
13/07/2024 10:03

Unleashing Fine-Grained Parallelism on Embedded Many-Core Accelerators with Lightweight OpenMP
Tasking / Tagliavini, G; Cesarini, D; Marongiu, A. - In: IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS. - ISSN 1045-9219. - STAMPA. - 29:9(2018), pp. 2150-2163.
[10.1109/TPDS.2018.2814602]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2814602, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), NO. X, MONTH YEAR 1

Unleashing Fine-Grained Parallelism
on Embedded Many-Core Accelerators

with Lightweight OpenMP Tasking
Giuseppe Tagliavini, Member, IEEE, Daniele Cesarini, Andrea Marongiu, Member, IEEE

Abstract—In recent years, programmable many-core accelerators (PMCAs) have been introduced in embedded systems to satisfy
stringent performance/Watt requirements. This has increased the urge for programming models capable of effectively leveraging
hundreds to thousands of processors. Task-based parallelism has the potential to provide such capabilities, offering high-level
abstractions to outline abundant and irregular parallelism in embedded applications. However, efficiently supporting this programming
paradigm on embedded PMCAs is challenging, due to the large time and space overheads it introduces. In this paper we describe a
lightweight OpenMP tasking runtime environment (RTE) design for a state-of-the-art embedded PMCA, the Kalray MPPA 256. We
provide an exhaustive characterization of the costs of our RTE, considering both synthetic workload and real programs, and we
compare to several other tasking RTEs. Experimental results confirm that our solution achieves near-ideal parallelization speedups for
tasks as small as 5K cycles, and an average speedup of 12× for real benchmarks, which is ≈ 60% higher than what we observe with
the original Kalray OpenMP implementation.

Index Terms—Heterogeneous Embedded Systems on Chip, Programmable Many-Core Accelerators, Tasking, OpenMP.

F

1 INTRODUCTION

Over the past decades, multi-core processors hit both high-
performance computing (HPC) and embedded systems (ES)
markets. The ever-growing computational capabilities and
the related exponential increments in power consumption
have progressively paved the way for the introduction of
many-core systems and, ultimately, heterogeneous systems
based on programmable many-core accelerators (PMCA) in
both domains [1] [2] [3]. Embedded multi-processor on-chip
systems (MPSoC) are increasingly adopting this paradigm,
where a general-purpose host processor is coupled to a
PMCA, onto which highly-parallel portions of an applica-
tion can be offloaded to improve overall performance/watt.

In the heterogeneous computing paradigm, applications
are split into multiple tasks that run in parallel on different,
non-homogeneous cores, exacerbating an important chal-
lenge already faced by HPC designers at the multi-processor
system scale: the extraction of parallelism from applications
[4] [5]. This clearly complicates application development
and raises the need for parallel programming models ca-
pable of effectively leveraging hundreds to thousands of
processors. As the complexity of software increases, it is
widely acknowledged that totally laying the burden of han-
dling performance scalability issues on the programmers is
unfeasible. Application designers should focus on outlining
available parallelism in an application, while efficient distri-

G. Tagliavini and D. Cesarini are with the Department of Electrical, Elec-
tronic, and Information Engineering (DEI) of the University of Bologna, Italy.
Email: {giuseppe.tagliavini, daniele.cesarini}@unibo.it
A. Marongiu is with the Department of Informatics, Science, and Engineering
(DISI) of the University of Bologna, Italy. Email: a.marongiu@unibo.it
This work was partially supported by the EU FP7 project P-SOCRATES (g.a.
611016) and by the EU Horizon 2020 RIA project HERCULES (g.a. 688860).

bution of parallel tasks on a PMCA should be controlled by
system software libraries and runtime environments (RTE).

Task-based parallelism (a.k.a. tasking) has the potential to
provide such features, as it provides a powerful conceptual
framework to exploit irregular parallelism in target applica-
tions [6]. In the HPC domain, parallel programming models
such as Cilk++, Intel TBB, Apple GCD have demonstrated
the effectiveness of tasking at simplifying application devel-
opment. OpenMP, in particular, evolved over the years from
a thread-centric programming style to include the concepts
of task parallelism [7] and computation acceleration. Due
to its ease-of-use and its friendly directive-based program-
ming interface, OpenMP eventually became one of the most
known and widely adopted parallel programming mod-
els in HPC, representing the de-facto standard for shared-
memory systems.

The advantages of adopting OpenMP in the context of
embedded systems have been discussed in a large literature
body, highlighting the feasibility of implementing its se-
mantics in RTEs sitting on top of resource-constrained mid-
dleware or bare-metal [8] [9] [10] [11]. Recent research has
highlighted that the OpenMP tasking model has an addi-
tional advantage for real-time embedded systems software
development, in that it retains certain similarities to the
formalisms used to describe real-time applications (e.g., task
graphs), which makes it a very appealing approach to fulfill
both needs for a programming model for embedded PMCAs
and a methodology to employ state-of-the-art techniques
for scheduling with timing guarantees [12] [13] [14] [15]
[16]. However, a space- and performance-efficient design of
a tasking RTE targeting MPSoCs is a challenging task, as
embedded parallel applications typically exhibit very fine-
grained parallelism. Indeed, while time overheads in task-
based programs are very relevant also in the HPC domain

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2814602, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), NO. X, MONTH YEAR 2

[17] [18] [19], the granularity of HPC tasks is typically orders
of magnitude coarser than that of embedded real-time tasks
[20] [21], which inherently tolerates much larger overheads.
Space (i.e., memory footprint) overheads are generally not
at all a concern in HPC software, which poses to RTE
designers much less stringent constraints concerning the
choice of the support data structures and algorithms that
can be employed.

State-of-the-art tasking RTEs for embedded PMCAs [20]
[9] succeed in achieving low overheads and enabling high
speedups for very fine-grained tasks, but only for simple
single-level parallel patterns (where all the tasks are created
from the same parent task). The reason for this limitation lies
in a key design choice: only tied tasks are supported. A tied
task is a schedulable work unit with a specific constraint:
when a tied task is suspended (due to synchronization,
creation of another task, etc.) only the thread that initially
owned it is allowed to resume its execution. This clearly
limits significantly the available parallelism when more
sophisticated (and realistic) parallel execution patterns are
considered, like nested tasking (found, for example, in pro-
grams that use recursion). Another limitation that follows
from this design choice is the restricted set of scheduling
policies available. Breadth-first scheduling (BFS) and Work-
first scheduling (WFS) are the two most widely used policies
for distributing tasks among available threads. When tied
tasks are used, BFS is the only choice in practice, as WFS
leads to a complete sequentialization of task executions
when nested parallelism is adopted.

In this work we describe a lightweight OpenMP tasking
RTE design for a state-of-the-art embedded PMCA, the
Kalray MPPA 256 [22]. To overcome the limitations dis-
cussed above, our solution enables the untied task model.
When suspended, untied tasks can be resumed by any avail-
able thread, thus significantly increasing the potential for
parallelism exploitation. As a consequence, our solution also
enables support for WFS. Supporting untied tasks requires
major modifications to the RTE and potentially heavyweight
ones, as we replace a simple BFS loop based on function
calls with more sophisticated mechanisms for task context
switching among multiple threads. We provide a detailed
and insightful discussion of the key design choices that
minimize the cost for such modifications. Cutoff policies,
which consist of mechanisms to prevent the saturation of
runtime resources when task production rate is higher than
the consumption rate, are also evaluated, as they proved
to be among the most effective RTE features to reduce the
overhead associated to untied task management in such
scenarios.

As an additional contribution, we provide an exhaus-
tive characterization of the costs of our lightweight tasking
RTE, considering both synthetic workload (to sweep along
the key tunable parameters in real applications, and stress
relevant corner cases) and real programs from the Barcelona
OpenMP Task Suite (BOTS) [23]. The key findings can be
summarized as follows:

1) careful design of untied task support enables near-
ideal speedups for very fine-grained (around 5K
cycles), single-level task parallelism, on a par with
much simpler RTEs only supporting tied tasks [20];

2) cutoff policies enable the same near-ideal speedups
in (typically much costlier) recursive (nested) task
creation patterns for tasks of the same small size
(around 5K cycles);

3) WFS enables significantly higher speedups (up to
60%) than BFS when untied tasks are used in recur-
sive patterns;

4) parallel execution of the BOTS benchmarks on 16
Kalray cores is on average 12× faster than single-
core execution with our RTE. This speedup is ≈ 60%
higher than what we observe when running the
same programs with the original Kalray OpenMP
implementation.

In addition, we compare our RTE design to several
others from the HPC domain, and demonstrate that our
solution is one order of magnitude more efficient than the
second best, in terms of task granularity for which nearly-
ideal speedups are achieved. This is a key result, as it
practically makes untied tasks an effective parallelization
abstraction for embedded PMCAs.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III describes the Kalray
MPPA-256 Bostan platform, the target architecture of this
work. Section IV introduces the fundamental notions of
OpenMP tasking, a formal analysis of the limitations of tied
tasks and the basic infrastructure for task execution. Section
V describes support for tied and untied tasks, providing an
in-depth discussion of the supported features and the key
design choices. Section VI discusses experimental setup and
results. Section VII discusses conclusive remarks.

