
31/07/2024 23:24

Self-Duality of Markov Processes and Intertwining Functions / Franceschini, Chiara; Giardina', Cristian;
Wolter, Groenevelt. - In: MATHEMATICAL PHYSICS, ANALYSIS AND GEOMETRY. - ISSN 1572-9656. -
21:4(2018), pp. ---. [10.1007/s11040-018-9289-x]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



Self-duality of Markov processes and intertwining functions

Chiara Franceschini ∗ Cristian Giardinà † Wolter Groenevelt ‡
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Abstract

We present a theorem which elucidates the connection between self-duality of Markov processes and
representation theory of Lie algebras. In particular, we identify sufficient conditions such that the
intertwining function between two representations of a certain Lie algebra is the self-duality function
of a (Markov) operator. In concrete terms, the two representations are associated to two operators
in interwining relation. The self-dual operator, which arise from an appropriate symmetric linear
combination of them, is the generator of a Markov process. The theorem is applied to a series of
examples, including Markov processes with a discrete state space (e.g. interacting particle systems)
and Markov processes with continuous state space (e.g. diffusion processes). In the examples we use
explicit representations of Lie algebras that are unitary equivalent. As a consequence, in the discrete
setting self-duality functions are given by orthogonal polynomials whereas in the continuous context
they are Bessel functions.
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1 Introduction

In the theory of interacting particle systems [30, 14], and more generally in the theory of Markov pro-
cesses, stochastic duality plays a key role. Duality is a fundamental tool by which the analysis of the
process is substantially simplified. A list of examples of systems that have been analyzed using duality
includes: boundary driven models of transport and derivation of Fourier’s law [23, 36, 17, 8], diffusive
particle systems and their hydrodynamic limit [14], asymmetric interacting particle systems scaling to
KPZ equation [33, 32, 7, 13], six vertex models [6, 12], multispecies particle models [26, 27, 28, 3, 4],
correlation inequalities [19] and mathematical population genetics [31, 11].

In this paper we will focus on self-duality only, which can always be thought of as a special case
of duality where the dual process is an independent copy of the first one. Indeed, self-duality provides
a link between a process and its copy where two different variables play a role. The simplification of
self-duality typically arises from the fact that in the copy process only finitely many particles or variables
are considered.

There is clearly need for a deeper understanding of the origin of duality property, in particular the
sufficient conditions that would guarantee the existence of a dual process. An algebraic approach has
been proposed in a series of works [18, 11] (one should also mention the works [34, 33] where a connection
between stochastic duality and symmetries of quantum spin chains was noticed). The algebraic perspective
starts from the hypothesis that the Markov generator is an element of the universal enveloping algebra
of a Lie algebra. Then the derivation of a duality relation is based on two structural ideas:

(i) duality can be seen as a change of representation: more precisely one moves between two equivalent
representations and the intertwiner of those representations yields the duality function.

(ii) self-duality is related to reversibility of the process and the existence of symmetries, i.e. elements
that commute with the process generator.

Remarkably, this scheme can also be extended to quantum deformed algebras [9, 10]. The goal of this
paper is to show how self-duality can be framed under the change of representation of item (i).

Recently, an independent approach has established a connection between stochastic duality and the
theory of special functions. In particular the works [5, 15, 29] prove that for a large class of processes
duality functions are provided by orthogonal polynomials. This result has been proved following an
analytic approach – either using structural properties of hypergeometric polynomials [15] or generating
function methods [29]. In the present paper we shall see that, as a consequence of a main general theorem,
some of the orthogonal self-dualities can be understood from a change of representation of an underlying
Lie algebra. In turn, theorem 2.8 below shows that in order to have self-duality, the intertwining associated
to a change of representation and the abstract operator associated to the process generator need both to
satisfy a symmetry property. See [20], for a complementary algebraic perspective where it is shown that
orthogonal duality relations correspond to unitarily equivalent representations.

In several examples of self-duality relations the self-duality function turns out to be symmetric in the
two arguments; e.g. in case of a polynomial duality function pn(x) it is symmetric in the degree n and
the variable x. We wonder how the symmetry of the self-duality function could be related to stochastic
self-duality. A symmetry in the self-duality function is not an hypothesis strong enough to guarantee a
self-duality relation, however there are good chances that this is the case. In addition, one would also
like to see some symmetries in the generator of the process: these two facts guarantees that a self-duality
relation of the process via the symmetric function can be found. This is the main message of this paper
that will be formulated in Theorem 2.8. As an application of the theorem we will show that several known
self-duality functions can be derived in this way and we will also derive a new self-duality relation for the
so-called Brownian momentum process [18].
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1.1 Paper organization

The rest of this paper is organized as follows, in Section 2 we start by recalling the definition of self-duality
and then the main theorem of this paper is presented. Namely, we show how to relate symmetric functions
with the stochastic self-duality. Moreover, we present under which hypothesis a function that intertwines
between two Lie algebra representations is a self-duality function for an operator which is written in
terms of the Lie algebra generators. In Section 3 five stochastic Markov processes are described via their
generators; we will deal with three interacting particle systems and two diffusive systems. Finally, as an
application, we implement our main theorem in Section 4 to prove a self-duality relation for our processes.

