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Abstract

Because of its attractive features, second order segmentation has shown to be a
promising tool in remote sensing. A known drawback about its implementation
is computational complexity, above all for large set of data. Recently [1], an
efficient version of the block-coordinate descent algorithm (BCDA) has been
proposed for the minimization of a second order elliptic approximation of the
Blake–Zissermann functional. Although the parallelization of linear algebra
operations is expected to increase the performance of BCDA when addressing
the segmentation of large-size gridded data (e.g., full-scene images or Digital
Surface Models (DSMs)), numerical evidence shows that this is not sufficient to
get significant reduction of computational time. Therefore a novel approach is
proposed which exploits a decomposition technique of the image domain into
tiles. The solution can be computed by applying BCDA on each tile in parallel
way and combining the partial results corresponding to the different blocks of
variables through a proper interconnection rule. We prove that this parallel
method (OPARBCDA) generates a sequence of iterates which converges to a
critical point of the functional on the level set devised by the starting point.
Furthermore, we show that the parallel method can be efficiently implemented
even in a commodity multicore CPU. Numerical results are provided to evaluate
the efficiency of the parallel scheme on large images in terms of computational
cost and its effectiveness with respect to the behavior on the tile junctions.

Keywords: Segmentation; Blake Zisserman functional; domain decomposition;
block coordinate descent methods; parallel interconnection rule

1. Introduction

Despite the wide image processing domain provides many different tech-
niques to extract information from images, a major limitation which is often
encountered is the capability to work in real application scenarios, e.g., in remote
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sensing (RS). As an example, digital surface models (DSMs) of the Earth’s sur-
face can be obtained from LiDAR (Light Ranging and Detection) point clouds.
From this huge amount of data, useful information needs to be extracted system-
atically and, very often, this task must be accomplished on commodity machines
with limited resources. Effective object-based or simplified representations of
images can be obtained via segmentation approaches, where objects are iden-
tified by segments. To process large images, a common procedure consists in
splitting the input into several tiles, running a specific segmentation algorithm
separately on each tile and, then, merging together the partial results. However,
this strategy is empirical in nature and the global dependency of the solution
on data often introduces undesired artifacts which potentially propagate from
the tiles junctions to their interior. It is a matter of fact that, the theoretical
justification of tiling approaches for segmentation algorithms is rarely consid-
ered in literature.
Among the mathematical methods to address the image segmentation prob-
lem, a key role is played by variational models. In this case, the solution is
theoretically formulated as a minimizer of a global energy. In the seminal pa-
per [2], Mumford ad Shah (MS) proposed a first-order functional, whose min-
imization determines an approximation of the image by means of a piecewise
smooth function. The Blake-Zisserman (BZ) second-order model [3] has been
introduced with the aim of overcoming the limitations of the Mumford-Shah
approach, such as the over-segmentation of the step gradients and the lack in
2nd-order detection (gradient discontinuities) and the triple-point problem (see
[4, 5] for a theoretical study). Nevertheless, the original functional formula-
tion of the segmentation problem by MS or BZ is too strong for a numerical
treatment. Among many approaches employed to numerically compute min-
imizers, we recall the well-known Ambrosio-Tortorelli (AT) approximation of
the MS functional [6], which is prone to be numerically implemented. In their
functional model, Ambrosio-Tortorelli replaced the unknown discontinuity set
by an auxiliary function which smoothly approximates its indicator function.
The initial choice of the discontinuity function can be made in an energetically
convenient manner by exploiting theoretical known properties of the solution.
Moreover, the AT approximation of the MS functional enjoys partial (quadratic)
convexity property; therefore gradient-based methods have in general satisfying
performance. It is worth mentioning here that a multi-grid approach to speed-up
computations is exploited in [7]. The numerical treatment of the BZ functional
is considered by Bellettini and Coscia [8, 9] in the one dimensional case, and
by Ambrosio, Faina, March in the two dimensional case [10]. In the latter, the
main result is an elliptic approximation of the functional where the technique
proposed by AT (to approximate the MS functional) has been properly adapted
for the 2nd-order functional. Here, two auxiliary functions are introduced as
indicators of both the discontinuity and gradient discontinuity sets of the solu-
tion. More specifically, let Ω ∈ R2 and g ∈ L∞(Ω) a given image. The goal is
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to minimize the functional

Fε(s, z, u) = δ

∫
Ω

z2|∇2u|2 dx+ ξε

∫
Ω

(s2 + oε)|∇u|2 dx

+ (α− β)

∫
Ω

ε|∇s|2 +
1

4ε
(s− 1)2 dx

+ β

∫
Ω

ε|∇z|2 +
1

4ε
(z − 1)2 dx+ µ

∫
Ω

|u− g|2 dx,

(1)

in proper Sobolev spaces. Here δ, α, β, µ are positive parameters (2β ≥ α ≥ β)
and the terms ξε, oε are infinitesimals. The approximation of the BZ functional
takes place when ε→ 0. Notice that, in the limit case, the minimizing functions
s and z must be 1 almost everywhere on Ω in order to keep the energy finite.
From the numerical point of view, by fixing ε as a small value, we have that
functions s, z are allowed to have variations from 1 to 0 in a small neighborhood
of the jump and the crease set of u, as this inhibits the costly contribution of
|∇u|2 and |∇2u|2, respectively. Recently, the numerical minimization of the
nonconvex functional (1) has been obtained by an especially tailored version of
a block-coordinate descent algorithm (BCDA) [11], based on a compact matrix
formulation of the functional [1]. Altough theoretical models such as MS and
BZ are global, the non-convexity of the objective functionals forces numerical
methods to provide sub-optimal solutions. The outcome of many numerical
experiments has highlighted that, although the theoretical model is global, the
solutions weakly depend on boundary conditions and they are energetically close
to initial data. This fact motivated us in developing a tiling scheme to address
the segmentation of large images where a minimizer of the functional is as-
sembled by merging together local minimizers restricted to sub-portions of the
image. Preliminary results were encouraging [12, 13].
The aim of this work is to provide mathematical arguments which justify the
heuristic of this procedure. We start from the consideration that a simple idea to
deal with very large images, might be to implement in a parallel way the linear
algebra operations of BCDA. Nevertheless numerical evidence highlights that
the gained performance is limited. Thus, inspired by recent papers on the con-
vergence of descent scheme for semi-algebraic problems [14, 15, 16], we propose
a parallel approach, based on the decomposition of the image into partially over-
lapping tiles, which enables us to obtain a satisfactory accuracy also on the strip
regions around the tile boundaries. This parallel iterative scheme, hereafter de-
noted by OPARBCDA, is basically a descent method which independently com-
putes a portion of the new iterate for any tile by BCDA. Convergence results
for the sequence of iterates generated by OPARBCDA are obtained. Particu-
larly, we prove that the whole sequence of the OPARBCDA iterates converges
to a critical point of the objective function. A suitable parallel implementation
of OPARDCDA, based on a run-time distribution of independent tasks on the
available cores of a multicore commodity, enables to address the segmentation of
large images. Further, few iterations of the scheme determines an approximate
solution that shows similar accuracy in every subregions of the domain.
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The paper is organized as follows: in Section 2 we describe the discretiza-
tion of (1) and its features by introducing the notation. In Section 3 we recall
the special version of the block-coordinate descent algorithm BCDA to address
the numerical minimization of the discrete functional (1) and we give the con-
vergence analysis of the scheme, by exploiting the Kurdyka–Lojasiewicz (KL)
property of the polynomial discrete functional. In Section 4, we introduce a par-
allel method, named OPARBCDA and based on the decomposition of the image
domain into overlapping tiles, we address its convergence properties; moreover,
always in this Section, after a description of the tools to parallelize the linear
algebra operations of BCDA, we discuss how to exploit the intrinsic parallel fea-
ture of OPARBCDA in a multicore CPU. Finally, in Section 5, the results of a
vast numerical experimentation enable to compare and evaluate the effectiveness
on the proposed approaches.

