
The Autonomic Cloud: A Vision of Voluntary,
Peer-2-Peer Cloud Computing

Philip Mayer1, Annabelle Klarl1, Rolf Hennicker1, Mariachiara Puviani2, Francesco Tiezzi3,

Rosario Pugliese4, Jaroslav Keznikl5, Tomáš Bureš5

1Ludwig-Maximilians-Universität München, Germany 2Università di Modena e Reggio Emilia, Italy 3IMT

Institute for Advanced Studies Lucca, Italy 4Università degli Studi di Firenze, Italy 5Charles University in Prague,

Faculty of Mathematics and Physics, Czech Republic

Abstract—Autonomic computing — that is, the development
of software and hardware systems featuring a certain degree
of self-awareness and self-adaptability — is a field with many
application areas and many technical difficulties. In this paper,
we explore the idea of an autonomic cloud in the form of a
platform-as-a-service computing infrastructure which, contrary
to the usual practice, does not consist of a well-maintained set of
reliable high-performance computers, but instead is formed by
a loose collection of voluntarily provided heterogeneous nodes
which are connected in a peer-to-peer manner. Such an infras-
tructure must deal with network resilience, data redundancy,
and failover mechanisms for executing applications. We discuss
possible solutions and methods which help developing such (and
similar) systems. The described approaches are developed in the
EU project ASCENS.

I. INTRODUCTION

At the very latest, the seminal article of Kephart and

Chess [1] has brought the awareness of autonomic computing

ideas to the global computer science researcher community

(pun intended). Autonomic systems, which work in distributed

environments and react to unforeseen, dynamically evolving

situations, require self-* (self-star) properties, which include

self-awareness, self-expression, and self-adaptation [2]. Adapt-

ing to new situations is necessary not only on the level of

individual components, but also on a collaboration level.

The EU project ASCENS [3] is one of the many initiatives

contributing to the vision of autonomic computing. It advo-

cates an approach in which autonomic systems are formed by

individual building blocks called service components (SCs)

which are combined in a dynamic manner to form service
component ensembles (SCEs). ASCENS has the goal of devel-

oping a coherent, integrated set of methods and tools to build

software for ensembles; a specific focus lies on foundational

issues that arise in the development of these kinds of systems.

All results produced by ASCENS can be found online [4].

In this paper, we discuss one of the case studies of the

ASCENS project, which is a vision of an autonomic cloud:

A cloud which is based on voluntary computing and using

peer-to-peer technology to provide a platform-as-a-service. We

call this cloud the Science Cloud Platform (SCP) since the

cloud is intended to run in an academic environment (although

this is not crucial for the approach). We present the idea

of such a cloud system along with some of the methods of

ASCENS which have been used in this context. We believe

that awareness is a key enabler of the SCP, and we hope to

shed more light on its role in this paper.

The remainder of this work is structured along the lines

of the methods used in the case study. Firstly, we introduce

the idea of the cloud itself (section II). Afterwards, three

sections introduce ASCENS methods which have been used to

model and develop the cloud (awareness patterns in section III,

modeling in section IV and system specification in section V).

A prototype implementation in Java is discussed in section VI.

An excursion into the area of mobile cloud computing is

presented in section VII. After a discussion of related work in

section VIII, we conclude in section IX.

II. AN AUTONOMIC CLOUD

The idea behind the scenario we discuss in this paper

is that of an autonomic cloud computing platform; or, in

other words, a distributed software system which is able to

execute applications in the presence of certain difficulties such

as leaving and joining nodes, fluctuating load, and different

requirements of applications to be satisfied.

We integrate elements from three different computing areas

to set up this vision, which will be discussed in the follow-

ing three subsections; these are cloud computing, voluntary

computing, and peer-to-peer computing.

A. Cloud Computing

Firstly and obviously, we deal with cloud computing. Cloud

computing refers to provisioning resources such as virtual

machines, storage space, processing power, or applications to

consumers “on the net”: Consumers can use these resources

without having to install hardware or software themselves and

can dynamically add and remove new resources.

There are three commonly accepted levels of provisioning

in cloud computing, which are infrastructure, platform, and

software. In the first, low-level resources such as virtual

machines are offered. In the second, a platform for execut-

ing custom client software is provided. On the third level,

complete applications (such as an office suite) is provided,

mostly directly to end users. In any case, clouds are usually

offered from one or more centrally coordinated locations; the

servers providing the infrastructure run in a well-maintained

data center and are under the control of a single entity.

