

exp(−v2/(2ς)). (85)

The other parameters are: ζ = 6.76 · 10−5, ν = π/5, v∗ = 1.7, ς = (T ime/T emi)
1
2 where T e (resp.: T i) is

the electron (resp.: ion) temperature with T e/T i = 2 and me/mi = 1/25. Note that with these parameters
we consider the two-species Vlasov-Poisson system with a fixed temperature ratio (i.e. T e/T i = 2) and we
focus on the reduced mass ratio (me/mi = 1/25) instead of the real mass ratio (i.e. me/mi = 1/1836) that
corresponds to protons. The choice of the initial uniform drift velocity v∗ = 1.7 in the electron distribution
function (84) has been made to trigger the ion-acoustic wave instability.

Figure 10 shows the (log of the) first Fourier mode |â(k)1 | of the electric field |E(k)
N | versus time (left)

and the violation of the conservation of the total number of particles (right) as defined in (78). Figure 11
shows the violation of the conservation of the number of electrons (left) and ions (right). These results were
obtained by applying the second-order BDF time-marching scheme to solve the two-species Vlasov-Poisson
system with the following parameters: T = 200, Δt = 10−3, N = 24 and M = 27. The results are as expected
and show that our algorithm can handle this kind of examples. In particular, we note that both the total
number of particles and, separately, the number of electrons and ions, are conserved up to a factor of 10−10.
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8. Conclusions and further comments

In this paper, a class of novel numerical methods for the Vlasov-Poisson system of equations has been
designed, developed, and investigated experimentally. These methods are based on a spectral approximation
in the phase space within a semi-Lagrangian framework, using first-order or second-order accurate approxi-
mations of the characteristics curves. A single-step second-order method is thus obtained without resorting
to any splitting type technique. Other high-order time discretizations, based on the backward-characteristic
approach, have also been proposed and studied. These are obtained by adopting second-order and third-
order multi-step Backward Differentiation Formulas (BDF). Furthermore, conservation properties have been
also investigated. The performance of these methods has been assessed through a manufactured solution and
standard benchmark problems in plasma physics such as the two stream instability, the Landau damping
and the ion acoustic wave.

The algorithms proposed in this paper are reliable and show good accuracy at a relatively low computa-
tional cost. In principle, we can build schemes in time of any order of approximation by taking advantage of
the infinite degree of accuracy of spectral methods for the variables x and v. The possibility of differentiating
polynomials in x and v without introducing any sort of approximation is a strong point in favour of our
new approach, not only for the high potentialities in accuracy but for the use that can be made in properly
designing time-stepping schemes. Note that the backtracking of the characteristic lines with arbitrary level
of accuracy (as in Eq. (18), concerning the second order) can be performed with no error with respect to
the phase space variables. This is true either before discretizing in x and v, or after that.

Although other techniques can be used to advance in time, the ones here analyzed (in particular the BDF
methods) preserve in natural way mass and charge without additional requests. However, the predictor-
corrector procedure with local mass conservation proposed in [57] could be adapted as well to our context.
In contrast, other high-order techniques as, for example, those based on multidimensional WENO-type
reconstructions, may not enjoy local mass conservation (see [44]) and, for this reason, could be less appealing.

As a general rule, the solution in time tends to become more complex as time advances, so that requiring
some special treatment of the high-frequencies to avoid instabilities and/or unphysical behaviors, due to
their nonlinear recombination. A possibility is the addition of a suitable numerical dissipation. By the
way, there are several ways to add diffusion and this should be done in the best possible fashion, without
destroying the prerogatives of the schemes, such as the conservation properties. A choice is to convert at
each time-step the point-wise approximation into the frequency space (this is a standard process in view of
implementing the Discrete Fourier Transform) and use some filtering procedure, as the artificial dissipation
operator suggested for instance in [13]. Different other approaches are however viable. Dissipation certainly
helps and it is relatively easy to handle numerically. However the real question is to find the right balance
that allows to stabilize the method and get rid of the polluting high-frequency components, using viscosity
in minimal amount (a process which is, unfortunately, often related to a decay of energy). A careful study
of suitable diffusion terms would bring us too far in the exposition. The treatment of this issue would
considerably move the interest of the present paper towards different horizons. A rigorous discussion will be
certainly the goal of future papers.
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Fig. 1. Two-stream instability test: interpolation with respect to v of the initial solution (79) at time t = 0 and x = 0 (left

plots); approximated distribution function in the domain Ω = Ωx×Ωv at time T = 30 (right plots). The second-order one-step

time-marching scheme is implemented with Δt = 10−2 and N = M = 24 (top), N = M = 25 (center) and N = 25, M = 27

(bottom).
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Fig. 2. Two-stream instability test: the first Fourier mode versus time, |â(k)1 |, of the electric field |E(k)
N | in (54), when using the

second-order one-step scheme, for N = 25, M = 27, Δt = 10−2 and T = 100. The plot on the left is an enlargement of the

graph in the time interval [0, 30].
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Fig. 4. Two-stream instability test: conservation of the number of particles (left) and momentum (right), when applying the

first-order one-step scheme (top), the second-order BDF scheme (center) and the third-order BDF scheme (bottom). The plots

show the variation with respect to the initial value. All calculations are carried out by choosing N = 25, M = 27, T = 10 and