2 RELATED WORK

Tasking has been successfully used in the HPC domain
to parallelize complex algorithms leveraging sophisticated
control structures.

Cilk [24] and Cilk++ [25] extend standard C and C++ with
custom keywords. The liveness of Cilk tasks is determined
by their lexical scope, which enables the compiler to allocate
task descriptors on the stack avoiding the overhead of
dynamic allocation. This reduces time and space overheads
of the runtime, but it also restricts how tasks can be specified
(in particular only function calls can be annotated). Intel
TBB [26] is a C++ template library that introduces tasks as
an abstraction to decouple parallel workload from the un-
derlying threads. The creation of tasks is made transparent
to the programmer by means of generic parallel patterns.
Both Cilk and TBB save task descriptors in data structures
which are local to the running thread to avoid the overhead
of a concurrent data structure. A work-stealing policy [27]
guarantees load balancing across threads.

Apple GCD [28] is a low-level API supporting C-family
languages. GCD enables to describe tasks either as a func-
tion or as a syntactic block. A programmer adds a task to a
specific dispatch queue and the GCD scheduler decides which
thread to assign it to. GCD is fully integrated with the OS
scheduler, which decides how much parallelism is required
based on available system resources.

Wool [19] is a C library supporting fine-grained task
parallelism by exposing a user-level task scheduler. Wool in-
troduces two main macros to support programmers, SPAWN

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2814602, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), NO. X, MONTH YEAR 3

and SYNC, which are equivalent to the Cilk keywords. The
work-stealing policy is also similar to Cilk and TBB, but
overall Wool provides more tuning parameters (e.g., the
maximum arity of spawned functions). Wool is explicitly
designed to provide minimum overhead for tasking sup-
port1, and as such it does not depend on any specific system
library or other legacy code. Unlike the rest of the discussed
HPC programming models, this would make it easy to
implement Wool on top of embedded real-time operating
systems and/or middleware. However its programming
style is extremely low-level, which has hindered its adop-
tion.

OpenMP can be considered the de-facto standard for
shared-memory parallel programming, thanks to its easy-to-
use and intuitive directive-based interface. Since the spec-
ifications version 4.0 [29] OpenMP features sophisticated
support for task parallelism with dependencies. Researchers
have actively explored the effectiveness of OpenMP tasks
in the context of HPC applications and systems [30] [31]
[32] [32] [33]. Tasking is an appealing programming model
for embedded PMCAs as well, not only because of the
powerful conceptual framework it provides to abstractly
outline parallelism at the algorithmic level, but also because
of its closeness to traditional abstractions used in real-time
scheduling analysis for embedded software development
[12] [13] [14] [15] [16].

While OpenMP has gained much attention also in the
embedded domain [8] [9] [10] [11], most of the work in
this area only focuses on the core functionality provided
before the introduction of tasks [34] [35]. Not much work has
been done so far on demonstrating the benefits of tasking
for fine-grained embedded workloads [21] or for proposing
lightweight and efficient tasking implementations for em-
bedded MPSoCs.

The overheads implied by the sophisticated OpenMP
tasking execution model are the key limiter for its adoption
in the embedded domain.

Burgio et al. [20] have developed streamlined OpenMP
tasking support for a shared-memory, multi-core cluster,
showing that their approach allows for near-ideal speedups
when leveraging tasks as fine-grained as a few thousand
cycles. The major limitation of this proposal lies in the
fact that only tied tasks are supported, which substantially
decreases the performance of irregular applications.

Agathos et al. [36] describe OpenMP support for the
STHORM platform, where it is also mentioned support
for tasks. The authors discuss the need for a less feature-
rich implementation compared to HPC counterparts [31], to
meet memory size restrictions, which implies the support
of tied tasks only. The experimental results discuss only
traditional loop parallelism, with no analysis on the benefits
and costs of tasks.

Vargas et al. [37] present a lightweight runtime for
OpenMP v4. The focus of this work is on discussing timing-
predictability extensions to OpenMP, and the contribution
is centered on presenting the compiler support to extract
a task dependency graph for off-line application analysis
and the runtime data structures and algorithms required to

1. As shown in our experimental results section, Wool is the only
programming model from the HPC domain that has comparable per-
formance to our solution.

CC

IOC

IOC C0 C2 C3 PCIe

ETH

DDR
C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

SHMEM

DMA NOC IFMC

C0

C1

C2

C3

C1

C0 C2 C3C1

C0

C1

C2

C3

CC CC CC

R R R R

CC CC CC CC

R R R R

CC CC CC CC

R R R R

CC CC CC CC

R R R R

R R R R

IF IF IF IF

IF IF IF IF

IF

IF

IF

IFPCIe

IF

IF

IF

IF

ETH

DDR

e

0

C1

C2

C3

R

IIFF

II

IIFF

ETH

DDR

Fig. 1. Kalray MPPA-256 Bostan (block diagram).

implement the static task schedule. As such, the work is
fully orthogonal to what we present.

Overall, the main limitation of the few OpenMP im-
plementations targeting embedded systems is the lack of
support for untied tasks and nested parallel patterns, which
are the ones for which task-based parallelism is most ben-
eficial. Our work addresses these shortcomings and pro-
poses a lightweight tasking RTE capable of enabling near-
ideal speedups for recursive parallel patterns employing
very fine-grained tasks. Different from previous work, we
provide an exhaustive characterization of OpenMP tasking
overheads, with both synthetic and real-life benchmarks
running on a state-of-the-art embedded PMCA. We also
show a comparison with other tasking runtimes (in Section
6.3) to highlight benefits and drawbacks of our solution.

3 TARGET ARCHITECTURE

Embedded MPSoCs have historically relied on architectural
heterogeneity for better energy efficiency, integrating on
the same chip processors with different ISAs and various
hardware acceleration blocks [38] [39] [35] [40]. Recently,
a dominating heterogeneous design paradigm is that of
coupling a general-purpose host processor to a PMCA.

To allow the efficient on-chip integration of hundreds of
cores, PMCAs rely on optimized computing clusters as their
key building block. Specifically, these products consider a
hierarchical design, where simple processing units (PU) are
grouped into small/medium-sized subsystems (the clusters)
sharing high-performance local interconnection and mem-
ory. Scaling to larger system sizes is enabled by replicating
clusters and interconnecting them with a scalable medium
like a network-on-chip (NoC).

As a concrete embodiment of such architectural tem-
plate, we consider in this paper the Kalray MPPA-256
Bostan platform [22]. The MPPA-256 is a single-chip many-
core processor manufactured in 28 nm CMOS technology
for compute-intensive embedded applications, based on
the MPPA (Multi-Purpose Processor Array) technology by
Kalray. This product features 256 accelerator processors on
a single die – plus 32 control cores – and it is composed of an
array of 16 computing clusters (CC) and 2 I/O clusters (IOC)
connected through a high-speed NoC. Figure 1 depicts the
structure of a MPPA-256 Bostan chip.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2814602, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), NO. X, MONTH YEAR 4

Each compute cluster is composed of 16 identical cores
(C0-C15), each featuring private L1 instruction and non-
coherent data caches, plus a local management core (MC)
and a shared L2 memory (2 MB). Inter-processor com-
munication happens through this shared memory, which
leverages a multi-bank design enabling low latency access.
To reduce the probability of conflicts due to simultaneous
accesses, the interconnect is capable of implementing cache-
line-level address interleaving. It is also possible to config-
ure the routing for contiguous addressing, which is useful
to implement partitioned access to different memory banks
from different cores. Communication to other clusters or
to the main system memory can only happen via DMA
transfers through the NoC, which provides a full duplex
bandwidth of up to 3.2 GB/s between adjacent clusters.

Each I/O cluster includes two quad-core processors,
which we refer to as the host throughout the paper. Any pro-
gram is started on the I/O cores, which are then responsible
to properly offloading computation to the clusters. These
cores are based on the same VLIW architecture adopted
within computing clusters. The MPPA-256 Bostan processor
communicates with external devices through I/O clusters
located at the periphery of the NoC. The I/O clusters
implement various standard interfaces, including two DDR3
channels (64-bit with optional ECC, up to 12.8 GB/s), two
PCIe Gen3 X8 and two Ethernet controllers.

4 BACKGROUND

In this section we provide background information related
to the OpenMP tasking model and the basic design choices.

4.1 Basic Notions of OpenMP Tasking
OpenMP historically relied on a fork/join (FJ) parallel ex-
ecution model. The program starts with a single thread
of execution (the master); when a parallel construct is
encountered, n − 1 new threads (n being specified with
the num_threads clause) are forked and recruited into a
parallel team. At the end of the parallel region (the boundaries
of which are identified by the lexical scope of the parallel
construct), an implicit barrier region is encountered, where
the threads are joined. Several worksharing constructs are
provided to specify how the parallel workload is distributed
among threads. Since the specification version 3.0, on top of
the FJ model OpenMP provides support for task-based par-
allelism, which is our focus. With the specification version
4.0 [29] support for task dependencies has been added.