2. Discretization of the elliptic approximation of the Blake-Zisserman
functional

The numerical approach for the minimization of Fε exploits a discrete ver-
sion of the functional. The rectangular domain Ω ⊂ R2 is discretized by a lattice
of points Λ = {(itx, jty); i = 1, . . . , N, j = 1, . . . ,M} with step sizes tx and ty
on the x and y directions respectively. In order to take into account boundary
conditions, this lattice can be viewed as a subset of an enlarged lattice Λ. We
denote the set of points on the frame outside of Ω by B ≡ Λ− Λ.
By using the standard representation of grey-scale images as matrices, the val-
ues gij of the given image g are defined only on the grid points (itx, jty) of
Λ. The approximate values of the functions s, z, u at the grid points of Λ are
denoted by sij , zij , uij , assuming as in [10] zero boundary conditions on B (i. e.
si,j = zi,j = ui,j = 0, (i, j) ∈ B). By using a column-wise ordering for the ele-
ments of these matrices, the image matrix is denoted also by the NM vector g
while the vectors sΛ, zΛ,uΛ denote the entries of the functions s, z, u at the grid
points of Λ; the discrete functional depends only on the sub–vectors, denoted
in the following with s, z,u, whose NM entries are the approximate values of
s, z, u at the points of Λ; the others entries of sΛ, zΛ,uΛ are their boundary
values which interleave the elements of s, z,u in sΛ, zΛ,uΛ and form three other
sub–vectors denoted with sB, zB,uB.
By exploiting first and second–order difference schemes to approximate differen-
tial operators, and taking account of all contributions affecting s, z,u from the
boundaries, by a simple 2–D composite rectangular rule, we obtain the following
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discrete form of the functional (1):

Fε(s, z,u) :=

txty

{
δ

N+1∑
i=0

M+1∑
j=0

z
2
i,j

((
ui+1,j − 2ui,j + ui−1,j

t2x

)2

+

(
ui,j+1 − 2ui,j + ui,j−1

t2y

)2)
+

+2δ
N∑
i=0

M∑
j=0

z
2
i,j

(
ui+1,j+1 − ui,j+1

tytx
−
ui+1,j − ui,j

tytx

)2

+

+ξε

N∑
i=0

M∑
j=0

(s
2
i,j + oε)

((
ui+1,j − ui,j

tx

)2

+

(
ui,j+1 − ui,j

ty

)2)
+

+(α− β)

ε N∑
i=0

M∑
j=0

((
si+1,j − si,j

tx

)2

+

(
si,j+1 − si,j

ty

)2)
+

1

4ε

N∑
i=1

M∑
j=1

(si,j − 1)
2

+

+β

ε N∑
i=0

M∑
j=0

((
zi+1,j − zi,j

tx

)2

+

(
zi,j+1 − zi,j

ty

)2)
+

1

4ε

N∑
i=1

M∑
j=1

(zi,j − 1)
2

+

+µ

N∑
i=1

M∑
j=1

(ui,j − gi,j)2

}
(2)

with 2β ≥ α ≥ β > 0 and δ, µ, ε > 0, ξε, oε,≥ 0. In order to write in compact
matrix form the functional Fε(s, z,u), we introduce the square matrices A1

K ,A
2
K

of orderK+4, representing first and second order discrete operators respectively:

A1
K :=



0 0
−1 1

. . .
. . .

−1 1
0 0

0


, A2

K :=



0 0
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2 1

0 0


.

By denoting by IK and 0K the identity and the null matrices of order K
respectively and by ⊗ the Kronecker product, we can write the first and the
second order discrete operators in the following way:

Dx :=
1

tx
WM ⊗A1

N ; Dy :=
1

ty
A1
M ⊗WN ,

Dxx :=
1

t2x
WM ⊗A2

N ; Dyy :=
1

t2y
A2
M ⊗WN ;

Dxy :=
1

txty
(A1

M ⊗ JN )(JM ⊗A1
N ) =

1

txty
(JM ⊗A1

N )(A1
M ⊗ JN )

with WM = diag(02, IM ,02), WN = diag(02, IN ,02), JM = diag(01, IM+1,02)
and JN = diag(01, IN+1,02).
In the following, for any generic (N+4)(M+4) matrix operator D, let us denote
by D(:,Λ) and D(:,B) the sub–matrices of D given by the columns with indices
corresponding to points of Λ and B respectively, ordered in a column–wise way.
Furthermore, given a generic vector v, let us denote by Rv the diagonal matrix
with diagonal entries equal to the elements of v, i.e. Rv = diag(v). We also
denote by v2 the vector of the squared entries of v, i.e., (v2)i = (vi)

2 and
1 := (1, 1, . . . , 1)T .

5



Using this notation, the discrete functional (2) can be written as follows:

Fε(s, z,u) := txty

{
δ uT

Λ
(DT

xxRz2
Λ
Dxx + DT

yyRz2
Λ
Dyy + 2DT

xyRz2
Λ
Dxy)uΛ+

+ ξε u
T
Λ

(DT
xRs2

Λ
+oεDx + DT

yRs2
Λ

+oεDy)uΛ+

+ (α− β) [ε sT
Λ

(DT
xDx + DT

yDy)sΛ +
1

4ε
(s− 1)T (s− 1)]+

+ β [ε zT
Λ

(DT
xDx + DT

yDy)zΛ +
1

4ε
(z− 1)T (z− 1)]+

+ µ (u− g)T (u− g)
}
.

(3)
Globally this functional is not convex, but it is quadratic with respect to each
block of variables s, z,u when the others are fixed: the terms of Fε containing
s or z depend only on u; on the other hand, the terms containing u depend on
s and z. Indeed, by fixing the variable u or the other two variables s and z, we
can write

Fε(s, z,u) = txty

{
1

2

(
sT zT

)( A1 0
0 A2

)(
s
z

)
−
(
sT zT

)( b1

b2

)
+ csz

}
,

Fε(s, z,u) = txty

{
1

2
uTA3 u− uTb3 + cu

}
,

(4)
where A1 = A1(u), A2 = A2(u), A3 = A3(s, z) and b1,b2,b3 are given by

A1 =2ξεR|∇u|2 + 2ε(α− β)(Dx(:,Λ)TDx(:,Λ) + Dy(:,Λ)TDy(:,Λ))+

+
α− β

2ε
INM ,

b1 =− 2ε(α− β)(Dx(:,Λ)TDx(:,B) + Dy(:,Λ)TDy(:,B))sB +
α− β

2ε
1,

A2 =2δR|∇2u|2 + 2εβ(Dx(:,Λ)TDx(:,Λ) + Dy(:,Λ)TDy(:,Λ)) +
β

2ε
INM ,

b2 =− 2εβ(Dx(:,Λ)TDx(:,B) + Dy(:,Λ)TDy(:,B))zB +
β

2ε
1,

A3 =2δ(Dxx(:,Λ)TRz2
Λ
Dxx(:,Λ) + Dyy(:,Λ)TRz2

Λ
Dyy(:,Λ)+

+2Dxy(:,Λ)TRz2
Λ
Dxy(:,Λ)) + 2ξε(Dx(:,Λ)TRs2

Λ
+oεDx(:,Λ)+

+Dy(:,Λ)TRs2
Λ

+oεDy(:,Λ)) + 2µINM ,

b3 =− 2δ(Dxx(:,Λ)TRz2
Λ
Dxx(:,B) + Dyy(:,Λ)TRz2

Λ
Dyy(:,B)+

+2Dxy(:,Λ)TRz2
Λ
Dxy(:,B)) + 2ξε(Dx(:,Λ)TRs2

Λ
+oεDx(:,B)+

+Dy(:,Λ)TRs2
Λ

+oεDy(:,B))uB + 2µg.

(5)

Vectors csz and cu are constant, thus irrelevant for the minimization.
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Remark 1. We observe that when α = β and ξε = 0, the functional does
not depend anymore on the block variable s. The features and the numerical
treatment of this reduced version of Fε are similar to the ones of the general case,
with the only difference that Fε is quadratic with respect to the block variable z
when u is fixed, since A1 = 0, b1 = 0. Thus, since the setting α = β and ξε = 0
is a special case, in the following we address the general formulation, assuming
α > β and ξε > 0.

The functional Fε has the following properties:

P1. Fε(s, z,u) is continuously differentiable;

P2. the matrices Ai, i = 1, 2, 3 are very sparse and structured: A1 and A2

are block tridiagonal matrices, where the diagonal blocks are tridiagonal
and the off-diagonal blocks are diagonal; A3 is a block five matrix, with
at most 13 nonzero entries for each row;

P3. in view of the terms α−β
2ε I, β

2εI and 2µI, the matrices Ai, i = 1, 2, 3, are
symmetric and positive definite and their minimum eigenvalues λmin(Ai)
are below bounded by α−β

2ε , β
2ε and 2µ respectively;

P4. in view of the positive definiteness of matrices Ai, i = 1, 2, 3, Fε(s, z,u)
is quadratic and strongly convex with respect to each block component
s, z,u, when the others are left fixed;

P5. Fε is coercive in R3NM (see [1]); thus the level sets of Fε are compact;

P6. on a given level set, the matrices Ai, i = 1, 2, 3, have bounded positive
eigenvalues;

P7. on a given level set, the gradient of Fε is Lipschitz–continuous;

P8. the functional Fε is a polynomial in s, z,u and, consequently, it is a semi-
algebraic function, that satisfies the Kurdyka–Lojasiewicz (KL) property
on its domain (see [15] and reference therein).

In the following, for notation convenience, a generic point (s, z,u) in R3NM is
represented either by y or x. When y is used, the variables are grouped in
blocks according the simple correspondence: y1 = s, y2 = z and y3 = u; on the
other hand, we refer to x when the block decomposition is based on the spatial
subdivision of Λ. The functional restricted to a block variable vi is denoted by
fvi , i. e. fvi(vi) = Fε(...,vi, ...); the gradient of Fε at ṽ with respect to the
block vi is denoted by ∇viFε(ṽ) and ∇viFε(ṽ) = ∇fvi(ṽi).