2 Main results

All the results of this paper involve a self-duality relation, so we start by recalling the definition of self-
duality. Since the two processes are independent copies of each other one may wonder how actually
self-duality makes things simpler: thanks to a self-dual process it is possible to compute the n−points
correlation function of the initial process via the study of the evolution of only n dual particles.

Definition 2.1 (Self-duality of semigroups.) Let X = (Xt)t≥0 be a continuous time Markov process
with state space S. We say that X is self-dual with duality function D : S × S 7−→ R if

Ex[D(Xt, y)] = Ey[D(x, Yt)] , (1)

for all x, y ∈ S and t ≥ 0. Here Y is an independent copy of the process X. In (1) Ex is the expectation
w.r.t. the law of the X process initialized at x.

Under suitable hypotheses regarding the semigroup associated to the Markov generator, (see [21], Propo-
sition 1.2 ), the above definition is equivalent to the definition of self-duality of Markov generators.

Definition 2.2 (Self-duality of generators.) Let L be a generator of the Markov process X = (Xt)t≥0.
We say that L is self-dual with self-duality function D : S × S −→ R if

[LD(·, y)](x) = [LD(x, ·)](y) (2)

where we assume that both sides are well defined, i.e. D(·, y) and D(x, ·) belongs to the domain of the
generator.

In (2) it is understood that L on the lhs acts on D as a function of the first variable x, while L on the
rhs acts on D as a function of the second variable y. In case the process is a countable Markov chain the
above definition can be written in matrix notation as LD = DLT where D is an | S | × | S | matrix with
entries Dx,y = D(x, y) and LT denotes the matrix transposition of L.

Definition 2.2 is easier to work with, so we will always work under the assumption that the notion of
self-duality is the one in equation (2). It is our aim to show self-duality as a change of representation, so
it will be convenient to extend the definition of self-duality for operators as well.

Definition 2.3 (Self-duality of operators.) Let A be a generic operator with domain D(A). We say
that A is self-dual with self-duality function D = D(x, y) if

[AD(·, y)](x) = [AD(x, ·)](y), (3)

where we assume D(·, y), D(x, ·) ∈ D(A).
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In general, self-duality functions for a certain process are not unique. If two self-duality functions are
the same up to a factor which depends to a quantity that is constant under the dynamic of the process,
then we would consider these two self-duality functions equivalent.

Remark 2.4 (Constant quantity.) If D(x, y) is a duality function between two processes and the func-
tion c : S × S −→ R is constant under the dynamics of the two processes then c(x, y)D(x, y) is also a
duality function. In particular, examples of c(x, n) could be the constant function or, for some of the
processes introduced in this paper the total number of particles, which is constant during the evolution of
the process.

We are now ready to introduce the main results of this paper. Except for the Heisenberg algebra, the
Lie algebras we will work with features an element in the universal enveloping algebra, the Casimir Ω,
which commutes with every other element of the algebra. It is interesting to notice that, whenever the
Casimir is available within the algebra, then the generator of the processes defined in Section 3 can be
related to it via the coproduct ∆. Recall that the coproduct is defined for the Lie algebra generator X as

∆(X) = 1⊗X +X ⊗ 1 (4)

and that it can be extended as an algebra morphism to the universal enveloping algebra. We will see that
the generator of the process is, up to a constant, equal to the coproduct of the Casimir.

We now move on to the following theorem which is the main result of this paper. It will be applied
in Section 4 to explicit examples. Let S be a metric space, we denote by F (S) the space of real-valued
functions on S. We will also work with functions f : S × S → R and a linear operator A : D(A) ⊂
F (S)→ F (S).

We will need the notion of intertwining function between two operators. After its definition we present
a basic example to clarify.

Definition 2.5 (Intertwining function.) The real-valued function f : (x, y)→ f(x, y) defined on S×S
is an intertwining function between operators A and B if the action of A on the first variable of f is equal
to the action of B on the second variable, i.e. (Af(·, y)) (x) = (Bf(x, ·)) (y).

If A = B in definition 2.5, then A is a self-dual operator (in the sense of definition 2.3) with self-duality
function given by the intertwining function.

Example 2.6 Consider the two operators acting on g : R→ R defined as follows

(Ag) (x) := xg(x) (Bg) (y) :=
∂

∂y
g(y) .

Then f(x, y) = exy in an intertwining function between A and B since

(Af(·, y)) (x) = xexy = (Bf(x, ·)) (y) .

Remark 2.7 (Notation.) Sometimes it will be convenient to have a shorter notation: if T : F (S) →
F (S) is an operator and f : S × S → R a function, we write Txf for the function

(x, y) 7→ [Tf(·, y)](x)

and similarly for Tyf . In this notation f(x, y) is an intertwining function between A and B if Axf = Byf .
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For operators A and B we call a composition of the form

S(A,B) = An1Bn2An3 . . . Ank−1Bnk , for n1, . . . , nk ∈ N0

a string in A and B. If S(A,B) is a string of this form, then the reverse string is

Srev(A,B) = AnkBnk−1 . . . An2Bn1

and this operation can be extended to linear combinations of strings: if

C =

k∑
i=1

ciSi(A,B) , (5)

then

Crev =
k∑
i=1

ciS
rev
i (A,B) . (6)

We are particularly interested in operators such that C = Crev.

Theorem 2.8 (Intertwining functions, symmetries and self-duality.) Let A and B be finite or-
der difference or differential operators on F (S), and let f = f(x, y), f : S × S → R be an intertwining
function between A and B.

