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Abstract. Cutting and packing (C&P) is a fundamental research area that models a large 

number of managerial and industrial optimization issues. A solution to a C&P problem 

basically consists in a set of one- or multi- dimensional items packed in/cut from one or 

more bins, by satisfying problem constraints and minimizing a given objective function. 

Normal patterns are a well-known C&P technique used to build solutions where each item 

is aligned to the bottom of the bin along each dimension. The rationale in their use is that 

they can reduce the search space while preserving optimality, but the drawback is that their 

number grows consistently when the number of items and the size of the bin increase. In 

this paper we propose a new set of patterns, called meet-in-the-middle, that lead to several 

interesting results. Their computation is achieved with the same time complexity as that of 

the normal patterns, but their number is never higher, and in practical applications it 

frequently shows reductions of about 50%. The new patterns are applied to improve some 

state-of-the-art C&P techniques, including arc-flow formulations, combinatorial branch-and- 

bound algorithms, and mixed integer linear programs. The efficacy of the improved 

techniques is assessed by extensive computational tests on a number of relevant 

applications. 
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1 Introduction

A solution to a cutting and packing (C&P) problem basically consists in a set of one- or multi-
dimensional items packed in (or cut from) one or more bins, by satisfying some constraints and
minimizing a given objective function. Typical constraints impose that all items should lie entirely
within the bin in which they are packed, and that they should not overlap among themselves.
Typical objective functions require the maximization of some item profits (knapsack problems) or
the minimization of the number of the selected bins (bin packing problems and variants).

C&P problems are a fundamental research area in the field of Operations Research, as they
model several real-world issues, arising for example in production industry (see, e.g., Vanderbeck
2001), transportation (see, e.g., Iori et al. 2007), and container-loading (see, e.g., Bortfeldt and
Wäscher 2013), just to cite some. We refer to Wäscher et al. (2007) for an extensive typology of
the several C&P problems and for further hints on their applications.

Normal patterns are a well-known C&P technique that builds solutions where each item is aligned
to the bottom of each dimension. They were independently introduced first by Herz (1972) (who
called them canonical dissections) and then by Christofides and Whitlock (1977) in the context of
two-dimensional cutting, and have been used later on in literally hundreds of algorithms. Consider
for example Figure 1: Figure 1-(a) gives a solution to a general two-dimensional problem where
eight items are feasibly packed in a single bin; Figure 1-(b) provides an equivalent solution satisfying
the principle of normal patterns. Intuitively, solution (a) can be transformed in solution (b) by
repeatedly moving each item to its left and/or down until its border touches that of another item
or that of the bin. On the basis of this observation, Herz (1972) and Christofides and Whitlock
(1977) defined the set of normal patterns as the set of all possible item width combinations, and
then proved that the search for an optimum may be limited to solutions where each item is packed
in a normal pattern.

The drawback of normal patterns is that their efficacy is noticed almost only at the beginning
of the bin, and then decreases consistently towards the end of it. Intuitively, a certain width p is a
normal pattern if there exists a combination of item widths whose sum is p. This might be difficult
to obtain for small p values, but becomes easier for large values. In practice, when the number of
items is high and the bin width is large, the effect of the normal patterns tends to be irrelevant in
the second half of the bin.

Several attempts have been developed in the literature to try to overcome this drawback. In
this paper we continue this line of research and propose an idea that proved to be very effective in
practice. It consists of a new set of patterns, called meet-in-the-middle (MIM), obtained by aligning
items along each dimension either to the bottom of the bin or to the top of it. In details, we consider
the first dimension of the bin (the width), fix a certain threshold value along it (for example, the
half bin width), force all items whose left border is at the left of the threshold to be left aligned,
and force the remaining items to be right aligned. The process is then repeated for the successive
dimensions. Consider again Figure 1 and suppose that the thresholds for the two dimensions are
fixed to, respectively, the half bin width and the half bin height (dashed lines). Then, using the
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Figure 1: (a) general 2D packing; (b) packing satisfying normal patterns (canonical dissections);
(c) packing satisfying meet-in-the-middle patterns (with thresholds W 1/2 and W 2/2).

MIM idea solution (a) is transformed into solution (c). As it will be shown in the next section, the
search for an optimum may be limited to solutions satisfying the MIM patterns.

The idea is simple, yet it provides interesting results. The number of the MIM patterns is never
higher that that of the normal ones, and in practical applications it is much smaller. Moreover,
further reductions may be obtained by additional preprocessing techniques. In addition, the compu-
tational effort required to compute the MIM patterns is the same than that required for the normal
ones. We also note that the MIM principle is useful to reduce not only the normal patterns, but also
other forms of patterns that have been presented in the literature (and indeed our computational
work builds upon the patterns by Boschetti et al. 2002).

To the best of our knowledge the MIM principle has not been investigated in the literature, and
in the next sections we describe its application to some classical C&P problems. Indeed, the MIM
patterns easily apply to several optimization techniques, such as mathematical formulations, where
they allow to reduce the number of variables and constraints, and combinatorial enumeration trees,
where they can be used to fathom unnecessary nodes.

The name that we adopted comes from cryptography (“meet in the middle attack”). It has been
used previously in the C&P literature by Horowitz and Sahni (1974) to describe their branch-and-
bound algorithm for the binary knapsack problem. They divide the input item set, having n items,
into two mutually-exclusive subsets having n/2 items each. They enumerate the partial solutions
on each subset, and then merge the partial solutions to build an optimal one. The complexity of
their algorithm is O(2n/2), which is the best known for the problem. Their approach is very different
from the one that we propose here, as it divides the set of items instead of dividing the space of the
bin along each dimension.

The remainder of the paper is organized as follows. In Section 2 the related literature is revised,
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the MIM patterns are presented and some properties are discussed. The remaining sections describe
some relevant applications to well-known C&P problems. The classical cutting stock and bin packing
problems are solved in Section 3, the “old” two-dimensional two-stage cutting stock problem in
Section 4, and the fundamental two-dimensional orthogonal packing problem in Section 5.

All sections provide evidence of our assessments by means of extensive computational tests.
These have been obtained by implementing all algorithms in C++ and running them on a PC
equipped with an Intel 2.667 GHz Westmere EP X5650 processor. We used Cplex 12.6 as mixed
integer linear programming (MILP) solver, imposing it to run on a single thread.

2 Meet-in-the-Middle Principle

We consider a generic orthogonal C&P problem in k dimensions, in which we are given a set
I = {1, 2, . . . , n} of items and a bin. Both the items and the bin are k-dimensional rectangular
boxes. Each item i ∈ I has width wd

i and the bin has width W d, for d = 1, 2, . . . , k. We suppose
that all widths are positive integer values.

A feasible solution is a packing of an item set I ′ ⊆ I in the bin, such that all items are completely
contained in the bin and they do not overlap one with the other. Two feasible solutions are equivalent
one with the other if they pack the same item set I ′. We say that a reduction property preserves
optimality, if it possibly removes some solutions but guarantees that at least one is kept among all
equivalent solutions for any set I ′ ⊆ I.

We make use of a Cartesian coordinate system whose axes are parallel to the edges of the bin
(see Figure 1). For a given box, we call lowest the box corner that is closest to the origin of the
system (in two dimensions, the lowest corner is the bottom-left one). We say that an item i is
packed in position pi if its lowest corner is in pi.

Our techniques apply to any dimension d, but for the sake of clarity in the remaining of this
section we focus on the first dimension, that is, the width. When no confusion arises, we thus write
for short W instead of W d and wi instead of wd

i . For descriptive purposes, in the next Sections
2.1-2.3 we resume the following example a number of times.

Example 1 A simple one-dimensional instance with W = 27, n = 4, and w = (5, 10, 12, 15).