3. Numerical minimization of Fε: a sequential approach

In this section we recall the original BCDA scheme presented in [1]. In view
of the remark that the discrete approximation of (1) is a polynomial function,
satisfying the Kurdyka-Lojasiewicz property, we obtain the convergence of the
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sequence generated by BCDA to a critical point.
BCDA is a version of block coordinate descent algorithm [11], especially tai-
lored to exploit the features of the functional Fε(s, z,u). Starting from an
initial vector y0 = (s0, z0,u0), the basic idea of the method is to cyclically de-
termine for each block variable yi a descent direction di by few iterations of a
preconditioned conjugate gradient (PCG) method applied to the linear system
Ak
i di = bi−Ak

i y
k
i = −∇yiFε(y

k), with Ak
i ≡ Ak

i (yk). In view of property P4
of the objective function, the step-lengths along the computed descent directions
dki at the iteration k can be determined without having to use an Armijo–type
procedure to ensure a sufficient decrease of the objective function. Indeed when
the step size αki is given by the following rule

αki := γi
(bi −Ak

i y
k
i )Tdki

dki
T
Ak
i d

k
i

= γi
−∇yiFε(y

k)Tdki

dki
T
Aki d

k
i

, (6)

with 0 < γi ≤ 2(1 − ρi), 0 < ρi < 1, a sufficient decrease for the objective
function restricted to the block variable yi is assured:

fyi(y
k
i + αki d

k
i ) ≤ fyi(yki ) + ρiα

k
i∇fyi(yki )Tdki . (7)

In particular, for γi = 1, we obtain the exact one-dimensional minimizer of
the strongly convex quadratic function along the direction dki and (7) holds
for ρi ≤ 1

2 . The special version of the block-coordinate descent algorithm for
Fε(s, z,u), named BCDA, is outlined in Algorithm 1. In view of P5, the level
set LF 0

ε
= {(s, z,u) : Fε(s, z,u) ≤ F 0

ε ≡ Fε(s
0, z0,u0)} is a compact subset of

R3MN . Thus, for (s, z,u) ∈ LF 0
ε
, the eigenvalues λj(A

k
i ) of the matrices Ak

i ,
i = 1, 2, 3, k ≥ 0, are bounded by positive constants (P6):

0 < λm ≤ λj(Ak
i ) ≤ λM , k ≥ 0, j = 1, ..., NM (8)

where λm = min{2µ, α−β2ε ,
β
2ε} and their condition numbers have above bounded

by a positive constant L ≤ λM
λm

.

In [1, subsection 2.2.1], it is proved that the directions dki , i = 1, 2, 3, computed
at any k–iteration of BCDA by PCG with a suitable stopping rule are gradient
related search directions. Consequently, since BCDA is a special version of the
Algorithm 1 in [11], Theorem 7.1 in [11] states that ∇Fε(sk, zk,uk) → 0 as
k → ∞ and there exists at least a limit point of {sk, zk,uk} in LF 0

ε
that is a

stationary point of Fε.
The following proposition resumes the features of dki , i = 1, 2, 3, k ≥ 0.

Proposition 3.1. [1] Let assume that ∇yiFε(y
k) = Ak

i y
k
i − bi 6= 0 for k ≥ 0.

Let consider the PCG method applied to the symmetric positive definite system
Ak
i di = bi − Ak

i y
k
i . Let dhi be the vector satisfying at the h–iteration of the

PCG method the (stopping) rule

‖rh‖ ≤ ηki ‖Ak
i y

k
i − bi‖ with ηki ≤

c√
K(Ak

i )
, (9)
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Algorithm 1 BCDA

Step 0: Given s0, z0, u0, 0 < ρi < 1, γi ∈ (0, 2(1− ρi)], i = 1, 2, 3, and an exit
tolerance θouter;

Step 1: k = 0

Step 2: Inexact minimization with respect to s and z:

1. compute the search directions dk1 and dk2 ;

2. compute αk1 = γ1
(b1−Ak

1s
k)Tdk1

dk1
TAk

1d
k
1

, αk2 = γ2
(b2−Ak

2z
k)Tdk2

dk2
TAk

2d
k
2

3. update sk+1 = sk + αk1d
k
1 ; zk+1 = zk + αk2d

k
2 .

Step 3: Inexact minimization with respect to u:

1. compute the search directions dk3 ;

2. compute αk3 = γ3
(b3−Ak

3u
k)Tdk3

dk3
TAk

3d
k
3

3. update uk+1 = uk + αk3d
k
3 .

Step 4: if (Fε(y
k)− Fε(yk+1)) ≤ θouterFε(yk+1) then stop; else k = k + 1 and

go to Step 2.

where rh = bi −Ak
i y

k
i −Ak

i d
h
i is the residual of the linear system, K(Ak

i ) is
the spectral condition number of Ak

i and 0 < c < 1.
Thus the direction dki := dhi is a gradient related search direction, i.e.

∇yiFε(y
k)Tdki

‖dki ‖
≤ 1

2(1 + ηki )

(
(ηki )2 − 1

K(Ak
i )

)
‖∇yiFε(y

k)‖

≤ c2 − 1

4L
‖∇yiFε(y

k)‖
(10)

with c2 − 1 < 0.

Since Fε is a KL function (P8), we can obtain also the convergence of the
sequence of iterates {yk} generated by BCDA to some critical point of Fε in
LF 0

ε
. Indeed, the analysis of an abstract descent algorithm for a KL function

and the convergence results of Theorem 2.9 in [15] enables us to obtain similar
results for BCDA. In particular, in view of the continuity of Fε, we have that
Theorem 2.9 in [15] assures that the sequence {yk} generated by BCDA method
converges to some critical point of Fε in LF 0

ε
, if the following conditions hold

for {yk}:

� sufficient decrease condition

Fε(y
k+1) + C1‖yk+1 − yk‖2 ≤ Fε(yk), (11)
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� relative error condition

‖∇Fε(sk+1, zk+1,uk+1)‖ ≤ C2‖yk+1 − yk‖, (12)

where C1 and C2 are fixed positive constant. The following two propositions
verify the validity of the two conditions (11) and (12) for a generic iteration of
BCDA.

Proposition 3.2. At any k–iteration of BCDA, k ≥ 0, while ∇Fε(yk) 6= 0, we
have that (11) holds with 0 < C1 ≤ λm mini

ρi
γi

.

Proof. In view of the Steps 2.2, 2.3, 3.2 and 3.3 of BCDA, we have that

‖yk+1 − yk‖2 =
3∑
i=1

(αki )2‖dki ‖2 =

3∑
i=1

αki γi
−(Ak

i y
k
i − bi)

Tdki

dki
T
Ak
i d

k
i

‖dki ‖2,(13)

where Ak
1 = A1(uk), Ak

2 = A2(uk) and Ak
3 = Ak

3(sk+1, zk+1). In view of the
well-known inequality related to the maximum and the minimum eigenvalues
λmax(Ak

i ) and λmin(Ak
i ) of the matrix Ak

i ,

λmax(Ak
i ) ≥ (dki )TAk

i d
k
i

(dki )Tdki
≥ λmin(Ak

i ), (14)

from (8) and (7), we obtain

‖yk+1 − yk‖2 ≤
3∑
i=1

γi
λm

αki (−(Ak
i y

k
i − bi)

Tdki )

≤ 1

λm
max
i

{
γi
ρi

}
(Fε(s

k, zk,uk)− Fε(sk+1, zk,uk) +

+ Fε(s
k+1, zk,uk)− Fε(sk+1, zk+1,uk)

+ Fε(s
k+1, zk+1,uk)− Fε(sk+1, zk+1,uk+1))

≤ 1

C1
(Fε(y

k)− Fε(yk+1)),

where C1 is a positive constant such that C1 ≤ λm mini
ρi
γi

.

In the proof of the following proposition, it is crucial to observe that ∇sFε(y) =
∇sFε(s,u), while ∇zFε(y) = ∇zFε(z,u) and ∇uFε(y) = ∇uFε(s, z,u). Fur-
thermore, we recall that the gradient of Fε on the level set LF 0

ε
is M -Lipschitz

continuous (P7).

Proposition 3.3. At any k–iteration of BCDA, k ≥ 0, while ∇Fε(yk) 6= 0, we

have that (12) holds with C2 ≥
√

48LλM
(1−c2)mini γi

+ 4M .

10



Proof. From (13), using the rule (6) and the inequality (8), we obtain

‖yk+1 − yk‖2 =

3∑
i=1

(αki )2‖dki ‖2 =

3∑
i=1

γ2
1

(−(Ak
i y

k
i − bi)

Tdki )2

((dki )TAk
i d

k
i )2

‖dki ‖2 ≥

≥
3∑
i=1

γ2
i

λ2
M

(−(Ak
i y

k
i − bi)

Tdki )2

‖dki ‖2
.

