
04/01/2025 06:26

Diffraction of antiplane shear waves and stress concentration in a cracked couple stress elastic material
with micro inertia / Nobili, A.; Radi, E.; Wellender, A.. - In: JOURNAL OF THE MECHANICS AND PHYSICS OF
SOLIDS. - ISSN 0022-5096. - 124:(2019), pp. 663-680. [10.1016/j.jmps.2018.11.013]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



Dear author, 

Please note that changes made in the online proofing system will 
be added to the article before publication but are not reflected in 
this PDF. 

We also ask that this file not be used for submitting corrections. 



ARTICLE IN PRESS 

JID: MPS [m3Gsc; November 24, 2018;15:1 ] 

Journal of the Mechanics and Physics of Solids xxx (xxxx) xxx 

Contents lists available at ScienceDirect 

Journal of the Mechanics and Physics of Solids 

journal homepage: www.elsevier.com/locate/jmps 

Diffraction of antiplane shear waves and stress concentration 

in a cracked couple stress elastic material with micro inertia 

Andrea Nobili a , ∗, Enrico Radi b , Adam Vellender c Q1 

a Dipartimento di Ingegneria Enzo Ferrari, via Vivarelli 10, Modena, Italy 
b Dipartimento di Scienze e Metodi dell’Ingegneria, via Amendola 2, Reggio Emilia, 42122, Italy 
c Institute of Mathematical and Physical Sciences, Aberystwyth University, Ceredigion, Wales, SY23 3BZ, UK 

a r t i c l e i n f o 

Article history: 

Received 28 August 2018 

Revised 8 November 2018 

Accepted 23 November 2018 

Available online xxx 

Keywords: 

Couple stress 

Wave diffraction 

Rayleigh waves 

Dynamic stress intensity factor 

a b s t r a c t 

We investigate diffraction of reduced traction shear waves applied at the faces of a station- 

ary crack in an elastic solid with microstructure, under antiplane deformation. The mate- 

rial behaviour is described by the indeterminate theory of couple stress elasticity and the 

crack is rectilinear and semi-infinite. The full-field solution of the crack problem is ob- 

tained through integral transforms and the Wiener–Hopf technique. A remarkable wave 

pattern appears which consists of entrained waves extending away from the crack, re- 

flected Rayleigh waves moving along the crack, localized waves irradiating from the crack- 

tip with, possibly, super-Rayleigh speed and body waves scattered around the crack-tip. 

Interestingly, the localized wave solution may be greatly advantageous for defect detection 

through acoustic emission. Dynamic stress intensity factors are presented, which general- 

ize to Elastodynamics the corresponding results already obtained in the static framework. 

The correction brings out the important role of wave diffraction on stress concentration. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 1 

The study of wave diffraction has attracted major interest since its discovery, in the XVII century, by Francesco Maria 2 

Grimaldi in the context of light wave propagation (see Mow and Pao, 1971 for an excellent historical account). Indeed the 3 

term diffraction was then introduced to indicate a deviation from the rectilinear path which could not be accounted for by 4 

either reflection or refraction. Starting from the pioneering work by Clebsch (1863) and Strutt (1877) , diffraction of elastic 5 

waves by inclusions, barriers and obstacles has been investigated in a vast body of literature. Nonetheless, only in fairly 6 

recent times could the importance of dynamic effects in determining the stress concentration in the presence of geometric 7 

discontinuities be appreciated. Indeed, “dynamic stress concentration is a result of diffraction of elastic wave” ( Mow and 8 

Pao, 1971 ). 9 

Elastic wave diffraction and stress concentration are almost always investigated within the classical theory of Elastody- 10 

namics, which fails to account for the discontinuous nature of many engineering materials, the so-called microstructure. 11 

As an example, this theory cannot predict dispersion of Rayleigh waves at high frequency, when the wavelength becomes 12 

comparable to the material characteristic length ( Georgiadis and Velgaki, 2003 ). Besides, the discrepancy between the clas- 13 

sical theory and the experimental evidence is more pronounced for those complex materials, such as composites, cellular 14 
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materials, foams, masonry, bone tissues, glassy and semicrystalline polymers, for which modelling is most needed. In this 15 

respect, wave diffraction and microstructural effects are deeply related to each other and together contribute to the deter- 16 

mination of the stress concentration near geometric discontinuities. 17 

The use of enhanced constitutive models based on strain gradient or nonlocal theories of elasticity allows us to circum- 18 

vent some of the pathological results provided by the classical theory of elasticity ( Georgiadis and Vardoulakis, 1998 ). How- 19 

ever, the number of material parameters is comparatively large ( Lam et al., 2003; Mindlin, 1964; Mindlin and Eshel, 1968 ), 20 

so that a substantial effort is required on the experimental side for their determination ( Maranganti and Sharma, 2007 ). 21 

Furthermore, analytical solutions are most often inaccessible ( Gao and Ma, 2010 ). 22 

An intermediate step between the classical elastic theory and the most advanced strain gradient theories is provided by 23 

the Cosserat micropolar model, which involves only rotational gradients ( Graff and Pao, 1967 ). A special class of micropo- 24 

lar theories is represented by the indeterminate couple stress (CS) theory, developed by Koiter (1964) for the quasi-static 25 

regime and later extended by Eringen (1999) to Elastodynamics. Alongside the traditional Lamé moduli, this elastic consti- 26 

tutive model features two extra material characteristic lengths, associated to bending and torsion, as well as the micropolar 27 

rotatory inertia. 28 

Comparably few contributions can be found in the literature discussing wave propagation in solids with microstructure. 29 

The original contribution by Graff and Pao (1967) considers wave reflection by a rigid obstacle in a CS half-space under 30 

plane strain. More recently, a similar treatment is given in Gourgiotis et al. (2013) for a grade two strain-gradient material 31 

featuring three material constants. Rayleigh waves propagating in CS materials are investigated in Ottosen et al. (20 0 0) , in 32 

the absence of rotational inertia, and then in Georgiadis and Velgaki (2003) accounting for rotational inertia, again under 33 

plane strain. Scattering of antiplane shear waves caused by a cylindrical inclusion within the CS theory is considered by 34 

Shodja et al. (2015) . 35 

Enhanced models of continua may result in new types of surface waves, for example the appearance of new surface 36 

antiplane waves in a half-space with surface stresses ( Eremeyev et al., 2016 ). It is also worth noting that sometimes different 37 

constitutive models may lead to the same qualitative wave pattern, as it is shown by Eremeyev et al. (2018) for antiplane 38 

wave propagation within the Gurtin –Murdoch surface elasticity or considering the Toupin–Mindlin strain-gradient elasticity 39 

models. 40 

When stress concentration is investigated in microstructured media, it appears that all contributions available in the 41 

literature deal with static or steady-state propagating problems. Zhang et al. (1998) give the full-field solution and stress in- 42 

tensity factors for the static Mode III crack problem (antiplane deformation) in a reduced CS material with three material pa- 43 

rameters (although only two affect the antiplane behaviour). The general solution for indeterminate CS materials is given in 44 

Radi (2008) . Later, the problem of steady-state Mode III crack propagation has been investigated by Mishuris et al. (2012) and 45 

Morini et al. (2014, 2013) . Georgiadis (2003) appears to be the first and only contribution considering dynamic stress con- 46 

centration in a straight semi-infinite crack in the presence of microstructure, although the latter is accounted for through the 47 

simpler grade two strain gradient theory. Besides, the classical linear elastic fracture mechanics field, with time-harmonic 48 

variation, is considered in the far field as the forcing term. 49 

In this paper, a travelling wave loading, applied in the form of shear reduced tractions at the crack faces, is considered 50 

as the forcing term. As a result, a complicated wave pattern appears, which differs significantly from the classical solution 51 

given in Freund (1990) . This loading condition may be used as a building block to address, by means of superposition, any 52 

wave propagation problem in a cracked CS half-space. Resonance is triggered when the applied loading is fed into the crack- 53 

tip at Rayleigh speed. Elastodynamic stress intensity factors are given, which generalize the corresponding results presented 54 

in Radi (2008) for the static regime. They incorporate the effect of the applied loading frequency and thereby account for 55 

the interplay of the diffracted waves. 56 

2. Antiplane couple stress elasticity 57 

Let us consider a Cartesian co-ordinate system ( O , x 1 , x 2 , x 3 ), such that the rectilinear crack occupies the semi-infinite 58 

line x 1 < 0, Fig. 1 . The indeterminate theory of CS elasticity adopted in the present study provides the following kinematical 59 