1. If f is symmetric, i.e., f(x, y) = f(y, x), then f is an intertwining function between B and A.

2. Suppose that f is also an intertwining function between B and A, and C is a linear combination of
strings in A and B such that C(A,B) = Crev(A,B). Then C is a self-dual operator with self-duality
function f .

Proof. For the first item, using the intertwiner hypothesis (Af(·, y)) (x) = (Bf(x, ·)) (y) and the sym-
metry of f , namely f(x, y) = f(y, x), we will show that (Af(x, ·)) (y) = (Bf(·, y)) (x). First we show
that

[Af(·, y)](x) = [Af(y, ·)](x) . (7)

In the discrete case, denoting by ax,x′ the elements of the matrix associated to the operator A, we have

(Af(y, ·)) (x) =
∑
x′

ax,x′f(y, x′) =
∑
x′

ax,x′f(x′, y) = (Af(·, y))(x) ,

where we used the symmetry of the function f . In the continuous case for a first order differential operator

∂x =
∂

∂x
,

[∂xf(·, y)](x) = lim
h→0

f(x+ h, y) + f(x, y)

h
= lim

h→0

f(y, x+ h) + f(y, x)

h
= [∂xf(y, ·)](x) .

For a finite order differential operator A =
∑
ak(x)∂k1x1 · · · ∂

kL
xL

, x = (x1, . . . , xL), this leads to (7) as in
the previous case. Our initial hypothesis that the function f intertwines between the operator A and the
operator B implies that

(Af(·, x)) (y) = (Bf(y, ·)) (x) (8)

Identity (7) holds for the operator B as well, i.e.

(Bf(y, ·)) (x) = (Bf(·, y)) (x) . (9)
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Combining together (7), (8) and (9) one proves that

(Af(x, ·)) (y) = (Bf(·, y)) (x) ,

i.e., f is an intertwining function for B and A: in the notation of Remark 2.7 this is Bxf = Ayf .
For the second item observe that

(An1Bn2)xf = (An1)x(An2)yf = (An2)y(A
n1)xf = (An2Bn1)yf ,

assuming again that f is sufficiently smooth in case of differential operators. Iterating this procedure we
get that

S(A,B)xf = Srev(A,B)yf . (10)

So now

Cxf =
k∑
j=1

cjSj(A,B)xf =
k∑
j=1

cjS
rev
j (A,B)yf = Crevy f = Cyf ,

where the second identity comes from (10) and the fourth identity holds due to conditions on C.

2

Example 2.9 Suppose, as in the previous theorem, that f is an intertwining function between operators
A and B as well as between B and A, then examples of self-dual operators are

• C = AB.

• C = [A,B]2 = ABAB +BABA−AB2A−BA2B.

Remark 2.10 In our applications the operator C will always be the generator of a Markov process. C is
the concatenation of “ building blocks ” operators that turn out to be the generators of certain Lie algebras.

Theorem 2.8 heavily relies on “ building blocks ” operators A and B so one may wonder how to
construct them. In the majority of the cases the two operators A and B arises naturally from the
structure of the Casimir element of the underlying algebra. The next lemma shows that, whenever the
generator is (in terms of) the coproduct of the Casimir, A and B can be found as the coproduct of two
other operators.

Lemma 2.11 If the Casimir element Ω is a linear combination of strings in X and Y , i.e. Ω = Ω(X,Y ),
then ∆(Ω) = Ω(∆(X),∆(Y )). In particular, if Ω(X,Y ) = Ωrev(X,Y ), then ∆(Ω) = ∆(Ω)rev.

Proof. From the fact that the coproduct is an algebra homomorphism, it follows that the coproduct of
Ω satisfies

∆ (Ω) = ∆ (Ω(X,Y )) = Ω(∆(X),∆(Y )).

2

In the applications of the next section, Ω turns out to be a polynomial of fourth degree. Moreover,
anytime the process generator is, up to a constant, equal to the coproduct of the Casimir L ∼ ∆(Ω),
it will be sufficient to look for operators X and Y for which the Casimir Ω is equal to Ωrev instead of
operators A and B for which the generator L is equal to Lrev. We end this section showing that, once an
intertwining function between two operators is available, it can be used to find an intertwining function
for the coproduct of the two operators in the following way.
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Lemma 2.12 If X and Y are two Lie algebra elements acting on F (S) and f(x, y) is an intertwining
function between X and Y , then f(x1, y1)f(x2, y2) intertwines ∆(X) with ∆(Y ).

Proof. Using the properties of the coproduct one has

[∆(X)f(·, y1)f(·, y2)](x1, x2) = f(x1, y1)[Xf(·, y2)](x2) + [Xf(·, y1)](x1)f(x2, y2)

which, using the intertwining hypothesis, becomes

f(x1, y1)[Y f(x2, ·)](y2) + [Y f(x1, ·)](y1)f(x2, y2) = [∆(Y )f(x1, ·)f(x2, ·)](y1, y2) .

2

3 Description of the processes

In this section a description of the five processes considered is given: in three of them the quantity of
interest is discrete, i.e. the number of particles, while for the other two processes presented the energy or
the momentum is the continuous quantity studied.

