
12/09/2024 21:53

GPU Acceleration for simulating massively parallel many-core platforms / Raghav, Shivani; Ruggiero,
Martino; Marongiu, Andrea; Pinto, Christian; Atienza, David; Benini, Luca. - In: IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS. - ISSN 1045-9219. - ELETTRONICO. - 26:5(2015), pp. 1336-1349.
[10.1109/TPDS.2014.2319092]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2319092, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXXX 201X 1

GPU Acceleration for Simulating Massively
Parallel Many-core Platforms

Shivani Raghav, Martino Ruggiero, Andrea Marongiu, Christian Pinto, David Atienza, Luca Benini

Abstract—Emerging massively parallel architectures such as a general-purpose processor plus many-core programmable accelerators
are creating an increasing demand for novel methods to perform their architectural simulation. Most state-of-the-art simulation
technologies are exceedingly slow and the need to model full system many-core architectures adds further to the complexity issues.
This paper presents a novel methodology to accelerate the simulation of many-core coprocessors using GPU platforms. We
demonstrate the challenges, feasibility and benefits of our idea to use heterogeneous system (CPU and GPU) to simulate future
architecture of many-core heterogeneous platforms. The target architecture selected to evaluate our methodology consists of an ARM
general purpose CPU coupled with many-core coprocessor with thousands of simple in-order cores connected in a tile network. This
work presents optimization techniques used to parallelize the simulation specifically for acceleration on GPUs. We partition the full
system simulation between CPU and GPU, where the target general purpose CPU is simulated on the host CPU, whereas the many-
core coprocessor is simulated on the NVIDIA Tesla 2070 GPU platform. Our experiments show performance of up to 50 MIPS when
simulating the entire heterogeneous chip, and high scalability with increasing cores on coprocessor.

Index Terms—Parallel Simulation, Heterogeneous Architectures, Many-core Processors, Accelerators, GPGPU, CUDA, QEMU

F

1 INTRODUCTION
With increasing complexity and performance demands
of emerging applications, heterogeneous platforms are
becoming a popular trend in computer design. Increased
use of embarrassingly parallel algorithms and fine-
grained parallelism is creating a market for general-
purpose hardware accelerators (coprocessors) to ma-
nipulate large amounts of data in parallel with high
energy efficiency [1]. These future platforms consist of
traditional multi-core CPUs in combination with a many-
core coprocessor, which is composed of thousands of
embedded cores. Examples of these heterogeneous ar-
chitectures include on-chip specialized many-core co-
processors [4][5][6] and upcoming tile-based many-core
architectures [7][8].

Simulating these heterogeneous architectures poses
novel challenges, as current state-of-the art simulation
technologies are not sufficiently well equipped to han-
dle their complexity. Simulation platforms are needed
to make meaningful predictions of design alternatives
and early software development, as well as to be able
to assess the performance of a system before the real
hardware is available. Current state-of-the-art sequential
simulators leverage SystemC [11], binary translation [17],
smart sampling techniques [12] or tunable abstraction
levels for hardware description. However, one of the
major limiting factors in utilizing current simulation

• S. Raghav, M. Ruggiero and D. Atienza are with Embedded
Systems Laboratory, EPFL, Lausanne, CH. (e-mail: shivani.raghav,
martino.ruggiero, david.atienza@epfl.ch).

• A. Marongiu, C. Pinto and L. Benini are with DEI, University of Bologna,
Italy. (email: a.marongiu, christian.pinto, luca.benini@unibo.it)

methodologies is simulation speed. Most of the exist-
ing simulation techniques are slow and/or have poor
scalability, which leads to an unacceptable performance
when simulating a large number of cores. Since next
generation many-core coprocessors are expected to have
thousands of cores, there is a great need to have simula-
tion frameworks that can handle target workloads with
large datasets, while is also suitable for parallel simula-
tion of many-core architectures. In order to comprehen-
sively and quickly evaluate the design, architecture and
programming tradeoffs in such future heterogeneous
platforms, a fast simulation method with scalability up
to thousands of cores is a fundamental requirement. In
addition, these new and scalable simulation solutions
must be inexpensive, easily available, with a fast de-
velopment cycle and able to provide good trade-offs
between speed and accuracy.

It is easy to notice that simulating a parallel system is
an inherently parallel task. This is because individual
processor simulation may independently proceed un-
til the point where communication or synchronization
with other processors is required. This is the key idea
behind parallel simulation technologies in which we
distribute the simulation workload over parallel hard-
ware resources. Parallel simulators have been proposed
in the past [13][14][15], which leverage the availability
of multiple physical processing nodes to increase the
simulation rate. However, this requirement may turn out
to be too costly if server clusters or computing farms are
adopted as a target to run the many-core coprocessor
simulations.

The development of computer technology has re-
cently led to an unprecedented performance increase of
General-Purpose Graphical Processing Units (GPGPU).

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2319092, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXXX 201X 2

Modern GPGPUs integrate hundreds of processors on
the same device, communicating through low-latency
and high bandwidth on-chip networks and memory hi-
erarchies. This allows us to reduce inter-processor com-
munication costs by orders of magnitude with respect to
server clusters. Moreover, scalable computation power
and flexibility is delivered at a rather low cost by com-
modity GPU hardware. Besides hardware performance
improvement, the programmability of GPUs also has
been significantly increased in the last five years [16][18].
This has led to the proliferation of computing clusters
based on such many-cores, providing an inexpensive
solutions in high performance computing domain for a
wide community.

This scenario motivated our idea of developing a
novel parallel simulation technology that leverages the
computational power of widely-available and low-cost
GPUs. In this simulation method we exploit the op-
portunity to parallelize the simulation of many-core
coprocessor on top of GPGPU host platforms. The main
novelty of our simulation methodology is to use hetero-
geneous system as a host platform to tackle the challenge
of simulating the heterogeneous architectures of future
heterogeneous platforms.

While exploring the idea of simulation acceleration
using GPUs, we encountered several performance and
implementation challenges. One of the main challenge
is to identify the parallelization in simulator code and
optimize it for the scalability on GPU. In this paper,
we present the key challenges for simulation scalabilities
and methods used to tackle these challenge. Specifically,
we make following contributions:

• We present a comprehensive approach to build
full system simulation frameworks for heteroge-
neous architectures. The architecture of coprocessor
is inspired from the GPUs [6][9] and accelerator
chips[7][8], which are most likely to scale to thou-
sands of cores in near future. As a case study, we
selected a target architecture which is composed of a
general purpose CPU connected with a coprocessor
with thousands of cores in a tile network. The
proposed architecture is selected as an illustration
for future coprocessor architectures to present the
viability and benefits of using our approach.

• We present our main idea to partition heterogeneous
system simulation workloads between CPU and
GPU.

• We discuss the code optimization techniques that we
utilize to maximize concurrency and gain maximum
benefit from parallel GPU hardware.

• We provide a cycle-approximate model for fast
performance prediction of the overall simulated
platform. The simulation framework uses a relaxed-
synchronization technique to minimizing synchro-
nization overhead and achieving speedup.

For experimental purposes, we simulated an ARM
CPU connected with ARM-based coprocessor composed

High%Power%
General%
Purpose%
CPU%

Many6Core%%
Accelerator%

Switch%

Local%
Core%

I$% D$%

Private%
Memory%

DSM%

Single%Node%

Fig. 1: System Target Architecture

of up to 4096 cores. The targeted architecture of RISC
cores connected with a tile network is a popular candi-
date for future development in the area of many-core co-
processors. Although this work presents the experiences
related to a particular target architecture accelerated on
GPUs, the methods applied and lessons learned are more
broadly applicable for future many-core designs.

Our experimental results demonstrate the benefits of
using our proposed simulation method, with which we
achieved up to 50 MIPS when simulating the complete
CPU-Coprocessor system and high scalability compared
to other state-of-the-art simulation approaches.

2 OVERVIEW OF FULL SYSTEM HETEROGE-
NEOUS SIMULATION APPROACH

In this section, we provide architectural details of the
heterogeneous platform targeted by our simulation tech-
nique. Next, we give an overview of our simulation flow
for the full system simulator.

