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Abstract. Multi-People Tracking in an open-world setting requires a
special effort in precise detection. Moreover, temporal continuity in the
detection phase gains more importance when scene cluttering introduces
the challenging problems of occluded targets. For the purpose, we pro-
pose a deep network architecture that jointly extracts people body parts
and associates them across short temporal spans. Our model explicitly
deals with occluded body parts, by hallucinating plausible solutions of
not visible joints. We propose a new end-to-end architecture composed
by four branches (visible heatmaps, occluded heatmaps, part affinity fields
and temporal affinity fields) fed by a time linker feature extractor. To
overcome the lack of surveillance data with tracking, body part and oc-
clusion annotations we created the vastest Computer Graphics dataset
for people tracking in urban scenarios by exploiting a photorealistic
videogame. It is up to now the vastest dataset (about 500.000 frames,
almost 10 million body poses) of human body parts for people track-
ing in urban scenarios. Our architecture trained on virtual data exhibits
good generalization capabilities also on public real tracking benchmarks,
when image resolution and sharpness are high enough, producing reliable
tracklets useful for further batch data association or re-id modules.

Keywords: pose estimation, tracking, surveillance, occlusions

1 Introduction

Multi-People Tracking (MPT) is one of the most established fields in computer
vision. It has been recently fostered by the availability of comprehensive public
benchmarks and data [25,2]. Often, MPT approaches have been casted in the
tracking by detection paradigm where a pedestrian detector extracts candidate
objects and a further association mechanism arranges them in a temporally con-
sistent trajectory [36,14,10]. Nevertheless, in the last years several researchers
[11,36] raised the question on whether these two phases would be disentangled
or considered two sides of the same problem. The strong influence between de-
tection accuracy and tracking performance [36] suggests considering detection

? Equal contribution.
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and tracking as two parts of a unique problem that should be addressed end-to-
end at least for short-term setups. In this work, we advocate for an integrated
approach between detection and short-term tracking that can serve as a proxy
for more complex association method either belonging to the tracking or re-id
family of techniques. To this aim, we propose:

– an end-to-end deep network, called THOPA-net (Temporal Heatmaps and
Occlusions based body Part Association) that jointly locates people body
parts and associates them across short temporal spans. This is achievable
with modern deep learning architectures that exhibit terrific performance in
body part location [6] but, mostly, neglect the temporal contribution. For
the purpose, we propose a bottom-up human pose estimation network with
a temporal coherency module that jointly enhances the detection accuracy
and allows for short-term tracking;

– an explicit method for dealing with occluded body parts that exploits the
capability of deep networks of hallucinating feasible solutions;

Results are very encouraging in their precision also in crowded scenes. Our exper-
iments tell us that the problem is less dependent on the details or the realism of
the shape than one could imagine; instead, it is more affected by the image qual-
ity and resolution that are extremely high in Computer Graphics (CG) generated
datasets. Nevertheless, experiments on real MPT dataset [25,2] demonstrate that
the model can transfer positively towards real scenarios.

2 Related Works

Human pose estimation in images has made important progress over the last
few years [7,37,15,28,5]. However, those techniques assume only one person per
image and are not suitable for videos of multiple people that occlude each other.
The natural extension of single-person pose estimation, i.e, multi-person pose es-
timation, has therefore gained much importance recently being able of handling
situations with a varying number of people [31,17,18,29,27,6,23]. Among them,
[29] uses graph decomposition and node labeling with local search while [27]
introduces associative embeddings to simultaneously generate and group body
joints detections. An end-to-end architecture for jointly learning body parts and
their association is proposed by [6] while [29], instead, exploits a two-stage ap-
proach, consisting of a person detection stage followed by a keypoint estimation
for each person. Moreover, [31,17,18] jointly estimate multiple poses in the im-
age, while also handling truncations and occlusions. However, those methods
still rely on a separate people detector and do not perform well in cluttered
situations.