2.1 Normal Patterns and Known Reductions

According to Herz (1972) and Christofides and Whitlock (1977) the set of normal patterns can be
formally defined as

N0 =
{
x =

∑
j∈I

wjξj : 0 ≤ x ≤W, ξj ∈ {0, 1} for j ∈ I
}
. (1)

For Example 1, we have N0 = {0, 5, 10, 12, 15, 17, 20, 22, 25, 27}. This set was introduced in the
context of cutting, and also includes patterns positioned towards the end of the bin that are only
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needed to model cuts for the right borders of the items. If one is interested instead in modeling
only the positions where the items can be packed (lowest corners), as in our case, then N0 can be
conveniently reduced. Following Beasley (1985a), this results in

N = {x ∈ N0 : x ≤W − wmin} , (2)

where wmin = minj∈I{wj}. Set N models the simple fact that no item can be packed with its lowest
corner after W − wmin. In the remaining of the paper we refer to (2) when we mention normal
patterns. For Example 1, we have N = {0, 5, 10, 12, 15, 17, 20, 22}.

Terno et al. (1987) (see also Scheithauer and Terno 1996) attempt to reduce N0 as follows. For a
given pattern p ∈ N0, let w̄(W−p) = max{x =

∑
j∈S wj : x ≤W−p, S ⊆ I}. If p+w̄(W−p) < W ,

then packing an item in p leads to a loss of at least W − p − w̄(W − p) width units. If there is a
subsequent pattern, q > p, such that q+w̄(p) ≤ W , then the packing of an item in p can be skipped,
as an equivalent or better solution can be obtained by packing it in q (as this would lead to a not
greater loss). Moreover, Terno et al. (1987) noticed that for the computation of the w̄(W−p) values
one can use directly the entries in N0. Formally, by setting w̄(W −p) = max {x ∈ N0 : x ≤W − p},
the set T0 of the so-called reduced raster points (raster points for short in the following) is then

T0 = {w̄(W − p) : p ∈ N0} . (3)

For Example 1, we have T0 = {0, 5, 10, 12, 15, 17, 22, 27}. The only item that can be packed in
20 has width 5, but this option is skipped as an equivalent solution can be obtained by packing
the item in 22. Similarly to what done for N0, here we reduce the raster points by computing
T = {x ∈ T0 : x ≤W − wmin}.

Boschetti et al. (2002) followed a different strategy, and conveniently reduced the set of normal
patterns for a given item i, by computing its possible patterns as combinations of items rather than
i. Formally, let

Bi =

{
x =

∑
j∈I\{i}

wjξj : 0 ≤ x ≤W − wi, ξj ∈ {0, 1} for j ∈ I \ {i}

}
(4)

be the set of patterns for any i ∈ I, and then compute the overall set as B = ∪i∈IBi. To avoid
confusion with the standard normal patterns, in the following we call B the set of regular normal
patterns. For Example 1, B1 = {0, 10, 12, 15, 22}, B2 = {0, 5, 12, 15, 17}, B3 = {0, 5, 10, 15}, B4 =
{0, 5, 10, 12}, and hence B = {0, 5, 10, 12, 15, 17, 22}. For this example B is coincident with T . In
general, it is easy to see that T ⊆ N and B ⊆ N , but no fixed relation exists between T and B.

As shown in Christofides and Whitlock (1977), the computation ofN0 may be obtained by a stan-
dard dynamic programming procedure, that we report in Algorithm 1. Procedure NormalPatterns
works in O(nW ): It first computes the feasible item width combinations using a support array T
and then stores the resulting values in N0. The computation of Bi, for any i ∈ I, may be obtained
by invoking NormalPatterns(I \ {i};W − wi), and thus the computation of B requires O(n2W ).
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Algorithm 1 NormalPatterns(I;W )

1: Require: I: set of items, W : bin width
2: T ← [0 to W ]: an array with all entries initialized to 0
3: T [0]← 1
4: for i ∈ I do

5: for p = W − wi to 0 do

6: if T [p] = 1 then T [p+ wi]← 1
7: N0 ← ∅
8: for p = W to 0 do

9: if T [p] = 1 then N0 ← N0 ∪ {p}
10: return N0

In the following we pursue the idea of reducing the number of patterns for each item, thus
building upon the regular normal patterns in (4). This is done because these patterns led to good
computational results in several applications (see, e.g., Boschetti and Montaletti 2010 and Côté
et al. 2014a), and because they model in a natural way choices made in standard C&P techniques
such as arc-flow formulations and combinatorial branch-and-bound algorithms. However, our results
can be easily adapted to the simpler case of a direct computation of the standard normal patterns
starting from (2).

We note that other attempts have been made in the literature to reduce the normal patterns.
Among these we mention: Côté et al. (2014a), that use a quick preprocessing technique in the idea
of the raster points; Côté et al. (2014b), that divide a set of two-dimensional items into two subsets
according to an input packing ordering, and then pack the first half on the bottom of the bin and
the second half on the top; and Alvarez-Valdes et al. (2005), who propose reduction rules for the
specific case where just two item widths are given (pallet loading).

2.2 Meet-in-the-Middle Patterns

The meet-in-the-middle (MIM) patterns are defined for each item i ∈ I and for a threshold t ∈
{1, 2, . . . ,W} as the combination of two types of patterns. First the left patterns are computed as

Lit =

{
x =

∑
j∈I\{i}

wjξj : 0 ≤ x ≤ min{t− 1,W − wi}, ξj ∈ {0, 1} for j ∈ I \ {i}

}
, (5)

and then the right patterns as

Rit =

{
x′ = W − wi − x : x =

∑
j∈I\{i}

wjξj, 0 ≤ x ≤W − wi − t, ξj ∈ {0, 1} for j ∈ I \ {i}

}
. (6)

In practice, an item is packed in a left pattern when the coordinate x of its lowest corner is at the
left of t (x ≤ t − 1), and in a right pattern otherwise (x ≥ t). Refer again to Figure 1-(c) for a
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graphical example. The “min” function in (5) is used to impose that an item i is not packed after
W − wi. Note also that large items having width wi > W − t are always left aligned, because
Rit = ∅ when W − wi − t < 0. The set of MIM patterns for item i is then simply assessed by

Mit = Lit ∪Rit, (7)

and the overall set as

Mt = ∪i∈IMit. (8)

The computation of each Mit set may be obtained in O(nW ) by running Algorithm 2. The
left patterns are computed by determining all item combinations, rather than the selected item i,
whose total width does not exceed t− 1 and the residual space left by wi in the bin. For the right
patterns, we first compute the standard set of (left-aligned) normal patterns whose total width does
not exceed the residual space, if any, obtained by subtracting from the bin width both wi and t
(consider that NormalPatterns returns the empty set when W − wi − t < 0). Then we obtain Rit

by mapping each left-aligned pattern p into a right-aligned pattern W − wi − p.

Algorithm 2 MIMPatterns(I;i;W ;t)

1: Require: I: set of items, i: selected item, W : bin width, t: threshold value
2: Lit ← NormalPatterns(I \ {i}; min{t− 1,W − wi})
3: R′

it ← NormalPatterns(I \ {i};W − wi − t)
4: Rit ← ∅
5: for p ∈ R′

it do

6: Rit ←Rit ∪ {W − wi − p}
7: Mit ← Lit ∪Rit

8: return Mit

For Example 1, when t = 10 we have L1,10 = {0}, R1,10 = {10, 12, 22}, and so M1,10 =
{0, 10, 12, 22}. For the next items we getM2,10 = {0, 5, 12, 17},M3,10 = {0, 5, 10, 15}, andM4,10 =
{0, 5, 12}. In this case the resulting setM10 is coincident with B, but overall we have

∑
i |Mi,10| =

11 <
∑

i |Bi| = 18, thus resulting in fewer packing options for the items.
Some interesting properties may be noticed for the MIM patterns.

Proposition 1 Optimality is preserved by considering only solutions where all items are packed in
MIM patterns.

Proof The proof follows the footsteps of the simple one in Herz (1972) and Christofides and
Whitlock (1977). Suppose a feasible packing for a generic item set I ′ ⊆ I is provided. Then select
an item i ∈ I ′ not packed in a MIM pattern, if any, and repeat the following procedure for each
dimension: if the lowest corner of i is at the left of t, then move i as much as possible to the left,
otherwise move it as much as possible to the right. Reiterate until all items are packed in a MIM
pattern. The thesis follows because the procedure holds for any I ′ ⊆ I. �
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Proposition 2 The set of MIM patterns computed for t = W is equivalent to the set B.

