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Abstract
An analytical solution is obtained for the problem of an infinite elastic medium containing a rigid toroidal inhomogeneity
under remotely applied uniform strain. The traction on the torus surface is determined as a function of torus parameters
and strain components applied at infinity. The results are utilized to calculate components of the stiffness contribution
tensor of the rigid toroidal inhomogeneity that is required for calculation of the overall elastic properties of a material
containing multiple toroidal inhomogeneities. The analytical results are verified by comparison with finite element model
calculations.
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1. Introduction

The paper focuses on the problem of a rigid inhomogeneity of toroidal shape embedded in an elastic
matrix. Inhomogeneities of this kind occur in both natural and man-made materials. Figure 1 provides
several examples. Barium titanate nanotori are used as nonvolatile memory devices, transducers, optical
modulators, sensors, and more recently possible energy storage in supercapacitors [1]. Toroidal particles
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represent the preferred morphology of Li2O2 deposition on porous carbon electrodes in lithium–oxygen
batteries [2,3]. Polymeric ‘‘microdonuts’’ are used in bioengineering [4]. The toroidal shape of nanoparti-
cles is reported to be preferred for microwave absorption properties of BaTiO3 [5]. Onaka et al. [6]
reported the formation of toroidal particles of SiO2 in a Cu matrix due to internal oxidation of a Cu–Si
solid-solution polycrystal. Analytical modeling of materials with such microstructure has not been well
developed. In the homogenization schemes, the inhomogeneities are usually assumed to be of ellipsoidal
shape. This unrealistic assumption is largely responsible for insufficient linkage between methods of
micromechanics and materials science applications.

While many analytical and numerical results have been obtained for two-dimensional non-elliptical
inhomogeneities [10–13], only a limited number of numerical results and approximate estimates are
available for non-ellipsoidal three-dimensional (3D) shapes. Most of them are related to pores and
cracks. In the context of compliance of irregularly shaped cracks, certain results have been obtained
[14–18]. Various concave pores have also been analyzed [19–22].

For toroidal shapes, Argatov and Sevostianov [23] used asymptotic methods to evaluate the contribu-
tion of a thin rigid toroidal inhomogeneity into overall stiffness. Onaka and colleagues [6,24,25] derived
analytical expressions for components of the Eshelby tensor for a toroidal inclusion. We emphasize,
however, that the Eshelby tensor for non-ellipsoidal inhomogeneities is irrelevant to the problem of
effective properties of a heterogeneous material (as clearly seen from the formulation of the two Eshelby
problems; see, for example, Chen et al. [21]). The problem on the effective conductivity (thermal or elec-
tric) of a material containing toroidal insulating inhomogeneities has been addressed by Radi and
Sevostianov [26].

The present work focuses on the evaluation of the contribution provided by a rigid toroidal inhomo-
geneity to effective elastic properties. We first consider a homogeneous elastic material (matrix), with the
stiffness tensor C0 assumed to be isotropic. It contains an inhomogeneity, of volume V 1ð Þ, of a different
elastic material with the compliance and stiffness tensor C1. The contribution of the inhomogeneity to
the overall stress, per representative volume V (the extra stress, as compared to the homogeneous matrix)
is given by the fourth-rank tensor N– the stiffness contribution tensor of the inhomogeneity – defined by

Ds =
V 1ð Þ

V
N : e‘ ð1Þ

Figure 1. (a) The morphology of BaTiO3 nanotorus [1]; (b) copolymer bilayer toroidal vesicles have the potential application in
biomimicry [7]; (c), (d) polymeric toroidal particles [8], [9]
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where e‘ is the ‘‘remotely applied’’ strain. For a rigid inhomogeneity, this additional stress field Ds can
be represented as integral over the inhomogeneity boundary [27]

D s =
1

V

ð
S

s � nð Þ � x dA, ð2Þ

where n is the outward unit normal to the inhomogeneity surface S at point x.
To calculate components of the stiffness contribution tensor of a rigid toroidal inhomogeneity, a dis-

placement boundary value problem has to be solved for 3D elastic space containing such and inhomo-
geneity. This problem has been addressed previously [28–30]. In the text to follow, we modify the
previous solution to calculate the components of the stiffness contribution tensor.