(compatibility) conditions (Koiter, 1964 , Eqs. (4.9)) for the strain tensor 60 

ε = Sym grad u , (1) 

for the rotation vector 61 

ϕ = 

1 

2 

curl u , (2) 

and for the torsion-flexure tensor 62 

χ = grad ϕ . (3) 

We observe that, through Eq. (3) , micro-rotations are determined by the macro-motion, which feature makes the CS theory a 63 

restriction of the micropolar theory. Under antiplane shear deformation, the displacement field u = (u 1 , u 2 , u 3 ) is completely 64 
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Fig. 1. Semi-infinite rectilinear crack x 1 < 0 in a half-space under antiplane deformation along x 3 . 

defined by the out-of-plane component u 3 = u 3 (x 1 , x 2 , x 3 , t) . The nonzero components of the strain, rotation and of the 65 

flexure-torsion tensors become 66 

ε 13 = 

1 

2 

u 3 , 1 , ε 23 = 

1 

2 

u 3 , 2 , (4a) 

ϕ 1 = 

1 

2 

u 3 , 2 , ϕ 2 = −1 

2 

u 3 , 1 , (4b) 

χ11 = −χ22 = 

1 

2 

u 3 , 12 , χ21 = −1 

2 

u 3 , 11 , χ12 = 

1 

2 

u 3 , 22 . (4c) 

Hereinafter, a subscript comma denotes partial differentiation, e.g. u 3 ,i = ∂ u 3 /∂ x i . 67 

The Cauchy stress tensor t is decomposed into its symmetric and skew-symmetric parts, respectively σ and τ , 68 

t = σ + τ, σ = Sym t , τ = Skw t . 

In addition, the deviatoric part of the couple stress tensor, μ, is introduced as being work-conjugated to χT (Koiter, 1964 , 69 

Eq. (2.22)). Indeed, the CS theory is named indeterminate after the observation that the first invariant of the couple-stress 70 

tensor, i.e. tr μ = μ11 + μ22 + μ33 , rests indeterminate and therefore it may be set equal to zero without loss of generality. 71 

At any point of a smooth surface we may specify the reduced force traction vector p and the tangential part of the couple 72 

stress traction vector q (Koiter, 1964 , Eqs. (3.5-6)) 73 

p = t T n + 

1 

2 

grad μnn × n , q = μT n − μnn n , (5) 

where we have μnn = n · μn = q · n . In particular, at the bottom/top crack face x 2 = 0 ∓, it is n = ±(0 , 1 , 0) and, according to 74 

Eq. (5) , the out-of-plane component of the reduced force traction and the in-plane components of the couple stress traction 75 

read, respectively, 76 

p 3 = ±
(

t 23 + 

1 

2 

μ22 , 1 

)
, q 1 = ±μ21 , q 2 = 0 . (6) 

The conditions of dynamic equilibrium of forces and moments read (Koiter, 1964 , Eqs. (2.7) and (2.9)) 77 

σ13 , 1 + σ23 , 2 + τ13 , 1 + τ23 , 2 = ρü 3 , (7a) 

μ11 , 1 + μ21 , 2 + 2 τ23 = J ϕ̈ 1 , (7b) 

μ12 , 1 + μ22 , 2 − 2 τ13 = J ϕ̈ 2 , (7c) 

where ϱ is the mass density and J is the rotational inertia. Within the framework of linear deformation, the total strain ε 78 

and the curvature χ are connected to the stress and to the couple stress through the isotropic constitutive relations 79 

σ = 2 G ε + 	( tr ε ) 1 , μ = 2 G
 2 
(
χT + ηχ

)
(8) 

where 	 and G > 0 take up the role of Lamé moduli, 1 is the identity tensor, 
 > 0 is a characteristic length and −1 < η < 1 is 80 

a dimensionless number similar to Poisson’s ratio. Clearly, classical elasticity is retrieved taking 
 = 0 and J = 0 . We observe 81 

that the contribution of 	 is immaterial for antiplane deformations, cf. Zhang et al. (1998 , Eqs. (8-9)). Besides, the second 82 

equation in (8) differs from Koiter (1964 , Eqs. (4.7)) by a factor 2, which is incorporated in 
 . The material parameters 
 and 83 

η depend on the microstructure and can be connected to the material characteristic length in bending, 
 b , and in torsion, 84 


 t , through 85 


 b = 
/ 
√ 

2 , 
 t = 
 
√ 

1 + η. (9) 
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Values of 
 b and 
 t may be found in Lakes (1986) ; Nakamura and Lakes (1995) and, as an example, for polyurethane foam 86 

we have 87 


 = 0 . 462 mm , η = 0 . 797 

The limiting value η = −1 corresponds to a vanishing characteristic length in torsion, which is typical of polycrystalline 88 

metals. Clearly, the definitions (9) show that 
 t = 
 b for η = − 1 
2 and 
 t = 
 = 

√ 

2 
 b for η = 0 , the latter situation being the 89 

strain gradient effect considered in Zhang et al. (1998) . For the limiting value η = 1, the constitutive Eq. (8) provides a 90 

symmetric couple stress tensor and, consequently, the present theory reduces to the modified couple stress theory of elas- 91 

ticity introduced in Yang et al. (2002) . Indeed, the simplified couple stress theory involves only the material length 
 for 92 


 b = 
 t / 2 = 
/ 
√ 

2 . 93 

The constitutive equations (8) , together with the kinematic relations (1) –(4) , give stress and couple stress in terms of 94 

displacement 95 

σ13 = Gu 3 , 1 , σ23 = Gu 3 , 2 , (10a) 

μ11 = −μ22 = G
 2 (1 + η) u 3 , 12 , μ21 = G
 2 (u 3 , 22 − ηu 3 , 11 ) , (10b) 

μ12 = −G
 2 (u 3 , 11 − ηu 3 , 22 ) . (10c) 

We observe that the skew-symmetric part τ of the total stress tensor t is determined by rotational equilibrium. Indeed, 96 

introduction of Eq. (10) into Eqs. (7b) and (7c) yields 97 

τ13 = −1 

2 

G
 2 �u 3 , 1 + 

J 

4 

ü 3 , 1 , τ23 = −1 

2 

G
 2 �u 3 , 2 + 

J 

4 

ü 3 , 2 , (11) 

which correspond to Eqs. (9) of Mishuris et al. (2012) . Here, � denotes the 2-D Laplace operator. 98 

3. Time-harmonic analysis 99 

It is found expedient to introduce the reference length λ
 and the reference time T = 
/c s along with the dimensionless 100 

co-ordinates (ξ1 , ξ2 , ξ3 ) = (λ
 ) −1 (x 1 , x 2 , x 3 ) and the dimensionless time τ = t/T . Here, c s = 

√ 

G/ρ is the shear wave speed 101 

of classical elastic media and λ is defined in the following. We consider a shear traction wave applied to the crack faces and 102 

zero micropolar stress 103 

p 3 (ξ1 , 0 

±, τ ) = ±Gτ0 exp [ ı (kξ1 + �τ ) ] , q 1 (ξ1 , 0 

±, τ ) = 0 , ξ1 < 0 , (12) 

where ı is the imaginary unit and � = ωT > 0 the dimensionless (time) frequency. Here, k denotes the dimensionless (spa- 104 

tial) wavenumber and it is a complex number with non-positive imaginary part, i.e. � ( k ) ≤ 0, to warrant propagation/decay 105 

as ξ1 → −∞ . In fact, the limiting case � (k ) = 0 corresponds to a propagating wave with phase velocity 106 

c = 

�

k 
λ c s . (13) 