Single person pose estimation in videos has been addressed by several re-
searchers, [21,40,30,13]. Nevertheless, all those methods improve the pose esti-
mation accuracy by exploiting temporal smoothing constraints or optical flow
data, but neglect the case of multiple overlapping people.
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Table 1. Overview of the publicly available datasets for Pose Estimation and MPT in
videos. For each dataset we reported the numbers of clips, annotated frames and people
per frame, as well as the availability of 3D data, occlusion labels, tracking information,
pose estimation annotations and data type

Dataset #Clips #Frames #PpF 3D Occl. Tracking Pose Est. Type

Penn Action [41] 2,326 159,633 1 X sports
JHMDB [22] 5,100 31,838 1 X diverse
YouTube Pose [8] 50 5,000 1 X diverse
Video Pose 2.0 [34] 44 1,286 1 X diverse

Posetrack [2] 514 23,000 1-13 X X diverse
MOT-16 [26] 14 11,235 6-51 X X urban

JTA 512 460,800 0-60 X X X X urban

In recent years, online tracking has been successfully extended to scenarios
with multiple targets [39,38,32,9,4,33]. In contrast to single target tracking ap-
proaches, which rely on sophisticated appearance models to track a single entity
in subsequent frames, multiple target tracking does not rely solely on appear-
ance models. [39] exploits a high-performance detector with a deep learning
appearance feature while [32] presents an online method that encodes long-term
temporal dependencies across multiple cues. [9], on the other hand, introduces
spatial-temporal attention mechanism to handle the drift caused by occlusion
and interaction among targets. [4] solves the online multi-object tracking prob-
lem by associating tracklets and detections in different ways according to their
confidence values and [33] exploits both high and low confidence target detec-
tions in a probability hypothesis density particle filter framework.
In this work, we address the problem of multi-person pose estimation in videos
jointly with the goal of multiple people tracking. Early works that approach
the problem [3,20] do not tackle pose estimation and tracking simultaneously,
but rather target on multi-person tracking alone. More recent methods [19,16],
which rely on graph partitioning approaches closely related to [31,17,18], simul-
taneously estimate the pose of multiple people and track them over time but do
not cope with urban scenarios that are dominated by targets occlusions, scene
clutterness and scale variations. In contrast to [19,16] we do not tackle the prob-
lem as a graph partitioning approach. Instead, we aim at simplifying the tracking
problem by providing accurate detections robust to occlusions by reasoning di-
rectly at video level.
The most widely used publicly available datasets for human pose estimation in
videos are presented in Tab. 1. [41,22,8] provide annotations for the single-person
subtask of person pose estimation. Only Posetrack [2] has a multi-person perspec-
tive with tracking annotations but not provide them in the surveillance context.
The reference benchmark for evaluation of multi-person tracking is [26] which
provides challenging sequences of crowded urban scenes with severe occlusions
and scale variations. However, it pursuits no pose estimation task and only pro-
vides bounding boxes as annotations. Our virtual world dataset instead, aim at
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taking the best of both worlds by merging precise pose and tracking annotations
in realistic urban scenarios. This is indeed feasible when the ground truth can
be automatically computed exploiting highly photorealistic CG environments.