2. Formulation of the problem in toroidal coordinates

We consider a rigid circular torus embedded in an infinite elastic medium subject to remotely applied
homogeneous strain field. Following Morse and Feshbach [31] and Lebedev and Silverman [32], we
introduce a toroidal coordinate system (a,b,u) (Figure 2) defined by the following relations

x =
c sinha cosu
cosha� cosb

, y =
c sinha sinu
cosha� cosb

, z =
c sinb

cosha� cosb
: ð3Þ

where c denotes the distance of the poles from the origin, a . 0, b2 [2p, p], and j2 [0, 2p].
Constant values of the bipolar coordinate a describe a family of toroidal surfaces. R0 and r0 denote

medium radius of the torus and the radius of its circular cross-section, respectively. Then

a0 = cosh�1 R0, r0ð Þ, c = r0 sinh a0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 � r2
0

q
: ð4Þ

Figure 2. Toroidal coordinate system (a, b, j). Associated Cartesian (x, y, z) and cylindrical (r, u, z) coordinate systems are also
shown. The coordinate surfaces a0 = const are the eccentric family of tori and b0 = 6const are spherical caps having there centers
along the z-axis. c is the so-called poloidal angel of the torus ring.
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With reference to an arbitrary meridian section, the poloidal angle c 2 �p,p½ � around the circle defined
by a constant value of a is associated with the toroidal coordinate b by the following relations:

sinc =
sinha sinb

cosha� cosb
and cosc =

cosha cosb� 1

cosha� cosb
: ð5Þ

Then a torus surface a = a0 can be defined parametrically as follows:

x = (R0 + r0 cosc) cosu, y = (R0 + r0 cosc) sinu, z = r0 sinc: ð6Þ

Let

Pk
n�1=2(cosha) =

G(n + 1=2 + k)

p G(n + 1=2)

ðp
0

( cosha + sinha cos t)n�1=2 cos kt dt, ð7Þ

Qk
n�1=2( cosha) =

(� 1)k

2
ffiffiffiffiffiffi
2p
p G(k + 1=2) sinhka

ðp
�p

cos nt

( cosha� cos t)k + 1=2
dt, ð8Þ

denote the associated Legendre function of semi-integer index and order k of the first or the second kind,
respectively [32–34]. They satisfy the following equations

Dk Pk
n�1=2( cosha) = 0,Dk Qk

n�1=2( cosha) = 0, ð9Þ

where the operator Dk is defined by

Dk =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
� k

r2
: ð10Þ

3. Analytical solution for a rigid toroidal inclusion in an infinite elastic medium

The total displacement field u in the infinite elastic medium containing a rigid toroidal inclusion can be
represented as a sum u= u‘ + u0 where u‘ corresponds to the remotely applied homogeneous strain field
and u0 is the correction due to the presence of the toroidal inhomogeneity. Due to the geometrical sym-
metry of the problem, the stiffness contribution tensor N is expected to be transversely isotropic.
Therefore, it is sufficient to consider the following Cartesian components of the remotely applied
strains: e‘

zz, e‘
yy, and e‘

yz. Then, the fundamental displacement field admits the following Cartesian
components

u‘
x = 0

u‘
y = e‘

yy y

u‘
z = 2e‘

yz y + e‘
zz z

ð11Þ

The corresponding displacement components in cylindrical coordinates can be written as

u‘
r =

1

2
e‘

yyr �
1

2
e‘

yyr cos 2u

u‘
f =

1

2
e‘

yyr sin 2u

u‘
z = e‘

zz z + 2e‘
yz r sinu

ð12Þ
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For the general case of arbitrary load, the inhomogeneity may be subjected to rigid body translation
and rotation. In this case the boundary conditions on the inhomogeneity surface could be represented in
the form of the Robin problem [34] as u= d+ v× x, where d and v are vectors of small translation and
rotation of the rigid inhomogeneity, and x is a position vector on the interface. In the case of tensile
strain e‘

zz and e‘
yy, the rigid motion of the torus can be ignored due to the symmetry of the applied loads

and geometry. In contrast, simple shear deformation e‘
yz leads to the rigid rotation of the toroid with