(15)

In view of (10), we obtain

‖yk+1 − yk‖2 ≥

≥ (1− c2)2 mini γ
2
i

16L2λ2
M

(‖Ak
1s
k − b1‖2 + ‖Ak

2z
k − b2‖2 + ‖Ak

3u
k − b3‖2) =

=
(1− c2)2 mini γ

2
i

16L2λ2
M

(‖∇sFε(s
k,uk)‖2 + ‖∇zFε(z

k,uk)‖2 + ‖∇uFε(s
k+1, zk+1,uk)‖2) ≥

≥ c2(‖∇sFε(s
k,uk)‖+ ‖∇zFε(z

k,uk)‖+ ‖∇uFε(s
k+1, zk+1,uk)‖)2,

(16)

where 0 < c2 ≤ (1−c2)2 mini γ
2
i

48L2λ2
M

; the last inequality follows from the Cauchy-

Schwarz inequality that holds for a generic n-vector v and a vector 1:

(1Tv)2 ≤ n
n∑
i=1

v2
i . (17)

On the other hand, we can write

‖∇Fε(sk+1, zk+1,uk+1)‖ ≤
≤ ‖∇sFε(s

k+1,uk+1)‖+ ‖∇zFε(z
k+1,uk+1)‖+ ‖∇uFε(s

k+1, zk+1,uk+1)‖ ≤
≤ ‖∇sFε(s

k,uk)‖+ ‖∇sFε(s
k+1,uk+1)−∇sFε(s

k,uk)‖+
+ ‖∇zFε(z

k,uk)‖+ ‖∇zFε(z
k+1,uk+1)−∇zFε(z

k,uk)‖+
+ ‖∇uFε(s

k+1, zk+1,uk)‖+ ‖∇uFε(s
k+1, zk+1,uk+1)−∇uFε(s

k, zk,uk)‖+
+ ‖∇uFε(s

k, zk,uk)−∇uFε(s
k+1, zk+1,uk)‖ ≤

≤ (‖∇sFε(s
k,uk)‖+ ‖∇zFε(z

k,uk)‖+ ‖∇uFε(s
k+1, zk+1,uk)‖)

+ 3‖∇Fε(yk+1)−∇Fε(yk)‖+ ‖∇Fε(sk+1, zk+1,uk)−∇Fε(sk, zk,uk)‖.
(18)

Thus, using (16) and the M -Lipschitz continuity of the gradient of Fε on the
level set LF 0

ε
, we obtain

‖∇Fε(sk+1, zk+1,uk+1)‖ ≤ C2‖yk+1 − yk‖, (19)

where C2 is a positive constant such that C2 ≥ 1√
c2

+ 4M ≥
√

48LλM
(1−c2)mini γi

+

4M .

11



Because of Theorem 2.9 in [15], the two previous propositions enable to ob-
tain the following convergence result.

Proposition 3.4. Given a starting point y0, the sequence {yk} generated by
BCDA converges to some critical point of Fε in LF 0

ε
. Moreover the sequence

{yk} has finite length, i. e.
∑∞
k=0 ‖yk+1 − yk‖ <∞.

Since BCDA has the same properties of an abstract descent method satis-
fying (11), (12), and the discrete BZ function is a polynomial (that is a real
analytic function), results about the rate of convergence of BCDA are obtained
in Theorem 4 in [17]. Indeed in this case the desingularizing function related
to the Kurdyka-Lojasiewicz property at a critical point of Fε is of the form
φ(t) = C

σ t
σ, with C > 0 and σ ∈ (0, 1]; the convergence is obtained in a finite

number of step for σ = 1, while for σ ∈ ( 1
2 , 1) we have exponential convergence

and for σ ∈ (0, 1
2 ) polynomial convergence.

We conclude the section, by stating in the following proposition a feature of
BCDA method, useful for the next section.

Lemma 3.1. Let assume that K iterations of BCDA are executed, with K ≤ K.
Thus we have

C1

K
‖yK − y0‖2 ≤ C1

K
‖yK − y0‖2 ≤ Fε(y0)− Fε(yK) (20)

Proof. We observe that

‖yK − y0‖2 = ‖
K−1∑
i=0

(yi+1 − yi)‖2 ≤ (

K−1∑
i=0

‖yi+1 − yi‖)2

≤ K
K−1∑
i=0

‖yi+1 − yi‖2

where the last inequality follows from (17). From (11), it is immediate to obtain
(20).

4. Numerical minimization of Fε: a parallel approach

In this section, we address the minimization problem of the discrete func-
tional Fε by subdividing the lattice Λ into p tiles T1, ..., Tp, with Ti ∩ Tj = ∅,
i 6= j. This subdivision leads a partition of the variable x ≡ (s, z,u) into p
blocks xT1

,xT2
, ...,xTp , with xTj ∈ Rnj , j = 1, ..., p,

∑p
j=1 nj = NM . Here each

block of variables xTj includes the approximations of the functions si,j , zi,j , ui,j
related to the points of Λ belonging to nj ≡ Nj × Mj tile Tj , denoted by
sTj , zTj ,uTj , with

∑p
j=1Nj = N,

∑p
j=1Mj = M .

In addition to this partition of Λ, we consider a further partition of Λ into par-
tially overlapping p tiles Sj of size (Nj + ν)× (Mj + ν), where Sj is the tile Tj

12



with an outer frame of ν rows and columns of pixels, that is ν is the number of
rows/columns of overlapping pixels and Sj ⊃ Tj . Denoting by xSj the variables
related to Sj , we observe that the vector of variables x can be considered as the
union of xSj and xΛ−Sj for any j = 1, ..., p, and that xSj is also the union of
xTj = (sTj , zTj ,uTj ) related to the tile Tj , and xBj = (sBj , zBj ,uBj ) related to
the frame Bj ≡ Sj−Tj . Figure 1 contains a sketch of both the tiling procedures.
In the following we describe the OPARBCDA approach, namely a parallel ver-

Ω

Tj

Ω

TjSj

Figure 1: Tiling procedure.

sion of the BCDA scheme, which exploits a decomposition of the image domain
in overlapping tiles and enables to address the segmentation of large images by
solving a sequence of independent smaller problems, without any necessity of a
post-processing procedure. After the introduction of the OPARBCDA method
and the analysis of its theoretical and converging properties (Subsection 4.1),
details of our practical parallel implementation are given in Subsection 4.2.

4.1. A parallel approach for a tiling procedure: the OPARBCDA method

Inspired by parallel connection schemes in [18] and [11], we propose a parallel
version of the BCDA method, named OPARBCDA and detailed in Algorithm 2.
We consider the same tiling partitions (with and without overlapping) already
mentioned in the previous section.
In this scheme, starting from an initial point x0, at any ` iteration, we compute
for each tile Sj , j = 1, ..., p, an inexact minimum point of the objective func-
tion restricted to the variables related to Sj , with boundary conditions given
by the values of the previous iterate x` on the frame of Sj . Then, from the
inexact computed solution, only the entries corresponding to the tile Tj are ex-
tracted, neglecting the values on Bj . Then, the new iterate of OPARBCDA
is updated by a connection rule, ensuring that the value of Fε does not in-
crease. In particular, exploiting the local features of the functional, the value
of Fε at the point m̃ = (x1,x2, ...,xp) is computed and, if Fε(m̃) ≤ Fε(m

j) for
all j = 1, ..., p, we set x`+1 = m̃. Otherwise, the new iterate is given by the
rule x`+1 = argmin{Fε(m1), ..., Fε(m

p)}. This connection rule and a suitable

13



Algorithm 2 OPARBCDA

Step 0: Given x0, the partitions {T1, ..., Tp} and {S1, ..., Sp} of Λ such that
Sj ⊃ Tj , Bj = Sj − Tj , j = 1, ..., p and {θ`}, such that θ < θ` ≤ θ, ` ≥ 0
and an exit tolerance θouter;

Step 1: ` = 0; fix the parameters γi, ρi, i = 1, 2, 3 and K for BCDA;

Step 2: for j = 1, ..., p

if ∇xTj
Fε(x

`) 6= 0 then

compute mj = (x`1, ...,x
`
j−1,xj ,x

`
j+1, ...,x

`
p) as follows:

1. set x0
Sj

= (x`)|Sj , k = −1;

2. repeat

(a) k = k + 1; compute xk+1
Sj

by a step of BCDA; extract xk+1
Tj

;

set xj = xk+1
Tj

;

(b) if fxSj (xkTj ;x
0
Bj

)− fxSj (xk+1
Tj

;x0
Bj

) < C1‖xkTj − xk+1
Tj
‖2 then

redefine xj = xkTj exit next j; end

until ‖∇fxSj (xk+1
Sj

)‖ ≤ θ`‖xk+1
Sj
− x`Sj‖

else
mj = x`;

end

Step 3: define the new iterate x`+1:

1. compute Fε(m̃) where m̃ = (x1,x2, ...,xp)

2. update x`+1 = argmin{Fε(m̃), Fε(m
1), ..., Fε(m

p)}.