3.1 SEP(j) process

The SEP(j) for arbitrary j has been introduced and studied in [34]. From the mathematical point of view
a related model which also exhibits product measures, but which does not have the self-duality property
is studied in [22]. The SEP(j) is a family of interacting particles processes on a generic graph, labeled by
the parameter j ∈ N/2. On the undirected and connected graph G = (V,E) with N sites (vertices) and
edge set E, each site can have at most 2j particles, and jumps only occur when an edge exists between
two sites: jumps occur at rate proportional to the number of particles in the departure site times the
number of holes in the arrival site.
A particle configuration is denoted by x = (xi)i∈V where xi ∈ {0, . . . , 2j} is interpreted as the number of
particles at sites i. The process generator reads

LSEP (j)f(x) =
∑

1≤i<l≤N
(i,l)∈E

xi(2j − xl)
[
f(xi,l)− f(x)

]
+ (2j − xi)xl

[
f(xl,i)− f(x)

]
(11)

where xi,l denotes the particle configuration obtained from the configuration x by moving one particle
from site i to site l: xi,l = x − δi + δl and f : {0, 1, . . . , 2j}N → R is a function in the domain of the
generator. For j = 1/2 the model corresponds to the standard exclusion process with an underlying
symmetric random-walk kernel p(i, l) = 1 for all (i, l) ∈ E , see for instance [35, 30].

It is easy to verify that LSEP (j) conserves the total number of particles and its reversible (and thus sta-
tionary) measure is given by the homogeneous product measure with marginals the Binomial distribution
with parameters 2j > 0 and p ∈ (0, 1), i.e. with probability mass function

ρSEP (j)(x) =

(
2j

x

)
px(1− p)2j−x , x ∈ {0, 1, . . . , 2j} .

3.2 SIP(k) process

The inclusion process is introduced first in [17], and also studied further in [19]. The Symmetric Inclusion
Processes (SIP(k)) is a family of Markov jump processes labeled by parameter k > 0, which can be
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defined in the same setting of before. In this case the state space is unbounded so that each site can
have an arbitrary number of particles. Jumps occur at rate proportional to the number of particles in
the departure and the arrival sites, as the generator describes:

LSIP (k)f(x) =
∑

1≤i<l≤N
(i,l)∈E

xi(2k + xl)
[
f(xi,l)− f(x)

]
+ xl(2k + xi)

[
f(xl,i)− f(x)

]
. (12)

Detailed balance is satisfied by a product measure with marginals given by identical Negative Binomial
distributions with parameters 2k > 0 and 0 < p < 1, i.e. with probability mass function

ρSIP (k)(x) =

(
2k + x− 1

x

)
px(1− p)2k , x ∈ {0, 1, . . .} .

3.3 BEP(k) process

The Brownian Energy Process (BEP(k)) is a family of interacting diffusions labelled by the parameter k
and first introduced in [18] as the dual of the Symmetric Inclusion Process.
The generator, defined on the usual undirected connected graph G = (V,E), describes kinetic energy
exchange between connected sites and it reads

LBEP (k)f(z) =
∑

1≤i<l≤N
(i,l)∈E

[
zizj

(
∂

∂zi
f(z)− ∂

∂zj
f(z)

)2

− 2k(zi − zj)
(
∂

∂zi
f(z)− ∂

∂zj
f(z)

)]
. (13)

where f : (R+)N → R is in the domain of the generator and z = (zi)i∈V denotes a configuration of the
process with zi ∈ R+ interpreted as a particle energy. It is easy to verify that the total energy of the
system

∑N
i=1 zi is conserved by the dynamic.

The stationary measure of the BEP(k) process is given by a product of independent Gamma distribution
with shape parameter 2k and scale parameter θ, i.e. with density function (w.r.t. Lebesgue measure)

ρBEP (k)(z) =
z2k−1e−

z
θ

Γ(2k)θk
.

3.4 BMP process

The Brownian Momentum Process (BMP) is a Markov diffusion process introduced in [16]. On the
undirected connected graph G = (V,E) with N vertices and edge set E, the generator reads

LBMP f(x) =
∑

1≤i<l≤N
(i,l)∈E

(
xi
∂f

∂xl
(x)− xl

∂f

∂xi
(x)

)2

, (14)

where f : RN → R is a function in the domain of the generator. A configuration is denoted by x = (xi)i∈V
where xi ∈ R has to be interpreted as a particle momentum. A peculiarity of this process regards its
conservation law: if the process is started from the configuration x then ||x||22 =

∑N
i=1 x

2
i is constant

during the evolution, i.e. the total kinetic energy is conserved.
The stationary reversible measure of the BMP process is given by a family of product measures with

marginals given by independent centered Gaussian random variables with variance σ2 > 0, which can be
set equal to 1/2 without loss of generality, i.e. with density function

ρBMP (x) =
e−x

2

√
π
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Remark 3.1 The BMP and BEP(1/4) processes are related via a change of variable. Setting

zi = x2i

one has

∂zi =
1

2xi
∂xi (15)

∂2zi = − 1

4x2i
∂xi +

1

4x2i
∂2xi . (16)

As a consequence one finds the BEP generator LBEP (k) in (13) with k = 1/4 from the BMP generator
LBMP in (14).