respect to its center with d= 0 and v = v ex, where v is the rotation angle of the torus (to be determined)
and ex is a unit vector along the x-axis. Then, in the cylindrical coordinate system,

ur =� v z sinu

uu =� v z cosu

uz = v r sinu ð13Þ

In the study by Krokhmal [35], it was suggested to seek for the corrective term u0 in the following form

u0
r =

1

2
u0

0(a,b) + u0
2(a,b) cos 2u

u0
u = v0

2(a,b) sin 2u

u0
z =

1

2
w0

0(a,b) + w0
1(a,b) sinu ð14Þ

where

u0
0 = f1 + grq0, w0

0 = x0 + gzq0, w0
1 = x1 + gzq1

u0
2 = f3 + c1 + grq2, v0

2 = f3 � c1

ð15Þ

g = 1=½4 (1� n)�, and the functions qk, fk, ck, and xk satisfy the following relations

Dkqk = 0,Dk + 1 fk + 1 = 0,Dk�1 ck�1 = 0,Dk xk = 0, ð16Þ

and the differential constraint

g 1 +
1

g
+ r

∂

∂r
+ z

∂

∂z

� �
qk +

∂

∂r
+

k + 1

r

� �
fk + 1 +

∂

∂r
� k � 1

r

� �
ck�1 +

∂

∂z
xk = 0, k � 0ð Þ ð17Þ

with c21 = 0.
The general solutions to equations (16) matching the displacement field of equations (12) and (13)

have the following form

qk =
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosha� cosb

p X+ ‘

n = 0

0 An, k Pk
n�1=2( cosha) cos (nb� k2p=2)

fk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosha� cosb

p X+ ‘

n = 0

0 Bn, kPk + 1
n�1=2

( cosha) cos (nb� k2p=2)

ck =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosha� cosb

p X+ ‘

n = 0

0Dn, kPk�1
n�1=2( cosha) cos (nb� k2p=2)

Krasnitskii et al. 5



xk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosha� cosb

p X+ ‘

n = 0

0 Cn, kPk
n�1=2( cosha) sin (nb� k2p=2) ð18Þ

for k=0, 1, 2, 3. The primed summation in equation (18) denotes that the first term of the sum corre-
sponding to n = 0 is halved.

The unknown coefficients An,k, Bn,k, Cn,k, and Dn,k can be determined from the boundary condition
at a = a0, together with the differential constraint (equation (17)). By using equations (11)–(14), the
boundary conditions at a = a0 require

u0
0(a0,b) =� e‘

yy rja = a0
u0

1(a0,b) =� v zja = a0
u0

2(a0,b) =
1

2
e‘

yy rja = a0

v0
1(a0,b) = v zja = a0

v2(a0,b) =� 1

2
e‘

yy rja = a0

w0
0(a0,b) =� 2e‘

zz zja = a0
w0

1(a0,b) = (v� 2e‘
yz) rja = a0

ð19Þ

Introducing the unknowns xn,k for the coefficients Bn,k and using equations (15) and (19), all the coef-
ficients in the Fourier series of equation (18) can be written in terms of xn,k as follows

A0, k = ß0, k 2x1, k � 2 cosh a0x0, k + p0, kð Þ=g,

An, k = ßn, k xn + 1, k � 2 cosh a0xn, k + xn�1, k + pn, kð Þ=g, n � 1ð Þ

Bn, k = ln, k xn, k, n � 0ð Þ

C0, 0 = 0,

C0, 1 = ß0, 1 s0, 1 � 2 x1, 1ð Þ,

Cn, k = ßn, k xn�1, k � xn + 1, k + sn, kð Þ, n � 1ð Þ

Dn, k = gn, k xn, k + qn, kð Þ, n � 0ð Þ ð20Þ

where

ßn, k =
dk

sinha0 Pk
n�1=2

( cosha0)
, gn, k =

ek

Pk�1
n�1=2

( cosha0)
, ln, k =

1

Pk + 1
n�1=2

( cosha0)
, ð21Þ

being d0 = 1/2, e0 = 0, and dk = ek = 1, for k� 1. Coefficients pn,k, qn,k, and sn,k are the Fourier coeffi-
cients for the following functions