Step 4: if Fε(x
`)− Fε(x`+1) ≤ θouterFε(x`+1) then stop; else ` = `+ 1 and go

to Step 2.

implementation of the BCDA method to obtain an inexact minimum for each
inner subproblem enable to apply Theorem 3.5 in [18], which guarantees the
stationarity of any limit point of the sequence {x`} and, since LF 0

ε
is compact,

also ensures that a limit point of {x`} exists and the gradients sequence enjoys
the following property: ∇Fε(x`) → 0 as ` → ∞. Indeed it is simple to verify
that at any `–iteration of the algorithm OPARBCDA the following conditions
hold for ` ≥ 0:

Fε(x
`+1) ≤ Fε(mj) ≤ Fε(x`) j = 1, ..., p, (21)

C3‖∇xTj
Fε(x

`)‖2 ≤ Fε(x`)− Fε(x`+1) j = 1, ..., p, (22)

where C3 is a positive constant. In particular, condition (22) is preserved when

14



at the first step of BCDA a sufficient decrease of the objective fxSj is assured

with respect to the variables xTj . In order to obtain this decrease, at the
first step of BCDA, the sub–vectors (d0

i )|Tj of the computed descent directions
d0
i , i = 1, 2, 3, restricted to entries of Tj , have to be gradient related with

respect to g1 ≡ ∇sTj
fxj (s

0
Tj
, z0
Tj
,u0

Tj
;x0
Bj

), g2 ≡ ∇zTj
fxj (s

0
Tj
, z0
Tj
,u0

Tj
;x0
Bj

),

g3 ≡ ∇uTj
fxj (s

1
Tj
, z1
Tj
,u0

Tj
;x0
Bj

) respectively; using an argument similar to the

one in the proof of Proposition 3.1, this condition is verified if the inner PCG
scheme is stopped when the norm of the residual at the h–step, restricted to the
entries related to Tj , satisfies the criterion:

‖(rhyi)|Tj‖ ≤
c√

K(A0
i (Tj , Tj))

‖gi‖, i = 1, 2, 3,

where, in concordance with the standard notation of the Section 3, y1 = s,
y2 = z and y3 = u. From the practical point of view, since ‖(rhyi)|Tj‖ ≤ ‖r

h
yi‖

and K(A0
i (Tj , Tj)) ≤ K(A0

i ), in the standard stopping criterion of PCG (9) it
must to replace the norm of the gradient of the functional with respect to the
block variable yi at x0

Sj
with the one of corresponding sub–vector ‖gi‖related to

Tj . Furthermore, at the first step of BCDA, a sufficient decrease of the objective
function restricted to variables (yi)Tj is assured if the step-lengths α0

i satisfy
(see (6)):

α0
i ≤ 2(1− ρi)

−gTi (d0
i )|Tj

(d0
i )
T
|TjA

0
i (Tj , Tj)(d

0
i )|Tj

Thus, since (d0
i )
TA0

id
0
i ≥ (d0

i )
T
|TjA

0
i (Tj , Tj)(d

0
i )|Tj , we set α0

i = γi
−gTi (d0

i )|Tj
d0
i
TA0

id
0
i

.

Using the same argument as for the proofs of Propositions 3.3 and 3.2, we have

‖∇xTj
Fε(x

`)‖ = ‖∇xTj
fxSj (y0)‖ ≤ ‖g1‖+ ‖g2‖+ ‖∇uTj

fSj (x
0
Tj ;x

0
Bj )‖ ≤

≤ ‖g1‖+ ‖g2‖+ ‖g3‖+ ‖∇uTj
fSj (x

0
Tj ;x

0
Bj )− g3‖ ≤

≤ ‖g1‖+ ‖g2‖+ ‖g3‖+M‖x1
Tj − x0

Tj‖ ≤ (M +
1
√
c2

)‖x1
Tj − x0

Tj‖ ≤

≤
(M + 1√

c2
)

√
C1

√
fxSj (x0

Tj
;x0
Bj

)− fxSj (x1
Tj

;x0
Bj

). (23)

In the next iterations of BCDA, the control at the Step 2.2 (b) assures at each
step a decrease of the objective function at most equal to C1‖xkTj − xk+1

Tj
‖2. If

the following condition

fSj (x
k
Tj ;x

0
Bj )− fSj (x

k+1
Tj

;x0
Bj ) ≥ C1‖xkTj − xk+1

Tj
‖2 (24)

is satisfied, the update of the iterate is performed and a new iteration is started.
Otherwise, we put xj = xkTj and the inner solver is stopped. Indeed, condition

(24) assumes the role of an inner stopping criterion. As consequence, at any
outer `–iteration of OPARBCDA we have that

Fε(x
`+1) ≤ Fε(mj) ≤ Fε(x`) j = 1, ..., p
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and, from (23), (24) and the connection rule, the inequality (22) remains satisfied
with C3≤ C1

(M+ 1√
c2

)2 :

C3‖∇xTj
Fε(x

`)‖2 ≤ (Fε(x
`)− Fε(mj)) ≤ (Fε(x

`)− Fε(x`+1)).

Thus, in view of Theorem 3.5 in [18], we can obtain the following convergence
result.

Proposition 4.1. A limit point of the sequence {x`} generated by OPARBCDA
is a stationary point of Fε. Moreover, since LF 0

ε
is compact, there exists at least

a limit point of {x`} and we have ∇Fε(x`)→ 0 as `→∞.

Before to prove that the whole sequence {x`} generated by OPARBCDA
converges to some critical point of Fε in LF 0

ε
, we recall a property of functions

having the KL property, proved in [14, 16].

Lemma 4.1. ([14, Lemma 1],[16, Lemma 6]) Let Ω ∈ Rn be a compact set
and let f : Rn → (−∞,∞] be a proper and lower semicontinuous function.
Assume that f is constant on Ω and satisfies the KL property at each point of
Ω. Then, there exists σ > 0, η > 0 and a continuous and concave function
φ : [0, η) → [0,∞), which is continuously differentiable on (0, η) and satisfies
φ(0) = 0, φ′ > 0 on (0, η), such that

φ′(f(x)− f(x))dist(0, ∂f(x)) ≥ 1 (25)

for every x ∈ Ω and every x such that dist(x,Ω) < σ and f(x) < f(x) <
f(x) + η.

By following similar arguments to those of Theorem 1 in [14], we can prove
the convergence of the whole sequence {x`} generated by OPARBCDA.

Proposition 4.2. Given a starting point x0, the sequence {x`} generated by
OPARBCDA has finite length, i. e.

∑∞
`=0 ‖x`+1 − x`‖ < ∞ and, thus, it

converges to some critical point of Fε in LF 0
ε

.

Proof. Let Kj the number of iterations performed by BCDA on the tile Sj . For
any j, the following relations hold true:

fxSj (x0
Tj ;x

0
Bj )− fxSj (x

Kj
Tj

;x0
Bj ) =

Kj−1∑
k=0

fxSj (xkTj ;x
0
Bj )− fxSj (xk+1

Tj
;x0
Bj )

≥
Kj−1∑
k=0

C1‖xkTj − xk+1
Tj
‖2 ≥ C1

Kj

Kj−1∑
k=0

‖xkTj − xk+1
Tj
‖

2

≥ C1

K

Kj−1∑
k=0

‖xkTj − xk+1
Tj
‖

2

(26)
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where the first inequality is a consequence of (24) while the second one follows
from (17); K is the prefixed maximum number of iterations for the inner BCDA
method.
Moreover we can state that, whatever the result of the connection rule may be,
the values of the objective function Fε obey to the following condition:

Fε(x
`)− Fε(x`+1) ≥ 1

p

p∑
j=1

Fε(x
`)− Fε(mj) =

=
1

p

p∑
j=1

fxSj (x0
Tj ;x

0
Bj )− fxSj (x

Kj
Tj

;x0
Bj )

≥ C1

Kp

p∑
j=1

Kj−1∑
k=0

‖xkTj − xk+1
Tj
‖

2

≥ C1

Kp2

 p∑
j=1

Kj−1∑
k=0

‖xkTj − xk+1
Tj
‖

2

(27)

where the first inequality follows from (21) and the second one from (26).
On the other hand, the gradient of the function Fε has the following property:

‖∇Fε(x`)‖ ≤
p∑
j=1

‖∇xTj
Fε(x

`)‖ ≤ C4

p∑
j=1

‖x1
Tj − x0

Tj‖

≤ C4

p∑
j=1

Kj−1∑
k=0

‖xk+1
Tj
− xkTj‖ (28)

where to obtain the first inequality we employ (23) and C4≤M +
1
√
c2

.

Let ω(x0) be the set of limit points of the sequence {x`} generated by OPAR-
BCDA. By the boundedness of the sequence {x`},we obtain that lim

`→+∞
dist(x`, ω(x0)) =

0, ω(x0) is a nonempty, compact and connected set and the objective function
Fε is finite and constant on ω(x0) (Lemma 5 in [16]). Since {x`} is bounded,
there exists a subsequence {x`q} such that x`q → x as q →∞. For continuity of
Fε, Fε(x

`) → Fε(x) as ` → ∞. Since {Fε(x`)} is a nonincreasing sequence, we
have Fε(x) < Fε(x

`), for ` ≥ 0. Thus, for any η > 0, there exists a nonnegative
integer `0 such that Fε(x

`) < Fε(x) + η for all ` > `0. On the other hand,
since lim`→∞ dist(x`, ω(x0)) = 0, for any σ > 0, there exists a positive integer
`1 such that dist(x`, ω(x0)) < σ for all ` > `1. Thus, from Lemma 4.1, for
any ` > ` = max{`0, `1}, since Fε is finite and constant on ω(x0), there exists
a continuous and concave function φ : [0, η] → [0,∞), which is continuously
differentiable on (0, η) and satisfies φ(0) = 0, φ′ > 0 on (0, η), such that

φ′(Fε(x
`)− Fε(x))‖∇Fε(x`)‖ ≥ 1 . (29)

Concavity of φ implies

φ(Fε(x
`)−Fε(x))−φ(Fε(x

`+1)−Fε(x)) ≥ φ′(Fε(x`)−Fε(x))(Fε(x
`)−Fε(x`+1)) .
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By using (29), we obtain

φ(Fε(x
`)− Fε(x))− φ(Fε(x

`+1)− Fε(x)) ≥ 1

‖∇Fε(x`)‖
(Fε(x

`)− Fε(x`+1)) .