Δt = 5 · 10−3. These plots must be compared with the plots of similar calculation using the basic semi-Lagrangian scheme

reported in Fig. 3.
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Fig. 7. Nonlinear Landau damping test: approximated distribution functions obtained by using the second-order BDF scheme,

with N = 25, M = 27 and Δt = 2.5 · 10−3. No significant difference is visible by comparing these plots with those provided by

the one-step second-order scheme with the same parameters.
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Appendix A. Derivation of Eq. (40)

Applying (39) to Ψ(x, v) = B
(N)
i (x)B

(M)
j (v), where (x, v) = (x̃nm, ṽnm) is defined in (37) and (38), we

obtain:
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Using (27), (33) and (34), we rewrite (A.1) as:

B
(N)
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Afterwards, we substitute (A.2) in (29), obtaining:
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This last equation in compact form is equivalent to equation (40).

Appendix B. Second order consistency of scheme (61)

The check follows from standard Taylor expansions.
To illustrate how the proof works, let us consider, for example, a generic function u(t, x) along the

characteristic curve x(t), i.e., u(t, x(t)). Then, consider the Taylor expansions of u(t, x(t)) taken at two
consecutive timesteps t+Δt and t+ 2Δt:

u(t+Δt, x(t+Δt)) = ū+ ūtΔt+ ūxΔx+O(Δt2),

u(t+ 2Δt, x(t+ 2Δt)) = ū+ ūt

(
2Δt

)
+ ūxΔ2x+O(Δt2),

where the subscript denotes partial differentiation and

Δx = x(t+Δt)− x(t) = x̄tΔt+O(Δt2),

Δ2x = x(t+ 2Δt)− x(t) = 2x̄tΔt+O(Δt2),

and all overlined quantities, ū, ūt, ūx, and x̄t, are evaluated at (t, x(t)). Finally, by combining the above
expansions with the BDF-2 coefficients, which are 1,−4/3, 1/3, we get

u(t+ 2Δt, x(t+ 2Δt))− 4
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ūt + x̄tūx

)
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since the first term in the right-hand side is zero because u is constant along the characteristic curves:

du

dt

∣∣∣∣
(t,x(t))

= ūt + x̄tūx = 0.

The extension to more variables is simple. The same argument and similar calculations make it possible to
prove the third order of accuracy of the third-order BDF method.

Appendix C. CFL condition for the proposed second-order BDF scheme

By setting g = 0, we can write Eq. (61) in vector form:
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3
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2
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= 0, (C.1)

where

D(N,M) = D(N)
x ⊗ diag{vm} − diag{E(k)

N } ⊗D(M)
v

comes from a tensor product involving the differentiation matrices D
(N)
x = {d(N,1)

ni } and D
(M)
v = {d(M,1)

mj }.
According to [49, page 31] the eigenvalues of D

(N)
x and D

(M)
v are purely imaginary. In the first case, the

eigenvalues are iσ with −N/2 + 1 ≤ σ ≤ N/2− 1, for σ = 0 having multiplicity 2. Similarly, in the second
case, the eigenvalues are iτ with −M/2 + 1 ≤ τ ≤ M/2− 1, for τ = 0 having multiplicity 2.

It turns out that the generic eigenvalue λ of D(N,M) is complex and can be bounded in the following way

|λ| ≤ 1

2

(
N max

m
|vm|+M max

n
|E(k)

N (xn)|
)
. (C.2)

The amplification factor ρ associated with Eq. (C.1) satisfies the second degree equation

ρ2 − 4

3
(1−Δtλ)ρ+

1

3
(1− 2Δtλ) = 0.

Explicitly, we have

ρ =
2

3
(1−Δtλ)± 1

3

√
1− 2Δtλ+ 4(Δtλ)2 =

2

3
(1−Δtλ)± 1

3
(1−Δtλ) +O(Δt2).

Here we recognize the quantity ρ = (1 − Δtλ), corresponding to the branch of solution converging to the
exact one, for Δt tending to zero. Note that the Von Neumann stability condition is satisfied, although
we are not in presence of absolute stability. The second branch of solution, related to ρ = 1

3 (1 − Δtλ), is
spurious and must tend to zero as the number of iterations increases. By imposing |ρ| to be strictly less than
one, we find that Δt should be less than a constant multiplied by 1/|λ|. Considering the estimate (C.2), a
sufficient condition for having |ρ| < 1 is analogous to (70). The domains of stability of the BDF methods
are approximately equal in shape and dimensions. The CFL condition is the result of requiring the product
λΔt to fall inside the stability region. Therefore, the analysis done for the second-order method is easily
extended (up to some multiplicative coefficient) to all the other BFD methods, whatever is the order.
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