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosha0 � cosb

p
(u0

k + ek v0
k) = dk

X+ ‘

n = 0

0 pn, k cos (nb� k2p=2),

� ek v0
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosha0 � cosb
p = ek

X+ ‘

n = 0

0 qn, k cos (nb� k2p=2), ð22Þ

w0
k sinh a0 � (u0

k + ekv0
k) sinbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosha0 � cosb
p = dk

X+ ‘

n = 0

0 sn, k sin (nb� k2p=2),

Using the decomposition given in the Appendix, we finally obtain the following relations

pn, 0 =� 4
ffiffiffi
2
p

p
e‘

yyc sinha0 Qn�1=2( cosha0)

6 Mathematics and Mechanics of Solids 00(0)



qn, 1 = 0

sn, 0 =
8
ffiffiffi
2
p

p
(e‘

yy � 2e‘
zz)c sinha0 n Qn�1=2( cosha0)

pn, 1 = 0

qn, 1 =� 4
ffiffiffi
2
p

p
v c n Qn�1=2( cosha0)

sn, 1 =
4
ffiffiffi
2
p

p
(v� 2e‘

yz)c sinha0 Q1
n�1=2( cosha0)

pn, 2 = 0

qn, 2 =� 2
ffiffiffi
2
p

p
e‘

yyc sinha0 Q1
n�1=2( cosha0)

sn, 2 = 0

ð23Þ

and obtain the following infinite system of algebraic equations for the unknown variables xn,k:

an, kxn + 1, k � bn, k xn, k + cn, k xn�1, k = dn, k , ð24Þ

where

an, k =� 2(n + k + dn)ßn + 1, kcosha0 + (2n + 1+ 2=g)ßn, k � n + k + 1=2ð Þ n + k + 3=2ð Þln + 1, k � gn + 1, k,

bn, k =� 2 n + k + 1=2ð Þßn + 1, k + 2dn(1+ 2=g)ßn, kcosha0 + 2en(n� k � 1=2)ßn�1, k

� 2 n + k + 1=2ð Þ(n� k � 1=2)ln, k � 2dngn, k ,

cn, k = en½2(n� k � 1=2)ßn�1, k cosh a0 � (2n� 1� 2=g)ßn, k � (n� k � 1=2)(n� k � 3=2)ln�1, k � gn�1, k�,
dn, k = gn + 1, k qn + 1, k � 2dngn, k qn, k + engn�1, k qn�1, k � n + k + 1=2ð Þßn + 1, k(pn + 1, k + sn + 1, k)

� dn(1+ 2=g)ßn, k pn, k + en(n� k � 1=2)ßn�1, k(pn�1, k � sn�1, k) + en 2n ßn, ksn, k,

ð25Þ

for n� 0. Note that for k = 0, 2 equation (25) holds for n� 0, while for k = 1 it holds for n� 1.
A necessary condition for the series in equation (18) to be convergent is that the coefficients An,k, Bn,k,

Cn,k andDn,k tend to zero as n! ‘. Thus, the unknown coefficients xn,k have to converge to zero. In this
case, the infinite system of equations (24) can be solved explicitly using the procedure for tridiagonal
matrix

xn =
X+ ‘

m = n

hm + 1

Ym
k = n + 1

jk ð26Þ

where

jn + 1 =
an

bn � cnjn

,hn + 1 =
cnhn � dn

bn � cnjn

:

From the conditions for n=0 and k=0, 2

j1 =
a0

b0

,h1 =� d0

b0

:

From the conditions for n=0 and k=1

j1 = 0,h1 = 0:

Krasnitskii et al. 7



Once the unknown coefficients xn,k have been determined, the total displacement field in cylindrical
coordinates is given by the sum of equations (12), (13), and (14). Then, the corresponding strain field
can be calculated from the compatibility condition:

err =
∂ur

∂r
, ejj =

1

r

∂uj

∂j
+

ur

r
, ezz =

∂uz

∂z
,

erj =
1

2

1

r

∂ur

∂j
+

∂uj

∂r
� uj

r

� �
, erz =

1

2

∂ur

∂z
+

∂uz

∂r

� �
, ejz =

1

2

1

r

∂uz

∂j
+

∂uj

∂z

� �
,

ð27Þ

where we used connection between derivatives in cylindrical and toroidal coordinate systems