When a thread encounters a task construct, a new task
region is generated from the code contained within the task.
Additional data-sharing clauses specify an associated data
environment, while the execution of the new task can be
assigned to one of the threads in the team, based on ad-
ditional task-scheduling clauses that specify i) dependencies
among tasks; ii) immediate or deferred execution (overrides
default scheduling policy); iii) tied or untied task type (to
the thread that first encounters the task creation point).

All tasks bound to a given parallel region are guaranteed
to have completed at the implicit barrier region at the end
of the parallel region, as well as at any other barrier region
associated to an explicit barrier construct. Synchroniza-
tion over a subset of explicit tasks can be specified with

#pragma omp parallel \\
num_threads(2)

{

…

#pragma omp task
for (i=1; i<=3 i++)

#pragma omp task
{ … }

#pragma omp task
{ … }

…

}

for (i=1; i<=3 i++)

#pragmgg a ompmm task

p g p

T1

{ … } T2

{ … }

p g p

T
1i

T
11

T1 T
12

T1 T
13

T1

T2 idle

thread 0

thread 1

T
11

T1 T
12

T1

T
13

T1T2

thread 0

thread 1

scheduling of tied tasks

scheduling of untied tasks

d tasks

TT1T2

TT1TT1

Fig. 2. Example of an OpenMP program using the task construct. The
timing charts on the right side show the different scheduling outcome
when applying the WFS policy to tied (top right) or untied (bottom right)
tasks.

the taskwait construct, which forces the encountering task
to wait for all its first-level descendants to complete before
proceeding.

OpenMP defines task scheduling points (TSP) in a pro-
gram, where the encountering task can be suspended and
the hosting thread can be rescheduled to a different task.
When a tied task is suspended, it can later only be resumed
by the same thread that originally started it (i.e., the task
region is tied to the executing thread). Untied tasks are not
bound to any thread and so in case they are suspended they
can later be resumed by any thread in the team. TSPs occur
upon (1) task creation and completion, (2) task synchroniza-
tion points such as taskwait, (3) thread synchronization
points such as explicit and implicit barriers2. When a thread
encounters a TSP it can begin the execution of a new task,
or resume a previously suspended one, provided that task
scheduling constraints (TSC) are fulfilled.

Among TSCs, the second one reported in the specifi-
cation (TSC#2) is particularly relevant to this work, as it
limits the flexibility of tied task scheduling. TSC#2 recites:
Scheduling of new tied tasks is constrained by the set of task
regions that are currently tied to the thread, and that are not
suspended in a barrier region. If this set is empty, any new
tied task may be scheduled. Otherwise, a new tied task may be
scheduled only if it is a descendant task of every task in the set.

Tied tasks are the default in OpenMP, as they attempt
to establish a trade-off between ease of programming3

and scheduling flexibility [7]. Their scheduling constraints,
however, pose relevant limitations to the achievable perfor-
mance, as we explain in the next section. It is worth men-
tioning that the limitations of tied tasks have been pointed
out also in the context of providing timing guarantees via
schedulability analysis to OpenMP programs [41], as they
prevent the implementation of work-conserving schedulers.

2. For the sake of simplicity we restrict our discussion to the most
relevant TSPs, for the full list the interested reader is referred to the
OpenMP specifications.

3. Using untied tasks has the potential for significantly increasing the
achievable parallelism, but comes at the cost of a higher programming
effort (the programmer is responsible for avoiding issues such as
deadlock, thread-private memory, etc.).

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2814602, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), NO. X, MONTH YEAR 5

taskwait

Fig. 3. a) A blocking pattern (BP) using tied tasks. The longest-lived descendant
of task ni determines blocking time of thread ty . b) Thread ty in a BP cannot
participate in executing recursive useful work (RUW), thus limiting parallelism.

LLLL

Fig. 4. Worst-case scenario for the performance loss due to thread
blocking (t = 16).

4.2 Limitations of tied tasks

The two most widespread scheduling approaches for task-
based programming models are Breadth-first scheduling (BFS)
and Work-first scheduling (WFS). Upon encountering a task
creation point: i) BFS will push the new task in a queue
and continue execution of the parent task; ii) WFS will
suspend the parent task and start execution of the new
task. BFS tends to be more demanding in terms of memory,
as it creates all tasks before starting their execution (and
thus all tasks coexist simultaneously). This is an undesirable
property – in general – and in particular for the resource-
constrained systems that we target in this work, which
makes WFS a better candidate. WFS also has the nice
property of following the execution path of the original
sequential program, which tends to result in better data
locality [32].

Figure 2 shows the behavior of WFS if used in combina-
tion with tied and untied tasks. If all the tasks are generated
from a parent task T0, untied tasks will be distributed among
threads in a balanced manner thanks to the capability of the
system to resume a suspended task on a different thread. If
tied tasks are used, at each creation point the parent task will
be suspended and the hosting thread will be rescheduled
to execute the child task. The suspended parent, however,
cannot be resumed on a different thread, which will lead to
a sequential execution.

Due to the fact that suspended tied tasks can only
be resumed by the thread that first started them (see
Section 4.1), using WFS leads to a null speedup. For this
reason, BFS is the only policy available for those OpenMP
implementations that only support tied tasks. However,
TSC#2 also limits the parallelism under BFS in certain
situations.

Limitations inherent to the execution model - Let us
consider the creation of a k-ary tree using tied tasks (implies
BFS), as depicted in Figure 3 (a). The root task ni performs
i) the creation of k descendants; ii) the execution of the task
workload; iii) a synchronization step (taskwait) to wait for
the termination of the direct descendants. Thread ty starts
the execution of tied task ni with duration di. As soon as
they are created, descendant tasks nj , nj+1, ..., nj+k−1 with
durations dj , dj+1, ..., dj+k−1 are assigned to k threads (tz ,
tz+1, ..., tz+k−1). If these descendant tasks are leaf nodes,
and at least one of the threads they have been mapped to is

still executing when ty reaches the taskwait placed after
ni, i.e.:

∃α ∈ [0, ..., k) | di < dj+α

then, because of the TSC#2, ty is blocked for a time equal
to maxα∈[0,...,k) {dj+α − di}, reducing the available paral-
lelism.

Figure 3 (a) illustrates the situation when thread blocking
happens due to TSC#2. However for thread blocking to
be detrimental to performance there need to be available
work to be done in the system that the blocked thread(s)
cannot execute. Performance loss due to thread blocking
happens, for example, when many tasks are created from
within a sibling recursive tree pattern, as shown in Fig-
ure 3 (b). Assuming that there are exactly k + 3 threads
available, under BFS these would be assigned to nodes
nh, ni, ni+1, nj , nj+1, ..., nj+k−1. In this case, all the tasks
belonging to the sibling sub-tree rooted at node ni+1 can
be executed by the free thread ty+1 and by the non-blocked
thread tx (the one that originally started the ancestor node
nh). Thread ty is blocked, and cannot participate in the
execution of these tasks until all the descendants of task ni

have completed (at worst, ty remains blocked for the entire
execution of the sub-tree rooted at node ni+1). If we identify
the sub-tree rooted at node ni as the blocking pattern (BP),
and the sub-tree rooted at node ni+1 as the recursive useful
work (RUW), system-wide the worst case happens when:

1) there are multiple instances of the BP, each rooted
at a node that only has one descendant (i.e., several
blocked threads, only one task doing useful work
per blocking pattern);

2) only one extra thread – besides the one that origi-
nally started execution of the originating root task –
is available to execute the RUW.

Analytically, if t is the total number of threads in the
system, in the worst-case scenario there are t − 2 threads
involved in execution of the various BPs. Given that the root
node of each BP only has one descendant, there are exactly
(t− 2)/2 blocked threads in the system (the remaining half
is executing useful work in the leaf nodes). Figure 4 depicts
an instance of the worst-case scenario for t = 16. In this case,
the speedup loss can be computed as follows: Nodes from
n9 to n15 are the leaves from the BPs, and L is the height
of the RUW sub-tree having n8 as root. We assume that the
duration of all leaf nodes is dleaf , while the duration of all

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2814602, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), NO. X, MONTH YEAR 6

other nodes in the tree is dwork, and dleaf > dwork. Threads
executing nodes from n1 to n7 are blocked for dleaf − dwork

time units.
The number Nl of nodes at the l-th level of a balanced

k-ary tree can be computed as the sum of the first l terms of
a geometric series:

Nl =

l∑
i=0

ki =
1− kl+1

1− k
(1)

Considering that the RUW sub-tree in Figure 4 has L levels
(numbered from 0 to L − 1), its total number of nodes can
be computed as:

N =
L−1∑
l=0

Nl = 2L − 1 (2)

We can compute the total duration for a sequential
execution of the tree as:

Tseq = 9 · dwork + 7 · dleaf + (2L − 2) · dwork (3)

In detail, 9 · dwork is the duration of nodes from n0 to
n8, 7 · dleaf is the duration of nodes from n9 to n15, and
(2l − 2) · dwork is the duration of nodes from n16 to nN−1.