Furthermore, in view of (27) and (28), the previous inequality can be written
as

φ(Fε(x
`)− Fε(x))− φ(Fε(x

`+1)− Fε(x)) ≥

≥
C1

Kp2

(∑p
j=1

∑Kj−1
k=0 ‖xkTj − xk+1

Tj
‖
)2

C4

∑p
j=1

∑Kj−1
k=0 ‖x

k+1
Tj
− xkTj‖

=

=
C1

C4Kp2

p∑
j=1

Kj−1∑
k=0

‖xk+1
Tj
− xkTj‖ .

(30)

Finally, since if x`+1 = m̃ it holds that

‖x`+1 − x`‖ ≤
p∑
j=1

‖xKjTj − x0
Tj‖ ≤

p∑
j=1

Kj−1∑
k=0

‖xk+1
Tj
− xkTj‖

and if x`+1 = mj for a suitable j, it holds that

‖x`+1 − x`‖ = ‖xKjTj − x0
Tj
‖ =

p∑
j=1

‖xKjTj − x0
Tj‖ ≤

p∑
j=1

Kj−1∑
k=0

‖xk+1
Tj
− xkTj‖ ,

we can conclude that

‖x`+1 − x`‖ ≤ C4Kp
2

C1

(
φ(Fε(x

`)− Fε(x))− φ(Fε(x
`+1)− Fε(x))

)
.

Summing from i = `+ 1 to ` gives

∑̀
i=`+1

‖xi+1 − xi‖ ≤ C4Kp
2

C1

(
φ(Fε(x

`+1)− Fε(x))− φ(Fε(x
`+1)− Fε(x))

)
and since the term on the right hand side is bounded, the series on the left
converges. This shows that {x`} is a Cauchy sequence, which converges to some
x ∈ ω(x0).

Following [17], we can obtain the following results about the convergence
rate of OPARBCDA.

Proposition 4.3. Let Φ : (0, η)→ [0,∞) be any primitive of −(φ′)2.

(i) If lim`→∞Φ(r) is finite, the algorithm converges in a finite number of steps.

(ii) If lim`→∞Φ(r) =∞, there exists ` such that
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� Fε(x
`)− Fε(x) = O(Φ−1((`+ 1− `) C1

Kp2C2
4

)

� ‖x` − x‖ = O(φ ◦ Φ−1((`+ 1− `) C1

Kp2C2
4

))

Proof. Let ` be large enough to have that for all ` ≥ ` the KL inequality (29)
holds. We denote r` = Fε(x

`)− Fε(x), where x ∈ ω(x0). Thus, we have

φ′(r`)2(Fε(x
`)− Fε(x`+1)) ≥

≥ φ′(r`)2 C1

Kp2

 p∑
j=1

Kj−1∑
k=0

‖xkTj − xk+1
Tj
‖

2

≥

≥ φ′(r`)2 C1

Kp2C2
4

‖∇Fε(x`)‖2 ≥
C1

Kp2C2
4

(31)

where the first inequality follows from (27), the second from (28) and the last
from the KL inequality (29).
Let Φ be a primitive of −(φ′)2. Then, since φ is a nonincreasing , we have

Φ(r`+1)− Φ(r`) =

∫ r`

r`+1

φ′(t)2dt

≥ φ′(r`)2(Fε(x
`)− Fε(x`+1)) (32)

Combining (31) and (32), we obtain

Φ(r`+1)− Φ(r`) =
∑̀
i=`

Φ(ri+1)− Φ(ri) ≥ (`+ 1− `) C1

Kp2C2
4

. (33)

Thus the proof follows from the same argument of [17, Theorem 5, equation
(9)].

The theoretical results about the convergence and the rate of convergence
of OPARBCDA does not depend on the size ν of the frame of each tile Tj .
Nevertheless, practical experience shows that a selection of ν > 0 decreases the
number of external iterations, above all for a subdivision into tiles of small
size (see the numerical results in section 5.2). When ν > 0 the iterations
are very few, less than ten, also for huge images. Indeed, in the connec-
tion rule at the Step 3, the selection ν > 0 facilitates the choices x`+1 = m̃
rather than x`+1 = mj , for a suitable j, fully exploiting the parallel pro-
cessing of each tile. When ν = 0, at some initial iteration and/or for small
size tiles, it can arises that Fε(m̃) > minj{Fε(mj)}, producing a degener-
ation of the performance of OPARBCDA. A possible motivation of this be-
havior is as follows: for a given x`, when we compare the vector xj,Sj ob-
tained extracting the portion xkTj from the approximation on the enlarged tile
Sj and the vector xj,Tj obtained as approximation of the minimum of Fε re-
stricted to Tj , we observe that Fε(xj,Tj ; (x`)|λ−Tj ) ≤ Fε(xj,Sj ; (x`)|λ−Tj ), since
xj,Tj ∼ argminxTj∈Tj

fxTj (xTj ;xB0
j
); nevertheless, on the boundary of Tj , the
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vector xj,Sj matches better than xj,Tj with the vectors related to adjacent tiles,
since it is obtained taking into account of the behavior of Fε on ν rows/columns
of these adjacent tiles. Thus we have Fε(m̃) ≤ minj{Fε(mj)} and few iterations
are enough to obtain satisfactory results.

4.2. Parallel implementation

As we can see from Algorithm 1 of Section 3, the main computational bot-
tleneck of BCDA algorithm is the inexact minimization step of the functional
restricted to one of the blocks (u, s, z): few iterations of a PCG algorithm are
required for the evaluation of the descent direction.

For taking advantage of all the cores in a commodity CPU, parallel linear
algebra libraries can be then adopted to speed up the segmentation problem. To
this extent we adopted Thrust [19] library: that offers the possibility to target
different architectures by selecting, at compile-time, the parallelization backend.
Besides GPU support, two multicore CPU approaches are offered: OpenMP and
TBB; in this approach we used the former. The library takes care of the paral-
lelization of linear algebra routines: in this BCDA implementation we then used
Thrust provided implementation of vector norms and vector updates (axpy).
Concerning the evaluation of the elements of matrices A1, A2, A3, custom code
has been developed and parallelized through OpenMP parallel for directive.
Diagonal preconditioner and linear CG are already offered by the library that,
in turns, offers the possibility to introduce custom preconditioners. This chance
is exploited to develop a block tridiagonal symmetric preconditioner class: fac-
torization step can be easily parallelized, since we are facing a block-diagonal
structure: for each block it’s LDL factorization is independent and can be con-
currently performed.
Matrix-vector product routines involve banded matrices: a tabular structure is
used to memorize diagonals in compact vectors. Implementation relies on Cusp
[20] library, that provides dedicated dia matrix class. We make note that un-
derlying implementation resides on aforementioned Thrust blas routines.
This first approach allows one to implement a version of BCDA that contains
parallel matrix vector product subroutines, plus a number of blas-1 subroutines
for norms and dot products. When varying the number of threads, memory–
bound nature of this problem inhibits a satisfactory decrease of the overall
computational time: parallelization speedup is low due to poor local data reuse.
It is worth noting that, even if each subroutine is able to split the computational
task among more than one core, there is no data reuse: each matrix-vector eval-
uation involves a complete scan of (u, s, z) vectors, no temporal locality on data
access is exploited. As a consequence, when large images are considered, no
speedup is achieved: an example of the behaviour of this approach can be found
on Table 7 of Section 5.
Results point out the need to find an approach that increases data locality:
algorithm 2 offers this kind of feature by partitioning data and variables and
considering independent subproblems.
In this second approach we are facing a decrease of data dimensionality: vari-
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ables are more likely to fit in the hardware cache, thus leveraging the impact of
an extensive memory access.

Concerning Algorithm 2, the intrinsic parallel features of Steps 2 and 3 are
exploited in two different ways.

Tiling technique previously described is exploited in order to generate, at
Step 2, a number of independent tasks that can be concurrently solved; con-
cerning Step 3, OpenMP parallel for directive is used when evaluating the
objective function.

Due to iterative nature of inner BCDA solver (Step 2), different running
times are expected for the solution of separate subproblems: to overcome this
disadvance we adopted manager/workers pattern [21] that ensures run-time dis-
tribution of independent tasks among POSIX threads.

A number C of computational threads (workers) is initialized and put on
wait on a shared task queue, while a monitor thread (master) is responsible to
extract, for each subproblem j, initial data w0

j from current solution x` and
collects subproblems computed solutions. Mutex-protected queues collect both
task input and output results, as a consequence two different queues are present
in the implementation:

� a job queue: a single manager is the producer of the queue elements, while
all workers are consumers;

� a results queue: in this case each worker fills the queue with results of
assigned subproblems, while the manager is responsible to insert them in
the overall segmentation variables (u, s, z).

Both cases can be handled by the same implementation that provides:

� a thread–safe interface for insert/remove operations;

� a signaling mechanism for the communication of available resources.

We provide a simple C++ class that stores resources in a private std::queue<T>
variable, while exposes only two methods push and pop for resource insertion
and removal, respectively. This implementation can be used in conjunction of
POSIX Threads [22], since additional private members are present:

� a mutex variable of type pthread mutex t, used a safeguard for the shared
resource;

� a condition variable of type pthread cond t, associated to previously men-
tioned mutex, for signaling procedures.