3 JTA Dataset

We collected a massive dataset JTA (Joint Track Auto) for pedestrian pose es-
timation and tracking in urban scenarios by exploiting the highly photorealistic
video game Grand Theft Auto V developed by Rockstar North. The collected
videos feature a vast number of different body poses, in several urban scenarios
at varying illumination conditions and viewpoints, Figure 1. Moreover, every
clip comes with a precise annotation of visible and occluded body parts, peo-
ple tracking with 2D and 3D coordinates in the game virtual world. In terms of
completeness, our JTA dataset overcomes all the limitation of existing dataset in
terms of number of entities and available annotations, Table 1. In order to virtu-
ally re-create real-world scenarios we manually directed the scenes by developing
a game modification that interacts synchronously with the video game’s engine.
The developed module allowed us to generate and record natural pedestrian flows
recreating people behaviors specific to the most crowded areas. Moreover, ex-
ploiting the game’s APIs, the software can handle people actions: in clips, people
occasionally perform natural actions like sitting, running, chatting, talking on
the phone, drinking or smoking. Each video contains a number of people ranging
between 0 and 60 with an average of more than 21 people, totaling almost 10M
annotated body poses over 460,800 densely annotated frames. The distance from
the camera ranges between 0.1 and 100 meters, resulting in pedestrian heights
between 20 and 1100 pixels (see supplementary material for further details). We
collected a set of 512 Full HD videos, 30 seconds long, recorded at 30 fps. We
halve the sequences into 256 videos for training and 256 for testing purposes.
Through the game modification, we access the game renderer for automatically
annotating the same 14 body parts in [1] and [2] in order to foster cross-dataset
experiments. In each video, we assigned a unique identifier to every pedestrian
that appears in the scene. The identifier remains the same throughout the entire
video even if the pedestrian moves out the field-of-view. This feature could foster
person re-identification research despite not being the target of this work. Our

Fig. 1. Examples from the JTA dataset exhibiting its variety in viewpoints, number
of people and scenarios. Ground truth joints are superimposed to the original images.
See supplementary material for further examples
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dataset also provides occlusion and self-occlusion flags. Each joint is marked as
occluded if it is not directly visible from the camera point of view and it is oc-
cluded by objects or other pedestrians. Instead, a joint is marked as self-occluded
if it is occluded by the same person to whom the joint belongs. As for joints an-
notation, occlusion annotation is captured by accessing the game renderer. JTA
Dataset also provides accurate 3D information: for each annotated joint, as well
as having the 2D coordinates of the location in the image, we also provide the
3D coordinates of the location in the simulator’s space. Differently from Pose-
track [2], which uses the annotated head bounding boxes as an estimation of
the absolute scale of the person, we provide the precise scale of each pedestrian
through the 3D annotation. The dataset, along with the game modification, are
freely accessible1.

4 THOPA-net

Our approach exploits both intra-frame and inter-frame information in order
to jointly solve the problem of multi-person pose estimation and tracking in
videos. For individual frames, we extended the architecture in [6] by integrating
a branch for handling occluded joints in the detection process. Subsequently,
we propose a temporal linking network to integrate temporal consistency in the
process and jointly achieve detection and short-term tracking. The Single Image
model, Figure 2, takes an RGB frame of size w × h as input and produces,
as output, the pose prediction for every person in the image. Conversely, the
complete architecture, Figure 3, takes a clip of N frames as input and outputs
the pose prediction for the last frame of the clip and the temporal links with the
previous frame.

4.1 Single Image Pose Prediction

Our single image model, Figure 2, consists of an initial feature extractor based
on the first 10 layers of VGG-19 [35] pretrained on COCO 2016 keypoints dataset
[24]. The computed feature maps are subsequently processed by a three-branch
multi-stage CNN where each branch focuses on a different aspect of body pose
estimation: the first branch predicts the heatmaps of the visible parts, the sec-
ond branch predicts the heatmaps of the occluded parts and the third branch
predicts the part affinity fields (PAFs), which are vector fields used to link parts
together. Note that, oppositely to [6], we employed a different branch for the oc-
clusion detection task. It is straightforward that visible and occluded body parts
detection are two related but distinct tasks. The features used by the network
in order to detect the location of a body part are different from those needed
to estimate the location of an occluded one. Nevertheless, the two problems are
entangled together since visible parts allow to estimate the missing ones. In fact,
the network exploits contextual cues in order to perform the desired prediction,