3.5 IRW process

The Independent Random Walkers (IRW) is one of the simplest, yet non-trivial particle system studied
in the literature. The model is first considered in [35]. It consists of independent particles that perform
a symmetric continuous time random walk at rate 1 on the undirected connected graph G = (V,E). The
generator is given by

LIRW f(x) =
∑

1≤i<l≤N
(i,l)∈E

xi

[
f(xi,l)− f(x)

]
+ xl

[
f(xl,i)− f(x)

]
. (17)

The reversible invariant measure is provided by a product of Poisson distributions with parameter λ > 0,
i.e., with probability mass function

ρIRW (x) =
e−λλx

x!
, x ∈ N0 .

4 Using our main theorem to prove stochastic self-dualities of the
processes

This section includes five subsections where detailed examples are provided: in each subsection the natural
Lie algebra and an appropriate representation on an L2-space is presented. In case the representations are
given in terms of unbounded operators, we assume the operators act on an appropriate dense subspace of
the L2-space. The self-duality functions we encounter will be defined in terms of hypergeometric functions

rFs. We recall here what an hypergeometric function is.

Definition 4.1 (Hypergeometric function) The hypergeometric function is defined by the series

rFs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣x) =

∞∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

xk

k!

where (a)k denotes the Pochhammer symbol defined in terms of the Gamma function as

(a)k =
Γ(a+ k)

Γ(a)
.
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Whenever one of the numerator parameters, say a1, is a negative integer −n, the hypergeometric function

rFs is a finite sum up to n. In this case the hypergeometric function is a polynomial in x of degree n, but
also a polynomial in aj (j ≥ 2) of degree n.

References on these are [24] for the discrete polynomials and [2] for the Bessel functions. Each sub-
section ends with a proposition where the statement of a self-duality relation is proven via Theorem
2.8.

Remark 4.2 (Self-duality of polynomials) In the literature of orthogonal polynomials the symmetry
of the polynomial pn(x) = px(n) is often called self-duality of the polynomials. Throughout this paper we
refrain from using this name in order to not create confusion with the notion of stochastic self-duality.

Remark 4.3 (Working on two sites) The generators in Section 3 were defined in the most general
setting, i.e. on an undirected and connected graph G. However, noticing that our generators only acts on
two (connected) variables at a time, without loss of generality it is enough to consider the process on two
sites only. The results can then be lifted to a general graph G via tensor products. If on two sites the
self-duality function has the form D(x,y) = d(x1, y1)d(x2, y2), then on the graph G it can be extended as

D(x,y) =

|V |∏
i=1

d(xi, yi) .

Notice that for asymmetric processes (not considered here) the graph G would need to be one dimensional
and the product structure of self-duality would be lost and replaced by a nested structure [9, 10].

4.1 su(2) representation and Krawtchouk polynomials

Generators of the su(2) Lie algebra are H, E, F which satisfy the following commutation relations

[H,E] = 2E [H,F ] = −2F [E,F ] = H.

The ∗-structure is defined by H∗ = H, E∗ = F and F ∗ = E.
The Casimir element is

Ω =
1

2
H2 + EF + FE ,

which is central and self-adjoint, Ω = Ω∗. In this setting, H, E and F are operators on l2(N2j , µ) for
j ∈ N/2 and N2j = {0, 1, . . . , 2j}, where the scalar product is defined by

〈f, g〉l2(N2j ,µ) =
∑
n∈N2j

f(n)g(n)µ(n)

and µ(n) =
(
2j
n

)
.

The coproduct of the Casimir is

∆(Ω) = ∆(
1

2
H2) + ∆(EF ) + ∆(FE) =

1

2
∆(H)∆(H) + ∆(E)∆(F ) + ∆(F )∆(E)

=
1

2
(1⊗H +H ⊗ 1)2 + (1⊗ E + E ⊗ 1)(1⊗ F + F ⊗ 1) + (1⊗ F + F ⊗ 1)(1⊗ E + E ⊗ 1)

= 1⊗ Ω + Ω⊗ 1 +H ⊗H + 2F ⊗ E + 2E ⊗ F

10



On general functions f(n) on N2j the actions of the three generators are given by

(Hf) (n) := 2(n− j)f(n)

(Ff) (n) := (2j − n)f(n+ 1)

(Ef) (n) := nf(n− 1)

where f(−1) = f(2j + 1) = 0. The SEP(j) generator (11) restricted to two sites is

LSEP (j) = F ⊗ E + E ⊗ F +
1

2
H ⊗H + 2j2 (18)

=
1

2
(∆(Ω)− 1⊗ Ω− Ω⊗ 1) + 2j2 .

Note that ∆(Ω) acts on a different L2-space than LSEP (j) defined in the previous section, as discussed
in Remark 4.3 this can be adjusted via the tensor product.

Remark 4.4 We remark that, when acting on functions f(n), the action of LSEP (j) is, up to a constant,
equal to the action of ∆(Ω): this follows immediately from the action of Ω itself, indeed (1⊗ Ωf) (n1, n2) =
2j(j + 1)f(n1, n2).

To apply Theorem 2.8 to the SEP(j) process defined in Section 3.1 we need to identify operators
A and B that verify items 1 and 2. The idea now (see [25] and [20]) is to look for eigenfunctions of
Xp = E + F − a(p)H with an appropriate choice of a(p). Let’s start from the three term recurrence
relation for the symmetric Krawtchouk polynomials, defined via the hypergeometric function as

Kn(x) := 2F1

(
−n,−x
−2j

∣∣∣∣ 1

p

)
n, x ∈ N2j .