Considering a parallel execution with t threads, the time
required to execute nodes from n0 to n15 is dleaf 4. The RUW
sub-tree consists of all nodes of duration dwork < dleaf ,
thus each of the non-blocked threads can execute

⌈
dleaf

dwork

⌉
tasks from the RUW sub-tree while leaf nodes execute5.
Overall, after dleaf time units have elapsed, all the t threads
are available to execute what remains to be processed of the
RUW sub-tree. If we indicate the number of non-blocked
threads, available to execute the RUW sub-tree (rooted at
node n8) as t̂(n8), we can compute the following execution
time:

Tpar,subtree =

[
(2L − 2)− t̂(n8) ·

⌈
dleaf

dwork

⌉]
dwork

t
(4)

And the maximum speedup can be obtained as follows:

Tseq

Tpar
=

Tseq

dleaf +max {0, Tpar,subtree}
(5)

Assuming tied tasks, all the threads that started tasks
n1 to n7 are blocked, and so only t̂(n8) = 2 threads are
available until dleaf time units elapsed (those that started
n0 and n8). Assuming untied tasks, t̂(n8) = 9.

Considering the case of dleaf = l − 1, n = 5 and
t = 16 we can compute speedup values for both tied and
untied models using formulas 3 and 5. We get Stied = 9.57
and Suntied = 13.4, showing a significant gap in parallel
performance. We get a different result if we suppose to
add a synchronization point to leaf nodes, forcing the
termination of nodes from n8 to n15 to be concurrent with
the termination of the recursive sub-tree. This additional
constraint is equivalent to set dleaf = 2l−2

R + 1. In this

4. These nodes are assigned to as many threads, so they execute in
parallel, with the slowest dictating overall parallel execution time.

5. Note that dleaf is expressed in sec
leaftask

units and dwork is ex-
pressed in sec

RUWtask
units. Thus, their ratio is dimensionally a number

of RUW tasks.

case the asymptotic speedup of the two solutions is
liml→∞ Stied = 11.13 and liml→∞ Suntied = 16. This case
shows that the maximum parallelism of an application
can be limited by tied tasking regardless of the application
workload.

Implementation-induced limitations - Another important
source of inefficiency of tied tasks is due to a wide-spread
implementation choice to support their scheduling seman-
tics. Several OpenMP runtime implementations [42] [20]
[35] [43] further restrict TSC#2 by only allowing a new
tied task to be scheduled if it is a first-level descendant of
every suspended task. This choice is typically made to limit
the large space/time overheads implied when supporting
unmodified TSC#2 semantics. Being able to only track first-
level descendants at any time is much faster and requires a
much lower memory footprint.

On the other hand, this additional constraint further
exacerbates thread blocking in idle state, to the detriment
of the maximum achievable parallelism. Considering a
balanced k-ary tree, with identical duration for all nodes
(di = dwork, ∀i), each new tied task will be assigned to
a different thread, until the number of tasks is greater (or
equal) than the number of available threads t. The tree level
L at which this condition is verified is:

1− kL+1

1− k
≥ t

L = ⌈logk [1− t(1− k)]− 1⌉ (6)

All the threads allocated to execute a task at a level
0 ≤ l′ < L− 1 are blocked, since the descendant tasks at
level l′+1 are executed by different threads. The number of
these threads is:

B1 =
1− kL−1

1− k
(7)

The number of blocked threads at level L−1 depends on
the number of threads available to execute at level L, since
a thread is blocked if and only if all its children have been
executed by a different thread. This value is:

B2 =

⌊
t− kL−1 −B1

k

⌋
(8)

The total number of blocked thread is B, computed as:

B = B1 +B2 (9)

Having the total number of blocked threads, the maxi-
mum ideal speedup is:

Sideal = t−B (10)

Overall, the reduction of speedup due to these
implementation-induced limitations for tied tasks can be
severe. For instance, considering t = 16 and k = 2, we
derive L = 4 (Formula 6), B1 = 7 (Formula 7) and B2 = 8
(Formula 8). Applying Formula 10 we compute Sideal = 9.

4.3 Basic infrastructure for tasking support
The basic support for task execution in the RTE is based
on a centralized queue. Lightweight support for push and
pop operations on the centralized queue (upon task creation
and extraction, respectively) relies on fine-grained locking

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), NO. X, MONTH YEAR 7

int i;
…

#pragma omp task
{

float a;

int b;

#pragma omp task
{

int c;

int d;

do_work(c, d)

}

...

do_work(a, b)

}

…

c

d

thread 0

STACK

a

b

i

thread 0

a
b

c
d

a
b

SUSPEND

T0

RESUME

T0

i

T0

T1
T1

T0

T0

addr

.

.

.

 addr+8

addr+20

Fig. 5. tied task suspension in the baseline implementation [20].

mechanisms. TSPs are implemented using lightweight syn-
chronization primitives (signal/wait on condition variables)
provided by the OS layer, which avoids the massive con-
tention implied by active polling. More specifically, idle
threads on the TSP are put into sleep mode. When a task
is created (i.e., pushed in the queue) the creator thread sends
a signal which wakes up a single thread (selected using
round-robin). After completing the task execution, the thread
inspects the queue to fetch another task or returns into
sleeping mode only if no task is available at that time.

The above described queue is implemented with a
doubly-linked list. This data structure allows to push and pop
tasks from the queue and also remove a task in any position
of the queue. This is key for low overhead, as tasks are not
constrained to execute in-order (except when dependencies
are specified), so their completion and removal from the
queue is independent of their position. Note that a simple
linked list doesn’t allow this operation.

While this implementation shows excellent performance
in presence of simple flat parallel patterns, where all the
tasks are created from within a single level (i.e., a single
parent task) [20], it is not capable of supporting more
sophisticated forms of parallelism, like nested parallel pat-
terns found in programs that use recursion, and for which
the tasking model was originally proposed. Consequently,
untied tasks are not supported by this implementation. Due
to the limitations of tied tasks described previously, the
scheduling policy relies on BFS, and WFS is not supported.

In the following we describe how we extend this im-
plementation to fully support nested parallel patterns and
untied tasks, while keeping the implementation lightweight
and not too memory-hungry. These both are key require-
ments for any implementation suitable for embedded MP-
SoCs, and our main goal is to achieve comparable efficiency
in terms of task granularity for which near-ideal speedups
are achieved.

5 RUNTIME DESIGN

Figure 5 shows how task suspension works in most imple-
mentations supporting tied tasks (WFS is assumed, but the
behavior is the same under BFS). The thread on which the
code is executing has an associated stack, depicted on the
left side of Figure 5. When a task directive is encountered
the thread jumps to a runtime function that manages the

int i;

…

#pragma omp task \\

{ untied

float a;

int b;

#pragma omp task \\

{ untied

int c;

int d;

do_work(c, d)

}

...

do_work(a, b)

}

…

c

d

thread x

private

STACK

task 0

STACK

a

b

i

task 1

STACK

thread 0 thread 1

a

b

c

d

a

b

SUSPEND

T0
RESUME

T0

i i

T0

T1

T1

T0

T0

Switch 1

Switch 2
Switch 3

.

.

.

Fig. 6. untied task suspension with task contexts and per-task stacks.

creation of a new task from the enclosed code region. A new
stack frame is activated for this task, like in every regular
function call. For instance, the stack frame for task T0 is cre-
ated at address addr+8 in Figure 5. The same thing happens
at every nested task directive. For the example in Figure 5,
the stack frame for task T1 is created at address addr + 20 .
When a task is completed, the stack pointer (SP) is reset to
the top of the previous active frame. Since the semantics of
tied task scheduling ensure that suspension/resumption can
only happen on the same thread, no explicit bookkeeping to
save/restore the context of a task is required.

The key extension required to support untied tasks is
the capability of allowing to resume a suspended task on
a different thread than the one that started and suspended
it. To achieve this goal we rely on lightweight co-routines
[44]. Co-routines rely on cooperative tasks which publicly
expose their code and memory state (register file, stack),
so that different threads can take control of the execution
after restoring the memory state. Every time that a thread
suspends or resumes a suspended cooperative task a context
switch is performed. We place the required metadata to
support task contexts (TC) in the shared memory of the
cluster. This design choice ensures fast context switch, since
any thread can access the shared stacks with an initial
latency of 8 cycles, that is reduced to 1 cycle for subsequent
cached accesses. Inline assembly is used to minimize the
cost of the routines to save and restore architectural state.

Figure 6 shows how task suspension works in our ap-
proach for untied tasks, assuming the WFS policy described
in Section 4.2. Initially the thread on which the code is
executing uses its own private stack (depicted on the left
side of Figure 6). When the outermost task region (T0) is
encountered (denoted by label Switch 1), the context of the
current task is saved in the TC (including the current SP),
then the thread is rescheduled to executing the new task T0.
The SP of the thread is updated to the stack of T0 and the
new task is started. When the creation point of the innermost
task T1 is reached an identical procedure is followed. The
context of T0 is saved in its TC, which is pushed back in the
queue, then thread 0 is pointed to the stack of T1 (Switch 2).
Now the suspended T0 can be pulled out of and restarted by
thread 1 (Switch 3).