∂

∂r
=

1

c
( cosha cosb� 1)

∂

∂a
+ sinha sinb

∂

∂b

� �
,

∂

∂z
=

1

c
� sinha sinb

∂

∂a
+ ( cosha cosb� 1)

∂

∂b

� �
, ð28Þ

and expressions for derivatives of the associated Legendre functions given in the Appendix. Finally, the
stress field is obtained from the Hooke’s law

s =
E

1 + n
e +

n

1� 2n
tr e I

� �
, ð29Þ

where E and n are the Young’s modulus and Poisson ratio of the isotropic matrix and I is the second-
rank unit tensor.

The Cartesian components of the stress tensor s can be easily expressed via cylindrical components

sxx = srrcos
2u + suusin

2u� 2srusinu cosu,

syy = srrsin
2u + suucos

2u� 2srusinu cosu,

sxy = sru cos2u� sin2u
	 


+ srr � suu
	 


sinu cosu,

sxz = szrcosu� szu sinu,

syz = szrsinu� szu cosu:

ð30Þ

The traction vector at the torus surface a = a0 is t=2ea �s with the outer unit normal

n=
1

cosha0 � cosb
(cosha0 cosb� 1) cosj, (cosha0 cosb� 1) sinj, sinha0 sinbf g, ð31Þ

The principal moment produced by torus surface tractions is

M=

ð
s

t×x dA ð32Þ

where

x=
c

cosha0 � cosb
fsinha0 cosu, sinha0 sinu, sinbg ð33Þ

is the position-vector of a point on the torus surface. The infinitesimal element of torus surface is given
as [31]

8 Mathematics and Mechanics of Solids 00(0)



dA =
c2 sinha0

(cosha0 � cosb)2
dudb: ð34Þ

The solution obtained of the boundary value problem for an elastic medium with rigid torus is speci-
fied below for three load cases: e‘

zz, e
‘
yy and e‘

yz.

(i) Tension along z-axis. The nonzero component of remote elastic strain is e‘
zz. In this case the total

displacement field has axial symmetry about the z-axis and vanishes on the surface of the torus.
The maps for the displacement components uy and uz are shown in Figure 3 for the meridional
cross-section of the matrix near the inhomogeneity.

The distribution of Cartesian component of stress vector on the torus surface (a=a0) is shown in
Figure 4.

(ii) Tension along y-axis. The nonzero component of remote elastic strain is e‘
yy. The total displace-

ment vanishes on the surface of the rigid toroidal inclusion. The distribution of the displacement
components uy and uz is illustrated in Figure 5 for the meridional cross-section of the matrix
near the inhomogeneity. The distribution of Cartesian component of stress vector on the torus
surface (a=a0) is shown in Figure 6. It is seen that the boundary condition are satisfied on rigid
torus surface for both (i) and (ii) load cases.

(iii) Simple shear in yz plane. The nonzero component of remote elastic strain is e‘
yz. Under shear,

the toroidal inhomogeneity has rigid rotation on angle v to be determined from the moment
equilibrium condition with respect to the inhomogeneity

Mv +Mg = 0 ð35Þ

where Mv is resultant moment required to produce rotation on angle v and Mg is the reactive moment
caused by simple shear e‘

yz. Moments could be calculated using the equation (32)

Mv =

ð
S

t(e‘
yz = 0)×x dA

My =

ð
S

t(v = 0)×x dA ð36Þ

Figure 3. The distribution of the (a) ux = uy and (b) uz displacement components near rigid toroidal inhomogeneity (R0/r0 = 2) in
infinite media under tension along the z-axis, i.e. for e‘

zz = 1 and e‘
yy = g‘

yz = 0. The maps are plotted for a meridian plane y = 0. The
displacement values are given in units of R0 for n = 0.3.

Krasnitskii et al. 9



Due to the linearity of the problem, forces and moments are proportional to the displacements and
rotations, respectively. Then, accounting for the equilibrium equation (34), the rotation angle can be cal-
culated as

v = 2
Mg

Mv

����
���� e‘

yz ð37Þ

The dependence of v on the aspect ratio of torus is shown in Figure 7.
The distribution of the displacement components uy and uz under simple shear e‘

yz is shown in Figure 8
for the meridional cross-section of the matrix near the torus.