2.1 Target Architecture
Our target architecture is representative of future het-
erogeneous platforms. It consists of a a general pur-
pose processor connected with a many-core coprocessor
(accelerator), as shown in Figure 1. While currently
available many-core coprocessors only integrate up to
hundreds of cores interconnected via a network-on-chip
(NoC)[8] [7] [10] , in the near future the number of cores
is likely to increase to the thousands [21]. The simulator
presented in this work is targeted to model such fu-
ture embodiments of many-core paradigm. To simulate
general-purpose CPU, we selected QEMU[17] which is
an ARM Versatile Platform Baseboard featuring an ARM
v7-based processor and input-output devices. QEMU is
a popular, open-source, fast emulation platform based
on dynamic binary translation which models a complete
development board with a set of common devices (e.g.
Ethernet interfaces, Disks, Audio controllers), enabling
the execution of an un-modified operating system allow-
ing applications compiled for an architecture to be run
on many others.

The target coprocessor features many (thousands of)
simple ARM cores each equipped with data and instruc-
tions scratchpad memories (SPM), private caches, private

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2319092, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXXX 201X 3

and distributed shared memory of target (TDSM). The
architecture of a core in the coprocessor is based on
a simple single issue, in-order pipeline. The cores are
interconnected via an on-chip network organized as a
rectangular mesh. As shown in Figure 1, a single node
includes a core, its cache subsystem, NoC switch, private
memory per core and a bank of physically distributed
shared memory (TDSM). Caches are private to each core,
which means that they only deal with data or instruc-
tions allocated in the private memory. The distributed
shared memory (TDSM) is non-cacheable; therefore the
simulation of the cache coherence protocol is not re-
quired.

The applications and program binaries targeted for
this system are launched from within Linux OS running
on the general-purpose CPU. The execution of a parallel
application is divided between the two entities, the host
and the coprocessor. General purpose processor runs the
sequential part of target application up to a point where
a computation intensive and highly-parallel program
region is encountered. When a parallel program region
is encountered, this particular part of the program is
offloaded to the coprocessor to gain benefit from its high
performance.

The considered memory model of coprocessor ad-
heres to the Partitioned Global Address Space paradigm
(PGAS)[19]. Each thread (mapped to a single node of
target coprocessor) has private memory for local data
items and shared memory for globally shared data val-
ues. Both private and shared memory is mapped in a
common single global address space, which is logically
partitioned among a number of threads. Each thread
has a private space as well as affinity with globally
shared address space. Greater performance is achieved
when a thread accesses data, which is held locally
(whether in its private memory or a partition of the
global address space). Non-local access to the shared
memory space generate communication traffic across on-
chip interconnect, therefore incur performance overhead.
Programming model assumed for this target architec-
ture is similar to Unified Parallel C [20]. It distributes
the independent iterations across threads typically to
boost locality exploitation. Interaction between threads is
managed by synchronization primitives on shared data
items. Data qualified as shared resides in shared memory
space while rest of the data is considered thread private
data.

2.2 Simulation Flow
Figure 2 depicts the full-system simulation methodology
we propose to model heterogeneous architectures. Our
simulator consists of two main blocks. First, QEMU
emulates the target general purpose processor, capable
of executing a Linux OS and file system. Next, our copro-
cessor simulator uses GPUs for accelerating simulation
of its thousands of cores.

Our coprocessor simulator is entirely written using
C for CUDA [16] and, in order to model thousands

Host
Platform

Sequential Code Data parallel Code

Simulator

Target
Architecture

Many-Core
Accelerator

Application

High Power
General
Purpose

CPU

Fig. 2: Overview of Simulation Flow

of nodes, we map each instance of a simulated node
to a single CUDA thread. These CUDA threads are
then mapped to streaming processors of GPU by its
hardware scheduler and run concurrently in parallel.
Each target core model is written using an interpretation-
based method to simulate the ARM pipeline. Thus,
each simulated core is assigned its own context struc-
ture, which represents register file, status flags, program
counter, etc. The necessary support for data structures
are initially allocated from the main (CPU) memory for
all the simulated cores. The host program (running on
the CPU) initializes these structures, and then copies
them to the GPU global device memory, along with
the program binary. Once the main simulation kernel
is offloaded to the GPU, each simulated core repeatedly
fetches, decodes and executes instructions from the pro-
gram binary. Similar to the operation on the hardware,
the instruction byte is fetched, decoded and executed at
run time. Each core updates its simulated registers file
and program counter until program completion.

3 INTERFACING QEMU WITH COPROCESSOR
SIMULATOR

As mentioned in Section 2, full system simulation is par-
titioned between CPU (using QEMU) and GPU (using
coprocessor simulator), therefore it is essential to find an
efficient way to offload the data parallel part of the target
application from QEMU on to coprocessor simulator.

As shown in Figure 3, the target application running
on guest kernel space of the target platform (simulated
by QEMU) is named QEMU target process. QEMU pro-
cess running on host CPU is named QEMU-Hprocess.
Our coprocessor simulator program written in C and
CUDA is designed to execute partly on the host CPU and
host GPU. The part of coprocessor simulator program
executed on host CPU is named CP-Hprocess. The other
part that runs on host GPU platform is named CP-
Gprocess. Target application needs to forward requests
(data structure and parameters) between QEMU and
the coprocessor simulator almost instantly in parallel.
Therefore an interface is needed so that the QEMU target
process can communicate to the QEMU-Hprocess and

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2319092, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXXX 201X 4

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Host	
 Pla)orm	
 -­‐	
 CPU	

Target	
 Applica6on	
 	

Simula6ng	
 Serial	
 Part	
 of	
 Applica6on	

Parallel	
 Direc6ve	
 found	

QEMU-­‐Hprocess	
 CP-­‐Hprocess	

Create,	
 Configure	
 	

&	
 ini6alize	
 	
 N-­‐Cores	

Create	
 Server	
 Socket	

Wai6ng	
 for	
 Client	

request	

End	
 Simula6on	
 Send()	

Results	

Create	
 Shared	
 Mem	
 (shmem)	

Offload	
 Parallel	
 Func6on	

Create	
 Client	
 Socket	

Send()	
 Data	
 and	
 Parameters	

Recv()	
 data	
 copy	
 from	
 shmem	

Transfer	
 data	
 to	
 Target	
 Process	

Wai6ng	

Response	

From	
 server	
 Copy	
 to	
 Host	

GPU	
 global	

memory	

Copy	
 to	
 	

Host	
 CPU	

shared	
 memory	

Guest	
 OS	
 on	
 Target	
 Pla)orm	

Semihos(ng	

Resume	
 Serial	
 Simula6on	

QEMU	
 Tprocess	

Start	
 Sim.	
 Recv()	
 Data	

Structures	
 in	
 shmem	

	

	

	

	

	

	

	

Host	
 GPU	

CP-­‐Gprocess	

	

CUDA	
 kernel	

End	

Fig. 3: Overview of our technique to interface QEMU
and the Coprocessor-Simulator

finally to the CP-Gprocess. To implement this communi-
cation between the processes, we use semihosting [24](see
Figure3).

Semihosting is a technique developed for ARM tar-
gets allowing the communication between an application
running on the target and a host computer running a de-
bugger. It enables the redirection of all the application’s
IO system calls to a debugger interface. We leverage
this method to provide a direct communication channel
between QEMU target process (QEMU-Tprocess) and
QEMU-Hprocess. Next, we used Unix Domain Sockets to
transfer data between the QEMU-Hprocess and the CP-
Gprocess. The CP-Hprocess initially boots as a server
and waits for an offloading request from the client.
When the client (QEMU-Hprocess) encounters a data
parallel function from the QEMU-Tprocess, it transfers
the structure of parameters pointed by semihosting call
to the server socket. When the CP-Hprocess receives all
the necessary data structures (data and code segment),
it launches the CUDA kernel as a CP-Gprocess for
simulation on GPU platform. The QEMU-Hprocess waits
for computation to end from GPU side and releases it in
the end. To avoid overheads due to moving big amounts
of data using the socket, larger data structures (e.g.,
I/O buffers) are accessed through host processor shared
memory (HSM) segments defined and allocated by the
QEMU-Hprocess. For more details on the implementa-
tion of this method, please refer to our previous work
[25].

4 FUNCTIONAL SIMULATION OF COPROCES-
SOR ON GPU
The coprocessor simulator comprises many modules that
simulate the various components of the target architec-
ture. In particular, the core model is responsible for mod-

eling the computational pipeline; the memory model
includes scratchpad memory models, cache models for
private memory and distributed shared memory of the
target (TDSM) models. The network model handles
TDSM operations and allows routing of network packets
over the on-chip network.