On top of this basic mechanism, a number of other
design choices were made to minimize the cost of our

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2814602, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), NO. X, MONTH YEAR 8

runtime support.

Beware the zombies - Supporting nested tasks requires to
keep in the runtime a tree data structure that represents
the task hierarchy. A parent task has a link to its children
and vice versa, to facilitate exchange of information about
execution status. For example, a parent task needs to
be informed about execution completion of its children
to support taskwait. When a parent task completes
execution its children become orphans, and should not care
to inform the parent. The fastest solution to handle parent
task termination in terms of bookkeeping would be not to
delete the descriptor, but just to maintain the task in a zombie
status until all children have completed. This operation
would require a simple update to the descriptor, which
can be executed in very short time. However, this solution
brings to a memory occupation that is not acceptable for our
constrained platform. Thus, we opt for a costlier removal
of the descriptor from the tree. As a consequence, all child
tasks must receive an update from the parent to avoid
dangling pointers to a deallocated descriptor.

Speed up the taskwait - Task-level synchronization is
widely used in recursive parallel patterns. Here typically a
fixed number of tasks is created at every recursion level, and
their execution is synchronized with a taskwait directive.
When a task encounters a taskwait, it needs to wait until
all the children (first-level descendants) have completed, but
this does not translate in the hosting thread idling, as a
taskwait constitute a TSP. Under the untied model, this
thread can be rescheduled to executing any other task in the
queue. Under the tied model, the thread can be rescheduled
to executing any descendant of any suspended task. As
we discussed in Section 4.2, most practical implementations
of tied tasks only allow the thread encountering a TSP to
be rescheduled to executing first-level descendants of the
suspended task, to avoid costly multi-level list traversal
operations. Practically, this is usually implemented by just
traversing the list of children tasks in the tree data structure,
and inspecting their status to verify that it is set to WAITING.

We changed this mechanism to rely on two queues
per task, to directly reference children in the WAITING
and RUNNING states, respectively. Upon creation, a task is
inserted in the WAITING queue. Every time that a task starts
to execute, the runtime moves this task from the WAITING
queue to the RUNNING queue, and vice versa in case of
suspension.

Decoupling WAITING and RUNNING tasks requires a
costlier bookkeeping upon task insertion and extraction,
but allows faster support for taskwait, as it is no longer
required to search the tree for WAITING tasks. Thus,
this feature is is especially relevant for recursive parallel
patterns, where the taskwait is heavily used.

No time wasters: only who’s truly ready gets in the queue
- The runtime design relies on a centralized queue where
all tasks in the WAITING state are ready for extraction
and execution. Suspended tasks are also pushed back in
this queue. We found that in presence of recursive parallel
patterns it is important to distinguish between suspended
tasks that could be resumed at any time, and tasks that

are suspended due to a scheduling constraint that needs
to be unblocked. Typical example include tasks suspended
upon a taskwait or due to a data dependence. As already
mentioned, recursive parallelism extensively relies on
such form of synchronization, thus hosting this type of
suspended tasks in the central queue used to lead to a
situation where we would repeatedly pop from there a
task just to realize that the scheduling constraint was still
unsatisfied. We would then have to push back the task
in the queue and retry. Checking the status of the task
before extracting it does not entirely solve the problem, as
it requires time-consuming search operations. To deal with
this problem we changed the implementation so as to not
re-insert in the queue suspended tasks with a unresolved
dependence. Such tasks are kept floating instead, and it is
up to the task that will eventually resolve the dependence
to push them back into the queue.

Pre-allocate is the watchword - To minimize the overhead
for dynamic resource allocation (memory, locks, task de-
scriptors, ...) we have extensively used pools of pre-allocated
resources. This is significantly faster than malloc-like prim-
itives and does not require lock-protected operations, as we
adopt thread-private resources. The downside of this ap-
proach is memory occupation. Since our architectural target
relies on a shared cluster memory with limited size, we have
to wisely use the available space. A reasonable and practical
design solution turned out to be to dedicate roughly 5-
10% of the local memory to hosting tasking support data
structures.

The basic task descriptor occupies 174 bytes, while
the extension to support untied tasks require another
98 bytes for the contexts, plus the stacks. Private thread
stacks are configured to be 1 KB (a common choice for
embedded systems), while task stacks are by default 1/4
of that size6. Considering the 2 MB shared memory of the
Kalray MPPA-256 clusters, with 10% of the cluster’s shared
memory allocated to task descriptors the runtime can host
simultaneously 750 pre-allocated tied tasks or 512 untied
tasks.

Optimize cutoff for fine-grained workloads - If the queue
of available task descriptors is depleted during the program
execution, a cutoff mechanism [33] is triggered. When this
condition is met, the creation of new task descriptors must
be suspended to avoid that runtime resources saturate when
task production rate is higher than consumption rate.

Our runtime supports a work-first cutoff policy. In work-
first cutoff, when a task creation point is encountered that
task is executed in-place via a standard function call; in
this case task descriptors for child tasks are not required,
as the synchronization is enforced by serializing all the
descendants on the same thread.

An important optimization for memory-constrained ar-
chitectures is single-stack cutoff. untied task descriptors
include task-private stacks, which in general need to be di-
mensioned to tolerate stack growth for worst-case recursion
depth in cutoff state. This has intuitively a negative effect

6. Clearly all those values are parameters in our design, and can be
changed depending on specific application requirements.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2814602, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), NO. X, MONTH YEAR 9

Fig. 7. LINEAR benchmark. Fig. 8. RECURSIVE benchmark. Fig. 9. MIXED benchmark.

on the maximum number of untied task descriptors that
the runtime can hold, if the memory allocated to runtime
data structures is fixed as discussed, or on the available
memory the application can exploit, if the runtime footprint
is allowed to grow. To handle this problem, when the
producer task enters cutoff mode we activate a cutoff stack
frame, which is the only that needs to be sized for worst-case
recursive execution.

This effectively increases the speedup of fine-grained
workloads generating a large number of tasks, as our ex-
perimental results show in the comparison between config-
urations with and without cutoff mode enabled (see Section
6.2).

6 EXPERIMENTAL RESULTS

The key drawback of untied tasks is their large overheads.
While such overheads can be tolerated by large applica-
tions exploiting coarse-grained tasks, this is usually not the
case for embedded applications, which rely on fine-grained
workloads. Our experimental results are largely aimed at
studying this effect in-depth. Thus, we consider a set of
synthetic benchmarks in which tasks are characterized by
a tunable workload consisting of ALU operations (e.g., add
on local registers).

The LINEAR benchmark consists of N identical tasks,
each with a workload of W ALU instructions. The main task
creates all the remaining N−1 tasks from a simple loop (one
task created per loop iteration), then performs a taskwait
to ensure that all tasks have completed execution.

The RECURSIVE benchmark generates the same N tasks
by building a binary tree of depth L recursively. Each
task creates two descendants, executes W ALU instructions,
then waits on a taskwait directive for children execution
completion.

The MIXED benchmark implements the worst-case ex-
ecution pattern introduced in Section 4.2 and depicted in
Figure 4.

The results of the experiments on synthetic benchmarks
(from Section 6.1 to Section 6.3) show the speedup of par-
allel execution on a single Kalray-MPPA cluster (i.e., 16
cores) compared to the sequential execution of the same
benchmark on a single core in the cluster. The sequential
code does not rely on the OpenMP RTE for execution (it
runs on the same hardware abstraction layer (HAL) on top
of which all the OpenMP RTEs considered in this paper

sit). Task granularity is reported on the x-axis (expressed
in clock cycles), and it is roughly equivalent to the number
of ALU operations that each task contains. Since Kalray
does not provide distributed shared memory for inter-
cluster communication, the execution times scale linearly
with the number of clusters whenever the application has
enough parallelism to exploit. Having these assumptions,
we consider a single cluster without loss of generality.

Using these benchmarks we show i) a comparison be-
tween tied and untied tasks (Section 6.1); ii) the effect of
cutoff policies (Section 6.2); iii) a comparison to other tasking
RTEs, both from the embedded and from the HPC domains
(Section 6.3).

For completeness, we also evaluate our design using
a representative set of real-life workloads, the Barcelona
OpenMP task suite (Section 6.4).

6.1 TIED vs UNTIED
Figures 7 and 8 show the speedups enabled by our tied
and untied task design for the LINEAR and RECURSIVE
benchmarks, respectively. The total number of generated
tasks for both benchmarks is N = 512. We test both WFS
and BFS policies.