The distribution of Cartesian component of the traction vector on torus surface is shown in Figure 9.
We now can calculate the components of the stiffness contribution tensor N for a rigid toroidal inhomo-
geneity using equations (1) and (2), namely

N : e‘ =
1

V �

ð
s

tx dA, ð38Þ

where V �= 2p2r2
0R0 is the volume of the torus and dA is the infinitesimal element of torus surface (see

equation (34)). In the toroidal coordinate system traction t and position vector x is given by equations
(29)–(31) and (34). Then the normalized dependence of the stiffness contribution tensor N on torus
aspect ratio l = r0/R0 can be obtained from equation (38).

Figure 4. The distribution of the (a) tx, (b) ty, and (c) tz traction components at the torus surface a = a0, R0 / r0 = 2 with respect to
azimuth u and poloidal angel c. The nonzero component of remote strain is e‘

zz = 1. The stress values are given in units of E for
n = 0.3.

10 Mathematics and Mechanics of Solids 00(0)



4. Finite element model

To verify the analytical solution, we also calculate components of the stiffness contribution tensors using
finite element analysis (FEA). To produce the necessary 3D mesh of the considered shape we start by
generating surface mesh in a custom MATLAB script [36,37]. A torus surface is defined parametrically
using equation (6). Since the coordinates are stored in the form of an ordered list they can easily be con-
nected into the continuous mesh with triangular elements. Note that each mesh generated using our
script is composed of approximately 30,000 surface elements (see Figure 10).

Torus surface mesh is then placed into a large reference volume V that has cubic shape with sides at
least five times bigger than the largest linear dimension of the inhomogeneity to reduce boundary effects
and simulate remote loading. This setup is auto meshed with non-linear tetrahedral 3D elements due to
higher accuracy of results compared to linear elements. An example of the mesh is given in Figure 11.
To simulate perfectly rigid inhomogeneity we assume that the ratio of matrix and inhomogeneity
Young’s moduli is Ei/E= 1010. The boundary ∂V of the reference volume I is subject to the kinematic
conditions

uj∂V = e‘ � x ð39Þ

At the next step, to find all nonzero components of tensor N we perform a set of six load cases in
FEA package MSC Marc Mentat: three normal loadings in the directions of three global coordinate
axes and three shear loads according to equation (39). Once the numerical simulations are completed
for the given shape, the result files are processed to calculate all volume-averaged stress components
within V from each load case:

Figure 5. The distribution of the (a) ux, (b) uy, and (c, d) uz displacement components near rigid toroidal inhomogeneity (R0 / r0 = 2)
in infinite media under tension along the y-axis, i.e. for e‘

yy = 1 and e‘
zz = g‘

yz = 0. The maps are plotted for the meridian planes: (a)
and (c) for y = 0; (b) and (d) for x = 0. The displacement values are given in units of R0 for n = 0.3.
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sij

� 
m

=
1

V

XNe

l = 1

(s(l)
ij )

m
V (l) i, j = 1, 2, 3; m = 1, 2, :::, 6ð Þ ð40Þ

where sij

� 
m
is the volume average of the stress component ij calculated from the mth load case, V is

the reference volume, (s(l)
ij )m is the stress component ij at the centroid of the finite element l calculated

Figure 6. The distribution of the (a) tx, (b) ty and (c) tz traction components at the torus surface a = a0, R0 / r0 = 2 with respect to
azimuth u and poloidal angel c. The nonzero component of remote strain is e‘

yy = 1. The stress values are given in units of E for
n = 0.3.

Figure 7. Dependences of rotation angle v of inclusion with respect to torus aspect ratio r0/R0 for g‘
yz = 1 and different values of

Poisson ratio 0.00, 0.30, and 0.45.
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from the mth load case, V(l) is the volume of the element l, and Ne is the total number of elements in
the model.

Figure 8. The distribution of the (a) uy and (b) uz displacement components near rigid toroidal inhomogeneity (R0/r0 = 2) in infinite
media under simple shear in the yz plane, i.e. for g‘

yz = 1, v ’ 0.794, and e‘
yy = e‘

zz = 0. The maps are plotted for the meridian plane
x = 0. The displacement values are given in units of R0 for n = 0.3.