Proof By replacing t with W in (5) and (6) we obtain min{t−1,W −wi} = W −wi, so LiW = Bi,
and W − wi − t < 0, so RiW = ∅. ConsequentlyMiW = Bi for any i ∈ I, and thusMW = B. �

As it will be shown in Section 2.4 below, the value taken by t may have a strong impact on the
cardinality of the resulting setMt. We thus define the minimal set of MIM patterns as

M =
{
Mt : t = argmins∈{1,2,...,W}

∑
i∈I
|Mis|

}
. (9)

A direct consequence of Property 2 and of the minimality ofM is the following.

Proposition 3 |M| ≤ |B| (and consequently |M| ≤ |N |).

The computation of the minimal set M may be trivially obtained by invoking Algorithm 2
for each value of t and storing the best result according to (9), thus using a time complexity of
O(n2W 2). A better implementation reduces the computational effort as follows.

Proposition 4 The minimal setM of MIM patterns can be computed in O(n2W ).

Proof The proof is based on Algorithm 3, which we describe in details. We first compute all sets
Bi and we sum them together to determine the number of left patterns having value p and the
number of right patterns having value W −wi − p (steps 2-9). The arrays Tleft and Tright store the
resulting values. The same arrays are then used to compute the cumulative number of patterns in
an incremental way, on the basis of the following observation.

Let us consider two threshold values t1 and t2, with t2 ≥ t1 + 1. We rewrite twice equation (5),
by first replacing t with t1 and then with t2. Then, by computing the difference between the two
resulting equations, we obtain

Li,t2 = Li,t1 ∪ {x =
∑

j∈I\{i}
wjξj : t1 ≤ x ≤ min{t2 − 1,W − wi}, ξj ∈ {0, 1} for j ∈ I \ {i}}.

In other words, the left patterns up to t2 − 1 may be computed by summing those up to t1 − 1
and those in the interval [t1, t2 − 1]. The same reasoning applies to the right patterns, by using an
incremental process from right to left.

Coming back to Algorithm 3, the incremental computation of the left and right patterns is
performed at steps 10-13. Then, steps 14-20 determine the threshold value tmin for which the
overall number of patterns is a minimum, and steps 21-29 build the resulting MIM patterns. �

An important remark is thus that the minimal set of MIM patterns may reduce the set of regular
normal patterns defined in (4), and may be computed with the same algorithmic complexity. Note
that the same remark applies when considering the original normal patterns in (2): the resulting
number of MIM patterns would not exceed that of the normal patterns because of Property 3; their
computation would require O(nW ) (the same complexity required for N ) by a simplified version
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Algorithm 3 MinimalMIMSet(I;W )

1: Require: I: set of items, W : bin width
2: Tleft, Tright ← [0 to W ]: two arrays with all entries initialized at zero
3: for i ∈ I do

4: Bi ← NormalPatterns(I \ {i},W − wi)
5: for p ∈ Bi do
6: Tleft[p]← Tleft[p] + 1
7: Tright[W − wi − p]← Tright[W − wi − p] + 1
8: end for

9: end for

10: for p = 1 to W do

11: Tleft[p]← Tleft[p] + Tleft[p− 1]
12: Tright[W − p]← Tright[W − p] + Tright[W − (p− 1)]
13: end for

14: tmin ← 1
15: min← Tleft[0] + Tright[1]
16: for p = 2 to W do

17: if Tleft[p− 1] + Tright[p] < min then

18: min← Tleft[p− 1] + Tright[p]
19: tmin ← p
20: end if

21: M← ∅
22: for i ∈ I do

23: Mi ← ∅
24: for p ∈ Bi do
25: if p < tmin thenMi ←Mi ∪ {p}
26: if W − wi − p ≥ tmin thenMi ←Mi ∪ {W − p− wi}
27: end for

28: M←M∪Mi

29: end for

30: returnM

of Algorithm 3 in which the computation of all Bi is replaced by that of N , and the double loops
in i and p are replaced by single loops in p. Note also that one could be interested in using a
different criterion for the minimality ofM, for example replacing

∑
i∈I |Mis| with |Ms| in (9). In

this case too Property 4 holds via a trivial modification of Algorithm 3, in which at steps 6 and 7
Tleft[p]← Tleft[p] + 1 and Tright[W −wi − p]← Tright[W −wi− p] + 1 are replaced by, respectively,
Tleft[p]← 1 and Tright[W − wi − p]← 1.
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2.3 Further Reduction by Preprocessing Criteria

The MIM patterns can be reduced, while preserving optimality, by applying two criteria.

Proposition 5 Consider a feasible solution packing a generic item set I ′ ⊆ I in the bin. Consider
then an item k ∈ I ′ and a threshold value t. Among the equivalent solutions that pack I ′, there
exists one satisfying both the MIM patterns and the following condition: if t ≤

⌈
W−wk

2

⌉
, then k is

packed in a right pattern, else it is packed in a left pattern.

Proof Let us first prove the “if” part. Given a solution where k is packed in a left pattern, we
transform it into an equivalent solution satisfying the MIM patterns and where k is packed in a
right pattern. We use a two-step procedure (refer to Figure 2 below). In the first step we perform
a reflection of the original solution using axle x = W/2, and obtain a mirror solution. An item i
originally packed in a pattern pi is packed in a pattern p′i = W −pi−wi in the mirror solution. The
mirror solution is feasible but does not necessarily satisfy the MIM patterns, thus the second step of
our procedure simply moves as much as possible to the left all items i packed in a pattern p′i ≤ t−1,
and to the right all items i packed in p′i ≥ t. The new solution is feasible and accomplishes the MIM
principle. To guarantee that in the new solution item k is in the right patterns, we need to show that
p′k ≥ t. As k was packed in a left pattern, we have pk ≤ t−1, so p′k = W −pk−wk ≥W −wk− t+1.
Moreover, from the hypothesis we know that W − wk ≥ 2⌈(W − wk)/2⌉ − 1 ≥ 2t − 1, so we can
conclude that p′k ≥ 2t− 1 − t + 1 = t. A similar reasoning applies to “else” part by using the fact
that t ≥ ⌈(W − wk)/2⌉+ 1, and this concludes the proof. �

Observe for example Figure 2, and consider k = 2 and t = 4 ≤ ⌈(W − wk)/2⌉ = 9. Figure
2-(a) gives a solution in which k is packed in a left pattern; Figure 2-(b) provides the corresponding
mirror solution; and Figure 2-(c) presents the solution obtained at the end of the second step of our
procedure, satisfying the MIM principle and having k packed in a right pattern.

1 2 6543

7

8

0 t W

(a)

6 5 1234

7

8

0 t W

(b)

6 5 1234

7

8

0 t W

(c)

Figure 2: (a) solution satisfying MIM and having item k = 2 packed in a left pattern; (b) mirror
solution; (c) solution satisfying MIM and having k packed in a right pattern.

We can thus apply Proposition 5 to reduce the search space while preserving optimality. We
found computationally convenient to apply it in the following way.

Preprocessing 1 Select an item k of minimum width, remove it from the computation of the left
patterns when t ≤ ⌈(W − wk)/2⌉ and of the right patterns when t ≥ ⌈(W − wk)/2⌉+ 1.
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Classical C&P preprocessing techniques attempt to increase the widths of the items as much as
possible while preserving optimality (see, e.g., Boschetti et al. 2002). This usually results in more
constrained packings that can be easier to solve in practice (because bounding techniques can have
an improved performance). Here we pursue this line of research, but try to increase the width of
an item when it is packed in a particular MIM pattern, and then show how this can also be used
to reduce the number of patterns. To this aim let us first define

w̃ip = width of item i ∈ I when packed in pattern p ∈Mi. (10)

Proposition 6 Consider an item k ∈ I and a pattern p ∈Mkt for an arbitrary threshold t.
A) If p ∈ Lkt, then let q = min{W ; min{s ∈ Mit : i ∈ I \ {k}, s ≥ p+ wk}}. Then, optimality is

preserved by setting w̃kp = q − p.