Under the linear task generation pattern we observe no
relevant difference between WFS and BFS, and between tied
and untied tasks. Under the recursive generation pattern
only untied tasks achieve the maximum speedup, when WFS
is used. As we discussed in Section 4.2, tied tasks have zero
speedup under WFS, and their speedup under BFS is limited
as described by Formula 10. In this experiment we consider
a binary tree (k = 2) being recursively explored using t = 16
threads. Applying the formula we get Sideal = 9, which is
confirmed by the experimental results.

The advantage of using untied tasks is particularly evi-
dent for the MIXED benchmark, which includes both linear
and recursive task creation patterns. Figure 9 shows the
results for this benchmark. From Formula 4.2 we can es-
timate the maximum speedup achievable for this pattern.
Using tied tasks, 14 threads are allocated to execute the
linear part of the application, 7 of which are blocked by the
taskwait directive. The ideal speedup of the application
is 2×, which our implementation reaches for granularities
of around 10 Kcycles. Using untied tasks only 7 threads are
allocated to the linear part, which brings the ideal speedup
to 9×. The reason for a lower measured speedup of 8× is

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2814602, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), NO. X, MONTH YEAR 10

Fig. 10. LINEAR benchmark (with cutoff). Fig. 11. RECURSIVE benchmark (with cutoff). Fig. 12. Optimized cutoff. Speedup improvement
for the LINEAR benchmark.

a limitation of the tracing (performance monitoring) of the
Kalray platform. Since it is impossible to gather coherent
timing if the task performing the measurement is allowed to
migrate from one core to another, we were forced to declare
the root node of the tree as tied.

This limits the maximum achievable speedup to 8×,
which our untied tasks reach for granularities above 10 Kcy-
cles. Overall, untied tasks enable up to 4× faster execution
than tied tasks for application featuring mixed generation
patterns.

6.2 Cutoff

We repeated the experiments with LINEAR and RECUR-
SIVE microbenchmarks considering a number of tasks equal
to N = 524288 and a recursion depth of L = 19. This config-
uration saturates the runtime data structures and activates
cutoff mode. Figure 10 and Figure 11 show the results for
this new setup.

In the RECURSIVE benchmark the use of cutoff policies
proves extremely beneficial, with nearly-ideal speedups for
very fine-grained tasks (in the order of thousand cycles).
The reason for this is that cutoff mode replaces costly
task descriptor creation/management with much cheaper
function calls from within a single thread. The benefits
are clearly more relevant for ultra-fine-grained tasks,
where the payload is minimal (i.e., most of the measured
execution time is spent in runtime management routines).
In our experimental setup cutoff mode is entered after
the allocation of 512 tasks descriptors. By construction
this happens after the execution of tasks at level l = 8
of the recursive tree, since applying Formula 2 we have
2l+1 − 1 = 511. Consequently, the tasks belonging to sub-
trees rooted at level l+1 and with depth L−(l+1) = 10 are
executed in cutoff state, each with a cumulative workload
equal to Wcutoff = W · (210 − 1). For any W in our setup,
the results from the previous subsection show that Wcutoff

is such that our RTE delivers near-ideal speedup.

As discussed in Section 5, single-stack cutoff proved an
important optimization to avoid the inflation of runtime
metadata (task stack conservative oversizing) to fit the
worst-case application recursion pattern. Intuitively, in a
memory-constrained system there is a correlation between
reduction of runtime memory footprint and application

speedup; the larger the application dataset that can be ac-
commodated in memory, the coarser the parallel workloads
we can outline and thus, the higher the speedups (overheads
are amortized). Looking at Figure 10, it can be seen that
a significant speedup increase is obtained if we increase
task granularity in the range from 1000 to 10000 cycles.
Considering a fully memory-bound task (e.g., a memory
copy task), such an increase in granularity immediately
translates into an increase in memory processed per task.
Given a parallelization scheme (i.e., number of tasks), the
amount of memory operations per task is constrained by
the total amount of physical memory.

As the memory intensiveness of a task decreases, so
does the potential speedup increase due to reduced runtime
metadata footprint. This is well expressed by traditional
computation to communication ratio (CCR) metrics:

CCR =
ALU operations

LD/ST operations
(11)

Single-stack cutoff allows to significantly reduce the de-
fault task stack size (in our case, by three quarters; 1
KB to 256 bytes). This increases the available memory to
application data by 30%. For a fully memory-bound task
(CCR = 0), this corresponds to an increase in the task gran-
ularity of 30%. To model tasks with different CCR we built
a synthetic benchmark with parametric and independent
number of memory and ALU operations.

Figure 12 shows the speedup improvement when in-
creasing the application memory by 30%. We consider dif-
ferent task granularities (x-axis) for the LINEAR benchmark,
considering CCR equal to 0, 2 and 4. For heavily memory-
bound tasks this optimization enables up to 40% speedup
increase for tasks around 5 Kcycles.

6.3 Comparison with other tasking RTEs

We compare the performance of our tasking runtime to
other various implementations, both from the HPC realm
(where the tasking model has been originally proposed) and
from the embedded domain.

6.3.1 HPC runtimes
In this section we compare tasking parallelization efficiency
enabled by our RTE for embedded accelerators to what is
available in the HPC domain with state-of-the-art RTEs and

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2814602, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), NO. X, MONTH YEAR 11

Fig. 13. Comparison to HPC tasking RTEs (LINEAR). Fig. 14. Comparison to HPC tasking RTEs (RECURSIVE).

Fig. 15. Comparison to other embedded tasking RTEs. Speedup of the
LINEAR benchmark (512 tasks, no cutoff).

Fig. 16. Comparison to other embedded tasking RTEs. Speedup of the
RECURSIVE benchmark (512 tasks, no cutoff).

platforms. In this context, we evaluate three OpenMP task-
ing implementations for HPC systems: GNU GCC OpenMP,
Intel ICC OpenMP and Mercurium/Nanos OpenMP. In ad-
dition, we also consider three widespread HPC tasking
models (other than OpenMP): Intel CILK+, Intel TBB and
Wool7 [19].

The LINEAR and RECURSIVE microbenchmarks have
been used for this experiment, considering untied tasks and
a BFS policy. The results for our RTE are measured on
the Kalray platform, while those for other HPC RTEs are
measured on a compute server equipped with two Intel
Haswell with 8 cores @ 2.40 GHz. We use clock cycles as
a performance metric to abstract away different machines’
processor frequencies.

Figure 13 shows the results for the LINEAR pattern,
where our runtime achieves up to 14× higher speedup
compared to other OpenMP RTEs, for tasks below 10 Kcy-
cles. The speedup improvements are very relevant also for
non-OpenMP tasking RTEs, where in the same range of
granularities we do 2× to 10× better. Overall, our runtime
achieves nearly-ideal speedups for one order of magnitude
smaller tasks, compared to HPC RTEs. It is very important
to stress the relevance of this result. The coarse granularity
of the tasks typically employed in HPC applications makes
them way more tolerant to the huge overheads imposed by
the tasking RTEs from this domain. The situation is very
different for embedded applications, which feature much
smaller tasks [21] [20], and which would be overwhelmed

7. Wool is the most lightweight tasking implementation for the
general-purpose/HPC domain.

by such overheads. Reducing by an order of magnitude the
granularity at which ideal speedups can be observed really
makes untied tasks an effective parallelization abstraction for
embedded accelerators.

Figure 14 show the results for the RECURSIVE pattern.
It is evident that tasking was designed to handle the type of
irregular parallelism that is found in such recursive patterns,
as all the non-OpenMP solutions perform nearly on-par or
slightly better than our runtime. This is a very significant
result, as the OpenMP tasking model inherits several design
restrictions from the original fork-join execution paradigm,
which makes it impossible to streamline the implementation
to what is done, for example, in Wool. Compared to other
OpenMP solutions, our runtime clearly outperforms both
GCC and Mercurium implementations, and achieves more
than 2× higher speedups than Intel OpenMP for very small
tasks.

6.3.2 Embedded runtimes

As a term of comparison from the embedded domain, we
compare to two OpenMP tasking implementations. The first
is the one provided with the original Kalray SDK (based
on GCC). The second is the work from Burgio et al. [20],
which we used as a starting point for our extensions to
support untied tasks. The results published in [20] targeted a
slightly different cluster-based architecture compared to the
Kalray MPPA 256, and modeled after the STMicroelectronics
STHORM architecture [45]. The key difference between the
two platforms lies in the internal memory hierarchy, and
specifically: i) while on the Kalray platform the cores within

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2814602, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), NO. X, MONTH YEAR 12

TABLE 1
Cost of a parallel construct (in cycles).

Platform Kalray SDK (L1 cache) OUR with L1 cache OUR with L1 scratchpad
Cycles 85750 20500 1000

a cluster share a L2 memory that is accessed via cacheable
(non-coherent) transactions in private L1 data caches, on
the STHORM platform the cores do not have data caches,
but explicitly access a shared L1 scratchpad memory (SPM);
ii) accessing the shared memory on STHORM (L1 SPM,
1 cycle) is much faster than on Kalray (a miss in the L1
D$, 8 cycles). For a fair comparison, we also execute the
experiments with our runtime on top of a cycle-accurate,
SystemC-based virtual platform [46] that models the same
architectural template assumed in [20]. The results for this
configuration are labeled as SIM in Figures 15 and 16. The
results for Burgio et al. [20] are labeled as DATE2013.