The entire simulation flow is structured as a single
CUDA kernel, whose simplified structure is depicted in
Figure 1. One physical GPU thread is used to simulate
one single node. The program is run inside a main loop
until all simulated nodes in turn finish their simulation.
The core model is executed first. During the instruction
fetch phase and while executing memory instructions,
the core issues memory requests to the cache model. The
cache model is in charge of managing data/instructions
stored in the private memory of each core. Caches are
private to each core and therefore they only deal with
data/instructions allocated in the private memory. Com-
munication between the cache model, the core and the
NoC model takes place using communication buffers al-
located in shared memory region of GPU device (GSM).
Our proposed information exchange mechanism exploits
the producer/consumer paradigm without the need for
synchronization because core, cache and NoC models
are executed sequentially and communication buffers are
used to exchange information between core, cache and
network model.

Since the TDSM in our target architecture is dis-
tributed across the nodes and is non-cacheable, DSM
regions are only accessible by sending packets through
on-chip network. When an operation towards the shared
address space is detected, the request is forwarded to
the corresponding tile using mesh based network. For
details on network-on-chip simulation model, please
refer to the supplemental material.

4.1 Key Challenges for Simulation Scalability
Although CUDA provides a powerful API with a swift
learning curve, designing a parallel simulator for many-
core running on GPUs is not a straightforward task and
implementing a simulator for such a platform imposes
several challenges as listed below:

• One of the main challenge handled in simulation
of target nodes is to identify the parallelization in
various stages of target node pipeline and map the
target nodes on CUDA threads such that there is
minimum control flow divergence.

• The layout of data structure that represent the
context of target node is carefully organized in
GPU memory to utilize high bandwidth GPU global
memory and low-latency shared memory (GSM).

• We optimize the simulation code to ensure GPU de-
vice shared memory (GSM) is free of bank conflicts.

• Interaction between CPU and GPU is a costly pro-
cess. Therefore, we minimize the amount of data
transfer required between host CPU and GPU plat-
form by using relaxed-synchronization method as pre-
sented in the following section.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2319092, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXXX 201X 5

The methods implemented to overcome abovementioned
limitation are provided with supplemental material. For
more details on implementation of each of these models,
please refer to our previous publications [26][27].

5 PERFORMANCE PREDICTION MODEL OF
TARGET COPROCESSOR

A performance model gives an insight about the appli-
cation primitives that are particularly costly in a certain
heterogeneous platform and allows us to predict the
runtime behavior of a program in that target platform.
Moreover, thread level parallelism creates timing depen-
dent outcomes; therefore in addition to having functional
correctness, it is important to have timing fidelity as
well. In this paper, we present a cycle-approximate
method to predict the performance of our many core
coprocessor. This allows designers to make decisions
about configurations of architectural parameters and to
predict the scalability of their applications. The simulator
only calculates the performance prediction for the part
of the program running on the coprocessor. Accurate
performance prediction for the whole heterogeneous
simulator is beyond the scope of this work.

Cycle-Approximate Method - In this section, we per-
form fast performance estimation of the simulated plat-
forms at runtime by annotating the events generated by
a functionally accurate model with a fixed estimated
delay. Ideally, system-level simulation should provide
sufficient timing details for performance evaluation with
cycle-accuracy. However due to extremely slow simula-
tion of cycle-accurate models, it is realistic to say that
for large scale many-core platforms, timing accuracy at
the micro-architecture level is not a prime requirement.
Predictions about features such as application scalability,
costs due to memory locality and high synchronization
rates are sufficient for users to perform early design
space exploration. Our main goal is to achieve significant
simulation speedup useful for architecture performance
estimation at early design stages [28]. Therefore, we
develop a simplified cycle-approximate model to esti-
mate the operation latency of devices simulated by the
functional simulator.

In order to quantitatively estimate perfomance of an
application running on target many-core coprocessor, we
apply simple fixed, approximated delays to represent the
timing behaviors of simulation models. Since the func-
tional model of cores is based on interpretation scheme,
it is easier to tightly couple the timing information
with each generated event. Every core has a local clock
variable and this variable is updated after completion of
each instruction (event). Considering a unit-delay model
all computational instructions have fixed latency of a
single clock cycle. Caches have 1-cycle hit latency and
10-cycle cache miss penalty. Each simulated node thread
simulates a local clock which provides a timestamp
to every locally generated event and clock cycles are
updated for each event with round trip latency. As the

simulator executes an application code on a core, it
increases its local clock in accordance with the event
executed on the code block. Each memory access or
remote request is initially stamped with the initiator
core’s local clock time and is increased by a specific
delay as it traverses the architecture’s communication
model. When the initiator core finally starts processing
the reply, its own local clock is updated to that of the
reply. To summarize, the sum of all delays induced by
all the device models traversed is added to a core’s local
time in case of interaction. Similarly, when the response
of a memory load instruction returns to its originating
node thread, the local clock of this thread simulating
the local clock of the node is updated by the round trip
latency gathered by the memory packet. Communication
packets through on-chip network update their latency
as they traverse through the system and thus collect the
delay due to congestion and network contention. Single-
hop traversal cost on on-chip network is assumed to
be one. Finally, the simulator output consists of global
clock cycles of many-core processor as well as total
instructions per cycles calculated for running the parallel
application allowing the designers to forecast scalability
and performance variations from routing and network
contention as well as coarse-grain architecture changes.

6 SYNCHRONIZATION IN MANY CORE SIMU-
LATION

When simulating a many core coprocessor, synchro-
nization requirements can add significant overhead to
the performance efficiency. This section focuses on our
efforts to increase the efficiency of required synchroniza-
tion operations.

6.1 Synchronization Requirements in Parallel Many
Nodes Simulation

Application programs offloaded to the coprocessor, may
contain inter-thread interactions using various synchro-
nization primitives such as barrier and locks. In this case,
application threads running on many cores will generate
accesses to the shared memory distributed across the
simulated many nodes (TDSM), which in turn will result
in traffic (remote packets) over the NoC. We call these
remote packets s-events. To simulate these s-events, it
is important to have a synchronization mechanism to
ensure the timing and functional fidelity of the many
core simulation maintaining both simulation speed and
accuracy.

Timing Fidelity - Cycle approximate timing simula-
tion assesses the target performance by modeling the
node latencies using local clock cycles. Since this is sim-
ulated using parallel host GPU hardware threads, node
clocks are non-synchronized and run independent of
each other at different simulation speeds. To accurately
model the timing behavior of the entire system, these
simulated local clocks should be synchronized at some

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2319092, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXXX 201X 6

point in time to keep the accounting of global target time
of coprocessor. Additionally, during the occurrence of
s-events, it is important that target nodes clock cycles
proceed in lock-step manner at every clock cycle by
creating synchronization points after each clock tick of
all nodes. This is essential to determine the correct round
trip latency of NoC packet communication between
otherwise unsynchronized nodes. For example, when
application threads are mapped on different cores of
simulated coprocessor and during an s-event such as spin
lock for a shared memory (TDSM) variable, the local
clocks of each node needs to know the correct number of
iterations that each thread should wait before acquiring
the lock.

Functional fidelity From the functional accuracy
point of view, synchronization between many nodes is
essential to maintain functional simulation accuracy par-
ticularly during simulation of s-events. Since only s-events
modify the state of the shared memories of the target
system, they needs to be simulated in non-decreasing
timestamp order so that shared memory (TDSM) ac-
cesses with data dependencies are executed in order. S-
events with smaller timestamp have potential to modify
the state of the system and thereby affect events that
happen later.

To illustrate this, let us consider an example where the
first s-event s1 of the system is detected by node n1, at its
local target timestamp T1. If another node n2 has a local
timestamp T2, such that T2 >T1 then the simulation of
s1 will not create any data dependency violation with
respect to n2 because n2 is most likely executing local
memory instructions and it is safe for the simulation to
proceed. However, if another node n3 is at an earlier
timestamp T3 such that T3 <T1, then a potential depen-
dency violation may occur if n3 generates an s-event s3
and s1 and s3 have data dependency. In this case node
n1 should wait for until timestamp of both n1 and n3
are synchronized such that T3 is at least equal to T1 and
has finished simulating all previous s-events.

Therefore, a remote s-event arriving at a node should
not have timestamp lower than local events and a node
should only handle an s-event when it can be sure that
no remote s-event with earlier timestamp will arrive in
the future.