B) If p ∈ Rkt, then let q = max{0;max{s ∈ Mit : i ∈ I \ {k}, s+ wi ≤ p}}. Then, optimality is
preserved by setting Rkt = Rkt ∪ {q} \ {p}, and setting w̃kq = p+ wk − q.

Proof Let us first concentrate on part A). Parameter q gives the value of the leftmost pattern that
can be used for packing an item at the right of item k, and takes the value W if no such pattern
exists. If q > p, then, because of Proposition 1, we know that among the optimal solutions there
exists one in which no item is packed in a position belonging to the width interval from p + wk to
q − 1 (where there are no MIM patterns). We can thus increase the item width to w̃ip = q − p,
because this does not cause an overlapping with other items in any solution that does not violate
the MIM principle.

The proof of part B) is somehow specular. In this case we consider the set of all item packings at
the left of k, and in this set we compute q as the rightmost position where an item can end (0 if no
such position exists). Then, in a solution satisfying the MIM principle no item can have its lowest
corner in the interval between q and p. Thus, we can move to the left the current right pattern,
from p to q, and then enlarge the item width to w̃kq = p + wk − q (thus preserving the same value
for the right border of item k when packed in this pattern), knowing that the packing of k in q will
not cause any overlapping with other items. �

Proposition 7 Consider an item k ∈ I and two patterns p, s ∈ Mkt with p < s. By using
Proposition 6, enlarge the width of the item when it is packed in the two patterns to, respectively,
w̃kp and w̃ks. If s+ w̃ks ≤ p+ w̃kp, then the removal of pattern p fromMkt preserves optimality.

Proof There are two cases of interest, if item k if packed in pattern s, then it occupies the width
interval [s, s + w̃ks]. If instead it is packed in p, then it occupies the interval [p, p + w̃kp]. If p < s
and s+ w̃ks ≤ p+ w̃kp, then [s, s+ w̃ks] ⊆ [p, p+ w̃kp]. Consequently any solution where k is packed
in p can be replaced by an equivalent one in which k is packed in s, without affecting optimality.
Note that the opposite does not hold, as there could be items whose right border is in the interval
between p and s, that can be packed side by side with k when it is packed in s, but not when it is
packed in p. �

The above results lead to our second preprocessing criterion.
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Preprocessing 2 Enlarge the widths of all items in all patterns using Proposition 6, first for all
the left patterns and then for all the right ones. Then remove redundant patterns, first left and then
right, following Proposition 7.

2.4 Evaluation

We conclude this section by presenting a numerical evaluation of the size of the different sets
of patterns that we discussed. We concentrate on the widths of three well-known sets of two-
dimensional instances, namely, the cgcut by Christofides and Whitlock (1977), and the gcut and
ngcut by Beasley (1985a,b).

The results that we obtained are summarized in Table 1. For the literature, the table gives the
cardinality of the sets (namely, |N |, |B|, and |T |) and the total number of patterns obtained by

literature MIM MIM + Preproc. 1 and 2

N B T min
∑

|Mi| min |M| min
∑

|Mi| min |M|
inst. n W

∑
|Ni| |N |

∑
|Bi| |B|

∑
|Ti| |T |

∑
|Mi| |M|

∑
|Mi| |M|

∑
|Mi| |M|

∑
|Mi| |M|

ngcut01 10 10 36 6 36 6 33 5 33 5 33 5 31 5 31 5
ngcut02 17 10 108 10 106 10 108 10 105 10 105 10 98 10 98 10
ngcut03 21 10 162 10 162 10 162 10 162 10 162 10 157 10 157 10
ngcut04 7 10 62 10 61 10 62 10 60 10 60 10 50 9 50 9
ngcut05 14 10 114 10 113 10 114 10 112 10 112 10 107 10 107 10
ngcut06 15 10 99 10 98 10 99 10 97 10 97 10 78 9 78 9
ngcut07 8 20 131 20 119 20 131 20 119 20 119 20 106 20 106 20
ngcut08 13 20 214 20 211 20 214 20 208 20 208 20 188 19 188 19
ngcut09 18 20 245 18 242 18 245 18 221 18 221 18 197 17 197 17
ngcut10 13 30 169 20 146 19 139 16 123 17 123 17 102 13 102 13
ngcut11 15 30 290 27 282 27 287 26 250 26 250 26 224 25 224 25
ngcut12 22 30 329 30 315 30 329 30 305 30 305 30 284 30 284 30

cgcut01 16 10 124 10 123 10 124 10 122 10 122 10 102 9 102 9
cgcut02 23 70 963 50 961 50 851 42 665 42 665 42 637 42 637 42
cgcut03 62 70 1730 45 1715 45 1671 40 932 40 932 40 885 40 885 40

gcut01 10 250 24 8 22 8 20 4 17 8 18 4 11 3 11 3
gcut02 20 250 431 47 391 47 265 23 131 47 210 25 79 21 79 21
gcut03 30 250 505 40 480 40 408 25 111 40 304 25 85 22 85 22
gcut04 50 250 1797 80 1757 80 1400 48 431 80 1051 50 295 46 295 46
gcut05 10 500 145 22 115 22 72 10 43 22 61 16 28 11 28 11
gcut06 20 500 310 37 281 37 197 17 79 37 139 21 59 16 61 14
gcut07 30 500 338 32 322 27 254 18 69 32 79 23 51 17 52 16
gcut08 50 500 2973 132 2921 132 1710 58 641 132 1236 58 386 58 397 57
gcut09 10 1000 67 10 60 10 38 6 19 10 19 10 17 5 17 5
gcut10 20 1000 342 48 304 46 182 17 99 48 146 21 64 16 64 16
gcut11 30 1000 1312 103 1222 103 610 35 257 103 439 39 143 32 143 32
gcut12 50 1000 1731 114 1643 114 1049 41 288 114 820 41 200 40 200 40
gcut13 32 3000 50286 2227 49580 2227 44338 1684 30120 1691 30682 1684 25129 1566 25129 1566

avg 2322.8 114.1 2278.1 113.9 1968.3 80.8 1279.3 94.4 1382.8 82.0 1064.0 75.8 1064.5 75.6
% reductions -5% -1% -17% -25% -38% -3% -31% -21% -47% -29% -47% -30%

Table 1: Computational evaluation (% reductions evaluated with respect to N )
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Figure 3: MIM patterns for different values of t on instance ngcut10.

summing the patterns of all items (namely,
∑
|Ni|,

∑
|Bi|, and

∑
|Ti|). In details, the set Ni is

the subset of N that can be used to pack item i, and is computed as Ni = {p ∈ N : p ≤ W − wi}.
Similarly, Ti = {p ∈ T : p ≤ W − wi}. For the MIM patterns we tested both versions in which
either

∑
i∈I |Mis| or |Ms| is minimized in (9). In the last line we show the percentage reductions of

a set, say X , with respect to the normal patterns, computed as 100(
∑
|Xi| −

∑
|Ni|)/

∑
|Ni| and

100(|X | − |N |)/|N |.
Among the methods in the literature, the raster points provide on average the best values and

are particularly effective on the gcut instances. The MIM patterns always provide equivalent or
larger reductions than those by the literature, with a single exception on instance gcut05 where
|M| > |T |. They are particularly effective for large values of bin width: the reduction that they
achieve is quite limited for the ngcut instances, becomes larger for the cgcut ones, and is very
relevant for the gcut ones. In particular, for 10 out of 13 gcut instances the reduction in terms of
total number of patterns is higher than 70%.