Figure 9. The distribution of the (a) tx, (b) ty, and (c) tz traction components at the torus surface a = a0, R0 / r0 = 2 with respect to
azimuth u and poloidal angel c. The nonzero component of remote strain is g‘

yz = 1. The stress values are given in units of E for
n = 0.3.
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Given the average stress components we then calculate the stiffness contribution tensor from:

Nijkl(e
‘
kl)m = sij

� 
m
� (s‘)m summation over k, l = 1, 2, 3ð Þ ð41Þ

where (e‘
kl)m are the components of the prescribed strain and (s‘

ij )m are the stress components inside V in
the absence of the inhomogeneity. Components of the stiffness contribution tensors are than normalized
by particle volume fraction and matrix Young’s modulus E as follows, �Nijkl =

V
EV� Nijkl, where V

* is torus
inhomogeneity volume. Figure 12 illustrates comparison of the nonzero components of stiffness contri-
bution tensor calculated analytically using equation (38) with ones obtained by FEA.

5. Approximation by spheroid

We now compare the obtained results with ones for stiffness contribution tensor of an oblate rigid spher-
oid of the aspect ratio x components of this tensor can be written as follows:

N1111 =
p6

4 p1p6 � p2
3

	 
 +
1

2p2

, N1122 =
p6

4 p1p6 � p2
3

	 
� 1

2p2

, N1212 =
1

2p2

, N3333 =
p6

p1p6 � p2
3

;

N1133 =� p3

2 p1p6 � p2
3

	 
 , N1313 =
1

p5

,

where

Figure 10. Torus surface meshes for different ratio r0/R0 (a) 0.5 and (b) 0.3.

Figure 11. Example of a mesh density of the matrix and torus with r0/R0 = 0.5: (a) general view; (b) close-up view of the highlighted
region.
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p1 =
1

2m
½(1� k)f0 + k f1�; p2 =

1

2m
½(2� k)f0 + k f1�, p3 = p4 =� k f1

m
,

p5 =
1

m
½1� f0 � 4k f1�, p6 =

1

m
½(1� k)(1� 2f0) + 2k f1�:

ð42Þ

and the following notation is used:

m =
E

2(1 + n)
,k =

1

2(1� n)
, f0 =

x2(1� g)

2(x2 � 1)
, f1 =

x2

4(x2 � 1)
½(2x2 + 1)g � 3�,

g =

1

x
ffiffiffiffiffiffiffiffi
1�x2
p arctan

ffiffiffiffiffiffiffiffi
1�x2
p

x
, oblateshape x\1ð Þ

1

2x
ffiffiffiffiffiffiffiffi
x2�1
p ln

x +
ffiffiffiffiffiffiffiffi
x2�1
p

x�
ffiffiffiffiffiffiffiffi
x2�1
p , prolateshape x . 1ð Þ

8><
>: ð43Þ

Argatov and Sevostianov [23], using asymptotic methods, showed that in-plane components of the
stiffness contribution tensor of a thin rigid torus can be approximated with good accuracy by the corre-
sponding components calculated for a rigid spheroid that has the same radius and the same volume.
For an oblate spheroid, it gives the aspect ratio of the spheroid in terms of the aspect ratio of the torus
l = r0=R0 as follows:

Figure 12. Normalized nonzero components of the stiffness contribution tensor of inhomogeneity (a) N1111 = N2222, (b) N3333, (c)
N1122, (d) N1133, (e) N1212, and (f) N1313 = N2323 as function of the aspect ratio r0/R0. The solid curves correspond to the rigid
toroidal inclusion; The dashed curves correspond to the rigid ellipsoidal inclusion; the FEM results are noted by marks. The stiffness
values are given in units of eijE for different values of Poisson ratio 0.0, 0.3, and 0.45.
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x =
3p l2

2 (1 + l)3
: ð44Þ

Equation (44) gives us a spheroid that has the same volume and the same radius as the torus. These com-
ponents are shown in Figure 12(a), (c), and (e) as functions of l.