1 http://imagelab.ing.unimore.it/jta

http://imagelab.ing.unimore.it/jta
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Fig. 2. Architecture of the three-branch multi-stage CNN with corresponding kernel
size (k) and number of feature maps (n) indicated for each convolutional layer

and the presence of a joint is indeed strongly influenced by the person’s silhou-
ette (e.g. a foot detection mechanism relies heavily on the presence of a leg, thus
a visible foot detection may trigger even though the foot is not completely visi-
ble). Each branch is, in turn, an iterative predictor that refines the predictions
at each subsequent stage applying intermediate supervision in order to address
the vanishing gradient problem. Apart from the first stage, which takes as input
only the features provided by VGG-19, the consecutive stages integrate the same
features with the predictions from the branches at the previous stage. Conse-
quently, information flow across the different branches and in particular both
visible and occluded joints detection are entangled in the process.
We apply, for each branch, a different loss function at the end of each stage. The
loss is a SSE loss between estimated predictions and ground truth, masked by a
mask M in order to not penalize occluded joints in the visible branch. Specifi-
cally, for the generic output of each branch Xs of stage s ∈ {1, . . . , S} and the
ground truth X∗ we have the loss function:

lsX =
∑
i

w′∑
x=1

h′∑
y=1

M(x, y)� (Xs
i (x, y)−X∗i (x, y))2, (1)

where X is in turn H for visible joints heatmaps, O for occluded ones and P for
affinity fields; the outer summation spans the J number of joints for H and O
and the C number of limbs for P . Hs, Os and P s sizes (w′, h′) are eight times
smaller than the input due to VGG19 max pooling operations. Eventually, the
overall objective becomes L =

∑S
s=1(lsH + lsO + lsP ).

4.2 Temporal Consistency Branch

In order to jointly solve the problem of multi-person pose estimation and tracking
we enhance the Single Image model by adding our novel temporal network,
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Fig. 3. Architecture of our method that encompass pose estimation and tracking in an
end-to-end fashion. The MaxPool3D perform pooling operations only in the temporal
dimension with stride s

Figure 3. The temporal model takes as input N RGB frames of size w × h and
produces, as output, the temporal affinity fields (TAFs), as well as heatmaps
and part affinity fields. TAFs, like PAFs, are vector fields that link body parts
but, oppositely to PAFs, are focused on temporal links instead of spatial ones.
In detail, PAFs connect different types of body parts intra-frame while TAFs,
instead, connect the same types of body parts inter-frame, e.g, they connect
heads belonging to the same person in two subsequent frames. The TAF field
is, in fact, a proxy of the motion of the body parts and provide the expected
location of the same body part in the previous frame and can be used both
for boosting the body parts detection and for associating body parts detections
in time. At a given time t0, our architecture takes frames It ∈ Rw×h×3 with
t ∈ {t0, t−τ , t−2τ , . . . , t−Nτ+1} and pushes them through the VGG19 feature
extractor, described in Section 4.1, to obtain N feature tensors f t ∈ Rw′×h′×r

where r is the number of channels of the feature tensor. Those tensors are then
concatenated over the temporal dimension obtaining F ∈ Rw′×h′×r×N . F is
consecutively fed to a cascade of 3D convolution blocks that, in turn, capture
the temporal patterns of the body part features and distill them by temporal
max pooling until we achieve a feature tensor F ′ ∈ Rw′×h′×r, Figure 3. As in
Section 4.1, the feature maps are passed through a multi-branch multi-stage
CNN. Moreover, we add to the Single Image architecture a fourth branch for
handling the TAFs prediction. As a consequence, after the first stage, temporal
information flow to all the branches of the network and acts as a prior for body
part estimation (visible and occluded) and PAFs computation. The complete

network objective function then becomes L =
∑S
s=1(lsH + lsO + lsP + lsT ) where

lsT =

J∑
j=1

w′∑
x=1

h′∑
y=1

M(x, y)� (T sj (x, y)− T ∗j (x, y))2 (2)
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is the loss function computed between the ground truth T ∗j and the prediction
T sj at each stage s. The set T = (T1, T2, . . . , Tj) has J vector fields, one for each

part, with Tj ∈ Rw×h, j ∈ {1, . . . , J}.