6.2 Challenges of Synchronization on GPU

Due to lack of support for inter-block synchronization in
CUDA, supporting simulation of s-events is a challenging
task. From the point of view of implementing synchro-
nization behavior on GPU, this requires periodically
synchronizing hardware threads on a barrier. Barrier
functionality can only be imposed on threads within the
same block and synchronization among thread blocks
is not natively supported by CUDA and GPU hard-
ware. This is achieved by terminating the GPU kernel
function call and using costly communication between
CPU and GPU (Host-CPU-Barrier). Host-CPU-Barrier

requires suspension of execution on GPU, saving the
states of all simulated cores in GPU’s global memory and
transferring control to host CPU where barrier synchro-
nization is performed. This poses a serious performance,
bottleneck and slows down the entire simulation.

Xiao and Feng [48] recently proposed on-GPU syn-
chronization, which facilitates inter- block synchroniza-
tion without returning to the CPU. However, special
care must be taken because in a naive implementation
we may easily experience deadlocks when simulating
a higher number of cores than the available physical
GPU processors. Simulated nodes are mapped on both
active and inactive thread-blocks and the GPU hardware
scheduler selects thread-blocks for execution based on
available computational resources [16]. If the number
of threads in all blocks is higher than the number of
processors on the GPU, only a subset of all the blocks
can execute, while the remaining blocks wait (inactive)
until the first set finishes its execution.

Out of Order
Simulation

on GPU

Out of Order
Simulation

on GPU

Synchronize
Cycles on GPU

Node 0 Node 1 ……….. Node N-1

 Start Start Start

 s-event
 retires

End

End

End

T0 = 4 T1=2 Tn-2=1 Tn-1 =6

 LBTS = T0= 4 T (all) ≥ LBTS

CPU
Barrier

CPU
Barrier

CPU
Barrier

CPU
Barrier

 s-event detected

X X

Node N-2

 Start

End

T0 = 4 T1=4 Tn-2=4 Tn-1 =6

 LBTS = T0= 4 T (all) ≥ LBTS

T0 = 5 T1=5 Tn-2=5 Tn-1 =7

 LBTS = T1= 5 T (all) ≥ LBTS

T0 = 6 T1=6 Tn-2=6 Tn-1 =8

 LBTS = T0= 6 T (all) ≥ LBTS

 no s-event
 found

Step 1

Step 2

Step 3

Step 4

Step 6

In-Order
Lock-step

Simulation

Step 5

Fig. 4: Graphical Representation of using Relaxed-
Synchronization to minimize performance overhead from
Host-CPU-Barrier on GPU Platforms

6.3 Relaxed-Synchronization
A traditional lock-step approach or cycle accurate simu-
lation would force synchronization of each node simula-
tion at every clock cycle, so that the simulated program
can execute in synchronized target time. The major
drawback of this approach is immense synchronization
overhead, as the simulation would stop and synchronize
at each clock-tick.

To address the problem of high overhead due to
Host-CPU-Barrier synchronization and gain significant

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2319092, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXXX 201X 7

speedup, we use less frequent synchronization, intro-
ducing a technique which we call relaxed-synchronization.
In relaxed-synchronization , instead of synchronizing at
every few clock cycles, we choose to synchronize only
upon s-events to minimize the number of synchronization
points. Figure 4 shows the steps taken to achieve fast
synchronization on GPU as described below:

• Step 1 - Simulation of all nodes are allowed to run
freely and cores simulate with high speed until an
s-event is detected in coprocessor system. This is to
ensure that we achieve fast simulation by allowing
the hardware context thread to execute indepen-
dently without the need to synchronize frequently.
All nodes which are simulated independently, con-
tinuously checks for the presence of any s-event in
the system after execution of each local instruction
by polling an s-event flag in GPU device memory.
When any of the nodes in the system detects the
first occurrence of an s-event, it sets the s-event flag
and all other nodes are notified of the presence of an
s-event in the system. In Figure 4 node 0 is the first
to detect the presence of an s-event at its local clock
cycle T0 reads 4. As explained above, at this point
it is necessary to synchronize all nodes to maintain
the functional and timing fidelity of the simulation.

• Step 2 - As explained in Subsection 6.1, to avoid
data dependency violation we need to make sure
that all the nodes should have local clock cycles at
least equal to the timestamp of the node generating
the s-event. Local clocks Tn of all nodes are collected
and Lower Bound on Timestamps (LBTS) is calcu-
lated, where LBTS is equal to the clock cycle of the
node that notifies the presence of an s-event.

• Step 3 - Calculating LBTS requires inter-thread syn-
chronization of GPU CUDA threads. Therefore all
nodes suspend their independent simulation and
control returns to the host CPU platform to perform
Host-CPU-Barrier operation. As shown in Figure 4,
the LBTS is calculated as 4 in this case.

• Step 4 - When GPU kernel is launched again, if it
was detected in the previous step that some of the
nodes have Tn less than LBTS, then a synchroniza-
tion cycle is called which ensures that the simulation
of all nodes has a timestamp greater than or equal
to LBTS. Simulation of nodes with local clock lower
than LBTS proceed while nodes with timestamp
greater than or equal to the lower bound wait until
all local clocks are at least equal to LBTS =4 as
shown in figure. If there are any previous s-events
present in the system, Step 2,3 and 4 are repeated
until all of them are detected and LBTS is set to the
minimum value of their timestamp.

• Step 5 - The simulation proceeds in lock-step fash-
ion until all detected s-events in the system are
retired as shown in Figure 4 . As explained in Step
1, due to the presence of s-events in the system, each
node simulates a single event on GPU before return-

ing the control to the CPU to perform the Host-CPU-
Barrier. Lock-step simulation also helps to ensure
that timing fidelity is maintained and we get the
expected round trip latency of the packet traveling
across NoC by continuously checking any modified
value of LBTS after each GPU kernel launch.

• Step 6 - Once the simulation of s-events in the system
is complete, normal simulation resumes without
barriers until the simulation ends or next s-event is
encountered at which point Step 2 is invoked again.
In Figure 4 s-event generated in Step 1 is serviced
and fast GPU simulation continues.

Next, with the help of Figure 5 , we explain lock
step simulation implemented in NoC simulation. We
recall that a single CUDA thread simulates a single node
of the NoC, which has a network switch connected to
local and neighboring queues as shown in Figure 1.
Local processor and memory queues are bidirectional
and switch receives requests and inserts the forwarding
packets from/to them independently. However neigh-
boring nodes are connected using two queues - incoming
and outgoing. The incoming queue for one switch of the
neighbor acts as an outgoing queue for the second one
and vice versa. Within one single kernel launch (step)
of lock-step synchronization, every switch queries its
incoming packet queues, then selects a single packet
from one of its queues and forwards it to the destination
outgoing queue. This implies that in a single step, two
neighboring switches may be reading and writing from
the same packet queue. Therefore additional synchro-
nization is needed where one of the neighbors is trying
to insert the packet in the outgoing queue while another
one is trying to read the packet from the same queue
location (which may result in write-after-read hazard).

This synchronization is done using a combination of
CPU barrier synchronization and a lock-free fast barrier
synchronization [48] (see Figure 5). Therefore, a single
step between two CPU Barrier Synchronization points
is further divided into a read and writes cycles. First,
in a read cycle all switches poll their incoming queue
for requests and read a packet to be serviced. This is
followed by a lock-free fast barrier synchronization[48]
to ensure that all threads have finished reading their
incoming queues, before writing the selected packet
into their outgoing queues. Finally, the following CPU
barrier synchronization ensures that packets written to
all queues in the write cycle are globally visible for
reading with the next CUDA kernel launch.

The overall simulation performance loss due to syn-
chronization is related to the number of s-events present
in each simulated workload. Since our target coprocessor
is aimed at running many-thread data parallel work-
loads, we expect very low synchronization requirements
and consequently high simulation speedups for hetero-
geneous platforms.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2319092, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXXX 201X 8

Thread N (Lock-step NoC simulation when s-event detected)

Single
Step

Of CUDA
kernel

Read
Cycle

Write
Cycle

CPU Barrier Synchronization

Lock Free Fast Barrier Synchronization

Switch N reads incoming
queues and selects a packet

Switch N writes selected packet
into destination
outgoing queue (Local/Neighboring)

Fig. 5: Synchronization in a single step of NoC simula-
tion under Lock-step Simulation

7 EXPERIMENTAL RESULTS

In this section we first present our experimental set up
and benchmarks. Next we show performance results for
benchmarks running on top of our simulator. Finally, we
show the evaluation of scalability of our simulator and
a detailed comparison of its performance with respect
to other state-of-the-art commercial platform simulation
approaches.