Out-of-plane components of the stiffness contribution tensor of a rigid torus can be approximated by
the in-plane components of a rigid prolate spheroid that has the same radius and the same volume. In
this case, to preserve the radius and the volume, the aspect ratio of the spheroid has to be

x =
3p

2l
ð55Þ

Figure 12(b), (d), and (f) illustrate a comparison between the components of the stiffness contribution
tensors for rigid inhomogeneities of toroidal and prolate spheroidal pores. It is seen that the lines are
quite close to each other with the exception of N1313.

6. Discussion and conclusions

We solved an elasticity boundary-value problem for an infinite elastic medium containing a rigid toroi-
dal inhomogeneity subjected to remotely applied uniform strains. The solution is obtained in explicit
form of associated Legendre function’s series using the approach proposed by Eroshkin and Tsukrov
[27]. Displacement and traction is determined as a function of coordinates, torus parameters and strain
components applied at infinity. We managed to combine the procedures for solving the axisymmetric
(k=0) and asymmetric (k� 1) case and write the solution in the most general form. The boundary-value
problems were reduced to infinite systems of algebraic equations with three-diagonal matrices. We suc-
ceeded in extending the classical method of solving finite algebraic equations with a tridiagonal matrix
to the case of an infinite number of equations.

Considering the toroidal inhomogeneity subject to simple shear in the meridional plane, we have
taken into account the rigid rotation of the inhomogeneity. The angle of rotation can be calculated from
the equation of moment equilibrium. The angle decreases when the torus aspect ratio increases.

The obtained solution is used to get explicit expressions for the components of stiffness contribution
tensor of the rigid toroidal inhomogeneity. The results are verified by comparison with finite element
simulating. The components of the stiffness contribution tensor for a torus are compared with ones for
a rigid spheroid having the same radius and the same volume as torus. It is shown that the components
of the stiffness contribution tensor for an oblate spheroid serve as good approximations for correspond-
ing in-plane components of the torus while two out-plane components can be approximated by compo-
nents of the stiffness contribution tensor for a prolate spheroid.

The expression for stiffness contribution tensor yields the possibility to calculate effective elastic prop-
erties of a material containing multiple toroidal inhomogeneities. Indeed, if interaction between the
inhomogeneities is neglected, each inhomogeneity can be assumed to be subjected to the same remotely
applied strain, their contributions into the change in the stiffness tensor can be treated separately. In
none interaction approximation the extra stiffness due to inhomogeneities of the same shape can always
be represented in the form

DC =
1

V

X
i
ViN

ið Þ ð56Þ

where summation over inhomogeneities may be replaced by integration over their orientation. The non-
interaction approximation, in turn, serves as the basic building block for various homogenization
schemes – self-consistent, differential, Mori–Tanaka, Maxwell, etc. [38].
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Appendix

Legendre functions

The following recursive relations hold for the function Pk
n�1=2

:

P1
n�1=2( cosha) =

n + 1=2

sinha
½Pn + 1=2( cosha)� cosha Pn�1=2( cosha)�,

P2
n�1=2( cosha) = (n2 � 1=4) Pn�1=2( cosha)� 2 cotha P1

n�1=2( cosha),

P3
n�1=2( cosha) = (n2 � 9=4) P1

n�1=2( cosha)� 4 cotha P2
n�1=2( cosha):

By using the recursive properties of Legendre functions [35] one may obtain

d

da
Pn�1=2( cosha) =

1 + 2n

2 sinha0

½Pn + 1=2( cosha)� cosha Pn�1=2( cosha)�, ðÞ

d

da
Pk

n�1=2( cosha) = n2 � k � 1

2

� �2
" #

Pk�1
n�1=2( cosha)� k cotha Pk

n�1=2( cosha), k � 1ð Þ

and similar relations hold for Q
n�1=2

.
The following useful definite integrals involving the Legendre functions and associate Legendre func-

tions of first and second kind, denoted as Pk
n�1=2

and Qk
n�1=2

, respectively, have been used in the present
work:

ðp
�p

sin b sin nb db

(cosh a� cos b)3=2
=

4
ffiffiffi
2
p

n
Qn�1=2 cosh að Þ, ðA1Þ

ðp
�p

cos nb db

(cosh a� cos b)3=2
=

4
ffiffiffi
2
p

sinh a
Q1

n�1=2 cosh að Þ, ðA2Þ
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