When 	 ( k ) � 0, the applied wave is impinging upon/moving out of the crack-tip. In the special case 	 (k ) = 0 , a harmonic (in 107 

time) loading, exponentially decaying along the crack, is considered. We observe that, in the general case, τ0 = τ0 (k, �) and 108 

this problem may be used as a building block to solve any harmonic wave propagation problem in a cracked couple stress 109 

half-space in antiplane deformation. Q2 
110 

Assuming the same time-harmonic variation for the out-of-plane displacement as in the applied wave (12) 111 

u 3 (ξ1 , ξ2 , τ ) = 
w (ξ1 , ξ2 ) exp ı �τ, 

and substituting Eqs. (10a ) –(11) into (7) –(7c) , we get the metaharmonic PDE ( Georgiadis and Velgaki, 2003 , (19) ) for the 112 

function w : 113 

��w − 2 

(
1 − h 

2 
0 �

2 
)
λ2 �w − 2�2 λ4 w = 0 , (14) 

where �w = w , 11 + w , 22 and we have let the dimensionless parameter ( Mishuris et al., 2012 ) 114 

h 0 = 

h 


 
, with h = 

1 

2 

√ 

J 

ρ
. 

We observe that h is proportional to the dynamic characteristic length introduced in Shodja et al. (2015) . This generalized 115 

bi-harmonic equation can be easily factored 116 (
� + δ2 

)
( � − 1 ) w = 0 , (15) 

where we have let the positive dimensionless parameter 117 

δ = 

1 √ 

2 �

[ √ 

(1 − h 

2 
0 
�2 ) 2 + 2�2 − 1 + h 

2 
0 �

2 
] 
, (16) 
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and, for convenience, we have chosen the scaling factor λ as to have 1 in the second factor of Eq. (15) 118 

λ = 

√ 

δ√ 

2 �
. 

We observe that λ is a strictly monotonic increasing (decreasing) function of � inasmuch as h 0 ≷ h 0 cr = 1 / 
√ 

2 , while h 0 = 119 

h 0 cr lends δ = �/ 
√ 

2 and λ≡ h 0 cr . The latter situation corresponds to classical elasticity, for then the governing equation 120 

(15) becomes 121 (
� + 

1 

2 

�2 
)
(� − 1) w = 0 (17) 

and the former factor corresponds to the Helmoltz equation that governs shear waves within classical elasticity 122 

( Freund, 1990 , Eq. (2.2.4)). In particular, in the static limit �→ 0, we get δ → 0 and Eq. (17) boils down to 123 

�( � − 1 ) w = 0 , 

that recovers the governing equation for the static regime considered in Radi (2008 , Eq. (10) ) and in Zhang et al. (1998 , Eq. 124 

(11)). 125 

Using Eqs. (1) , (8), (10b) and (11) into the first of Eq. (6) , the corresponding loading conditions (12) becomes 126 

(1 − δ2 ) w , 2 − [ (2 + η) w , 11 + w , 22 ] , 2 = 2 λ3 τ0 exp ıkξ1 , ξ1 < 0 , ξ2 = 0 

+ . (18) 

Besides, the skew-symmetric character of Mode III requires 127 

w (ξ1 , 0) = 0 , ξ1 > 0 , (19a) 

128 

q 1 (ξ1 , 0) = 0 , ξ1 > 0 . (19b) 

Therefore, the condition of zero micropolar traction q 1 (ξ1 , 0) = 0 stands along the whole crack line and, in light of 129 

Eqs. (6) and (10b) , it gives 130 

w , 22 − ηw , 11 = 0 , ξ2 = 0 . (20) 

We note that the material parameter η only appears in the boundary conditions (18) and (20) . It is worth emphasizing 131 

that, within this framework, the single boundary condition of classical antiplane elasticity cannot be retrieved. However, 132 

upon taking η = 0 in addition to h 0 = h 0 cr , the classical shear wave solution is recovered, for it satisfies both boundary 133 

conditions. 134 

3.1. Rayleigh waves for antiplane deformation 135 

Planar shear waves travelling in the bulk of the material have been considered in Mishuris et al. (2012 , Section 2.1). Here, 136 

similarly to Ottosen et al. (20 0 0) and Georgiadis and Velgaki (2003) , we look at localized solutions 137 

u 3 (ξ1 , ξ2 , τ ) = 
W (ξ2 ) exp [ ı ( mξ1 + �τ ) ] , 

where W ( ξ 2 ) decays fast enough away from the crack line and we assume m to be real. Then, Eq. (15) governing harmonic 138 

motion for antiplane deformation gives 139 

W 

′′′′ + 

(
δ2 − 2 m 

2 − 1 

)
W 

′′ + 

(
m 

2 + 1 

)(
m 

2 − δ2 
)
W = 0 , 

which admits the solution 140 

W (ξ2 ) = C 1 exp [ −α(m ) ξ2 ] + C 2 exp [ −β(m ) ξ2 ] , (21) 

where 141 

α(s ) = 

√ 

s 2 − δ2 , β(s ) = 

√ 

s 2 + 1 . (22) 

The constants C 1 and C 2 are determined imposing homogeneous boundary conditions on the crack surface, which amounts 142 

to the vanishing of reduced force and couple stress traction at ξ2 = 0 , 143 {
W 

′ (0) + 

1 
1 −δ2 

[
(2 + η) m 

2 W 

′ (0) − W 

′′′ (0) 
]

= 0 , 

[1 . 1 ex ] W 

′′ (0) + ηm 

2 W (0) = 0 . 
(23) 

Plugging Eq. (21) into the boundary conditions (23) yields the following linear system for the constants C 1 and C 2 144 {
α(m ) 

[
(η + 1) m 

2 + 1 

]
C 1 + β( m ) 

[
( η + 1) m 

2 − δ2 
]
C 2 = 0 

[1 . 1 ex ] 
[
(η + 1) m 

2 − δ2 
]
C 1 + 

[
(η + 1) m 

2 + 1 

]
C 2 = 0 

, 
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Fig. 2. Location of the real root a (a) of the purely imaginary root ıb (b) as a function of η for δ = 0 . 1 (red, dotted), δ = 1 (black, solid) and δ = 2 (blue, Q3 

dashed). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

which admits non-trivial solutions if and only if the following secular equation is satisfied 145 

R (m ) = 0 , (24) 

where 146 

R (s ) = α(s ) 
[
(η + 1) s 2 + 1 

]2 − β(s ) 
[
(η + 1) s 2 − δ2 

]2 
. (25) 

The function R ( s ) is the Rayleigh wave function for antiplane deformation in couple stress elastic materials. For the 147 

selected branch cuts, the function R ( s ) is single valued and analytic in the cut s -plane. In the antiplane problem of classical 148 

elasticity, the Rayleigh function is simply α( s ) ( Harris, 2001 , Eq. (5.96)), that possesses two branch points, which correspond 149 

to bulk shear waves, yet no real roots, i.e. no Rayleigh waves are supported. In contrast, for the considered range of variation 150 

of the parameters δ and η, Eq. (24) admits three complex conjugated pairs of order-1 roots, namely two real roots s = ±a, 151 

two purely imaginary roots s = ±ıb and the pair of complex roots s = ±s 3 , which may fall out of the physical Riemann sheet. 152 

The location of the roots a and ıb against the parameters η and δ is presented in Fig. 2 . There, it can be observed that a ≥ δ, 153 

b ≥ 1 and yet they sit very close to the branch points, especially for η > −1 / 2 . In particular, equality holds for η = 0 , for 154 

which value roots become branch points (order 1/2). In the static limit, branch points collapse at the origin (i.e. δ = 0 ) that 155 

becomes an order 1 root. 156 

The pair of imaginary roots ± ıb is here connected to the strain-gradient effect. In general, it is associated to a fourth- 157 

order governing equation and it accounts for the edge-effect in shell theories Kaplunov and Nobili (2017) or for evanescent 158 

modes in supported plates ( Nobili et al., 2017 ). 159 

The real root a > 0 of the dispersion relation (24) provides the Rayleigh wave speed c R according to Eq. (13) 160 

c R 
c s 

= 

1 

a 

√ 

�δ√ 

2 

= 

√ √ 

(1 − h 

2 
0 
�2 ) 2 + 2�2 − 1 + h 

2 
0 
�2 

√ 

2 a 
. (26) 

In the low-frequency limit, � → 0 + , we have a ∼ δ ∼ �/ 
√ 

2 , whence c R → c s and Rayleigh waves collapse into classical shear 161 

waves. In the special case η = 0 , the roots a and ıb collapse into the branch points δ and ı, respectively, while s 3 falls out 162 

of the physical sheet. In this case, bulk shear waves are obtained, whose speed ˜ c is found replacing a with δ in Eq. (26) and 163 

using Eq. (16) (cf. Mishuris et al., 2012 , Eq. (14)) 164 

˜ c 

c s 
= 

√ √ 

(1 − h 

2 
0 
�2 ) 2 + 2�2 + 1 − h 

2 
0 
�2 

√ 

2 

. 