7.1 Experimental Setup
For evaluating our simulation methodology, we care-
fully selected our target architecture and benchmarks for
simulation. As a target architecture for heterogeneous
platforms, we decided to simulate an ARM versatile
baseboard with dual core ARM1136 CPU connected with
a many-core programmable coprocessor. As described
before in Section 2, the architecture we are targeting
for target coprocessor has thousands of very simple in-
order cores. We use simple RISC32 cores (based on ARM
instruction set architecture [24]). Since we model various
different system components in our coprocessor simu-
lator (i.e. Cores, Caches, On-chip network, Memory), it
is important to understand the cost of modeling each
component on performance of simulator. Therefore we
conducted our experiments with two different architec-
tures.

• Architecture I - First we considered an architecture
where each tile is composed of a RISC32 core with
associated instruction (ISPM) and data scratchpad
memory (DSPM). All private memory references are
handled by dedicated code portion modeling the
behavior of scratchpad memories. All synchroniza-
tion instructions targeted towards shared memory
(TDSM) are handled from a global space.

• Architecture II - This includes the entire set of
components such as cores, caches, NoC, SPMs, dis-
tributed shared memory (TDSM) and performance
models. Caches are private to each core, which
means that they only deal with data or instructions
allocated in the private memory. The distributed
shared memory (TDSM) is non-cacheable; therefore
simulation of cache coherence protocol is not re-
quired. The complete list of architectural features is
provided in Table 1.

We characterize our simulator’s performance using a
metric called S-MIPS. S-MIPS presents the rate at which
the host platform simulates target instructions. We define
S-MIPS as follows:

S-MIPS =
Millions of Simulated Instructions
Host wall clock time in seconds

For all experiments, we used a NVIDIA C2070 Tesla
graphic card (the Device), equipped with 6 GB memory
and 448 CUDA cores. The QEMU ARM emulator runs a
Linux kernel image compiled for the Versatile platform
with EABI support. The many-core coprocessor simula-
tor executes the data parallel section of the workload
offloaded by the main program, simulated on QEMU.
As a host CPU platform, we used an Intel Xeon 2.67
GHz multi-core system running Linux 2.6.32. To generate
target binaries for ARM, we have used arm-linux-gcc.
We vary the number of processors in the simulated
many-core from 128 to 4096. This allows us to explore
the performance of our simulator when modeling both
current and future many-core designs.

7.2 Benchmarks

The benchmarks we have selected aim at evaluating
i) the scalability of target workload on many-cores, ii)
the design alternatives for target architecture with CPU-
coprocessor scheme iii) the efficacy of simulator imple-
mentation on GPU. We measure the impact on four most
important factors:

• Data level parallelism
• Dataset sizes
• Synchronization
• Task level parallelism

In Table 2, we list the benchmarks adopted for our
experiments with their dataset size. As mentioned in Sec-
tion 2, the coprocessor architecture enables fine-grained
parallelism and is best suited for workloads with high
level of data-level parallelism. Therefore, the first four
benchmarks are extracted from a JPEG decoder and from
the OpenMP Source Code Repository [29] benchmark
suite and exhibits high degree of data parallelism. We
also used the EP kernel from NAS parallel benchmark
[31]. The EPCC benchmark is taken from the well-known
OpenMP Microbenchmarks Suite [30], which contains
large data parallel phases interspersed with several im-
plicit synchronizations. Figure 6 presents the instruction
profile showing percentage of different mix of instruc-
tions in each of these benchmarks when 4096 cores are
simulated on the many-core coprocessor. The percentage
of instructions is referred to the application portion that
is running on the target coprocessor. We can see that
for EPCC benchmark, the fraction of synchronization in-
structions represents a small percentage of the total. The
dataset size changes between benchmarks. In particular,
MM and NCC have larger datasets, which implies a
longer duration of their overall execution time compared
to the other benchmarks.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2319092, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXXX 201X 9

Processing Cores 128 to 4096 ARM ISA cores, 3-stage pipeline

Caches

Instruction and Data Caches per core, 32 KB per node,
Reconfigurable set-associative (default 8 ways), FIFO replacement policy,

write allocate, write no allocate, write back,
128-byte lines Cache miss latency: 10 cycles, Cache hit latency: 1 cycle

Interconnect
Network-on-chip, nxn 2D mesh, static routing, XY,
Single cycle per hop when no network congestion

Private Memory 4GB per target coprocessor, Distributed equally for available number of cores, Cacheable

Shared Memory (TDSM) 40MB per target coprocessor, Distributed equally for available number of cores, Non-cacheable

TABLE 1: System parameters of target architecture of coprocessor

Benchmark Acronym Source Comments
1 Inverse DCT IDCT JPEG Decoding [29] Datasize - 4K DCT blocks(8*8 pixels)
2 Luminance Dequantization DQ JPEG Decoding [29] Datasize - 4K DCT blocks(8*8 pixels)
3 Background Subtraction NCC Normalized Cut Clustering [29] Datasize - 4K parallel rows
4 Matrix Multiplication MM OpenMP Source Code Repository[29] Datasize - (4096x100)*(100x100)
5 Fast Fourier Transform FFT OpenMP Source Code Repository[29] (Datasize = 4K)
6 EPCC Test Atomic EPCC EPCC OpenMP Microbenchmark Suite [30] Datasize = 4K (Atomic Operations)
7 Embarrasingly Parallel EP NAS Parallel Benchmarks [31] Datasize= 218

8 Barrier - Centralized BC PARKBENCH [32], Marongiu et al.[33]
Datasize = 4096

End barrier (Spin Locks, Polling Loops)

9 Barrier- Master Slave Distributed B-MSD PARKBENCH [32], Marongiu et al.[33],
Datasize = 4096

End barrier (Spin Locks, Polling Loops)

10 Barrier - Master Slave Distributed Tree BMSD-T PARKBENCH [32], Marongiu et al.[33],
Datasize = 4096

End barrier (Spin Locks, Polling Loops)

TABLE 2: Benchmarks

FFT was chosen as a representative of task (MIMD)
parallelism. Indeed, in this benchmark, threads with an
odd ID perform different computation than threads with
an even ID. These threads, when mapped to the simula-
tion cores, create control flow divergence, as discussed
in Section 4.

Finally, synchronization is an important feature for
any shared memory programming model and it is im-
portant to measure the overhead of using synchroniza-
tion primitives in a given workload. Therefore, we se-
lected a worst case scenario and used a barrier syn-
chronization benchmark, described in [32] and [33]. This
benchmark consists of a sequence of data-parallel tasks
(or algorithmic phases) and a final barrier synchro-
nization, which makes threads wait for each other at
the end of parallel region. We consider three different
implementations of barrier algorithm to show that our
simulator can precisely capture the performance impact
of software and architectural design implementations,
namely:

• Centralized - In the first implementation of the
barrier benchmark (BC), a centralized shared barrier
is used. It uses shared entry and exit counters atom-
ically updated through lock-protected write opera-
tions. Implementation of synchronization primitives
is done using spinlocks and polling a shared vari-
able which is stored in one single segment of the
distributed shared memory of the target (TDSM).
Threads busy-waiting for barrier to complete are
constantly sending memory packets with high la-

tency towards a single node. Therefore the number
of synchronization instructions increases with the
increasing number of simulated cores, creating in-
creasingly high traffic towards a single tile in the
network.

• Distributed Master-Slave - In this barrier algorithm
(B-MSD), we work around the contention problem
by designating a master core, responsible for col-
lecting notifications from other cores (the slaves).
Each slave notifies its presence on the barrier to the
master on a separate location of an array stored in
DSM portion local to the master. The master core
polls on this array until it receives the notification
from all the slaves. Slave cores however poll on
a separate DSM portions local to them. When the
master core determines that all slaves have reached
barrier, it releases the slaves by writing to their
polling location [33]. Distributing the polling loca-
tion for slaves local to their DSM segment, greatly
reduces the traffic on network due to busy-waiting,
as evident from Figure 6.

• Tree Based Distributed Master-Slave - This algorithm
is similar to B-MSD, but further improves perfor-
mance by using a tree based multi-stage synchro-
nization mechanism (BMSD-T) where cores are or-
ganized in clusters. The Master-Slave approach is
maintained as explained above, and each core in
the cluster has dedicated notification and polling
flags. In this case, the first core of each subcluster is
master to all slave cores in that subcluster. When all

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2319092, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXXX 201X 10

Fig. 6: Instruction Profile of Benchmarks (parallelized for
4096 cores)

slaves in a subcluster reach the barrier, they trigger
top-level synchronization betweeen local (cluster)
masters [33]. Since the tree-based implementation
(BMSD-T) is better suited for a large number of
processors, it is expected to further mitigate the
effect of barrier synchronization.