The results show that the original Kalray runtime can
achieve near-ideal speedups tasks larger than 100 Kcycles.
For smaller tasks the maximum achievable speedup is 3×.
In this fine-grained task region our runtime consistently
achieves 4× higher speedup. The limitations to the speedup
for the RECURSIVE benchmark are consistent with our pre-
vious discussion about tied tasks (the only ones supported
by the original Kalray runtime). It is also worth noting that
cutoff mode is not properly supported for LINEAR patterns
in the original Kalray runtime. Enabling cutoff mode in
this configuration simply seems to disable parallelism com-
pletely.

Compared to DATE2013, our runtime performs only
slightly worse in the very fine-grained task region (around
5 Kcycles), since this implementation was optimized to
support tied tasks on this specific architecture. Beyond that
point our implementation is equivalently efficient.

Figure 16 reports the values of both simulations for the
RECURSIVE benchmark. In this case the comparison with
Burgio et al is not meaningful, as the implementation of
tied support is limited by the execution of direct descen-
dants. It is noteworthy that our solution could perform
even better on architectures providing a L1 scratchpad –
that can be explicitly managed to host the key RTE data
structures – in place of the non-coherent, two-level cache
hierarchy available on Kalray. Table 1 gives an insight of
this effect by depicting the cost of a parallel construct
(i.e., the time to open and close an empty parallel region).
Our implementation running on Kalray is 4× faster than
that provided by the original Kalray OpenMP RTE. If we,
however, run our implementation on the virtual platform
modeling the scratchpad-based clusters of STHORM, we
observe a 20× faster execution of the parallel directive,
compared to the original Kalray OpenMP RTE running on
the Kalray platform. This huge difference is motivated by
different access time to the RTE control data structures.
On STHORM, or any other similar architecture featuring
shared L1 SPM, reading or writing such data structures is
very cheap (typically one cycle). On Kalray, due to the lack
of a coherency protocol for the L1 data caches, both the
RTEs (our RTE and the original Kalray RTE) force costly
line flushes every time that a thread updates a control data

Fig. 17. Speedup of the Barcelona OpenMP Task Suite benchmarks
executed on three RTEs with different configurations: Kalray (tied tasks),
OUR (tied, untied and untied with cutoff) and x86 libgomp (tied tasks
with restricted or full dataset).

structure8.

6.4 Barcelona OpenMP Task Suite

To assess the performance of our runtime on applications
that are typical of the HPC domain, we execute a set of
benchmarks from the Barcelona OpenMP Task Suite (BOTS)
[23], which includes real-life applications parallelized with
OpenMP tasks. Due to the limitation on local shared mem-
ory, we scaled the datasets to fit the available space.

Figure 17 shows the speedup of applications for differ-
ent configurations, comparing the Kalray SDK (“KALRAY”
bars) with different configurations of our runtime, using tied
tasks (“OURS tied” bars), untied tasks (“OURS untied” bars)
and untied tasks with cutoff (“OURS untied CO” bars). On
average, our runtime achieves a parallelization speedup of
11.50×, which is ≈ 60% faster than the Kalray RTE (which
achieves on average 7.25× parallelization speedup).

The improvement of untied w.r.t. tied tasking is quite
limited in most cases. This result is due to the low degree of
recursion exposed by these applications, with the exception
of SORT and FLOORPLAN. NQUEENS is another applica-
tion in this suite adhering to a recursive pattern, but it is
characterized by coarse grain tasks and consequently the
advantages of the untied model are limited (as discussed in
previous section).

The benefits of cutoff are minimal, since the bottleneck
is limited parallelism in the application rather than runtime
overhead. The marginal improvements, where present, are
usually due to better memory usage (untied tasks in cutoff
use less memory for the runtime, which is used for applica-
tion data instead).

Figure 17 also includes the results reported by Duran et
al. [23] for BOTS execution on x86 platforms (“x86 (paper)”
bars). To perform a fair comparison, we executed on a x86
machine a set of experiments using the reduced dataset used
for the Kalray platform (“x86” bars). Compared to the “x86”
set, the average improvement of our runtime is 3×.

8. Note that bypassing the L1 caches to directly access the shared L2
memory is not possible on Kalray MPPA 256. Even if that was possible,
however, it would have almost ten times higher cost.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2814602, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), NO. X, MONTH YEAR 13

7 CONCLUSION

Task-based parallelism has the potential to provide efficient
exploitation of embedded PMCAs, offering flexible support
to the fine-grained and irregular parallelism found in em-
bedded applications. In this paper, we have presented an
optimized implementation of the OpenMP tasking model
for the Kalray MPPA 256 (and similar cluster-based PM-
CAs). To the best of our knowledge, the proposed design
is the first to enable support for untied tasks and recur-
sive parallel patterns for the targeted class of computing
systems. We demonstrate that, despite the significant ex-
tensions in the supported semantics, our solution does not
degrade the efficiency of the most lightweight OpenMP
implementation for embedded PMCAs. When compared to
OpenMP implementation for high performance computing
systems, our design achieves near-ideal speedups for one
order of magnitude smaller tasks. We observe an average
parallelization speedup of 12× for real benchmarks, which
is ≈ 60% higher than what we measure from the original
Kalray OpenMP implementation.

REFERENCES

[1] M. J. Schulte, M. Ignatowski, G. H. Loh, B. M. Beckmann, W. C.
Brantley, S. Gurumurthi, N. Jayasena, I. Paul, S. K. Reinhardt, and
G. Rodgers, “Achieving Exascale Capabilities through Heteroge-
neous Computing,” IEEE Micro, vol. 35, no. 4, pp. 26–36, July 2015.

[2] P. Vogel, A. Marongiu, and L. Benini, “Lightweight Virtual Mem-
ory Support for Zero-Copy Sharing of Pointer-Rich Data Struc-
tures in Heterogeneous Embedded SoCs,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 7, pp. 1947–1959, July
2017.

[3] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. K.
Pujari, A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel et al., “In-
vasive manycore architectures,” in Design Automation Conference
(ASP-DAC), 2012 17th Asia and South Pacific. IEEE, 2012, pp. 193–
200.

[4] J. Shen, A. L. Varbanescu, Y. Lu, P. Zou, and H. Sips, “Work-
load Partitioning for Accelerating Applications on Heterogeneous
Platforms,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 9, pp. 2766–2780, Sept 2016.

[5] E. Hwang, S. Kim, T. k. Yoo, J. S. Kim, S. Hwang, and Y. r. Choi,
“Resource Allocation Policies for Loosely Coupled Applications in
Heterogeneous Computing Systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 8, pp. 2349–2362, Aug 2016.

[6] S. Shudler, A. Calotoiu, T. Hoefler, and F. Wolf, “Isoefficiency
in Practice: Configuring and Understanding the Performance of
Task-based Applications,” in Proceedings of the 22nd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming.
ACM, 2017, pp. 131–143.

[7] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang, “The Design of OpenMP
Tasks,” IEEE Transactions on Parallel and Distributed Systems, vol. 20,
no. 3, pp. 404–418, March 2009.

[8] S. Zhu, S. Chandrasekaran, P. Sun, B. Chapman, M. Winter,
and T. Schuele, “Exploring Task Parallelism for Heterogeneous
Systems Using Multicore Task Management API,” in European
Conference on Parallel Processing. Springer, 2016, pp. 697–708.

[9] G. Mitra, E. Stotzer, A. Jayaraj, and A. P. Rendell, “Implementation
and optimization of the OpenMP accelerator model for the TI
Keystone II architecture,” in International Workshop on OpenMP.
Springer, 2014, pp. 202–214.

[10] A. Marongiu, A. Capotondi, G. Tagliavini, and L. Benini, “Simpli-
fying Many-Core-Based Heterogeneous SoC Programming With
Offload Directives,” IEEE Transactions on Industrial Informatics,
vol. 11, no. 4, pp. 957–967, Aug 2015.

[11] B. Chapman, L. Huang, E. Biscondi, E. Stotzer, A. Shrivastava, and
A. Gatherer, “Implementing OpenMP on a high performance em-
bedded multicore MPSoC,” in 2009 IEEE International Symposium
on Parallel Distributed Processing. IEEE, May 2009, pp. 1–8.

[12] R. Vargas, E. Quinones, and A. Marongiu, “OpenMP and Timing
Predictability: A Possible Union?” in Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition, ser.
DATE ’15. EDA Consortium, 2015, pp. 617–620.

[13] L. M. Pinho, V. Nlis, P. M. Yomsi, E. Quiones, M. Bertogna,
P. Burgio, A. Marongiu, C. Scordino, P. Gai, M. Ramponi, and
M. Mardiak, “P-SOCRATES: A parallel software framework for
time-critical many-core systems,” Microprocessors and Microsystems,
vol. 39, no. 8, pp. 1190 – 1203, 2015.