The three term recurrence relation for Kn(x) is

−xKn(x) = p(2j − n)Kn+1(x)− (2jp− 2np+ n)Kn(x) + n(1− p)Kn−1(x) .

We want to read this identity as an eigenvalue equation for Xp with Krawtchouk polynomials as eigen-
functions. We set

a(p) =
(1− 2p)

2[p(1− p)]1/2
,

so that k(x, n) =
(

p
1−p

) 1
2
(n+x)

Kn(x) is a symmetric (in n and x) eigenfunction of the operator Xp, i.e.

(Xpk(x, ·)) (n) = λ(x)k(x, n)

where λ(x) = − x− j
[p(1− p)]1/2

is the eigenvalue. Define

Hp = −2[p(1− p)]1/2Xp,

then k(x, n) is of course also an eigenfunction of Hp: (Hpk(x, ·))(n) = 2(x − j)k(x, n). Comparing this
with the action of H, we have

(Hpk(x, ·)) (n) = (Hk(·, n))(x), (19)

i.e., k is an intertwining function between H and Hp. We have now worked everything out in order to
prove the following proposition, previously established by direct computations in [15, 29].
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Proposition 4.5 [Orthogonal self-duality of SEP(j) process.]
The symmetric exclusion process SEP(j) on two sites is self-dual with duality function k(x1, n1)k(x2, n2).
As a consequence, Kn1(x1)Kn2(x2) is a self-duality function as well.

Proof. The statement follows from Theorem 2.8. First, by Lemma 2.12 k(x1, n1)k(x2, n2) is an inter-
twining function between ∆(H) and ∆(Hp) because of equation (19). Moreover, k(x1, n1)k(x2, n2) is
symmetric in (x1, x2) and (n1, n2), so by the first item of Theorem 2.8 it is also an intertwining func-
tion between ∆(Hp) and ∆(H). It is left to show that L(∆(H),∆(Hp)) = Lrev(∆(H),∆(Hp)) where
L is the generator of the SEP(j) process defined in (18). Using Lemma 2.11, we can just check that
Ω(H,Hp) = Ωrev(H,Hp). Indeed, using the following identities

F + E = Xp + aH F − E =
1

2
[Xp, H] (20)

we have

2Ω = H2 + 2EF + 2FE = H2 + (F + E)2 − (F − E)2 = H2 + (Xp + aH)2 − 1

4
([Xp, H])2

= H2 +

(
− 1

2
√
p
√

1− p
Hp + aH

)2

− 1

4

([
− 1

2
√
p
√

1− p
Hp, H

])2

.

From 1 + a2 = 1
4p(1−p) we obtain

Ω(H,Hp) =
1

8p(1− p)
(H2 +H2

p )− 1− 2p

8p(1− p)
(HHp +HpH) +

1

32p(1− p)
[H,Hp]

2,

from which we can read off that Ω(H,Hp) = Ωrev(H,Hp). By Theorem 2.8 we conclude that the SEP(j)
generator with two sites is self-dual with self-duality function k(x1, n1)k(x2, n2). Moreover, from Remark
2.4 it follows immediately that also Kn1(x1)Kn2(x2) is also a self-duality function.

2

Remark 4.6 (Representation.) su(2) is generated by H and Hp for which we have a representation on
the n variable as well as a representation on the x variable. Using identities (20) operators E and F can
also be realised as operators on the x variable, producing a different unitarily equivalent representation of
the su(2) algebra.

4.2 su(1, 1) representation and Meixner polynomials

The su(1, 1) algebra is the Lie algebra generated by H, E, F which satisfy the following commutation
relations

[H,E] = 2E [H,F ] = −2F [E,F ] = H.

The ∗-structure is defined by H∗ = H, E∗ = −F and F ∗ = −E. The Casimir element is Ω = 1
2H

2 +
EF + FE which is self-adjoint, Ω = Ω∗. In this setting, H, E and F are operators on l2(N, µ) where the
scalar product is defined

〈f, g〉l2(N,µ) =
∑
n∈N

f(n)g(n)µ(n),

where µ(n) =
(
2k+n−1

n

)
and k > 0. The coproduct of Casimir operator is

∆(Ω) = 1⊗ Ω + Ω⊗ 1 +H ⊗H + 2F ⊗ E + 2E ⊗ F.
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On general functions f(n) the action of the three generators is given by

(Hf) (n) := 2(k + n)f(n)

(Ef) (n) := (2k + n)f(n+ 1)

(Ff) (n) := −nf(n− 1)

where f(−1) = 0. The SIP(k) generator (12) on two sites is

LSIP (k) = −F ⊗ E − E ⊗ F − 1

2
H ⊗H + 2k2

= −1

2
(∆(Ω)− 1⊗ Ω− Ω⊗ 1) + 2k2 .

Consider the symmetric Meixner polynomials

Mn(x) := 2F1

(
−n,−x

2k

∣∣∣∣ 1− 1

c

)
x, n ∈ N0 .

The three term recurrence relation for the Meixner polynomials is

(c− 1)xMn(x) = c(n+ 2k)Mn+1(x) +−(n+ nc+ 2kc)Mn(x) + nMn−1(x) .