Overall, each of these benchmarks is either represen-
tative of a category of applications widely used in the
many-core domain, or contains specific computation or
memory patterns frequently found in highly parallel
applications. All benchmarks are launched from within
Linux OS running on QEMU. During the execution of
these benchmarks, when a parallel kernel is encountered,
it is offloaded for simulation on our many-core simula-
tor using the semihosting technique. The parallelization
scheme we have developed for this purpose is similar to
OpenMP static loop scheduling and focuses on evenly
dividing total loop iterations among all participating
processors. More specifically, an identical computation
is replicated over parallel threads, which operate on dis-
joint chunks of the iteration space and dataset according
to their identification number.

7.3 Application Performance Estimation
In this subsection, we present the results related to the
performance prediction capabilities of our many-core co-
processor simulator. Application performance depends
upon a large number of parameters. Performance over-
head is related to the various software features such as
parallel programming model, number of loop iterations
per thread, chunk size and software implementation of
synchronization directives. In addition to this, it also
depends upon architectural features such as cache de-
sign, memory locality and communication cost due to
network delay. Therefore, with this set of experiments
we assess how each of these characteristics affects ap-
plication performance. We report average instructions
per cycles (IPC) for each benchmark in Figure 7. As
mentioned in Section 7.2, the first five benchmarks have
high data parallellism and therefore show increasing IPC
of up to 2000 with increasing number of cores. EP and
EPCC benchmark have a small percentage of synchro-
nization instructions, so they still benefit from the rest of
the available data parallel section. BC is our worst case

Fig. 7: Instructions Per Cycles

scenario and maximum IPC it achieves is around 350, for
the case when coprocessor is simulated for 1024 cores.
This is due to heavy traffic coming from synchronization
directives, which creates a bottleneck in the NoC and
imposes sequential execution. The simulator therefore
correctly demonstrates the cause of poor performance
for BC. The poor performance is due to the ill-matched
synchronization scheme of the BC barrier algorithm with
an architecture with NUMA (distributed) memory. B-
MSD and BMSD-T are more suitable implementations
for the assumed memory model and hence show better
results compared to BC. As expected, due to multi-stage
implementation of Master-Slave algorithm, the simula-
tion cycles are further reduced in BMSD-T as compared
to BMSD, and therefore show higher instructions per
cycles.

In Figure 9a and 9b, we show scalability results for up
to 4096 cores. The application speedup is calculated by
dividing the cycle counts of a parallelized benchmark
running on N cores by the cycle count of the same
benchmark running on a single core of the coprocessor.
Results for data parallel kernels are shown in Figure 9a
and barrier algorithms are shown in Figure 9b. All the
benchmarks achieve good scalability in Figure 9a due
to high parallellism. FFT features data-dependent con-
ditional execution and EPCC includes synchronization
primitives. Due to this, the inherent parallelism of EPCC
and FFT is lower than that of the other benchmarks
and consequently we see a slight decrease in application
scalability when parallelizing for 4096 cores.

In Figure 9b, as we expect, BC does not scale, showing
the effect of heavy network congestion due to contention
for centralized barrier counters. B-MSD mitigates the
effect of synchronization and shows significantly bet-
ter results where the application speed up increases
to 1000x. Employing a tree-based algorithm in BMSD-
T further removes the traffic due to busy-waiting, and
therefore shows better speedup (3300x) than BMSD with
increasing number of cores.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2319092, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXXX 201X 11

128 256 512 1024
2048

4096

Simulated Cores on Coprocessor

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
pp

lic
at

io
n

S
pe

ed
 U

p

MM
NCC
EP
IDCT
DQ
FFT
EPCC
Ideal

(a) Data Parallel Benchmarks

128 256 512 1024
2048

4096

Simulated Cores on Coprocessor

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
pp

lic
at

io
n

S
pe

ed
 U

p

BC
B-MSD
BMSD-T
Ideal

(b) Barrier Benchmarks

Fig. 9: Application Speed Up when target coprocessor simulated with up to 4096 cores

128
256

512
1024

2048
4096

Simulated Cores on Coprocessor

0

100

200

300

400

500

600

700

 S
-M

IP
S

MM
NCC
IDCT
EP
DQ
EPCC
FFT

(a) Architecture I

128
256

512
1024

2048
4096

Simulated Cores on Coprocessor

0

10

20

30

40

50

S
-M

IP
S

NCC
MM
IDCT
DQ
FFT
EP
EPCC

(b) Architecture II

128
256

512
1024

2048
4096

Simulated Cores on Coprocessor

0

10

20

30

S
-M

IP
S

BC
B-MSD
BMSD-T

(c) Architecture II- Barrier Synchronization

Fig. 10: S-MIPS: Simulated Millions of Instructions Per Second with increasing core counts on coprocessor.

Fig. 8: Percentage of overall simulation time for bench-
marks running on 1024 cores

7.4 Simulator Scalability Evaluation

In this section, we evaluate the scalability of our many-
core simulator running on GPU. We present the simu-
lator’s performance using S-MIPS for both ArchitectureI
and Architecture II as explained in Section 7.1.

Figure 10a shows S-MIPS for increasing core count of
the simulated accelerator for Architecture I. We can notice
that the performance is as high as 600 S-MIPS when
simulated for 4K cores for the MM benchmark with
biggest dataset sizes. The same experiment for Archi-

tecture II is shown in in Figure 10b. The performance is
close to 50 S-MIPS. As explained in Section 4, the perfor-
mance of our simulator is directly related to the level of
parallelism available in the coprocessor workload. High
level of data parallelism in application implies longer
simulation of workload in parallel, thus benefiting from
GPU hardware parallelism and therefore results in better
scalability and performance. Therefore, MM and NCC
benchmarks with the largest parallel datasets benefits
the most and show highest performance compared to
rest other benchmarks. For other benchmarks, due to
the small workload size on coprocessor, the overhead
associated with semihosting and parallelization direc-
tives wins over the benefits of parallelism on GPU. In
addition to this, as explained in Section 4, task paral-
lel workload has a performance impact on architecture
simulation due to the serialization of execution when
control flow divergence occurs (during the execution
phase of core pipeline simulation), which is visible in the
simulation performance of the FFT benchmark in both
Figure 10a and Figure 10b. In Figure 10b, we see that the
increase in S-MIPS stagnate between 1024 and 2048 cores.
This happens because when simulating Architecture 2,
due to a very large data structure of NoC, Caches etc,
we exhaust the available shared memory resource on
GPU device (GSM) and GPU scheduler can only launch

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2319092, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXXX 201X 12

a limited number of total CUDA thread blocks per
multiprocessor, which can simulate up to 1792 cores
concurrently. Simulation of rest of the cores wait until
the first batch of simulation finishes before launching the
next batch of core simulation. Due to this serialization,
we see no gain in performance between 1024 and 2048
cores, however when simulating 4096 cores, we again see
increase in performance due to the fact now a very high
number of cores are simulating in parallel, although in
three batches of 1792 cores simultaneously.

Figure 10c shows our implementation of barrier bench-
marks. BC being a worst-case scenario incurs a huge
performance overhead due to slow CPU-GPU commu-
nication, as explained in Section 4. The impact of syn-
chronization overhead is visible in Architecture II, where
each application synchronization requires frequent CPU-
GPU barrier synchronization to faithfully simulate on-
chip network communication and synchronize the cycles
counts of the performance model as explained in Section
5. B-MSD and BMSD-T show significant improvement
in performance. The cost of synchronization is visible
beyond the simulation of 1024 cores, but as we expect,
BMSD-T shows the best performance among all three
implementations.

Figure 8 gives further insight into our heterogeneous
simulator scalability. It shows the breakdown of total
simulation time for different benchmarks. We evaluate
the amount of time spent on the QEMU, the time spent
on many-core simulation, overhead of semihosting re-
quired for the communication between the two and time
spent in CPU-GPU communication. These results refer
to a 1024-core instance of many-core coprocessor. Since
the MM benchmark has the largest dataset, the time
spent on the GPU is highest, whereas for BC, B-MSD,
BMSD-T, most of the time is spent in the CPU-GPU
communication (due to synchronization). For most cases,
we can see that semihosting time is a small fraction of
total execution time.