4.3 Training Procedure

During training, we generate both the ground truth heatmaps H∗ and O∗ from
the annotated keypoint coordinates by placing at the keypoint location a 2D
Gaussian with its variance conditioned by the true metric distance, d, of the
keypoint from the camera. Oppositely to [6], by smoothing the Gaussian using
distances, it is possible to achieve heatmaps of different sizes proportional to the
scale of the person itself. This process is of particular importance to force scale
awareness in the network and avoiding the need of multi scale branches. For
example, given a visible heatmap Hj , let qj,k ∈ R2 be the ground truth location
of the body part j of the person k. For each body part j the ground truth H∗j
at location p ∈ R2 results:

H∗j (p) = max
k

exp

(
−
∥∥p− qj,k∥∥22

σ2

)
, σ = exp

(
1− d

α

)
(3)

where σ regulates the spread of the peak in function of the distance d of each
joint from the camera. In our experiments we choose α equals to 20.
Instead, each location p of ground truth part affinity fields P ∗c,k is equal to the
unit vector (with the same direction of the limb) if the point p belongs to the
limb. The points belonging to the limb are those within a distance threshold of
the line segment that connect the pair of body parts. For each frame, the ground
truth part affinity fields are the two channels image containing the average of
the PAFs of all people. As previously stated, by extending the concept of PAFs
to the temporal dimension, we propose the novel TAFs representation which
encodes short-term tubes of body parts across multiple frames (as shown in
Figure 4.(b)). The temporal affinity field is a 2D vector field, for each body part,
that points to the location of the same body part in the previous frame. Consider
a body part j of a person k at frame t and let qt−1j,k and qtj,k be their ground
truth positions at frame t − 1 and t respectively. If a point p lies on the path
crossed by the body part j between t − 1 and t, the value at T ∗j,k(p) is a unit
vector pointing from j at time t to j at time t− 1; for all other points the vector
is zero. We computed ground truth TAFs using the same strategy exploited for
PAFs.

4.4 Spatio-Temporal Multi-Person Joints Association

In order to connect body parts into skeletons we take into account two different
contributions both at frame level (PAF) and at temporal level (TAF). First, the
joints heatmaps are non-maxima suppressed to obtain a set of discrete locations,
Dj , for multiple people, where Dj = {dmj : for j ∈ {1, . . . , J},m ∈ {1, . . . , Nj}}
and Nj is the number of candidates of part j, and J the number of joint types.
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(a) (b)

Fig. 4. (a) Visualization of TAFs for different parts: for clarity, we show a single joint
TAF for each person where color encodes direction. (b) Pose prediction performed on
JTA dataset which distinguish between visible and occluded joints

We associate joints by defining a variable zmnj1j2 ∈ {0, 1} to indicate whether two
joints candidates dmj1 and dnj2 are connected. Consequently, the objective is to
find the optimal assignment for the set of possible connections, Z = {zmnj1j2 :
for j1, j2 ∈ {1, . . . , J},m ∈ {1, . . . , Nj1}, n ∈ {1, . . . , Nj2}}. To this aim we score
every candidate limb (i.e. a pair of joints) spatially and temporally by computing
the line integral along PAFs, E and TAFs, G:

E(dj1 , dj2) =

∫ u=1

u=0

PAF (p(u)) · dj2 − dj1∥∥dj2 − dj1∥∥2 du (4)