Let us define Xc := E − F − a(c)H with a(c) = (1+c)
2
√
c

, for which the function m(x, n) = c
1
2
(x+n)Mn(x) is

an eigenfunction, namely

(Xcm(x, ·)) (n) =
(c− 1)√

c
(x+ k)m(x, n) .

Calling Hc = 2

√
c

(c− 1)
Xc we have

(Hcm(x, ·)) (n) = 2(x+ k)m(n, x) = (Hm(·, n)) (x) ,

so that m(x, n) is an intertwining function between H and Hc. We have now all the ingredients to prove
self-duality for the SIP(k) process previously established in [15, 29, 20].

Proposition 4.7 [Orthogonal self-duality of SIP(k) process.]
The symmetric inclusion process SIP(k) on two sites is self-dual with duality function m(x1, n1)m(x2, n2).
As a consequence, Mn1(x1)Mn2(x2) is a self-duality function as well.

Proof. The proof is analogous to the proof of Proposition 4.5, note that in this case the expression for
the Casimir as function of H and Hc becomes

Ω = −(c− 1)2

8c
(H2 +H2

c ) +
1− c2

8c
(HHc +HcH) +

(c− 1)2

32c
[Hc, H]2 .

2

13



4.3 su(1, 1) representation and Bessel functions

Consider now the su(1, 1) Lie algebra of the previous section and the BEP(k) process defined in Sec-
tion 3.3, which is a continuous diffusion, so that we will look for two continuous representations of the
su(1, 1) algebra. These two representations were already introduced in [20], we recall here what we need.
Generators H, E and F are now defined on L2(R+, µk), with

µk =
z2k−1e−z

Γ(2k)
, k > 0 ,

and act on functions f(z) as

(Hf) (z) := (−2z∂z − (2k − z)) f(z)

(Ef) (z) := −1

2
izf(z) (21)

(Ff) (z) :=

(
−2iz∂2z − 2i(2k − z)∂z +

i

2
(4k − z)

)
f(z)

where ∂z :=
∂

∂z
. Note that in this case the ∗-structure is H∗ = −H, E∗ = −E and F ∗ = −F and the

Casimir Ω is still self-adjoint. The BEP generator (13) on two sites is

LBEP = −1

2
(∆(Ω)− 1⊗ Ω− Ω⊗ 1) + 2k2.

Bessel functions of the first kind are defined in terms of hypergeometric functions as

Jν(z) :=
(z/2)ν

Γ(ν + 1)
0F1

(
−

ν + 1

∣∣∣∣−z24
)

ν > −1 .

They are solutions of the second order differential equation

−∂2zJν(z)− 1

z
∂zJν(z) +

ν2

z2
Jν(z) = Jν(z) .

From the differential equation above, one infers that Jν(zw) is an eigenfunction for the second order
operator T with eigenvalue w2, as in [20] we have

T = −∂2z −
1

z
∂z +

ν2

z2
TJν(zw) = w2Jν(zw) . (22)

Consider now the action of operator F on the z variable of Jν(zw) as in equation (21), using the second
order differential equation for Jν(zw) in (22) we can find that the eigenfunctions of F are given in terms
of Bessel functions J2k−1(

√
zw), which are solutions of the following second order differential equation

−2z∂2zJ2k−1(
√
zw)− 2∂zJ2k−1(

√
zw) +

(2k − 1)2

2z
J2k−1(

√
zw) = J2k−1(

√
zw) .

Consider ([20], Lemma 4.16) the function defined as follows,

J(z, w) = e
1
2
(z+w)(zw)−k+

1
2J2k−1(

√
zw) , (23)

then J(z, w) is an eigenfunction for F with eigenvalue
1

2
iw, i.e.

(FJ(·, w)) (z) =
1

2
iwJ(z, w) = (−EJ(z, ·)) (w) .

We see that J(z, w) is an intertwining function between operators F and −E. One can verify that this
intertwining entails the following proposition, as previously shown in [29, 20].
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Proposition 4.8 [Orthogonal self-duality of BEP(k) process.]
The Brownian energy process BEP(k) on two sites is self-dual with duality function J(z1, w1)J(z2, w2).

Proof. The proof is analogous to the proof of Proposition 4.5 where the intertwined operators are F and
−E, and the Casimir is

Ω =
1

2
H2 + EF + FE =

1

2
[−E,F ]2 − (−E)F − F (−E) ,

which is equal to Ωrev.

2

4.4 A change of variable for Bessel functions and self-duality for the Brownian
momentum process

The idea of this section is to obtain the self-duality of the BMP process as a consequence of the change
of variable highlighted in Remark 3.1. The representation (21) will provide a new representation for the
action of the Lie algebra generators(

H̃f
)

(x) :=

(
−x∂x −

(
1

2
− x2

))
f(x)(

Ẽf
)

(x) := −1

2
ix2f(x) (24)(

F̃ f
)

(x) :=

(
− i

2
∂2x + ix∂x +

i

2
(1− x2)

)
f(x) .

In equation (23) we set z = x2, w = y2 and k = 1
4 so that the candidate BMP self-duality function

becomes

J̃(x, y) = e
1
2
(x2+y2)|xy|

1
2J−1/2(xy) = e

1
2
(x2+y2)

√
2

π
cos(xy) ,

where the second identity follows from the fact that, for fixed parameter ν = −1/2, Bessel functions
assume the simple form of

J−1/2(x) =

√
2

πx
cos(x) .