[14] M. A. Serrano, A. Melani, M. Bertogna, and E. Quinones,
“Response-time analysis of DAG tasks under fixed priority
scheduling with limited preemptions,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2016. IEEE, 2016,
pp. 1066–1071.

[15] M. A. Serrano, A. Melani, S. Kehr, M. Bertogna, and E. Quinones,
“An Analysis of Lazy and Eager Limited Preemption Approaches
under DAG-based Global Fixed Priority Scheduling,” in Real-
Time Distributed Computing (ISORC), 2017 IEEE 20th International
Symposium on. IEEE, 2017, pp. 193–202.

[16] M. Damschen, L. Bauer, and J. Henkel, “Timing analysis of tasks
on runtime reconfigurable processors,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 25, no. 1, pp. 294–307,
2017.

[17] E. Agullo, O. Aumage, B. Bramas, O. Coulaud, and S. Pitoiset,
“Bridging the Gap Between OpenMP and Task-Based Runtime
Systems for the Fast Multipole Method,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 10, pp. 2794–2807, Oct
2017.

[18] A. Podobas and S. Karlsson, “Towards Unifying OpenMP Under
the Task-Parallel Paradigm,” in International Workshop on OpenMP.
Springer, 2016, pp. 116–129.

[19] K.-F. Faxén, “Wool-A Work Stealing Library,” SIGARCH Computer
Architecture News, vol. 36, no. 5, pp. 93–100, June 2009.

[20] P. Burgio, G. Tagliavini, A. Marongiu, and L. Benini, “Enabling
fine-grained OpenMP tasking on tightly-coupled shared memory
clusters,” in Proceedings of the Conference on Design, Automation and
Test in Europe, ser. DATE ’13. EDA Consortium, 2013, pp. 1504–
1509.

[21] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Architectural
Support for Fine-grained Parallelism on Chip Multiprocessors,” in
Proceedings of the 34th Annual International Symposium on Computer
Architecture, ser. ISCA ’07. ACM, 2007, pp. 162–173.

[22] “Kalray MPPA products,” http://www.kalray.eu, last accessed:
2017-10-19.

[23] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade,
“Barcelona OpenMP Tasks Suite: A Set of Benchmarks Targeting
the Exploitation of Task Parallelism in OpenMP,” in 2009 Inter-
national Conference on Parallel Processing. IEEE, Sept 2009, pp.
124–131.

[24] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An Efficient Multithreaded Runtime
System,” in Proceedings of the Fifth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser. PPOPP ’95.
ACM, pp. 207–216.

[25] C. E. Leiserson, “The Cilk++ concurrency platform,” in 46th
ACM/IEEE Design Automation Conference (DAC’09). IEEE, 2009,
pp. 522–527.

[26] J. Reinders, Intel threading building blocks: outfitting C++ for multi-
core processor parallelism. ” O’Reilly Media, Inc.”, 2007.

[27] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-
first scheduling policies for async-finish task parallelism,” in IEEE
International Symposium on Parallel & Distributed Processing (IPDPS
’09). IEEE, 2009, pp. 1–12.

[28] K. Sakamoto and T. Furumoto, “Grand central dispatch,” in
Pro Multithreading and Memory Management for iOS and OS X.
Springer, 2012, pp. 139–145.

[29] “OpenMP 4.0 Specification,” http://www.openmp.org/mp-
documents/OpenMP4.0.0.pdf.

[30] A. Podobas, M. Brorsson, and K.-F. Faxén, “A comparative perfor-
mance study of common and popular task-centric programming
frameworks,” Concurrency and Computation: Practice and Experience,
vol. 27, no. 1, pp. 1–28, 2015.

[31] S. N. Agathos, P. E. Hadjidoukas, and V. V. Dimakopoulos, “De-
sign and Implementation of OpenMP Tasks in the OMPi Com-
piler,” in 2011 15th Panhellenic Conference on Informatics. IEEE,
Sept 2011, pp. 265–269.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2814602, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), NO. X, MONTH YEAR 14

[32] A. Duran, J. Corbalán, and E. Ayguadé, “Evaluation of OpenMP
task scheduling strategies,” in International Workshop on OpenMP.
Springer, 2008, pp. 100–110.

[33] A. Duran, J. Corbalan, and E. Ayguade, “An adaptive cut-off for
task parallelism,” in 2008 SC - International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
Nov 2008, pp. 1–11.

[34] C. Wang, S. Chandrasekaran, B. Chapman, and J. Holt, “libEOMP:
A Portable OpenMP Runtime Library Based on MCA APIs for
Embedded Systems,” in Proceedings of the 2013 International Work-
shop on Programming Models and Applications for Multicores and
Manycores, ser. PMAM ’13. ACM, 2013, pp. 83–92.

[35] E. Stotzer, A. Jayaraj, M. Ali, A. Friedmann, G. Mitra, A. P. Rendell,
and I. Lintault, OpenMP on the Low-Power TI Keystone II ARM/DSP
System-on-Chip. Springer Berlin Heidelberg, 2013, pp. 114–127.

[36] S. N. Agathos, V. V. Dimakopoulos, A. Mourelis, and A. Pa-
padogiannakis, “Deploying OpenMP on an embedded multicore
accelerator,” in 2013 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS). IEEE,
July 2013, pp. 180–187.

[37] R. E. Vargas, S. Royuela, M. A. Serrano, X. Martorell, and
E. Quinones, “A lightweight OpenMP4 run-time for embedded
systems,” in 2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, Jan 2016, pp. 43–49.

[38] R. Koenig, L. Bauer, T. Stripf, M. Shafique, W. Ahmed,
J. Becker, and J. Henkel, “KAHRISMA: a novel hypermorphic
reconfigurable-instruction-set multi-grained-array architecture,”
in Proceedings of the Conference on Design, Automation and Test in
Europe. European Design and Automation Association, 2010, pp.
819–824.

[39] L. Bauer, M. Shafique, S. Kramer, and J. Henkel, “RISPP: rotating
instruction set processing platform,” in Proceedings of the 44th
annual Design Automation Conference. ACM, 2007, pp. 791–796.

[40] M. Dehyadegari, A. Marongiu, M. R. Kakoee, S. Mohammadi,
N. Yazdani, and L. Benini, “Architecture support for tightly-
coupled multi-core clusters with shared-memory HW accelera-
tors,” IEEE Transactions on Computers, vol. 64, no. 8, pp. 2132–2144,
2015.

[41] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna,
and E. Quiñones, “Timing Characterization of OpenMP4 Tasking
Model,” in Proceedings of the 2015 International Conference on Com-
pilers, Architecture and Synthesis for Embedded Systems, ser. CASES
’15. IEEE Press, 2015, pp. 157–166.

[42] D. Novillo, “Openmp and automatic parallelization in gcc,” the
Proceedings of the GCC Developers Summit, 2006.

[43] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé, and
J. Labarta, “Nanos Mercurium: a Research Compiler for OpenMP,”
in Proceedings of the European Workshop on OpenMP, vol. 8, 2004,
p. 56.

[44] C. D. Marlin, Coroutines: a programming methodology, a language
design and an implementation. Springer Science & Business Media,
1980, no. 95.

[45] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Hau-
gou, F. Clermidy, and D. Dutoit, “Platform 2012, a many-core
computing accelerator for embedded SoCs: Performance evalua-
tion of visual analytics applications,” in DAC Design Automation
Conference 2012. IEEE, June 2012, pp. 1137–1142.

[46] D. Bortolotti, A. Marongiu, and L. Benini, “VirtualSoC: a research
tool for modern MPSoCs,” ACM Transactions on Embedded Comput-
ing Systems (TECS), vol. 16, no. 1, p. 3, 2016.

Giuseppe Tagliavini received the MSc degree
in computer engineering in 2010 and the PhD
degree in electronic engineering in 2017 from
the University of Bologna, Bologna, Italy. His
current research interests include programming
models and run-time optimization for many-
core embedded accelerators, software design
for high-performance embedded systems, and
compiler support for emerging computing archi-
tectures.

Daniele Cesarini received the MS degree in
computer engineering from the University of
Bologna, Italy, in 2014, where he is currently
a PhD student in the Department of Electrical,
Electronic and Information Engineering (DEI).
His research interests concern parallel program-
ming models and middleware for embedded and
High Performance Computing (HPC) systems,
with special emphasis on thermal-aware task
scheduling based on linear optimization tech-
niques.

Andrea Marongiu received the MSc degree
in electronic engineering from the University of
Cagliari, Italy, in 2006 and the PhD degree in
electronic engineering from the University of
Bologna, Italy, in 2010. Since 2013 he has been
a Research Fellow at ETH Zurich. He currently
is an Assistant Professor at the University of
Bologna. His research interests concern paral-
lel programming model and architecture design
in the single-chip multiprocessors domain, with
special emphasis on compilation for heteroge-

neous architectures, efficient usage of on-chip memory hierarchies and
SoC virtualization. He has published more than 80 papers in peer
reviewed international journals and conferences. He is a member of the
IEEE.