7.5 Simulator Performance Comparison

In this section we compare our simulation methodology
with dynamic binary translation (DBT). Single core simu-
lation on a powerful CPU using DBT is likely to outper-
form our interpretation-based simulation approach on
the GPU. However, we can expect that the high number
of streaming processors available on a single graphics
card would allow our simulation method to deliver
significant speedup benefits when simulating thousands
of cores on coprocessor.

To the best of our knowledge, none of the currently
available simulators can simulate thousands of ARM
cores along with caches and interconnect similar to the
full system architecture of our target coprocessor. As a
term of comparison, we selected OVPSim [34], which is a
famous commercial state-of-the-art simulation platform
able to model architectures composed of thousands of
ARM-based cores. OVPSim is a sequential simulator

where each core takes turn after certain number of
instructions, however it exploits the benefits of Just in
Time Code Morphing and translation caching system to
accelerate the simulation. OVPSim is a functionally accu-
rate simulator without support for cache or interconnect
modeling. The host platform used for running OVPSim
is the same we use for our QEMU-based target CPU
simulator; an Intel i7 quad-core x86-64 based machine,
running Linux at 2.67 GHz We compare the perfor-
mance of OVPSim against Architecture I (Section 7.1),
which most closely matches what OVPSim is capable
of modeling. We conducted two different experiments.
First we consider two benchmarks from the OVPSim
test suite, Dhrystone and Fibonacci. Unlike our other
benchmarks, these two benchmarks are not parallelized
and every core on the coprocessor simulator executes
the benchmarks entirely. The main reason for the using
this set of benchmarks is to highlight the reason behind
the steady throughput (S-MIPS), exhibited by OVPSim
as shown in Figure 11a, 11b. They also allow us to
present the difference between the OVPSim technique
that uses code morphing technology as compared to
our interpretation based method. In both benchmarks,
OVPSim shows a constant performance with increasing
number of simulated core because of its code morphing
technology. With these benchmarks, OVPSim needs to
invoke its morphing phase just once and exploits the
translation caching system to speed up the simulation.
Our GPU based simulator, on the other hand, scales well
up to 2048 simulated. Beyond 2048 cores the achievable
throughput only increases very slightly. Due to per-block
GPU device shared memory (GSM) requirements on the
GPU, we are only able to run at most 3 blocks per multi-
processor at a time. When simulating 4096 cores we
exceed this limit and extra blocks are dynamically sched-
uled thus impacting the final scalability. The breakeven
performance point between our coprocessor simulator
and OVPSim is 1024 cores.

In the second experiment, we consider our data-
parallel benchmarks MM and NCC. We recall here that,
with this parallelization approach, smaller chunks of
data are processed by each core when the core count
increases. Results for this test are shown in Figure
11c and 11d.These graphs show that performance of
OVPSim decreases significantly, showing less than 50
S-MIPS when simulating 4096 cores. Indeed, OVPSim
suffers from a high initial overhead, induced by its
code morphing phase. This overhead is increasingly
evident as the workload size diminishes, since mor-
phing time tends to dominate. This initial overhead is
clearly amortized as soon as workload increases. On
the contrary, our simulator performs equally well in
this context (600 MIPS), even for very small workloads.
On-chip many-core coprocessors are often involved in
data-parallel computation, which may contain even very
small amounts of work (e.g., embedded accelerators for
image processing, which may perform single-pixel com-
putation). In these scenarios our simulation approach

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2319092, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXXX 201X 13

128
256

512
1024

2048
4096

Simulated Cores on Coprocessor

0

200

400

600

800

1000

1200

1400

S
-M

IP
S

OVPSim
GPUSim

(a) Dhrystone

128
256

512
1024

2048
4096

Simulated Cores on Coprocessor

0

100

200

300

400

500

600

S
-M

IP
S

OVPSim
GPUSim

(b) Fibonacci

128
256

512
1024

2048
4096

Simulated Cores on Coprocessor

0

100

200

300

400

500

600

700

S
-M

IP
S

OVPSim
GPUSim

(c) Matrix Multiplication

128
256

512
1024

2048
4096

Simulated Cores on Coprocessor

0

100

200

300

400

 S
-M

IP
S

OVPSim
GPUSim

(d) NCC

Fig. 11: Performance Comparison of GPU based Coprocessor Simulator with OVPSim when simulating up to 4096
cores.

performs better than OVP. The breakeven performance
point between coprocessor simulator and OVPSim for
data-parallel kernels is close to 512 cores.

Results presented in this section indicate that our
simulation approach shows a very high performance
and scalability capability for the target many-thread
workloads and many-core architectures. Thousands of
hardware thread contexts available in GPU host make a
perfect match for simulation of the simple, single issue,
in-order cores of our target many-core coprocessor. The
performance of our simulator is however dependent
upon the total number of cores simulated in coprocessor
simulator as well as on the target workload. It is easy
to notice that high performance gain is obtained when
we simulate very high number of cores. We also proved
that our simulator performance scales further with the
increasing scalability level shown by the workload being
simulated in the target platform. Although there is a
small impact of synchronization and task parallelism on
the performance of the simulator, but the probability of
their presence in our target workloads is expected to be
very low. With future development of GPU architectures,
we aim to incorporate dynamic binary translation tech-
nique in our simulator to achieve further improvement
in performance.

8 RELATED WORK

Researchers and computer architects have proposed dif-
ferent approaches in the recent years to address the
challenges of simulating large-scale SoC systems.

First, there are functional-only simulators or vir-
tual platforms/emulators such as [17][35][34]. Although
they show good performance for single core simulation,
when simulating many-core they do not provide good
scalability and due to sequential nature, their simula-
tion time increases exponentially. In order to predict
performance, there are several performance simulators
that use fast emulators model in addition with their
own timing models [12] [37]. Each estimation approach
can be evaluated on the basis of speed, accuracy and
tunable abstraction level. Transaction level models and
examples of using high abstraction level include System

C based software performance estimation techniques
[38][39]. They provides significant speed up but their
many-core simulation capability is still limited to only
hundreds of cores.

Parallel Simulation solutions are proposed in the
past include [13][14][15]. BigSim[14] is parallel multi-
threaded emulator that mimics low level hardware and
message passing primitive to facilitate the execution of
parallel applications. Graphite [15] is a multicore simu-
lator that model thousands of cores by parallelizing the
simulator on multiple networked computers as opposed
to our inexpensive and easily available GPU based plat-
form. None of these simulation tool mentioned above
target heterogeneous architectures with a thousand-core
coprocessor.

In the past, FPGA and GPU-accelerated simulation
have been proposed for many-core system emulation
to assist the application development process for multi-
core processors ProtoFlex[41] RAMP[42] HASim[49] and
BeeFarm[50]. Such techniques utilize the concurrency of
hardware such as FPGA to directly imitate the internal
design of the target system. Even though hardware
emulation solutions provide good performance, they are
still limited to protyping a few hunderds of cores and a
software GPU-based solution provides better flexibility
and scalability. Moreover the GPU based solution is
cheaper and more accessible to a wider community.
Recently, a few research solutions have been proposed
to run gate-level simulations on GPUs [43] [44] and a
cache simulator [45] on a CUDA GPU target.

In the domain of Simulating Heterogeneous Architec-
tures, a few simulators targeting GPU cores have been
proposed. Barra[46] and Ocelot [47] are functional sim-
ulators bound around specific architecture of NVIDIA.
The major limitations faced by all of these solutions is
a poor simulator performance. None of these simulator
use the parallelization available in GPU host platform.
To the best of our knowledge, our simulator is the first
one to use GPU based platforms for parallel simulations
of many-core heterogeneous architecture.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2319092, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXXX 201X 14

9 CONCLUSION

In this paper, we have presented a novel methodology
to use GPU acceleration for architectural simulation of
heterogeneous platforms in which a general purpose
processor is coupled with a many-core coprocessor . The
main motivation of this work is to present feasibility, op-
timization techniques, and performance benefits gained
from accelerating simulation on GPUs. We have shown
in this work how to effectively partition simulation
workload between the host machine’s CPU and GPU.
Thousands of hardware thread contexts available in GPU
hardware make a perfect match for simulation of the
simple, single issue, in-order cores of our target many-
core coprocessor.