In Figure 3 we show the evolution of the MIM patterns for instance ngcut10 under different
threshold values t. For the rightmost value, we have

∑
|Bi| =

∑
|Mi,30|=146 (recall Proposition

2). The number of left patterns increases when t increases, the opposite happens for the number
of right patterns, and in tmin = 13 their sum achieves the minimum value 123. The preprocessing
techniques always decrease the number of MIM patterns, and also lead to a minimum in tmin = 13
(of value 102). This is a typical behavior noticed for many instances.
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3 Application I: Bin Packing and Cutting Stock Problem

The bin packing problem (BPP) requires to cut/pack a set of n one-dimensional items, each having
width wi, from/into the minimum number of identical bins of capacityW . The cutting stock problem
(CSP) is the BPP version in which all items having the same width are grouped together. The CSP
input consists of m item types, where each type i has width wi and number copies (demand) equal
to di (and n =

∑m
i=1 di). Branch-and-Price algorithms are the most powerful technique to solve the

BPP and the CSP, but in recent years, thanks also to the progress of commercial MILP solvers,
pseudo-polynomial formulations became a valid alternative, see Delorme et al. (2016, forthcoming).

To the best of our knowledge, the most famous among these formulations is the arc-flow by
Valério de Carvalho (1999), which explicitly refers to the CSP. Let G = (V,A) be a digraph where
V = {0, 1, . . . ,W} is the set of vertices representing all partial bin fillings, and A is the set of arcs
(p, q) representing either (i) the packing of an item of width q − p starting from the partial bin
filling p (“item arc”), or (ii) an empty portion of the bin between fillings p and q (“loss arc”). By
introducing xpq as an integer variable giving the number of times arc (p, q) ∈ A is selected, and
defining δ−(q) (resp. δ+(q)) the set of arcs entering (resp. leaving) a vertex q, the CSP can be
modeled as

min z (11)

s.t.
∑

(q,r)∈δ+(q)

xqr −
∑

(p,q)∈δ−(q)

xpq =





z if q = 0,
−z if q = W,
0 if q = 1, 2, . . . ,W − 1,

(12)

∑

(q,q+wi)∈A

xq,q+wi
≥ di i = 1, 2, . . . , m, (13)

xpq ≥ 0, integer (p, q) ∈ A. (14)

Constraints (12) impose flow conservation, whereas constraints (13) state that all item demands
must be fulfilled. Each possible packing of a bin is thus represented by a path from 0 to W in the
digraph, and the aim is to minimize the number of selected paths.

The computational behavior of model (11)–(14) strictly depends on the set of arcs, that should
guarantee optimality but at the same time be as small as possible. To this aim, Valério de Carvalho
(1999) preliminary sorted items according to non-increasing width, and then created only those
item arcs that fulfilled this sorting. In this way, the largest item can only start in zero, the second
largest item can start in zero or right after the largest one, and so on (clearly, this would not
preserve optimality for problems where items have two or more dimensions). He then imposed that
loss arcs cannot be used before item arcs, and he created only unit-width loss arcs in the interval
[wmin, wmin + 1, . . . ,W ]. In the following we call this the normal arc-flow formulation.

Here we show how further improvements can be obtained with the MIM principle. Suppose
again that items are sorted by non-increasing width. Moreover, for any i = 1, 2, . . . , m, let d̄ij = dj
for all j = 1, 2, . . . , i− 1 and d̄ii = di − 1.
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Proposition 8 In the normal arc-flow formulation the set of patterns where an item i can be packed
(i.e., partial bin fillings where an item arc can start) is given by

B′
i =

{
x =

∑i

j=1
wjξj : 0 ≤ x ≤W − wi, ξj ∈ {0, 1, . . . , d̄

i
j} for j = 1, 2, . . . , i

}
. (15)

In practice, B′
i is the subset of Bi (recall that items having the same width are grouped together

in item types in the CSP notation) which is induced by the adopted ordering: a copy of item type
i can have its lowest corner in a pattern created by combinations of the previous items and of the
first di − 1 copies of i.

In our implementation, we take advantage of the item ordering to obtain a simple computation of
B′ = ∪iB′

i. Indeed, it is enough to run a modified version of Algorithm 1 that provides all B′
i sets in

just one call. Details are provided in the electronic companion to this paper. We also introduce two
small reductions with respect to Valério de Carvalho (1999): in all our formulations we remove the
original unit-width loss arcs and introduce only loss arcs that connect pairs of consecutive vertices
in B′; we remove a loss arc connecting two vertices if there is an item arc connecting the same two
vertices (this is possible because of the “≥” in (13)).

Similarly to what seen for the regular normal patterns in (15), also the MIM patterns may be
restated by considering the item sorting. We can formally define the left and right patterns for the
CSP as

L′
it =

{
x =

∑i

j=1
wjξj : 0 ≤ x ≤ min{t− 1,W − wi}, ξj ∈ {0, 1, . . . , d̄

i
j} for j = 1, 2, . . . , i

}
,(16)

R′
it =

{
W − wi − x : x =

∑i

j=1
wjξj, 0 ≤ x ≤ W − wi − t, ξj ∈ {0, 1, . . . , d̄

i
j} for j = 1, 2, . . . , i

}
,(17)

for i ∈ I, and then obtain the minimal setM′ of MIM patterns by following (7), (8), and (9). In our
implementation, we computeM′ by using a modified version of Algorithm 3 that takes advantage
of the item sorting. Also this algorithm is provided in the electronic companion. Once the minimal
set has been obtained, we use it to build a reduced set A of arcs by considering, for each item i,
only those item arcs that start in a MIM pattern. We obtain a small reduction by imposing each
item of width larger than W/2 to have its lowest corner in 0. A further reduction is obtained by
applying Preprocessing 2. We disregard instead Preprocessing 1 because it is incompatible with the
adopted non-increasing width sorting.

An example of the graphs associated to the three arc-flow formulations (normal, MIM-based,
and MIM-based plus Preprocessing 2) is given in Figure 4. It refers to a CSP instance with
w = (6, 5, 3, 2), d = (1, 1, 2, 2), and W = 8. Figure 4-(a) presents the normal arc-flow formulation,
which contains 10 item arcs (depicted in straight lines) and 6 loss arcs (dotted lines). Figure 4-(b)
gives the MIM-based formulation computed for t = 2, which contains 4 left arcs (straight lines), 5
right arcs (dashed lines), and 4 loss arcs (dotted lines). Figure 4-(c) shows the further reduction
obtained by Preprocessing 2: item arc (4,6) is enlarged to (3,6) and then removed because dominated
by (3,5); consequently, the two loss arcs (3,4) and (4,5) are also removed.

14

The Meet-in-the-Middle Principle for Cutting and Packing Problems

CIRRELT-2016-28



0 2 3 4 5 6 7 8

(a)

0 2 3 4 5 6 8

(b)

0 2 3 5 6 8

(c)

Figure 4: (a) normal arc-flow; (b) MIM-based arc-flow (t = 2); (c) MIM-based + Preprocessing 2.

The three arc-flow formulations have been tested on the classical CSP and BPP benchmark
sets, with a time limit of 1200 seconds per instance (refer to Delorme et al. 2016, forthcoming
for details on the benchmark sets). Table 2 shows the results that we obtained. The table first
reports the name of the set, the number of instances (#inst.), the average number of items (n),
and the average bin width (W ). Then, for each formulation, it reports the average number of
arcs (|A|), the total number of instances unsolved to proven optimality (#fails), and the average
number of elapsed seconds (sec). The minimum values of #fails for each group of instances are
highlighted in bold. The last line reports overall total numbers of instances and fails, and overall
average numbers of arcs and seconds. The arc-flow using the MIM patterns needs roughly 50% less
arcs than the normal one, and it is more efficient. This behavior is particularly evident for the set
Scholl 3: the average number of arcs decreases from about 1.5 million arcs to about 50.000; the
MIM-based formulation solves all instances to proven optimality while the normal one could not
solve any. Further reduction on the number of arcs is obtained by the preprocessing. Overall the
MIM-based formulation solves to proven optimality 48 more instances than the normal one and
requires a smaller average computational time. The formulation using the preprocessing technique
solves 4 more instances to proven optimality with a similar computational effort.
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normal arc-flow arc-flow + MIM
arc-flow + MIM and Preprocessing 2