Proposition 4.9 [Orthogonal self-duality of BMP process.]
The Brownian momentum process on two sites is self-dual with self-duality function J̃(x1, y1)J̃(x2, y2).

Proof. Given the su(1, 1) algebra representation in (24), one could argue similarly as in Proposition 4.8
to prove that J̃(x, y) is indeed a self-duality function for the BMP process. However, we follow another
analogous path. We show here that the self-duality for the BMP process can be obtained from the
self-duality of the BEP via the change of variable in Remark 3.1.

For the invertible operator V : L2(R+, µ1/4)→ L2
e(R,

e−x
2

√
π

) given by (V f)(x) = f(x2) and where L2
e is

the L2-space of even functions, we have

H̃ = V HV −1

Ẽ = V EV −1

F̃ = V FV −1 .
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One can now easily check that
LBMP = V LBEP (1/4)V −1 . (25)

At this point we indicate with D1/4(z, w) and D(x, y) the self-duality functions of the BEP process with
k = 1/4 and the BMP process respectively, so that the following relation holds

D(x, y) =
(
VxVyD

1/4
)

(x, y) = D1/4(x2, y2) , (26)

where we use the notation of Remark 2.7. For the generators this gives

LBMP
x D = LBMP

x VxVyD
1/4

= VxL
BEP (1/4)
x VyD

1/4

= VxVyL
BEP (1/4)
y D1/4

= VxL
BMP
y VyD

1/4

= LBMP
y D .

Here we used that operators acting on x commute with operators acting on y, the first and last equalities
are true in virtue of equation (26), the second and fourth ones both come from equation (25), and the
third one is the self-duality of the BEP(1/4) process in Proposition 4.8.

2

4.5 Heisenberg algebra and Charlier polynomials

The Heisenberg algebra is the Lie algebra with generators a, a† and Z satisfying relations

[a, Z] = [a†, Z] = 0 [a, a†] = Z .

The ∗-structure is defined by a∗ = a†, and Z∗ = Z. The peculiarity of this algebra is that no Casimir
element is available. In this setting, a, a† and Z are operators on l2(N0, µ) where the scalar product is
defined by

〈f, g〉l2(N0,µ) =
∑
n∈N0

f(n)g(n)µ(n)

and µ(n) =
λn

n!
for λ > 0. Generators a, a† and Z act on functions f(n) on N0 as

(af)(n) := nf(n− 1)

(a†f)(n) := λf(n+ 1) (27)

(Zf)(n) := λf(n) .

In this representation the independent random walk generator (17) on two sites is

LIRW = (1⊗ a− a⊗ 1)(a† ⊗ 1− 1⊗ a†) = a† ⊗ a− 1⊗ aa† − aa† ⊗ 1 + a⊗ a† . (28)

We remark that since no Casimir element is available for the Heisenberg algebra, this time we will search
directly for operators for which L is equal to Lrev. To this end let us define the operator X := Z − a†.
We notice that the Heisenberg algebra is generated by a and X, since Z = [a,X] and a† = −X + [a,X].
The generator of the IRW process in (28) becomes

LIRW = −X ⊗ a+ 1⊗ aX + aX ⊗ 1− a⊗X . (29)
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As done before, it is time to introduce our candidate self-duality functions: the Charlier polynomials are
defined by

Cn(x) = 2F0

(
−n,−x
−

∣∣∣∣− 1

λ

)
, x, n ∈ N0 ,

and they are clearly symmetric in x and n. They satisfy the three term recurrence relation

−xCn(x) = λCn+1(x)− (n+ λ)Cn(x) + nCn−1(x) ,

and the following forward shift relation

xCn(x− 1) = λCn(x)− λCn+1(x) . (30)

We conclude this section with the proof of the next proposition (proved independently in [15, 29, 20]), by
giving operators A and B such that the hypothesis of Theorem 2.8 are satisfied.

Proposition 4.10 [Orthogonal self-duality of IRW process.]
The independent random walk process on two sites is self-dual with self-duality function C(x1, n1)C(x2, n2),
where C(x, n) = Cn(x).

Proof. First, let us show that item one of Theorem 2.8 is satisfied. From the definition of the Charlier
polynomials we have that C(n, x) = C(x, n), so that C(x1, n1)C(x2, n2) is symmetric in (x1, x2) and
(n1, n2). Define A = a ⊗ 1 − 1 ⊗ a and B = X ⊗ 1 − 1 ⊗X, then C(x1, n1)C(x2, n2) is an intertwining
function for A and B. Indeed, for one site

(XC (·, x)) (n) =
((
Z − a†

)
C (·, x)

)
(n)

= λ (C(n, x)− C(n+ 1, x))

= xC(n, x− 1)

= (aC (n, ·)) (x) ,

where the second equality follows immediately from (27) and the third one follows from equation (30).
For two sites it simply becomes

(BC(x1, ·)C(x2, ·)) (n1, n2) = (XC(x1, ·))(n1)C(x2, n2)− C(x1, n1)(XC(x2, ·)(n2)
= (aC(·, n1)(x1)C(x2, n2)− C(x1, n1)(aC(·, n2))(x2)
= (AC(·, n1)C(·, n2, )) (x1, x2) .

For the second item one can check from (29) that the generator of the IRW process is given by L = AB,
which is equal to Lrev.

2
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