In order to experimentally assess the effectiveness of
our approach, we selected an illustrative target archi-
tecture of an ARM CPU connected with a coprocessor
featuring up to 4096 simple cores. The methods and
approach presented in this work are also applicable for
similar future target architectures. In our future work,
we aim to target architecture of commercially available
GPUs and accelerator chips with thousands of cores.
Compared to performance results from the OVPSim sim-
ulator, our solution demonstrates better scalability when
simulating a target platform with increasing number of
cores. More precisely, our proposed simulator achieved
up to 50 MIPS when simulating full architecture for
coprocessor including cache and NoC model while 600
MIPS when a simpler architecture is considered with
thousands of cores using scratchpad memory. We also
proved that our simulator performance scales further
with the increasing scalability level shown by the work-
load being simulated in the target platform. Moreover,
we presented application performance and profiling in-
formation of different benchmarks, which shows the
utility of the proposed simulation approach.

REFERENCES
[1] Bader, A. et al., Guest Editors Introduction: Special Issue on High-

Performance Computing with Accelerators, IEEE Transactions on Parallel
and Distributed Systems, Vol. 22, No. 1, January 2011.

[2] Yang, X. et al., The TianHe-1A Supercomputer: Its Hardware and Software
in the Journal of Computer Sci. & Tech., Vol 26, 344-351

[3] ARM-GPU Hybrid Supercomputer.http ://www.montblanc-project.eu/.
[4] ClearSpeed Whitepaper: CSX Processor Architecture.

http://www.clearspeed.com/.
[5] Plurality Software Emulator for Multi-Cores, http ://www.plurality.com.
[6] NVIDIA’s Tegra http ://www.nvidia.com/object/tegra-2.html.
[7] Bell, S. et al. “TILE64 - Processor: A 64-Core SoC with Mesh

Interconnect”,Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of
Technical Papers. IEEE International , vol., no., pp.88-598, 3-7 Feb. 2008

[8] Howard, J. et al., A 48-core ia-32 message-passing processor with dvfs in
45nm cmos. In Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2010 IEEE International, pages 108 -109, feb. 2010.

[9] http://www.amd.com/us/products/technologies/apu/Pages/apu.aspx
[10] http://www.kalray.eu/products/mppa-manycore/mppa-256
[11] The open SystemC initiative. http ://www.systemc.org.
[12] Argollo, E. et al., COTSon: Infrastructure for Full System Simulation. in

Operating Systems Review, Vol 43, Num 1,2009
[13] Penry, D. et al., Exploiting Parallelism and Structure to Accelerate the

Simulation of Chip Multi-processors,in HPCA, 2006.
[14] Zheng, G. et al., ”BigSim: A Parallel Simulator for Performance Prediction

of Extremely Large Parallel Machines,” IPDPS’04
[15] Miller, J. et al., Graphite : A distributed parallel simulator for multicores.

In High Performance Computer Architecture (HPCA), 2010 IEEE 16th Inter-
national Symposium on, pages 1 -12, jan. 2010.

[16] / NVIDIA CUDA Programming Guide.
http://developer.download.nvidia.com

[17] QEMU, “http://wiki.qemu.org.”
[18] AMD. ATI Stream Computing OpenCL Programming Guide.

http://developer.amd.com
[19] V. Saraswat, et al. The asynchronous partitioned global address space

model. Technical report, June 2010.
[20] W. W. Carlson, et al. Introduction to UPC and Language Specification, 1999
[21] Borker S. Thousand core chips: a technology perspective In DAC ’07:

Proceedings of the 44th DAC (2007), pp. 746-749
[22] The open standard for parallel programming of heterogeneous systems

http://www.khronos.org/opencl/
[23] NVIDIA CUDA Best Practices Guide, version 3.2. http ://devel-

oper.download.nvidia.com.
[24] ARM architecture - http://infocenter.arm.com
[25] Raghav S. et al. Full System Simulation of Many-Core Heterogeneous SoCs

using GPU and QEMU Semihosting. Fifth Workshop on GGPGU , Held with
ASPLOS XVII, London, 2012.

[26] C. Pinto. et al.,, “GPGPU-Accelerated Parallel and Fast Simulation of
Thousand-Core Platforms,” Cluster, Cloud and Grid Computing (CCGrid),
2011, vol., no., pp.53-62, 23-26 May 2011

[27] S. Raghav. et al.,, Scalable Instruction Set Simulator for Thousand-core
Architectures Running on GPGPUs, HPCS 2010, Caen, France.

[28] J. Bammi et al., Software performance estimation strategies in a system-level
design tool. CODES, 2000

[29] Dorta, A. et al., The OpenMP source code repository. In Proceedings of
the 13th Euromicro Conference on Parallel, Distributed and Network-Based
Processing, pages 244250, Washington, DC, USA, 2005. IEEE Computer
Society.

[30] Bull,J., Measuring Synchronisation and Scheduling Overheads in OpenMP,
Proceedings of the First European Workshop on OpenMP, Lund, Sweden,
Sept.1999, pp. 199-105

[31] H. Jin et al., The OpenMP implementation of NAS parallel benchmarks and
its performance. Technical Report NAS-99-011, NASA Advanced Supercom-
puting Division, Oct. 1999

[32] R. Hockney et al. P A R K B E N C H Report - 1: Public International
Benchmarks for Parallel Computers , Scientific Programming, 3 (2) , 1994,
pp. 101-146.

[33] Marongiu A. et al., Supporting OpenMP on a multi-cluster embedded
MPSoC, Microprocessors and Microsystems, Volume 35, Issue 8, November
2011, Pages 668-682.

[34] The Open Virtual Platforms (OVP) portal. http ://www.ovpworld.org/.
[35] P. S. Magnusson et al., “Simics: A full system simulation platform, Com-

puter, vol. 35, no. 2, pp. 5058, 2002.
[36] SimpleScalar D. Burger et al, The SimpleScalar Tool Set, Tech. report CSTR-

97-1342, Computer Sciences Dept., Univ. of Wisconsin, 1997
[37] Yourst, M.T. “PTLsim: A Cycle Accurate Full System x86-64 Microarchitec-

tural Simulator,” ISPASS 2007.
[38] Ruggiero M. et al., Scalability Analysis of Evolving SoC Interconnect

Protocols, Proceedings of The 2004 International Symposium on System-
on-Chip, Finland, Nov 16-18, 2004, pp. 169-172.

[39] L. Formaggio et al. A Timing-Accurate HW/SW Co-simulation of an ISS
with SystemC. In the 2nd IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, Sep. 2004.

[40] Trevor E. et al., Sniper: Exploring the Level of Abstraction for Scalable and
Accurate Parallel Multi-Core Simulations, International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), Nov, 2011.

[41] Eric S. Chung et al., ProtoFlex: Towards Scalable, Full-System Multipro-
cessor Simulations Using FPGAs, ACM Transactions on Reconfigurable
Technology and Systems (TRETS), v.2 n.2, p.1-32.

[42] J. Wawrzynek et al. RAMP: Research accelerator for multiple processors.
IEEE Micro, 27(2):4657, Mar. 2007

[43] D. Chatterjee et al., Event-driven gate-level simulation with gp-gpus, in
Design Automation Conference, 2009. DAC 09. 46th ACM/IEEE, july 2009,
pp. 557 562.

[44] K. Gulati et al., Towards acceleration of fault simulation using graphics
processing units, in Design Automation Conference, 2008. DAC 2008. 45th
ACM/IEEE, june 2008, pp. 822 827.

[45] W. Han, et al., Using gpu to accelerate cache simulation, in Parallel and Dis-
tributed Processing with Applications, 2009 IEEE International Symposium
on, aug. 2009, pp. 565-570.

[46] Collange, S. et al. Barra: A Parallel Functional Simulator for GPGPU,
Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2010 IEEE International Symposium on , vol., no.,
pp.351-360, Aug. 2010

[47] Diamos G. et al., Ocelot: a dynamic optimization framework for bulk-
synchronous applications in heterogeneous systems. In Proceedings of the
19th international conference on Parallel architectures and compilation
techniques (PACT ’10). ACM, New York.

[48] Shucai X. et al., Inter-block GPU communication via fast barrier synchro-
nization. IPDPS, 19-23 April 2010

[49] Pellauer M. et al. Hasim: Fpga-based highdetail multicore simulation using
time-division multiplexing. In HPCA (February 2011)

[50] Sonmez, N., et al. From Plasma to BeeFarm: Design Experience of an FPGA-
Based Multicore Prototype. In 7th Symposium on ARC, March 2011.