Such implementation choice allows for a mutually exclusive access to internal
queue in multi-threading environment. Moreover, through the adoption of a
condition variable, producer threads can communicate information about the
state of shared data: for example to signal that a queue is no longer empty; an
exaustive description of this approach can be found on Chapter 3 of [22]. In
order to provide a reliable queue implementation even in presence of exceptions,
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RAII [23] programming idiom is adopted when locking/unlocking operations are
executed on a mutex.

Job queue is used to communicate both commands and data from master
to workers: in this implementation, only two basic job types are used. First
job type contains a complete description of one of the tasks (references to sub-
problem local data, objective function parameters and algorithm parameters)
generated in Step 2 of Algorithm 2. A second type of job is used by mas-
ter thread in order to ensure the clean termination of workers threads. Each
worker thread code is structured as a while loop: as long as the thread can
pick a subproblem description, it solves it and puts the results on results queue;
when a termination job is picked, the thread exits.

Finally, as regards Step 3, OpenMP compiler directive omp parallel for

is used for evaluation of Fε(m̃). While this step is performed, worker threads
are waiting on a POSIX condition variable, without requiring cpu time.

5. Numerical experiments

Experiments are performed on a dual–head commodity PC equipped with
two Intel(R) Xeon CPU E5-2630 at 2.4 GHz with 256 GB of RAM, running
CentOS Linux release 7.2 and Intel compiler 16.0. Total number of cores is 16,
and Intel(R) Hyper-Threading Technology is disabled. For each configuration
settings, displayed computational time is obtained as the average of ten different
runs; limit wall clock time is limited to 4 hours.

5.1. Test Problems

In order to evaluate the effectiveness of the proposed parallel approach, we
consider a Trento DSM [24] of size 2020 × 2020, spatial resolution of 1 mt and
range of data g between 183.770 and 971.916. For assessing the behaviour of
the method when increasing image size a second test is presented: we choose a
16184× 15984 image QuickBird [25], whose pixel values are in 0 and 5.22 · 103

range. For each dataset, a 600 × 600 portion of input image is displayed in
Figure 2.

Both tests reference solutions are obtained by applying the BCDA method
to each image, using stop tolerance θouter = 5 · 10−4. In order to compare the
effectiveness of BCDA with respect to OPARBCDA, the latter is stopped at the
first outer iteration that shows an objective function value lower than the one
obtained by BCDA.

Concerning the first dataset, ground truth solution is obtained again with
BCDA, fixed stopping threshold as θouter = 10−10 and selecting a tolerance
of 10−12 for inner PCG. The size of second dataset inhibits the possibility of
having an estimated ground truth: indeed in double precision floating point
arithmetic, this second test requires approximately 2 GB only for storing the
measured image.
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Figure 2: Left panel: portion of Trento image, right panel: portion of QuickBird image.

5.2. Small–size dataset segmentation

For test problem Trento, BCDA and OPARBCDA solutions are compared
with a computed ground truth image. Table 1 collects the final objective val-
ues, the relative error on energy w.r.t. ground truth objective function value,
along with both external iterations and running times in seconds. BCDA serial
implementation is used, while parallel OPARBCDA, with a number of C = 15
workers is selected. In Table 1 p is the number of tiles in the considered grid
and ν is the number of overlapping pixels. While all proposed combinations of
tile grid and ν can provide similar function values at end, the introduction of
overlap among threads can help on reduce both the external iteration number
and the computational time.

Fε rel.err ext. it. time [s]
ground truth solution 8.693·107

BCDA 8.736·107 5.006·10−3 102.4
p = 8× 8

OPARBCDA ν = 0 8.732·107 4.511·10−3 7 31.9 (C=15)
OPARBCDA ν = 4 8.709·107 1.929·10−3 2 25.8 (C=15)
OPARBCDA ν = 8 8.708·107 1.760·10−3 2 27.9 (C=15)

p = 12× 12
OPARBCDA ν = 0 8.736·107 4.973·10−3 22 32.7 (C=15)
OPARBCDA ν = 4 8.729·107 4.145·10−3 2 17.0 (C=15)
OPARBCDA ν = 8 8.721·107 3.289·10−3 2 19.2 (C=15)

p = 16× 16
OPARBCDA ν = 0 8.735·107 4.858·10−3 74 52.5 (C=15)
OPARBCDA ν = 4 8.710·107 1.957·10−3 3 15.1 (C=15)
OPARBCDA ν = 8 8.710·107 1.955·10−3 3 17.4 (C=15)

Table 1: Trento test problem: comparison of objective function values and computational
times obtained by BCDA and OPARBCDA.

It is interesting to note the effect of the choice of the number of overlapping
pixels ν to the localization of differences on blocks of variables. To this aim
we compare (sp, zp,up) OPARBCDA solutions to the ground thruth (s∗, z∗,u∗)
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images: in Figure 3, we show the central portions of the differences |sp − s∗|,
|zp − z∗| obtained by OPARBCDA with a t = 8 × 8 tile grid and ν = 0, 4, 8
overlap pixels. When no overlap is selected, differences are clustered around tile
junctions.
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Figure 3: Trento test problem: for visualization purposes, only the central 1010×1010 portion
of image is considered; parallel approach tile cuts are located at rows/columns [507 760 1013
1265]. Subfigures on first row show the entries of |sp − s∗| > 0.01, while second row shows
the entries of |zp − z∗| > 0.01. For each row, right figure is obtained with no overlap pixels
(ν = 0), while second and third exploit ν = 4 and ν = 8, respectively.

For each algorithm, we then report mean and standard deviation of difference
maps between ground truth and achieved solutions and the percentage of entries
of |u∗ − u| that are less than σ1 = 0.03 ∗ gmax and σ2 = 0.01 ∗ gmax, where
gmax is the maximum value of input image; thresholds for |s∗ − s| and |z∗ − z|
are σ1 = 0.03 and σ2 = 0.01. We recall that s and z assume values in [0, 1].
In order to assess the impact of tile grid position on the reconstruction errors,
this analysis is carried on both in the whole domain Ω and in strip regions Υ
of wideness 20 pixels centered on tile boundaries. As expected, serial BCDA
performance summarized on Table 2 shows no relevant difference between the
measures performed on different sets of pixels (Ω and Υ); thus these values can
be taken as a reference.

We first consider a fixed tile grid (8×8) and different values of the parameter
ν that measures the number of overlapping pixels on neighbouring tiles. From
Table 3, we can observe that a value of ν = 4 is sufficient for obtaining a
OPARBCDA solution comparable to serial approach, while the choice of ν =
0 locates the error around tile junctions, as already underlined by a visual
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Ω Υ
mean std. dev. < σ1 < σ2 < σ1 < σ2

BCDA Fε(x
s)=8.736·107 rel.err.=5.006·10−3

us − u∗ -7.27e-05 1.99e-01 99.66% 97.95% 99.68% 97.99%
ss − s∗ -4.09e-04 1.47e-02 98.12% 95.56% 98.16% 95.59%
zs − z∗ -7.25e-03 8.80e-02 96.75% 94.14% 96.62% 93.91%

Table 2: Trento test problem: error analysis for BCDA with respect to a ground truth x∗:
rel.err. denotes the relative error of Fε(xs) with respect to Fε(x∗).

inspection of difference maps.

Ω Υ
mean std. dev. < σ1 < σ2 < σ1 < σ2

OPARBCDA p = 8× 8 ν = 0 Fε(x
p)=8.732·107 rel.err.=4.511·10−3

up − u∗ -1.96·10−3 2.32·10−1 99.79% 98.83% 99.00% 94.77%
sp − s∗ -1.05·10−4 1.24·10−2 99.12% 97.90% 96.26% 91.30%
zp − z∗ -2.70·10−3 6.13·10−2 98.18% 96.76% 92.14% 87.29%

OPARBCDA p = 8× 8 ν = 4 Fε(x
p)=8.709·107 rel.err.=1.929·10−3

up − u∗ -7.82·10−5 1.37·10−1 99.84% 99.06% 99.79% 98.77%
sp − s∗ -1.56·10−4 9.96·10−3 99.20% 98.10% 98.97% 97.48%
zp − z∗ -2.58·10−3 5.88·10−2 98.45% 97.06% 97.75% 95.74%

OPARBCDA p = 8× 8 ν = 8 Fε(x
p)=8.708·107 rel.err.=1.760·10−3

up − u∗ -6.74·10−5 1.36·10−1 99.83% 99.07% 99.84% 99.01%
sp − s∗ -1.41·10−4 1.00·10−2 99.18% 98.08% 99.13% 97.92%
zp − z∗ -2.47·10−3 5.80·10−2 98.54% 97.22% 98.25% 96.72%

Table 3: Trento test problem: error analysis for OPARBCDA (tile grid 8×8) with respect to
a ground truth x∗: rel.err denotes the relative error of Fε(xp) with respect to Fε(x∗).

Table 4 shows that three different grid sizes (8×8, 12×12 and 16×16) with
fixed ν = 4 provide similar reconstruction, in terms of the previously described
error measures.

By limiting the visualization on selected 600× 600 portion shown in Figure
2, a visual comparison of the solution can be carried out: Figure 4 collects,
on left column, solution (us, ss, zs) evaluated by BCDA, while on right column,
solution (up, sp, zp) provided by OPARBCDA with a 16×16 tile grid and ν = 8.

For this preliminary test, an acceptable decrease of the computational time
has been acquired: when selecting a number of workers C greater or equal
2, parallel computational time of OPARBCDA is lower than the serial BCDA
time, as sketched on left panel of Figure 5. Right panel shows the speedup of
the parallel implementation for a selection of proposed tile grids, when varying
the number of workers C.