In fact, we have α(δ) = 0 = β(ı ) and the solution (21) is no longer decaying away from the crack line. As it is usually the 165 

case, Rayleigh waves occur at speed slightly below that of bulk shear waves, i.e. c R < ˜ c ( Destrade et al., 2016 ). 166 

In the special case h 0 = h 0 cr and η = 0 , the situation of classical antiplane elasticity is retrieved, which does not support 167 

Rayleigh waves: indeed these collapse into non-dispersive shear bulk waves, i.e. c R = ˜ c ≡ c s , see Fig. 3 c. 168 

Dispersion curves for the relative Rayleigh-wave speed c R / c s for different values of the microstructural parameters h 0 and 169 

η are plotted in Fig. 3 . As anticipated, in the long-wave low-frequency limit, the antiplane Rayleigh-wave speed c R recovers 170 

the shear wave speed of classical elastic media c s . We observe that, in the absence of rotational inertia (i.e. h 0 = 0 ), the 171 

Rayleigh-wave speed c R grows monotonically with the wavenumber ( Fig. 3 a) and waves are thereby dispersive, as already 172 
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Fig. 3. Dispersion curves for the dimensionless Rayleigh wave speed c R / c s (the curve η = 0 corresponds to the bulk wave speed ˜ c /c s ). 

found in Graff and Pao (1967) and Ottosen et al. (20 0 0) for plane-strain Rayleigh waves. Besides, c R > c s , which is physically 173 

unrealistic ( Shodja et al., 2015 ). In contrast, for h 0 > 0, the Rayleigh-wave speed quickly asymptotes a finite limit and the 174 

dispersive character of propagation is really restricted to low wavenumbers. Propagation turns perfectly non-dispersive, as 175 

in classical elasticity, with speed c R ≡ c s , for h 0 = h 0 cr and η = 0 , see Fig. 3 c. For h 0 > h 0 cr and η � = 0 or for h 0 > 0 and η176 

close enough to −1 , the Rayleigh-wave speed becomes a decreasing function of wavenumber. This behaviour is discussed 177 

in Georgiadis and Velgaki (2003) , in the context of plane-strain Rayleigh wave propagation, with reference to experimental 178 

results and lattice theories. 179 

Fig. 4 superposes dispersion curves for the group velocity c g 180 

c g 

c s 
= 

λ2 

d m 

d�
λ − m 

d λ
d�

, 

over the corresponding dispersion curve for the Rayleigh wave phase velocity c R . Dispersion is termed anomalous when 181 

c g > c R and normal otherwise (Achenbach, 1984 , Section 6.5). Anomalous dispersion is met for h 0 = 0 at any η and for 182 

0 < h 0 < h 0 cr and η close to 1. This condition is related to energy propagating faster than the wavelets which build up at 183 

the front of the group and slowly move to the back until they disappear, see Gourgiotis et al. (2013 , Section 2) in the 184 

context of gradient elasticity. 185 

4. Analysis in the frequency domain 186 

We adopt Fourier transforms to recast the problem in the frequency domain. Owing to the skew-symmetry of the prob- 187 

lem, only either half-plane, say ξ 2 > 0, needs to be considered. The full-range Fourier transform along ξ 1 is defined as 188 
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Fig. 4. Relative group velocity c g / c s (solid) and Rayleigh wave speed c R / c s (dashed) as a function of wavenumber (the curve η = 0 corresponds to the bulk 

wave speed ˜ c /c s ). 

( Noble, 1958; Roos, 1969 ) 189 

w̄ (s, ξ2 ) = 

∫ ∞ 

−∞ 

w (ξ1 , ξ2 ) exp (ıξ1 s )d ξ1 , 

while Fourier inversion formula gives 190 

w (ξ1 , ξ2 ) = (2 π) −1 

∫ 
L 

w̄ (s, ξ2 ) exp (−ıξ1 s )d s. 

In the inverse transform, the integration path L is obtained by deformation of the real interval, as described in the follow- 191 

ing. The complex plane C is split into two domains, C = D 

+ ∪ D 

−, respectively lying on and above and on and below the 192 

integration path L . 193 

Let us define the half-range Fourier transforms 194 

w̄ 

−(s ) = 

∫ 0 

−∞ 

w (ξ1 , 0) exp (ıξ1 s )d ξ1 , p̄ + 3 (s ) = 

∫ ∞ 

0 

p 3 (ξ1 , 0) exp (ıξ1 s )d ξ1 . 

Taking the full-range Fourier transform of Eq. (15) gives 195 

w̄ , 2222 − (2 s 2 + 1 − δ2 ) ̄w , 22 + (s 2 + 1)(s 2 − δ2 ) ̄w = 0 , 

which admits the solution (21) 196 

w̄ (s, ξ2 ) = C 1 exp [ −α(s ) ξ2 ] + C 2 exp [ −β(s ) ξ2 ] , (27) 

where C 1 and C 2 are complex-valued functions of s . 197 
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Fig. 5. Branch cuts K ± (red dash-double dot lines), zeros (black dots), branch points (circles), applied traction wavenumber (cross) and integration path L 

(solid curve) in the complex plane C = D + ∪ D − . The domains D ± stand on and above (under) the integration path L , respectively. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Here α( s ) and β( s ) are defined as in (22) but now s is generally complex and we need to specify the branch in the square 198 

root so that (27) is bounded as ξ2 → + ∞ . The branch cuts for α( s ), denoted by K 

∓, are straight and connect, respectively, 199 

the branch points s = ±δ to ∞ in the direction ∓(δ + ı ) and thereby they pass through s = ∓ı, as shown in Fig. 5 . They may 200 

be parametrized as 201 

K 

∓ = { s (t) = ±δ ∓ (δ + ı ) t, t > 0 } . (28) 

In likewise fashion, the branch cuts for β( s ) rest inside K 

∓ and connect the branch points s = ±ı to ∓(δ + ı ) ∞ , i.e. they have 202 

the parametrization (28) with t > 1. Square root is made definite by letting α( s ) and β( s ) tend to | s | as s → ∞ along the real 203 

axis (see Noble, 1958 , p.10). With such definitions, the square roots in α( s ) and β( s ) are defined so as to have positive or 204 

zero real part (respectively decaying and propagating solutions) when s is real. Indeed, for s = s 1 ∈ R , it is 205 

α(s 1 ) = 

{
ı 
√ 

δ2 − s 2 
1 
, | s 1 | < δ√ 

s 2 
1 

− δ2 , s 1 ≥ δ
, β(s 1 ) = 

√ 

s 2 
1 

+ 1 . (29) 

The full-range transform of the reduced traction vector at the l.h.s of Eq. (18) is 206 

p̄ 3 (s, ξ2 ) = 

G 

2 λ3 

[(
(2 + η) s 2 + 1 − δ2 

)
w̄ , 2 − w̄ , 222 

]
. (30) 