set #inst. n W |A| #fails sec |A| #fails sec |A| #fails sec

AI 201 50 171 2220 121388 8 449.5 85464 10 411.6 85445 7 390.9
ANI 201 50 170 2220 119635 35 963.4 83905 22 733.5 83883 23 746.2
Falkenauer T 80 118 1000 16380 0 4.4 4836 0 1.6 3279 0 2.1
Falkenauer U 80 76 150 3024 0 0.2 1488 0 0.1 1487 0 0.1
Hard28 28 162 1000 36837 0 96.0 21633 0 61.9 21599 0 34.7
Scholl 1 720 64 123 1740 0 0.1 941 0 0.1 928 0 0.1
Scholl 2 480 98 1000 39373 50 225.7 26123 24 157.5 25955 23 162.0
Scholl 3 10 199 100000 1560847 10 1208.2 52094 0 236.3 33790 0 166.6
Schwerin 1 100 44 1000 11798 0 3.3 5353 0 1.0 4621 0 0.9
Schwerin 2 100 46 1000 12601 0 3.4 5760 0 1.1 4979 0 0.9
Waescher 17 50 10000 175462 12 932.9 104014 11 831.8 103480 10 820.2

tot/avg 1715 83 1330 32547 115 122.9 15276 67 88.3 14948 63 88.4

Table 2: Impact of the MIM patterns on standard CSP instances.

4 Application II: Non-Exact Two-Stage Cutting Stock Prob-

lem

In this section we solve the non-exact two-stage guillotine cutting stock problem (2S-CSP), which
is the generalization of the CSP of Section 3 in which: (i) items and bins are two-dimensional
rectangles; (ii) items can be produced from the bins by a series of successive guillotine cuts, that
is, cuts that traverse entirely the bin (or the residual bin portion under processing) from one edge
to the other; (iii) just two series of cuts can be used; and (iv) a final trimming stage is possibly
adopted to remove waste. In practice each bin is first cut down along its height into horizontal
strips (1st stage), these slices are then cut vertically across their widths (2nd stage), and then, if
the obtained items are higher than the required ones, a final horizontal cutting stage is adopted for
removing the waste.

The 2S-CSP has been introduced in the 1960s by Gilmore and Gomory (1965), and has attracted
the interest of many researchers and practitioners in the following decades because it can naturally
model cutting problems that arise in many production industries such as steel, wood, glass, etc. The
problem has been solved with several optimization techniques, including MILP models by Lodi et al.
(2004), arc-flow formulations by Macedo et al. (2010) and Silva et al. (2010), and branch-and-price
algorithms by Alves et al. (2009) and Mrad et al. (2013).

Here we apply the MIM patterns to the formulation by Macedo et al. (2010), which we briefly
recall. To ease notation, we denote the height of the items by hi instead of w2

i and that of the
bins by H instead of W 2. Let m∗ be the number of different item heights and {h∗

1, h
∗
2, . . . , h

∗
m∗}

the corresponding set. We create m∗+1 digraphs G0, G1, . . . , Gm∗

as follows. G0 = (V 0, A0) is a
standard digraph associated to the 1st stage cut, where V 0 = {0, 1, . . . , H} and A0 is the set of
arcs (a, b) representing either the cutting of a strip of height b− a starting at height a, or an empty
portion of a bin between heights a and b. Gs = (V s, As) is instead a multi-digraph associated to
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a 2nd stage cut on a strip s of height h∗
s, for s ∈ {1, 2, . . . , m

∗}, where V s = {0, 1, . . . ,W} and As

contains arcs (d, e, i) of two types: for i ∈ I, arc (d, d+ wi, i) refers to the cut of an item i starting
at width d; for i = 0, arc (d, e, 0) is a loss arc representing an empty portion in the strip between
widths d and e. Let also As(i) ⊆ As define the subset of arcs referring to a given item i ∈ I.

Following Macedo et al. (2010), the set A0 is constructed by creating all patterns where an item
can start, as in (15), but replacing widths with heights and preliminary sorting items according
to non-increasing height. Sets As are built using the same principle, but imposing that only arcs
referring to items i of height hi = h∗

s can start from vertex 0. In terms of decision variables, let z0
be the number of used bins, zs the number of adopted strips of height h∗

s, yab the number of times
in which arc (a, b) is used for a 1st stage cut, and xs

dei the number of times in which arc (d, e, i) is
used for a 2nd stage cut on a strip s. The 2S-CSP is thus:

min z0 (18)

s.t. −
∑

(a,b)∈δ−(b)

yab +
∑

(b,c)∈δ+(b)

ybc =





z0 if b = 0,
−z0 if b = H,
0 if b = 1, 2, . . . , H − 1

(19)

∑

(a,a+h∗

s)∈A
0

ya,a+h∗

s
= zs s = 1, 2, . . . , m∗, (20)

−
∑

(d,e,i)∈δ−(e)

xs
dei +

∑

(e,f,i)∈δ+(e)

xs
efi =





zs if e = 0,
−zs if e = W,
0 if e = 1, 2, . . . ,W − 1

s = 1, 2, . . . , m∗,

(21)
∑

s=1,2,...,m∗

∑

(d,d+wi,i)∈As(i)

xs
d,d+wi,i

≥ di i ∈ I, (22)

zs ≥ 0, integer s = 0, 1, . . . , m∗, (23)

yab ≥ 0, integer (a, b) ∈ A0, (24)

xs
dei ≥ 0, integer s = 1, 2, . . . , m∗, (d, e, i) ∈ As. (25)

Flow conservation is imposed for the first stage by constraints (19) and for the 2nd stage by con-
straints (21). Constraints (20) link together the y and z variables, and (22) impose that all demands
are fulfilled.

We call normal this arc-flow formulation. Similarly to what was done for the CSP, also for the
2S-CSP we improve the normal formulation by replacing the regular normal patterns with the MIM,
and then with the MIM plus Preprocessing 2. The way in which we impose these modifications
follow the footsteps of what done in Section 3 for the CSP, but uses the item orderings suggested
by Macedo et al. (2010).

The results of our implementations are shown in Table 3. The columns have the same meanings
as those in Table 2. The formulations have been tested on the two publicly available benchmark sets
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for the 2S-CSP, A and ATP, attempting the case in which the 1st stage cut is along the height (A(H)
and ATP(H)) or along the width (A(W ) and ATP(W )). Following previous works in the literature,
each model was allowed a time limit of 7200 seconds. The MIM-based formulation improves the
normal one by reducing the average number of arcs (to almost one third) and the average compu-
tational effort, finding 5 additional proven optimal solutions. The use of Preprocessing 2 reduces
the number of arcs by an additional 5%, but does not help improving the number of proven optimal
solutions, as the number of fails increases from 16 to 17. We believe this fact may be imputed to
a worsening of the behavior of the automatic Cplex heuristics, that fail in finding a good feasible
solutions for two instances (for which a quick solution was instead found when Preprocessing 2 was
not used).

In Table 4 we compare our best algorithm with those in the literature, that we call for short
MMH for Mrad et al. (2013), MAV for Macedo et al. (2010), LMV for Lodi et al. (2004), AMM
for Alves et al. (2009), and SAV for Silva et al. (2010). The MIM-based arc-flow formulation has
a smaller number of fails than the other algorithms. Algorithm MAV is also based on the normal
arc-flow formulation, but it includes a number of improvements and is very competitive as it solves
all instances of the set A(H) to proven optimality. Still the MIM-based arc-flow formulation is quite
faster than it.

normal arc-flow arc-flow + MIM
arc-flow + MIM and Preprocessing 2

set #inst. n W |A| #fails sec |A| #fails sec |A| #fails sec

A(H) 43 29 2599 23756 0 59.1 6659 0 4.8 5436 0 10.2
A(W ) 43 29 1874 138816 6 1177.6 39410 5 947.3 36889 4 936.3
ATP(H) 20 40 565 77994 5 2681.1 38411 4 1637.0 37839 5 1999.8
ATP(W ) 20 40 494 76594 10 3666.6 35894 7 3057.3 35273 8 3132.4

tot/Avg 126 32 1695 80019 21 1429.6 27516 16 1070.1 26049 17 1137.6

Table 3: Impact of the MIM patterns on the 2S-CSP.