5.3. Large–size dataset segmentation

In the second test problem data size is approximately eight times (for each
side) than the previous test problem. Thus tile grid is increased of a factor 8,
obtaining similar tile sizes.

Since no ground truth image is available, we present only a brief comparison
between BCDA and OPARBCDA solutions. Table 5 summarizes the behaviour
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Figure 4: Left column: portion of Trento test image solution (us, ss, zs) evaluated by BCDA.
Right column, solution (up, sp, zp) provided by OPARBCDA with a 16 × 16 tile grid and
ν = 8.
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Ω Υ
mean std. dev. < σ1 < σ2 < σ1 < σ2

OPARBCDA p = 8× 8 ν = 4 Fε(x
p)=8.709·107 rel.err.=1.929·10−3

up − u∗ -7.82·10−5 1.37·10−1 99.84% 99.06% 99.79% 98.77%
sp − s∗ -1.56·10−4 9.96·10−3 99.20% 98.10% 98.97% 97.48%
zp − z∗ -2.58·10−3 5.88·10−2 98.45% 97.06% 97.75% 95.74%

OPARBCDA p = 12× 12 ν = 4 Fε(x
p)=8.729·107 rel.err.=4.145·10−3

up − u∗ -1.14·10−4 1.79·10−1 99.72% 98.37% 99.71% 98.21%
sp − s∗ -2.92·10−4 1.32·10−2 98.50% 96.47% 98.37% 96.03%
zp − z∗ -5.53·10−3 7.85·10−2 97.37% 95.26% 96.83% 94.27%

OPARBCDA p = 16× 16 ν = 4 Fε(x
p)=8.710·107 rel.err.=1.957·10−3

up − u∗ -8.74·10−5 1.47·10−1 99.81% 98.92% 99.77% 98.68%
sp − s∗ -1.63·10−4 1.07·10−2 99.07% 97.78% 98.89% 97.32%
zp − z∗ -2.67·10−3 6.24·10−2 98.23% 96.64% 97.77% 95.75%

Table 4: Trento test problem: error analysis for OPARBCDA (ν = 4) with respect to a ground
truth x∗: rel.err denotes the relative error of Fε(xp) with respect to Fε(x∗).
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Figure 5: Trento test problem: computational time for parallel OPARBCDA with respect to
the number C of workers. Horizontal line at 102.4 s. is serial BCDA time. On the right,
speedups when varying both tile grid and number of overlap pixels are sketched.
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of previously introduced difference maps, when considering both total pixel
domain (Ω) and by focusing our investigation on the proximity of tile junctions
(Υ).

Ω Υ
mean std. dev. < σ1 < σ2 < σ1 < σ2

OPARBCDA p = 64× 64 ν = 4
up − us -2.97·10−4 3.94e·100 90.28% 80.92% 87.66% 76.19%
sp − ss 4.55·10−4 5.61e·10−2 95.49% 90.32% 94.19% 87.55%
zp − zs 2.57·10−3 8.13e·10−2 97.50% 94.92% 96.63% 93.23%

OPARBCDA p = 64× 64 ν = 8
up − us 1.04·10−5 4.74·100 87.93% 77.34% 87.43% 76.40%
sp − ss 7.31·10−4 6.61·10−2 94.44% 88.48% 94.24% 88.02%
zp − zs 4.29·10−3 9.48·10−2 97.01% 94.01% 96.84% 93.69%

OPARBCDA p = 96× 96 ν = 4
up − us -1.46·10−4 4.26·100 89.61% 79.81% 87.92% 76.92%
sp − ss -3.43·10−5 5.94·10−2 95.26% 89.89% 94.46% 88.29%
zp − zs 2.25·10−3 8.54·10−2 97.40% 94.72% 96.91% 93.79%

OPARBCDA p = 96× 96 ν = 8
up − us -1.15·10−5 5.18·100 86.59% 75.24% 86.26% 74.63%
sp − ss 1.65·10−4 7.13·10−2 93.87% 87.41% 93.72% 87.09%
zp − zs 4.06·10−3 1.02·10−1 96.71% 93.45% 96.58% 93.21%

OPARBCDA p = 128× 128 ν = 4
up − us -1.08·10−4 4.62·100 88.12% 77.34% 86.85% 75.30%
sp − ss -7.48·10−4 6.41·10−2 94.59% 88.58% 93.99% 87.42%
zp − zs 1.47·10−3 9.20·10−2 97.05% 94.07% 96.71% 93.43%

OPARBCDA p = 128× 128 ν = 8
up − us -6.64·10−5 5.51·100 84.57% 71.89% 84.13% 71.17%
sp − ss -1.18·10−3 7.61·10−2 92.91% 85.55% 92.68% 85.13%
zp − zs 2.11·10−3 1.09·10−1 96.17% 92.45% 95.99% 92.14%

Table 5: QuickBird test problem: error analysis for OPARBCDA with respect to BCDA
solution xs. Thresholds are σ1 = 0.03 and σ2 = 0.01 for |sp − ss| and |zp − zs|, while
σ1 = 3 · 10−4 ∗ gmax and σ2 = 1 · 10−4 ∗ gmax for |up − us|.

Selected thresholds are σ1 = 0.03 and σ2 = 0.01 for |ss − sp| and |zs − zp|,
while σ1 = 3 ·10−4 ∗gmax and σ2 = 1 ·10−4 ∗gmax (where gmax is the maximum
value of input image) for |us − up|. Both tile grid size and overlapping pixel
number ν marginally impact the difference between solutions, as we can see
from visual inspection (see Figure 6) and difference maps on a portion of the
solutions (Figure 7).

Obtained objective function values, when varying both the overlap size ν
among tiles and the tile grid, are summarized in Table 6; here we show the be-
haviour of both external iteration number and computational time when vary-
ing tile grid and overlap.In accordance with first test results, tile size around
126× 124 (obtained with 128× 128 tile grid), while sligtly increasing the num-
ber of external iterations, provides the lower computational time among tested
configuration settings.

A brief comparison between the proposed parallel approaches can be drawn
by selecting the best result, in terms of computational time, acquired by BCDA
with parallel linear algebra, whose behaviour when varying the number of threads
is reported on Table 7. In this case, OPARBCDA (tile grid 128 × 128, ν = 4)
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Figure 6: Left column: portion of QuickBird test image solution (us, ss, zs) evaluated by
BCDA. Right column, solution (up, sp, zp) provided by OPARBCDA with a 128 × 128 tile
grid and ν = 8.
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|ut − us| > 10−4 ∗ gmax |st − ss| > 0.01 |zt − zs| > 0.01

ν
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Figure 7: QuickBird test problem: difference maps for OPARBCDA with tile grid 64×64: first
row collects the points where absolute difference between OPARBCDA (up, sp, zp) solution
and BCDA (us, ss, zs) solution is above a fixed threshold, 10−4 ∗ gmax for u, while 10−2 for
s and z.

Fε ext. it. time [s]
BCDA (4 threads) 5.221·1010 12959 (T=4)

p = 64× 64
OPARBCDA ν = 4 5.210·1010 3 1782 (C=15)
OPARBCDA ν = 8 5.200·1010 3 2639 (C=15)

p = 96× 96
OPARBCDA ν = 4 5.211·1010 4 1464 (C=15)
OPARBCDA ν = 8 5.200·1010 4 2089 (C=15)

p = 128× 128
OPARBCDA ν = 4 5.215·1010 5 1062 (C=15)
OPARBCDA ν = 8 5.214·1010 4 1329 (C=15)

Table 6: QuickBird test problem: comparison of objective function values and computational
times obtained by the two approaches when tested on QuickBird image.
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outcomes BCDA by a factor of 12, lowering the computational time from 3
hours and 35 minutes to around 17 minutes.

test threads
1 4 8 16

QuickBird 14400∗ 12959 12944 13342

Table 7: QuickBird test problem: computational time in seconds for parallel BCDA with
respect to the number of threads. A wall clock time of 4 hours is chosen: run times above
this threshod are denoted with ∗.

6. Conclusions

In this paper we addressed the minimization of a second order elliptic ap-
proximation of the Blake-Zissermann functional, which is a state-of-the-art vari-
ational model to approach the image segmentation problem. Starting from the
recently proposed BCDA method [18], this paper developed novel versions of
BCDA able to both improve its original performance in terms of computational
time and take into account large-size data. In particular we proposed to combine
a decomposition technique of the image domain into tiles with a construction
of the approximated solution as a proper connection of the sub-solutions com-
puted by BCDA on each tile. The optimization problems related to any tile
block of variables can be solved by a parallel strategy. We proved that the par-
allel (OPARBCDA) method, based on the decomposition of the image domain
in tiles, generates a sequence of iterates which wholly converges to a critical
point of the functional on the level set devised by the starting point. Com-
modity multicore CPU has been used in order to evaluate the efficiency of the
parallel scheme on large images in terms of computational cost and effective-
ness with respect to the behavior on the tile junctions. The numerical results
showed the benefits which can be gained by applying the OPARBCDA scheme
instead of the BCDA algorithm, not only in terms of computational time saved
but also for the possibility of addressing segmentation problems with large-size
input images.
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