The minus half-range Fourier transform of the first boundary condition (12) reads 207 

p̄ −3 (s, 0) = −ı 
Gτ0 

s + k 
, (31) 

and the plus transform of Eq. (19a) lends 208 

w̄ 

+ (s, 0) = 0 , (32) 

while the full-range transform of Eq. (20) gives 209 

w̄ , 22 (s, 0) + ηs 2 w̄ (s, 0) = 0 . (33) 

Plugging the solution (27) into Eq. (33) gives a connection between C 1 and C 2 210 

C 1 = − (η + 1) s 2 + 1 

(η + 1) s 2 − δ2 
C 2 . (34) 

Thus, making use of the general solution (27) and of the connection (34) , we find for the full-range Fourier transform of the 211 

traction vector (30) 212 

G (1 + δ2 ) 

2 λ3 [ (η + 1) s 2 − δ2 ] 
K(s ) C 2 = p̄ + 3 (s, 0) − ı 

Gτ0 

s + k 
, (35) 

where 213 

K(s ) = (1 + δ2 ) −1 R (s ) , (36) 

and R ( s ) is the Rayleigh function introduced in Eq. (25) . The kernel function K ( s ) is even and it obeys the reflection principle 214 

215 

K(s ∗) = K(s ) ∗, (37) 

where a superscript asterisk denotes complex conjugation, i.e. s ∗ = 	 (s ) − ı � (s ) . As a consequence, K ( s ) is real-valued on the 216 

real axis. 217 
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In light of Eqs. (27) , (32) and (34) , we get for the displacement w̄ (s, 0) 218 

− 1 + δ2 

(η + 1) s 2 − δ2 
C 2 = w̄ 

−(s, 0) . (38) 

Solving Eq. (38) for C 2 and substituting into Eq. (35) yields the inhomogeneous Wiener–Hopf functional equation 219 

G 

−1 p̄ + 3 (s, 0) = − 1 

2 λ3 
K(s ) ̄w 

−(s, 0) + ı 
τ0 

s + k 
. (39) 

4.1. Asymptotic behaviour 220 

The asymptotic behaviour of the out of plane reduced traction and displacement at the crack tip is expected to be the 221 

same as what is obtained in the stationary crack problem under quasi-static loading, respectively (Radi, 2008 , Eqs. (39) and 222 

(40)) 223 

p 3 (ξ1 , 0) = O 

(
ξ−3 / 2 

1 

)
, as ξ1 → 0 

+ , 

w (ξ1 , 0) = O 

(
(−ξ1 ) 

3 / 2 
)
, as ξ1 → 0 

−. 

Consequently, the Tauberian theorem for the Fourier transform gives ( Roos, 1969 ) 224 

p̄ + 3 (s, 0) = O 

(
s 1 / 2 

)
, and w̄ 

−(s, 0) = O 

(
s −5 / 2 

)
, as | s | → ∞ . (40) 

4.2. Radiation condition 225 

As discussed in (Noble, 1958 , Section 1.5), application of the W-H technique requires a strip of regularity, which is war- 226 

ranted when a small imaginary part for δ is assumed such that δ2 = δ2 
1 

− ıεδ1 . Nonetheless, the limiting situation ε = 0 is 227 

still accessible provided that Sommerfeld’s radiation condition is enforced. This demands that elastic waves transfer energy 228 

from the loading zone to infinity and not vice versa. In particular, along the crack surface, energy is carried away by Rayleigh 229 

waves, travelling in the negative ξ 1 -direction with the speed c R defined in Eq. (26) . Accordingly, proceeding as in Section 3.1 , 230 

we have 231 

w (ξ1 , 0) = A exp (ıaξ1 ) + O (ξ−ρ
1 

) , as ξ1 → −∞ , 

where A is a constant and ρ > 0 warrants decay. The corresponding minus Fourier transform can be split as 232 

w̄ 

−(s, 0) = 

∫ −M 

−∞ 

+ 

∫ 0 

−M 

w (ξ1 , 0) exp (ısξ1 )d ξ1 , 

for any large positive constant M . We observe that the second integral is an entire function, for it has no singular points in 233 

the complex plane. Consequently, all singular points of the function w̄ 

−(s, 0) come with the first integral 234 ∫ M 

−∞ 

exp [ −ı (s + a ) ξ1 ] d ξ1 = 

ı 

s + a 
exp [ ıM(s + a ) ] , 

which indeed brings the singular point s = −a . Therefore, it follows that 235 

w̄ 

−(s, 0) = (s + a ) −1 , as s → −a. (41) 

Along every other direction, different from the negative ξ 1 -axis, Sommerfeld’s radiation condition for the governing 236 

Eq. (14) requires, in polar co-ordinates ( r , ϑ), r = (ξ 2 
1 

+ ξ 2 
2 
) 1 / 2 , (Noble, 1958 , Section 1.5) 237 

∂w 

∂r 
+ ıδw = o 

(
1 √ 

r 

)
, as r → ∞ (ϑ � = ±π) , (42) 

uniformly in ϑ. Such behaviour should be recovered by the present solution, although the field equation (12) is not of the 238 

classical Helmholtz type ( Georgiadis and Vardoulakis, 1998 ). Condition (42) is compatible with the following asymptotic 239 

behaviour for the displacement along radial lines 240 

w (r, ϑ) = O 

(
r −1 / 2 exp (−ırδ) 

)
, as r → ∞ (ϑ � = ±π) , 

and in particular, for ϑ = π/ 2 , the ξ 2 -axis is considered 241 

w (0 , ξ2 ) = O 

(
ξ−1 / 2 

2 
exp (−ıξ2 δ) 

)
, as ξ2 → ∞ . (43) 

Taking the inverse transform of (27) and using Eqs. (34) and (38) we have 242 

w (0 , ξ2 ) = 

1 

2 π(δ2 + 1) 

∫ 
L 

{ (
δ2 − (η + 1) s 2 

)
exp [ −ξ2 β(s ) ] 

+ 

(
(η + 1) s 2 + 1 

)
exp [ −ξ2 α(s ) ] 

} 

w̄ 

−(s, 0)d s, (44) 
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and, in consideration of (29) , the limit as ξ 2 → ∞ is given by 243 

w (0 , ξ2 ) → 

1 

2 π(δ2 + 1) 

∫ δ

−δ

(
(η + 1) s 2 + 1 

)
exp [ −ξ2 α( s ) ] ̄w 

−( s, 0)d s. 

Then, by the method of stationary phase ( Bleistein and Handelsman, 1975 ), it can be shown that w (0 , ξ2 ) behaves as in 244 

Eq. (43) . We observe that, setting ξ2 = 0 in Eq. (44) , one gets 245 

w (0 , 0) = 

1 

2 π(δ2 + 1) 

∫ 
L 

w̄ 

−(s, 0)d s = 0 , 

the last equality being obtained by Jordan’s lemma. 246 

5. Full-field solution by the Wiener –Hopf method 247 

In the present section the Wiener–Hopf analytic continuation technique ( Freund, 1990; Noble, 1958; Roos, 1969 ) is used 248 

to obtain the full-field solution for a semi-infinite crack in a half-space subject to a reduced traction shear wave applied 249 

to the crack surfaces. For the application of the Wiener–Hopf (W-H) method, knowledge of the number and of the location 250 

of all roots of the kernel function K ( s ), as defined in Eq. (36) , is demanded Noble (1958) . Besides, the behaviour of K ( s ) as 251 

| s | → ∞ is required 252 

K(s ) = c | s | 3 + O (| s | ) , as | s | → ∞ , 

where c = 

1 
2 (η + 1)(3 − η) . With this knowledge, the function K ( s ) can be factorized into the product of two functions, 253 