G(dj , d̂j) =

∫ u=1

u=0

TAF (t(u)) · d̂j − dj∥∥d̂j − dj∥∥2 du (5)

where p(u) linearly interpolates the locations along the line connecting two joints

dj2 and dj1 and t(u) acts analogously for two joints d̂j at frame t− 1 and dj at
frame t.
We then maximize the overall association score Ec for limb type c and every
subset of allowed connection Zc (i.e. anatomically plausible connections):

max
Zc

Ec = max
Zc

∑
m∈Dj1

∑
n∈Dj2

(E(dmj1 , d
n
j2) + αE(d̂mj1 , d̂

n
j2)) · zmnj1j2 , (6)

subject to
∑
n∈Dj2

zmnj1j2 ≤ 1,∀m ∈ Dj1 and
∑
n∈Dj2

zmnj1j2 ≤ 1,∀m ∈ Dj1 where

d̂mj1 = arg max
d̂bj1

G(dmj1 , d̂
b
j1), d̂nj2 = arg max

d̂qj2

G(dnj2 , d̂
q
j2

) (7)

are the joints at frame t− 1 that maximize the temporal consistency along the
TAF where b and q span the indexes of the people detected at the previous
frame.
In principle, Equation (6) mixes both the contribution coming from the PAF
in the current frame and the contribution coming from the PAF obtained by
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Fig. 5. Qualitative results of THOPA-net on JTA (top row), MOT-16 (middle row)
and PoseTrack (bottom row)

warping, in the previous frame, the candidate joints along the best TAF lines.
In order to speed up the computation, we maximize iteratively Equation (6) by
considering only the subsets of joints inside a radius at twice the size of the
skeletons in the previous frame at the same location. The complete skeletons are
then built, by maximizing, for the limbs type set C, E =

∑C
c=1 maxZc

Ec.

5 Experiments

We conducted experiments in two different contexts, either on our virtual world
dataset JTA and on real data. In the virtual world scenario, we evaluated the
capability of the proposed architecture of both reliably extracting people joints
and successfully associating them along the temporal dimension. Real data ex-
periments instead, aimed at empirically demonstrating that our virtual world
dataset can function as a good proxy for training deep models and to which ex-
tent it is necessary to fine-tune the network on real data. In fact, we purposely
conducted the experiments either without retraining the network and testing
it out-of-the-box or by fine-tuning the network on real data. Moreover, all the
tracking experiments do not explicitly model the target appearance, but visual
appearance is only taken into account when extracting TAFs, thus exploited
only for very short-term target association (namely tracklet construction).

5.1 Experiments on JTA

We tested our proposal on our virtual world scenario in order to evaluate both the
joints extraction accuracy and the tracking capabilities. We started from the pre-
trained VGG19 weights as the feature extractor and we trained our model end-
to-end allowing features fine-tuning. For the temporal branch we randomly split
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Table 2. Detection results on JTA Dataset

Joints Detection
Mean Average Prec. Precision Recall F1 Score

Single Image no occ 50.9 81.5 64.1 71.6
Single Image + occ 56.3 87.9 71.8 78.4
Complete 59.3 92.1 77.4 83.9

[6] 50.1 86.3 55.8 69.5

every sequence into 1 second long clips. Subsequently, we uniformly subsampled
every clip obtaining 8 frames that are inputted to the temporal branch. The
train was performed by using ADAM optimizer with a learning rate of 10−4

and batch size equal to 16. We purposely kept the batch size relatively small
because every frame carries a high number of different joints at different scales
and locations leading to a reliable average gradient for the task.