MMH(1) MAV(2) LMV(2) AMM(2) SAV(2) arc-flow+MIM
set #inst. #fails sec #fails sec #fails sec #fails sec #fails sec #fails sec

A(H) 43 1 277.2 0 377.9 21 3519.4 10 1854.3 2 735.0 0 4.8
A(W ) 43 6 1014.2 5 947.3
ATP(H) 20 8 3642.6 4 1637.0
ATP(W ) 20 7 3057.3

(1) = Pentium IV 2.2 GHz with 4 GB RAM; (2) =1.87 GHz Intel Core Duo with 2 GB RAM.

Table 4: Comparison with the 2S-CSP literature.
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5 Application III: Two-Dimensional Orthogonal Packing

Problem

The two-dimensional orthogonal packing problem (2OPP) is the basic feasibility test of determining
whether a set I of rectangular items fits or not into a rectangular bin. Rotation of the items is
not allowed. The 2OPP arises as a subproblem in many two-dimensional C&P problems, such as
knapsack, bin packing, and strip packing. It has been tackled with several algorithms, including, e.g.,
constraint programming techniques by Clautiaux et al. (2008), and mixed methods by Mesyagutov
et al. (2012) and Belov and Rohling (2013). Here we solve it first by means of branch-and-bound
algorithms and then by primal decomposition techniques. Once again we ease notation by writing
hi instead of w2

i and H instead of W 2 (recall the general problem definition in Section 2).

5.1 Combinatorial Branch-and-Bound Algorithms

Combinatorial branch-and-bound (B&B) algorithms for C&P attempt to build solutions by packing
one item at a time in the bin, according to a specific enumeration rule. Here we use a basic B&B
that builds upon the rule by Boschetti and Montaletti (2010). We start from the empty bin and
pack items one at a time from the bottom to the top. At a given partial packing, let the skyline
represent the set of the top borders of the items (or bottom of the bin where no item has been
packed yet), that is, a set of consecutive horizontal segments positioned at different y-coordinates.
Let the niche be the segment of the skyline positioned at the smallest y-coordinate (breaking ties
by smallest x-coordinate). The borders of the niche are the vertical segments at its left and right.
For example, in Figure 1-(b) the niche is the horizontal segment [17, 20] at the y-coordinate 0, its
left border is the vertical segment [0, 4], and its right border is the vertical segment [0, 20].

Let p be the x-coordinate of the leftmost position of the current niche. Note that p ∈ B because
it is a feasible combination of item widths. We attempt packing in p any item i that can fit and for
which the condition p ∈ Bi is satisfied. We select items by non-increasing order of width, and create
a new node in the enumeration tree for each resulting packing. We also create a last additional
node, that we call loss node, in which no item is packed in p. Let ĥ be the minimum height among
the heights of left and right borders of the current niche and the heights of the residual items to
be packed. When a loss node is explored, the portion of the niche going from p to the successive
pattern in B and having height ĥ is closed and considered unavailable for packing. To this aim
the set B is re-evaluated at every node by taking in consideration only the items that still have to
be packed. The next pattern in B inside the niche is selected, if any, and the process is iterated,
from left to right. When no such pattern exists, the current niche is closed and the next niche is
computed. The tree is explored in depth-first fashion. Nodes are fathomed by the use of a simple
estimation of the area of the residual items to be packed and or the residual bin area (continuous
bound), and by the so-called DP-cuts of Kenmochi et al. (2009).

Many improvements can be done to this simple scheme (preprocessing techniques, improved
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computations of ĥ, techniques to fathom nodes, . . . ), but this is out of the scope of this paper.
Here, similarly to what was done in the previous sections, we call normal this basic B&B technique
and attempt to improve it by the use of the MIM patterns. The first improved version is the one in
which B is replaced byM. This reduces the number of nodes because: (i) only items i for which
p ∈Mi are selected for packing in p, and (ii) the distance between two consecutive patterns inM
is typically larger than in B, and hence the area made unavailable when a loss node is selected is
larger. The second version makes use also of Preprocessings 1 and 2. The last improved version also
changes the way in which the tree is explored, by including a new branching scheme (MIM-branch).
Let tmin be the threshold value used to buildM (see Section 2). If p < tmin then we proceed from
left to right in the selection of the positions in the niche as done in the previous branching schemes,
otherwise we proceed from right to the left. In other words, if p ≥ tmin then we select for packing
the first position q from the right, and pack there all items i for which q ∈Mi.

A computational evaluation of these four techniques is proposed in Table 5. Each algorithm
was run with a time limit of 900 seconds. We selected the well-known 2OPP benchmark instances,
namely sets E, C, N, and T, plus the two sets of instances created by Mesyagutov et al. (2012), that
we call MSB-450 and MSB-630. We refer to Mesyagutov et al. (2012) for details on all benchmark
sets. The column headings are the same as in the previous tables, with the exception of “nodes”,
that report the number, in millions, of explored nodes.

normal B&B B&B + MIM B&B+MIM, Preproc.
B&B +MIM and Preproc. 1-2 1-2, MIM-branch

set #inst n W #fails sec nodes #fails sec nodes #fails sec nodes #fails sec nodes

MSB-450 450 20 100 58 130.8 139.2 38 91.183 96.1 37 91.7 97.5 35 78.2 64.2
MSB-630 630 20 1000 208 301.8 59.4 191 281.18 60.1 191 279.6 61.1 183 264.2 43.8
E 42 15.9 20 22 491.0 68.7 22 490.99 68.8 22 493.0 68.1 22 508.9 64.5
C 21 69.3 68.6 13 621.3 37.3 13 618.14 37.1 13 598.7 30.7 13 611.1 23.8
N 35 69.6 200 21 566.8 9.1 21 565.7 8.9 22 598.3 9.4 22 601.9 7.1
T 35 69.9 200 23 600.3 12.1 23 600.07 12.2 23 616.9 11.4 23 625.4 8.4

tot/Avg 1213 23.6 570 345 266.7 86.1 308 241.2 70.5 308 241.7 71.4 298 229.8 49.7

Table 5: Evaluation of different B&B algorithms on 2OPP instances (nodes = 106 explored nodes).

The normal B&B fails in providing a certified proof of feasibility or infeasibility for 345 out
of 1213 instances. The effect of the MIM is not relevant for sets E, C, N, and T, but it is quite
remarkable for the MSB sets, where #fails decrease by 37 units. The use of the new branching
scheme is effective, because it allows the algorithm to solve 10 more instances and obtain a strong
decrease in the number of explored nodes.

5.2 Primal Decomposition Methods

Côté et al. (2014a) solved the strip packing problem by iteratively calling an inner model to test
the feasibility of 2OPP instances. Here we describe their model for the 2OPP, which is based on a
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primal decomposition with combinatorial Benders cuts. The decomposition first take cares of the
horizontal positions of the items, and makes use of a binary variable xip taking the value 1 if item i
is packed in pattern p along the x-axis, 0 otherwise. Let Bi,q denote the subset of patterns for which
item i occupies position q, formally Bi,q = {p ∈ Bi : q − wi + 1 ≤ p ≤ q}. Then the 2OPP can be
modeled as the following integer linear feasibility test:

∑

p∈Bi

xip = 1 i ∈ I, (26)

∑

i∈I

∑

p∈Bi,q

hixip ≤ H q ∈ B, (27)

∑

i∈I

xi,psi
≤ n− 1 ∀ s infeasible for the SP, (28)

xip ∈ {0, 1} i ∈ I, p ∈ Bi. (29)

Constraint (26) impose that each item is packed once. Constraints (27) state that the sum of the
item heights on a certain pattern q does not exceed the bin height. Before discussing constraints
(28), let us focus on the sub-model induced by (26)–(27) and (29). Solving this sub-model requires
to find an allocation for unit-width slices of the items into the bin, in such a way that all slices are
contiguous one with the other. This problem (known in the literature as the bar relaxation or as
the bin packing problem with contiguity constraints) corresponds to the first master problem (MP)
of the proposed decomposition. Suppose a solution s for the MP is found, in which any item i ∈ I is
packed in a pattern psi . Then the slave problem (SP) is to determine the set of vertical positions for
all the items that lead a packing without overlapping, if any. If such a set is found, then the model
returns a feasible 2OPP solution, otherwise a feasibility cut (28) is added to the MP to disregard
solution s. The approach works well when the simple feasibility cuts are improved into the much
stronger lifted combinatorial Benders cuts, as discussed in Côté et al. (2014a).