K 

± ( s ), analytic in the corresponding domain D 

± ( Fig. 5 ). Indeed, let us introduce the function 254 

F (s ) = 

α(s ) K(s ) 

c(s 2 − a 2 )(s 2 + b 2 ) 

s 2 − s 2 0 

s 2 − s 2 
3 

, (45) 

where s 0 is a special point defined in Eq. (A.4) . The choice of β( s ) in place of α( s ) at the numerator of F ( s ) is equally possible 255 

but it prevents considering the special cases η = 0 and δ = 0 within the general framework. Indeed, for η = 0 , the roots ± a 256 

and ± ıb coincide with the branch points ± δ and ± ı, respectively, and they become of order 1/2. Similarly, for δ = 0 , the 257 

pair of simple roots ± a collapse into the simple root a = 0 . 258 

The function F ( s ) is even, satisfies the reflection principle (37) , and it tends to 1 as | s | → ∞ . Besides, it has neither roots 259 

nor poles in the cut physical sheet, although it exhibits two branch cuts with the parametrized representation 260 

F 

± = {∓δ ± (δ + ı ) t, t ∈ [0 , 1] } ⊂ K 

±. (46) 

Consequently, it admits the product decomposition F (s ) = F + (s ) F −(s ) , where the functions F ± ( s ) are analytic in the domains 261 

D 

±, respectively. Since F ( s ) is even, we can assume, without loss of generality, 262 

F ±(−s ) = F ∓(s ) . (47) 

Details of the factorization may be found in Appendix A . 263 

Once the factorization has been accomplished, Eq. (45) provides 264 

K 

±(s ) = 

√ 

c 
(s ∓ a )(s ± ıb) 

α±(s ) 

s ± s 3 
s ± s 0 

F ±(s ) , (48) 

so that K 

±(−s ) = K 

∓(s ) and we have the leading term asymptotics 265 

K 

±(s ) = 

√ 

c exp (±ıπ/ 4) s 3 / 2 , as | s | → ∞ , 

in the relevant analyticity region. Here, the functions α( s ) and β( s ) are factorized into the product of two functions, named 266 

plus and minus, respectively analytic in D 

+ and D 

−, namely 267 

α±(s ) = e ∓ıπ/ 4 
√ 

s ∓ δ, β±(s ) = e ∓ıπ/ 4 
√ 

s ± ı . 

The factor e ∓ıπ /4 warrants that we have α±(−s ) = α∓(s ) and β±(−s ) = β∓(s ) . The W-H Eq. (39) becomes 268 

p + 
3 
(s, 0) 

GK 

+ (s ) 
= − 1 

2 λ3 
K 

−(s ) ̄w 

−(s, 0) + ı 
τ0 

(s + k ) K 

+ (s ) 
. (49) 

Therefore, in light of (40) , both the l.h.s. and the first term at the r.h.s. in Eq. (49) behave as O (s −1 ) as | s | → ∞ , whereas the 269 

last term at the r.h.s. behave as O (s −5 / 2 ) . This last term is a mixed function, yet it may be easily split by inspection into the 270 

sum of a plus and a minus function (indeed −k is not a zero for K 

+ (s ) ) 271 

p + 
3 
(s, 0) 

GK 

+ (s ) 
− ı 

τ0 

s + k 

[ 
1 

K 

+ (s ) 
− 1 

K 

+ (−k ) 

] 
= − 1 

2 λ3 
K 

−(s ) ̄w 

−(s, 0) + ı 
τ0 

(s + k ) K 

+ (−k ) 
, 

so thus the l.h.s. is a plus function while the r.h.s is a minus function. Therefore, either hand is an entire function in the 272 

relevant domain and, in consideration of the common strip of analyticity existing between the two (which is really the line 273 
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L ), analytic continuation warrants they are the same entire function E ( s ). Determination of E ( s ) hinges on the extended 274 

form of Liouville’s theorem and on the asymptotic behaviour expected at infinity, see Section 4.1 . Consequently, E ( s ) ≡ 0 and 275 

276 

w̄ 

−(s, 0) = 2 ı 
λ3 

K 

−(k ) 

τ0 

(s + k ) K 

−(s ) 
, (50) 

whose single real pole, in consideration of the definition (48) , matches the form (41) and thereby satisfies Sommerfeld’s 277 

radiation condition. 278 

For the plus transform of the reduced traction we have 279 

p̄ + 3 (s, 0) = ıG 

τ0 

s + k 

[
1 − K 

+ (s ) 

K 

−(k ) 

]
, 

and the corresponding full-range Fourier transform, evaluated on the crack line, easily follows from Eq. (31) 280 

p̄ 3 (s, 0) = −ıG 

τ0 

s + k 

K 

+ (s ) 

K 

−(k ) 
. (51) 

6. Results 281 

6.1. Representation of displacement 282 

The inverse Fourier transform of Eq. (50) gives the displacement along the crack line 283 

w (ξ1 , 0 , τ ) = ıλ3 τ0 
exp ı �τ

πK 

−(k ) 

∫ 
L 

exp (−ısξ1 ) 

(s + k ) K 

−(s ) 
d s. 

Ahead of the crack tip, displacement can be conveniently determined closing the integration path L around the top branch 284 

cut, K 

+ , and adding the contribution of the poles s = −k, −a and s = ıb, namely 285 

w (ξ1 , 0 , τ ) = −2 λ3 τ0 
exp ı �τ

K 

−(k ) 

[
1 

2 π ı 

∫ 
K + 

exp (−ısξ1 ) 

(s + k ) K 

−(s ) 
d s + 

exp (ıkξ1 ) 

K 

+ (k ) 

− exp (ıaξ1 ) 

k − a 

α+ (a ) √ 

c (a + ıb) F + (a ) 

a + s 0 
a + s 3 

+ 

exp (bξ1 ) 

k + ıb 

α−(ıb) √ 

c (a + ıb) F −(ıb) 

ıb − s 0 
ıb − s 3 

]
, 

ξ1 < 0 . 

We remark that simple poles represent travelling waves. Indeed, the second term in square brackets provides the dis- 286 

placement wave entrained by the traction wave applied at the crack faces, Fig. 6 a, while the third term brings outgo- 287 

ing Rayleigh waves, reflected by the crack-tip. The last term is remarkable in that it represents waves that decay expo- 288 

nentially for ξ 1 < 0 and yet propagate along the ξ 2 direction, Fig. 6 c. To see this, we note that α(ıb) = −ı 
√ 

b 2 + δ2 and 289 

β(ıb) = −ı 
√ 

b 2 − 1 , whence a pair of waves arises with speed 290 

c b1 

c s 
= 

�√ 

b 2 + δ2 
λ, and 

c b2 

c s 
= 

�√ 

b 2 − 1 

λ. 

Such waves may be put to great advantage in non-destructive material testing for they are highly localized along ξ 1 in 291 

correspondence of the crack-tip location. Furthermore, we observe that unlike c b 1 < c R ≤ c s , c b 2 may be very large and greater 292 

than the Rayleigh wave speed. The possibility of surface waves moving at super-Rayleigh speed in couple-stress materials 293 

has been pointed out in Graff and Pao (1967) and discussed in Ottosen et al. (20 0 0) and Georgiadis and Velgaki (2003) , in 294 

the context of plane strain. Interestingly, we note that for η = 0 , s = −a and s = ıb are no longer poles. The first term in 295 

square brackets represents non-planar body waves, moving with speed ˜ c along the crack line and away from the crack-tip, 296 

Fig. 6 b. 297 

It’s interesting to observe that unboundedness (resonance) occurs only for k = −a, that is when the reduced traction 298 

shear wave is associated with Rayleigh Rayleigh waves being fed into the crack-tip. Indeed, when k = a and Rayleigh waves 299 

move out of the crack-tip, the second and the third term in square brackets combine into a bounded term. 300 

We now consider the pole s = −k in the context of the full-field solution (44) . Eq. (29) shows that the real interval | k | < δ301 

is associated with a decaying and a propagating wave along ξ 2 , the latter with speed c ≥ c R greater than Rayleigh. Indeed, 302 

this result corresponds to a super-Rayleigh loading condition. The condition of exponential loading, k = ık 2 , −1 < k 2 < 0 , 303 

still brings a pair of waves along ξ 2 , one decaying and the other propagating, yet the latter moves with sub-Rayleigh speed 304 

�λc s (k 2 
2 

+ δ2 ) −1 / 2 . However, when decay is strong enough along ξ 1 , i.e. k 2 < −1 , the decaying wave turns propagating along 305 

ξ 2 with speed �λc s / 
√ 

k 2 
2 

− 1 , which generally exceeds c R . 306 

By Jordan’s lemma (Roos, 1969 , Section 1.5), the displacement w (ξ1 , 0) vanishes beyond the crack tip, in agreement with 307 

the boundary condition (19a) . The full displacement field beyond the crack-tip is obtained from Eq. (44) and closing the 308 

integration path around K 

−. Then, only body waves moving with speed ˜ c along the crack line and away from the crack-tip 309 

appear. It is concluded that the crack tip acts as a scatterer of the applied traction shear wave, Fig. 6 d. 310 

Fig. 7 shows the displacement along the crack line for two different values of the traction shear wave wavenumber k . 311 
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Fig. 6. Schematic representation of the wave pattern for k < −a (each wave is scaled as to improve clarity and only one wave is considered for each 

contribution; reflected Rayleigh waves are disregarded). 