Detection experiment We first performed a detection experiment in order to
quantify the contribution of the individual branch of our architecture. The detec-
tion experiment evaluated the location of people joints and the overall bounding
box accuracy in terms of detection metrics. Analogously to [19], we used the
PCKh (head-normalized probability of correct keypoint) metric, which consid-
ers a body joint to be correctly localized if the predicted location of the joint is
within a certain threshold from the true location. Table 2 reports the results in
term of mean average precision of joints location and bounding box detection
metrics such as precision, recall and F1-score with an intersection over union
threshold of 50%. We additionally ablated different branch of our architecture
in order to empirically measure the contribution of every individual branch (i.e.
the occlusion branch and the temporal branch). By observing the Table we can
confirm that the network benefits from the presence of the occlusion estimation
branch both in terms of joints location accuracy and detection performances.
This is due to two different positive effects given by occluded joints. The first is
the chance of estimate/guess the position of a person even if visually strong oc-
cluded, the second is about maximizing the presence of body joints that greatly
simplifies their clustering into skeletons and consequently the detection metrics
results improved, Figure 4.(b). Moreover, the temporal branch strengthens this
process by adding short-term temporal consistency to the joints location. In fact,
results indicate this boosts the performance leading to a more accurate joints
detection in presence of people that overlaps in the scene. The improvement is
due to the TAFs contribution that helps to disambiguate the association among
body joints on the basis of the target direction, Figure 4.(a). Additionally we
compared with [6] that was retrained on JTA and tested at 2 different scales
(since the method does not deal with multiple scales), against which we score
positively. The architecture in [6] is the same as our Single Image no occ model
in Table 2, with the only difference that the latter has been trained with distance
rescaled versions of heatmaps and PAFs, according to Section 4.3, and it deals
with multiple scales without any input rescaling operation.



12 M. Fabbri et al.

Table 3. Tracking Results on JTA Dataset

MOTA IDF1 MT ML FP FN IDs FRAG

[36] + our det 57.4 57.3 45.3 21.7 40096 103831 15236 15569
[36] + DPM det 31.5 27.6 25.3 41.7 80096 170662 10575 19069
THOPA-net 59.3 63.2 48.1 19.4 40096 103662 10214 15211

Tracking Experiment We additionally tested the extent of disentanglement be-
tween temporal short-term detection and people tracking by performing a com-
plete tracking experiments on the JTA test set. The experiments have been
carried out by processing 1 second clips with a stride of 1 frame and associating
targets using a local nearest neighbour approach maximizing the TAFs scores.
As previously introduced, the purpose of the experiment was to empirically val-
idate the claim that mixing short-term tracking and detection can still provide
acceptable overall tracking performance even when adopting a simple associa-
tion frame-by-frame method. Secondly, this is indeed more evident when the
association algorithm exploits more than a single control point (e.g. usually the
bounding box lower midpoint), which is the case of tracking sets of joints. For the
purpose, we compared against a hungarian based baseline (acting on the lower
midpoint of the bounding box), [36], inputed with either our detections and DPM
[12] ones. Table 3 reports results in terms of Clear MOT tracking metrics [25].
Results indicate that the network trained on the virtual world scores positively
in terms of tracked entities but suffers of a high number of IDs and FRAGS. This
behavior is motivated by the absence of a strong appearance model capable of
re-associating the targets after long occlusions. Additionally, the motion model
is purposely simple suggesting that a batch tracklet association procedure can
lead to longer tracks and reduce switches and fragmentations.

5.2 Tracking people in real data

We tested our solution on real data with the purpose of evaluating the general-
ization capabilities of our model and its effectiveness in real surveillance scenar-
ios. We choose to adopt two datasets: the commonly used MOT-16 Challenge
Benchmark [25] and the new PoseTrack Dataset [2].

MOT-16. The MOT-16 Challenge Benchmark consists of 7 sequences in urban
areas with varying resolution from 1980 × 1024 to 640 × 480 for a total number
of approx 5000 frames and 3.5 minutes length. The benchmark exhibits strong
challenges in terms of viewpoint changes, from top-mounted surveillance cameras
to street level ones, Figure 5. All results are expressed in terms of Clear MOT
metrics according to the benchmark protocol [25] and as for the virtual world
tracking experiment the tracks were associated by maximizing the TAF scores
between detections. The network was end-to-end fine-tuned, with the exception
of the occlusion branch. Fine-tuning was performed by considering the ground
truth detections and inserting a default skeleton when our Single Image model
scored a false negative obtaining an automatically annotated dataset.
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Table 4. Results on MOT-16 benchmark ranked by MOTA score