Here we solve the problem by using the same algorithm in Côté et al. (2014a): the MP is
solved with Cplex, the SP with a dedicated branch-and-bound (Section 3 of their article), and the
feasibility cuts are improved with greedy procedures and a lifting based on linear programming
(Section 4 of their article). The only difference is that we replace the regular patterns B with the
MIM patternsM in model (26)-(29).

The results that we obtained are presented in Table 6. The column headings are the same
used for the previous tables, with the addition of “var”, that denotes the average number of xip

variables in the different mathematical models. Each algorithm was run with a time limit of 900
seconds. The normal decomposition fails for 181 instances. The MIM patterns are effective in
reducing the number of variables and thus allow the algorithm to close 25 more instances. The
two preprocessing techniques are not effective on sets N and T. This probably happens because
these sets are composed entirely by 2OPP feasible instances with zero waste (“perfect packing”
instances), that have been created mostly with the aim of testing heuristic algorithms, and, as
noticed in Section 4, preprocessing may have a slight negative influence on the automatic Cplex
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normal decomposition decomposition + MIM
decomposition + MIM and Preproc. 1-2

set #inst n W #fails sec var #fails sec var #fails sec var

MSB-450 450 20 100 48 125.7 7308 40 94.7 4770 38 95.4 4054
MSB-630 630 20 1000 61 117.2 7191 47 88.8 4919 44 83.6 4163
E 42 16 20 0 0.1 202 0 0.1 184 0 0.1 173
C 21 69 69 14 600.9 6258 14 602.4 6235 14 601.1 6203
N 35 70 200 30 772.8 12136 28 729.8 11885 29 749.8 11726
T 35 70 200 28 724.7 12197 27 699.9 11959 29 746.9 11802

tot/avg 1213 24 570 181 161.2 7263 156 133.0 5127 154 132.4 4458

Table 6: Evaluation of different decomposition algorithms on 2OPP instances.

heuristics. The preprocessing techniques provide instead positive improvements on the two MSB
sets, where they allow the decomposition method to find 5 more proven optimal solutions.

6 Conclusions

In this paper we proposed a principle to reduce the number of patterns in multi-dimensional cutting
and packing (C&P) problems. It consists of a new set of patterns, called meet-in-the-middle (MIM),
obtained by aligning items along each dimension either to the bottom of the bin or to the top of it.
The computation of the MIM patterns does not require additional effort with respect to previous
methods in the literature and usually leads to a smaller number of patterns. Further reduction
criteria can also be applied. Extensive computational tests showed the efficiency of the proposed
techniques on a number of relevant C&P problems.

The MIM principle can be used in several optimization algorithms, because it usually reduces
the number of variables required by mathematical models and the number of nodes explored by
combinatorial branch-and-bound algorithms. The principle can be adapted to a large number of
applications, not only in C&P but also in other combinatorial optimization fields, such as vehicle
routing and scheduling. There is thus a large number of possible future research applications.
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Alves, C., R. Macedo, M. Mrad, J.M. Valério de Carvalho, F. Alvelos, T.M. Chan, E. Silva. 2009. An exact
branch-and-price algorithm for the two-dimensional cutting stock problem. Working paper.

Beasley, J. E. 1985a. Algorithms for unconstrained two-dimensional guillotine cutting. Journal of the

Operational Research Society 36 297–306.

Beasley, J. E. 1985b. An exact two-dimensional non-guillotine cutting tree search procedure. Operations

Research 33 49–64.

Belov, G., H. Rohling. 2013. LP bounds in an interval-graph algorithm for orthogonal-packing feasibility.
Operations Research 61 483 – 497.
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Supplementary Algorithms

As discussed in Section 2.1, for a general cutting and packing packing problem the computation
of the regular normal patterns Bi, for any item i in the item set I, may be obtained by invoking
Algorithm 1 as NormalPatterns(I \ {i};W −wi). Then, the computation of the entire set is simply
obtained by letting B = ∪iBi. As described in Section 3, the input item set I of the one-dimensional
cutting stock problem (CSP) consists of m item types, where each type i comprises di items having
the same width wi. For the CSP, cutting items according to a given order (the one usually adopted
is by non-increasing width) preserves optimality, and consequently the set B may be replaced by a
smaller, or at least equivalent, set B′ that considers such order, see Equation (15).

The computation of B′ may be obtained by invoking Algorithm 4 below. A support array T
is used to store all feasible item width combinations. T is first initialized to consider only the
empty bin filling. Then, in the main loop starting at step 5, T is updated by considering all item
combinations and the set of patterns is built accordingly. Note that, for each item type i > 1, the set
B′
i is computed incrementally starting from the support array T obtained during the computation

of the previous set B′
i−1.

Algorithm 4 BPatternsCSP(I; W )

1: Require: I: set of sorted items, W : bin width
2: B′ ← ∅
3: T ← [0 to W ]: an array with all entries initialized at 0
4: T [0]← 1
5: for i = 1 to m do

6: B′
i ← ∅

7: for p = W − wi to 0 do

8: if T [p] = 1 then

9: for k = 1 to di do
10: if p+ wi ∗ k > W then break

11: T [p+ wi ∗ k]← 1
12: B′

i ← B
′
i ∪ {p+ wi ∗ (k − 1)}

13: end for

14: end if

15: end for

16: B′ ← B′ ∪ B′
i

17: end for

18: return B′

In a similar way, also the computation of the minimal set of MIM patterns for the CSP may
benefit from the adopted item sorting. This can be done by using Algorithm 5 below, which is an
adaption to the CSP of Algorithm 3 of Section 2.2. Algorithm 5 starts by computing the regular
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normal patterns at step 3. Then, it fills the support arrays for the left and right patterns, Tleft and
Tright, respectively, at steps 4-13. Note that the check on wi ≤W/2 at step 7 is used to impose that
items having width larger than W/2 are only packed with their lowest corner in 0. The computation
of the threshold value tmin for which

∑
i∈I |M

′
is| is a minimum is obtained by steps 14-21. Finally,

setM′ is built at steps 22-30.

Algorithm 5 MinimalMIMSetCSP(I; W )

1: Require: I: set of sorted items, W : bin width
2: Tleft, Tright ← [0 to W ]: two arrays with all entries initialized at zero
3: B′ ← BPatternsCSP(I; W )
4: for i = 1 to m do

5: for p ∈ B′
i do

6: Tleft[p]← Tleft[p] + 1
7: if wi ≤W/2 then Tright[W − wi − p]← Tright[W − wi − p] + 1
8: end for

9: end for

10: for p = 1 to W do

11: Tleft[p]← Tleft[p] + Tleft[p− 1]
12: Tright[W − p]← Tright[W − p] + Tright[W − (p− 1)]
13: end for

14: tmin ← 1
15: min← Tleft[0] + Tright[1]
16: for p = 2 to W do

17: if Tleft[p− 1] + Tright[p] < min then

18: min← Tleft[p− 1] + Tright[p]
19: tmin ← p
20: end if

21: end for

22: M′ ← ∅
23: for i = 1 to m do

24: M′
i ← ∅

25: for p ∈ B′
i do

26: if p < tmin thenM′
i ←M

′
i ∪ {p}

27: if (W − wi − p ≥ tmin and wi ≤ W/2) thenM′
i ←M

′
i ∪ {W − p− wi}

28: end for

29: M′ ←M′ ∪M′
i

30: end for

31: returnM′
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