Fig. 7. Dimensionless displacement w/ (λ3 τ0 ) ahead of the crack tip for δ = 0 . 2 and η = 0 . 797 . 

6.2. Representation of stresses 312 

The full-range Fourier transform of the symmetric and of the skew-symmetric shear stress along the crack line read 313 

σ̄23 (s, 0) = − G 

λ(1 + δ2 ) 

{
[(1 + η) s 2 + 1] α(s ) − [(1 + η) s 2 − δ2 ] β(s ) 

}
w̄ 

−(s, 0) , (52) 

and 314 

t̄ 23 (s, 0) = − G 

2 λ3 (1 + δ2 ) 

{
[(1 + η) s 2 + 1] α(s ) + δ2 [(1 + η) s 2 − δ2 ] β(s ) 

}
w̄ 

−(s, 0) . (53) 

The Fourier transform of the skew-symmetric shear stress, τ̄23 (ξ1 , 0) , is then obtained subtracting Eqs. (52) from (53) . The 315 

Fourier transform of the couple stress is given by 316 

μ̄22 (s, 0) = ıλ−1 
 (1 + η) s σ̄23 (s, 0) . (54) 
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Fig. 8. Dimensionless symmetric shear stress σ23 / (λ2 Gτ0 ) , beyond the crack-tip, for δ = 0 . 2 and η = −0 . 7 . 

Fig. 9. Dimensionless total shear stress t 23 /( G τ 0 ), beyond the crack-tip, for δ = 0 . 2 , η = 0 . 797 . 

It is important to observe that σ̄23 (s, 0) , t̄ 23 (s, 0) and μ̄22 (s, 0) are not plus functions, although they are analytic in the half- 317 

plane � ( s ) > b . This analyticity property warrants that the Tauberian theorems may be applied in the asymptotic analysis of 318 

Section 6.3 . In fact, stresses feature in D 

+ the branch cut F 

+ , coming from F −(s ) , alongside the simple poles s = −a, ıb and 319 

s = −k, originating from w̄ 

−(s, 0) . Such poles provide travelling wave contributions to the stress field ahead of the crack tip, 320 

as described for displacement. 321 

Beyond the crack tip, integration in the inverse Fourier transform for stresses is conveniently carried out closing the 322 

integration path L around the lower branch cut K 

−. In particular, such deformation of the integration path is necessary to 323 

perform the inverse Fourier transform of Eq. (53) , in consideration of the divergent asymptotic behaviour of t̄ 23 as | s | → + ∞ , 324 

see Eq. (56) . Like for displacement, there are no travelling waves contributing to stress beyond the crack-tip. Indeed, we have 325 

the representation formulas for body stress waves 326 

σ23 (ξ1 , 0 , τ ) = 2 λ2 Gτ0 

√ 

1 − ıδ

π(δ − ı ) K 

−(k ) 

[
I (1) 
0 

(ξ1 ) − I (1) 
1 

(ξ1 ) 
]

exp [ ı ( −δξ1 + �τ ) ] , (55a) 

327 

t 23 (ξ1 , 0 , τ ) = Gτ0 

√ 

1 − ıδ

π(δ − ı ) K 

−(k ) 

[
I (1) 
0 

(ξ1 ) + δ2 I (1) 
1 

(ξ1 ) 
]

exp [ ı ( −δξ1 + �τ ) ] , (55b) 

where n ∈ {1, 2}, 328 

I (n ) 
0 , 1 

(ξ1 ) = 

∫ ∞ 

0 , 1 

f (n ) 
0 , 1 

(t ) exp [(ıδ − 1) t ξ1 ]d t , 

and 329 

f (n ) 
0 

(t) = 

[(1 + η) s (t) 2 + 1] n α−(s (t)) 

[ s (t) + k ] K 

−(s (t)) 

√ 

t , t > 0 , 

f (n ) 
1 

(t) = 

[(1 + η) s (t) 2 − δ2 ] n β−(s (t)) 

[ s (t) + k ] K 

−(s (t)) 

√ 

t − 1 , t > 1 . 

The behaviour of the symmetric and of the total stress is shown in Figs. 8 and 9 , while couple stress is plotted in Fig. 10 . 330 

From Eq. (51) , we write the inversion formula for the reduced total traction 331 

p 3 (ξ1 , 0 , τ ) = −ıGτ0 
exp ı �τ

2 π

∫ 
L 

exp (−ısξ1 ) 

s + k 

K 

+ (s ) 

K 

−(k ) 
d s, 
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Fig. 10. Dimensionless couple stress μ22 /( λ
 G τ 0 ), beyond the crack-tip, for δ = 0 . 2 and η = 0 . 797 . 

that, ahead of the crack-tip, reduces to the contribution of the pole s = −k reproducing the applied shear wave. Beyond the 332 

crack-tip, we write K 

+ (s ) = K (s ) /K 

−(s ) and 333 

p̄ 3 (s, 0) = −G 

K(s ) 

2 λ3 
w̄ 

−(s, 0) . 

Upon deforming the integration path around K 

−, we get the representation formula for reduced traction body waves 334 

p 3 (ξ1 , 0 , τ ) = Gτ0 
exp [ ı ( −δξ1 + �τ ) ] 

2 π(1 + ıδ) K 

−(k ) 

[
I (2) 
0 

(ξ1 ) − I (2) 
1 

(ξ1 ) 
]
. 

6.3. Dynamic stress intensity factors 335 

Eq. (50) immediately provides us with the asymptotics 336 

w̄ 

−(s, 0) = 2 ı 3 / 2 λ3 τ0 
1 √ 

c K 

−(k ) 
s −5 / 2 , as | s | → ∞ , 

valid in the analyticity region D 

− (we neglect the harmonic term throughout this Section). Then, the Tauberian theorem 337 

(Roos, 1969 , Section 2.14) lends the following asymptotic representation for the inverse Fourier transform 338 


w (x 1 , 0) = r.b.m. + K 

w 

III (−x 1 ) 
3 / 2 , as x 1 → 0 

−

where r.b.m. is an inessential rigid body motion and 339 

K 

w 

III = −16 λ3 / 2 τ0 
1 

3 

√ 

2 π
 (1 + η)(3 − η) K 

−(k ) 
. 

Asymptotics for the symmetric, total and couple stress, respectively Eqs. (52) , (53) and (54) , are similarly obtained 340 

σ̄23 (s, 0) = −ı 3 / 2 λ2 Gτ0 
1 − η√ 

c K 

−(k ) 
s −3 / 2 , 

t̄ 23 (s, 0) = −ı 3 / 2 Gτ0 
1 + η√ 

c K 

−(k ) 

√ 

s , as | s | → ∞ . 