MOTA IDF1 MT ML FP FN IDs FRAG

[39] 66.1 65.1 34.0 20.8 5061 55914 805 3093
[38] 61.4 62.2 32.8 18.2 12852 56668 781 2008
THOPA-net 56.0 29.2 25.2 27.9 9182 67059 4064 5557
[32] 47.2 46.3 14.0 41.6 2681 92856 774 1675
[9] 46.0 50.0 14.6 43.6 6895 91117 473 1422
[4] 43.9 45.1 10.7 44.4 6450 95175 676 1795
[33] 38.8 42.4 7.9 49.1 8114 102452 965 1657

Table 4 reports the results of our fine-tuned network compared with the best
published state of the art competitors up to now. We include in the Table only
online trackers, that are referred on the benchmark website as causal methods.
The motivation is that our method performs tracking at low level, using TAFs,
for framewise temporal association thus it configures as an online tracker. Addi-
tionally, it is always possible to consider our tracklets as an intermediate output
and perform a subsequent global association by possibly assessing additional
high level information such as strong appearance cues and re-id techniques. Our
method performs positively in terms of MOTA placing at the top positions. We
observe a high IDS value and FRAG given by the fact that our output is an
intermediate step between detections and long-term tracking. Nevertheless, we
remark that we purposely choose a trivial association method that does not force
any strong continuity in terms of target trajectories, instead, we argue that given
temporal consistency to the target detections the association among them results
satisfying for short-term tracking applications. This is possible also thanks to the
fact that we use several control points for association (i.e. the joints) that are in
fact reliable cues when objects are close each other and the scene is cluttered.
Contrary to [39] and [38] our model do not employ strong appearance cues for
re-identification. This suggests that the performance can be further improved by
plugging a re-id module that connects tracks when targets are lost. Moreover,
contrary to [32] we do not employ complex recurrent architecture to encode
long-term dynamics. Nevertheless, the performances are comparable suggesting
that when a tracker disposes of a plausible target candidate, even if occluded,
the association simplify to keep subsequent frames temporally consistent that
is indeed what our TAF branch do. Figure 5 shows qualitative results of our
proposal.

PoseTrack. The PoseTrack Dataset is a large-scale benchmark for multi-person
pose estimation and tracking in videos. It contains 550 videos including around
23,000 annotated frames, split into 292, 50, 208 videos for training, validation
and testing, respectively. The annotations include 15 body keypoints location, a
unique person id and a head bounding box for each person instance. We tested
our solution on a subset of PoseTrack Dataset with surveillance like features (e.g.
people standing, walking, etc.). We remark that PoseTack exhibits different fea-
tures w.r.t. surveillance context in which the targets number is higher and the
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Fig. 6. Results on PoseTrack dataset compared with a BBox-Tracking + CPM (trained
on MPII) baseline (used also in [19]; red/green lines are the average of performances
on the selected sequences to avoid plot clutter)

camera FoV is mostly a far FoV. In Fig. 6 we show MOTA and mAP results of
THOPA-net on PoseTrack sequences (solely using synthetic data for training).
We used training and validation sequences in order to obtain per-sequence re-
sults. The results are satisfying (see Fig 5) even if the network is trained solely
on CG data suggesting it could be a viable solution for fostering research in
the joint tracking field, especially for urban scenarios where real joint tracking
datasets are missing.

6 Conclusion

In this paper, we presented a massive CG dataset for human pose estimation
and tracking which simulates realistic urban scenarios. The precise annotation
of occluded joints provided by our dataset allowed us to extend a state-of-the-art
network by handling occluded parts. We further integrate temporal coherency
and propose a novel network capable of jointly locate people body parts and
associate them across short temporal spans. Results suggest that the network,
even if trained solely on synthetic data, adapts to real world scenarios when
the image resolution and sharpness are high enough. We believe that the pro-
posed dataset and architecture jointly constitute a starting point for considering
tracking in surveillance as a unique process composed by detection and temporal
association and can provide reliable tracklets as the input for batch optimization
and re-id techniques.
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