μ̄22 (s, 0) = ı 1 / 2 λ
Gτ0 
1 − η2 

√ 

c K 

−(k ) 
s −1 / 2 , (56) 

Then, for the respective inverse Fourier transforms, we infer the asymptotic behaviour 341 

σ23 (x 1 , 0) = �23 + K 

σ
III 

√ 

x 1 , 

t 23 (x 1 , 0) = K 

t 
III x 

−3 / 2 
1 

, as x 1 → 0 

+ , 

μ22 (x 1 , 0) = K 

μ
III 

x −1 / 2 
1 

, 

where �23 can be determined evaluating Eq. (55a) at ξ1 = 0 . Here, we have let the dynamic stress intensity factors for 342 

stresses 343 

K 

σ
III = −4 λ3 / 2 Gτ0 

1 − η√ 

2 π
 (3 − η)(1 + η) K 

−(k ) 
, 

K 

t 
III = −(λ
 ) 3 / 2 Gτ0 

√ 

1 + η

2 π( 3 − η) 

1 

K 

−( k ) 
, 

K 

μ
III 

= −2(1 − η) K 

t 
III . 
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Such expressions generalize to the dynamic regime the asymptotic results (Radi, 2008 , Eqs. (38)) obtained for static appli- 344 

cation of the far-field loading K III , valid in linear elastic fracture mechanics (LEFM). Indeed, the correction accounts for the 345 

important role of frequency of the applied loading on stress concentration ( Graff and Pao, 1967 ). Formal correspondence 346 

with LEFM results is met by taking 347 

K III = 2 Gτ0 

√ 

λ3 
 
1 

K 

−(k ) 
. 

This expression may be explained looking at the far-field behaviour of w (r, ϑ = 0) , r → + ∞ , which is obtained by inves- 348 

tigating the behaviour of w̄ (s, 0) as s → 0. In the general case, w̄ 

−(s, 0) behaves like a constant as s → 0 and thereby w (r) 349 

decays as r 2 . In the static limit we have δ = 0 , λ = 2 −1 / 2 and, for k � s , we get K 

−(s ) ∼
√ 

K(s ) ∼ −√ 

ıs and 350 

w̄ 

−(s, 0) = 2 ı 3 / 2 
λ3 

√ 

k 

τ0 

s 3 / 2 
, 

whence, by the Tauberian theorem, 351 


w (x 1 , 0) = 

2 K III 

G 

√ 

x 1 
2 π

, 

which is the far-field behaviour of LEFM ( Zhang et al., 1998 ). 352 

7. Conclusions 353 

Diffraction of reduced traction shear waves applied at the faces of a semi-infinite rectilinear crack in an elastic half- 354 

space with microstructure is considered. Microstructure is accounted for through the indeterminate theory of couple stress 355 

elasticity and motion is restricted to antiplane deformation. The full-field solution is obtained in closed form through the 356 

Wiener–Hopf technique and it may be adopted as a building block for the solution of general wave scattering problems in a 357 

cracked couple-stress half-space. A rather involved wave pattern appears, especially when compared to the simple scenario 358 

of classical elasticity. Indeed we find 359 

1. entrained waves moving along the crack line with the applied loading speed, which may be either decaying away 360 

from the crack, in the sub-critical regime, or propagating, in the super-critical regime. Transition from a sub-critical 361 

to a super-critical regime occurs at the Rayleigh speed, which is wavenumber dependent (dispersion); 362 

2. a pair of Rayleigh waves confined to the crack faces and reflected from the crack-tip; 363 

3. a pair of waves highly localized near the crack-tip and moving away from it, which may be either decaying and 364 

propagating with sub-Rayleigh speed or propagating at sub-Rayleigh and super-Rayleigh speed, respectively; 365 

4. body waves scattered by the crack-tip. 366 

Special situations are connected to 367 

• a loading moving toward the crack-tip at Rayleigh speed, because resonance occurs, i.e. solution is unbounded; 368 

• an exponentially-decaying loading with harmonic time variation, for the associated phase speed is infinite; 369 

• η = 0 , because waves 2 and 3 disappear; 370 

• h 0 = h 0 cr = 2 −1 / 2 and η = 0 , for then the classical solution is retrieved, namely Rayleigh waves collapse into classical 371 

non-dispersive shear waves; 372 

• the static regime � = 0 , for which Rayleigh waves collapse into classical shear waves. 373 

Finally, dynamic stress intensity factors are determined for the symmetric stress, the couple-stress, the total stress and 374 

the reduced traction. They generalize to the dynamic regime the corresponding expression already obtained for the static 375 

application of the classical elastic Mode III solution in the far-field. The correction term brings out the important role of the 376 

loading frequency on the stress intensity factors. 377 
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Appendix A. Factorization of F ( s ) 385 

In the logarithmic factorization, Cauchy theorem is exploited to split ln F ( s ) into the sum of two functions analytic in the 386 

regions D 

±, respectively, 387 

ln F ±(s ) = 

1 

2 π ı 

∫ 
L 

ln F (ζ ) 

ζ − s 
d ζ . 

Due to the analytical property of F ( s ) and Jordan’s lemma, the integration path L can be closed around the upper branch 388 

cut F 

+ . The contributions from the branch points is vanishingly small. The upper branch cut is parametrized as in Eq. (46) . 389 

In the special case δ = 0 , the branch cut corresponds to the interval on the imaginary axis {ıt , t ∈ [0, 1]}. 390 

The ratio α( s )/ β( s ) appearing in the function F ( s ) jumps across the branch cut according to 391 

lim 

ε→ 0 + 

α(ζ (t) ± ıε) 

β(ζ (t) ± ıε) 
= ±ı 

√ 

t 

1 − t 

(2 − t) δ − ıt 

(1 − t) δ − ı (1 + t) 
, t ∈ [0 , 1] . 

Eq. (46) yields 392 

ln F −(s ) = 

δ + ı 

2 π ı 

∫ 1 

0 

lim 

ε→ 0 
[ ln F (ζ (t) − ıε) − ln F (ζ (t) + ıε) ] 

d t 

ζ ( t) − s 
, 

and using 393 

ln F ( ζ (t) − ıε) − ln F ( ζ (t) + ıε) = ln 

F (ζ (t) − ıε) 

F (ζ (t) + ıε) 
→ 

= ln 

1 − ıψ(t) 

1 + ıψ(t) 
= −2 ı arctan ψ(t) = −2 ı 

(
π/ 2 − arctan ψ 

−1 (t) 
)
, (A.1) 

with 394 

ψ(t) = 

(
(1 + η)[(δ + ı ) t − δ] 2 − δ2 

(1 + η)[(δ + ı ) t − δ] 2 + 1 

)2 
√ 

(1 − t) 2 δ − ı (1 − t 2 ) 

(2 − t) δt − ıt 2 
, (A.2) 

we obtain 395 

ln F −(s ) = 

δ + ı 

π

∫ 1 

0 

arctan ψ(t) 

δ − (δ + ı ) t + s 
d t = G 

−( s ) . (A.3) 

In the static case δ = 0 , Eq. (A.2) gives the corresponding function introduced in (Radi, 2008 , Eq. (59)) 396 

ψ(t ) = 

t 3 
√ 

1 − t 2 (
t 2 − 1 

η+1 

)2 
. 

In this situation, a pole of ψ( t ) is encountered at t = 1 / 
√ 

1 + η, inasmuch as η > 0, although this brings no harm to the 397 

evaluation of G 

−(s ) , in light of the arctangent being bounded. In contrast, special care must be paid in the evaluation of the 398 

contour integral when the root s 3 lays inside the branch cut, as this may bring a 2 π ı jump when transforming the difference 399 

of the logarithms in Eq. (A.1) . Clearly, from Eq. (A.3) and the property (47) , we have 400 

F ∓(s ) = exp G 

∓(s ) , 

where G 

±(−s ) = G 

∓(s ) . Observing that the factorization is independent of the location of s 0 and enforcing Eq. (45) to hold 401 

at s = 0 brings the requirement 402 

s 0 = ıabs 3 

√ 

c 
F + (0) F −(0) 

α(0) K(0) 
. (A.4) 

In particular, the point s 0 coincides with s 3 when the function K ( s ) admits two pairs of roots in the physical sheet, while it 403 

is conveniently located in the branch cut when K ( s ) admits three root pairs. 404 

Supplementary material 405 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.jmps.2018.11.013 . 406 
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