2013 IEEE 7th International Conference on Self-Adaptation and Self-Organizing Systems Workshops

978-1-4799-5086-7/13 $31.00 © 2013 IEEE

DOI 10.1109/SASOW.2013.16

89

In the ASCENS cloud computing case study, we will be

concerned with a Platform-as-a-Service (PaaS) solution. The

goal of the case study is providing a software system (called

the Science Cloud Platform, SCP) which will, installed on

multiple virtual or non-virtual machines, form a cloud provid-

ing a platform for application execution (these applications in

turn providing SaaS solutions). The applications running on

top of the platform are assumed to have requirements similar

to Service Level Agreements (SLAs), which includes where

they can and want to be run (regarding CPU speed, available

memory, or even closeness in network terms such as latency

to other applications or nodes).

B. Voluntary Computing

The second area is voluntary computing. This term usually

refers to solutions in which individuals (consumers) offer part

of their computing power to take part in a larger computing

effort. The classic examples are the @home programs, of

which SETI@Home [5] where personal computers are used

in the search for extra-terrestrial intelligence is probably the

most famous. Usually, voluntary computing is focused on

computation; it depends on an agency which provides a

centralized infrastructure into which people may plug-in, get

their data from, perform calculations, and report back.

In the ASCENS cloud computing case study, we will adopt

the voluntary computing approach insofar as we imagine indi-

vidual entities (which includes natural persons, but universities

as well) to voluntarily provide computing power in the form

of cloud nodes which they can add or remove at any time

as they see fit; i.e. nodes can come and go without warning,

and their load may change outside of cloud concerns. They

may include vastly different hardware, which includes CPU

speed, available memory, and also specialized hardware as for

example graphics processing chips.

C. Peer-to-Peer Computing

Finally, the last area is peer-to-peer computing. First popu-

larized in the infamous area of file sharing, the basic idea of

peer-to-peer computing is the lack of a centralized structure.

There is no single node in the network on which the func-

tionality of the overall system depends; rather, a decentral-

ized communication approach is used which ideally is stable

through the process of nodes coming and going, and offers no

single point of failure, or single point of attack.

The ASCENS cloud computing case study is based on this

idea; i.e. there is no centralized component in this cloud and

nodes have to use some protocol to agree, in a decentralized

manner, on where and what to execute. As already discussed

above in the voluntary computing part, nodes may thus come

and go without having to inform a central entity.

D. Bringing it all Together

Thus, all in all, we have a voluntary, peer-to-peer based

platform-as-a-service solution. Such an infrastructure requires

autonomic nodes which are (self-)aware of changes in load

(either from cloud applications or from applications external

to the cloud) and of the network structure (i.e. nodes coming

and going) which requires self-healing properties (network

resilience). Another issue is data redundancy in case nodes

drop out of the system, which requires preparatory actions.

Finally, executing applications in such an environment requires

a fail-over solution, i.e. self-adaptation of the cloud to provide

what we may call application execution resilience.

It is not necessary in this context to prevent participation of

partially centrally-controlled entities such as IaaS providers.

In fact, parts of the SCP may run on IaaS solutions which

enables it to spawn new virtual machines or shut them down

again. Such additional functionality can be used to balance

load or to conserve energy.

To sum up in one sentence, the goal of the SCP is to deploy
and run user-defined applications on the p2p-connected web
of voluntarily provided machines which form the cloud.

III. ADAPTATION IN THE CLOUD

A common approach to understanding, categorizing, and

designing IT systems is the use of patterns, i.e. descriptions

of characteristics which have proven to be beneficial for the

implementation of a system. Within ASCENS, a catalog of

architectural design patterns has been developed [6] which are

intended to be used to build adaptive components and systems.

The design patterns have been studied with regard to the

cloud case study [7]. In this section, we will discuss two

patterns which have been used in the cloud.

Firstly, we need to discuss individual cloud nodes (which

we call SCPis, for Science Cloud Platform instances). In

this regard, the proactive service component pattern [7] best

captures the behavior of such a node. This pattern enables

the SCPi, which is a Service Component (SC) in the terms

of ASCENS and the adaptation pattern itself, to have an

internal feedback loop, or, in other words, implicitly contain

an Autonomic Manager (AM) which is responsible for driving

the adaptation through this feedback loop. These kinds of

components are used because nodes in the cloud are goal-

oriented in nature and actively try to adapt their behavior,

even without an external call (e.g. for saving energy). A

visualization of such a component is shown in Figure 1.

In the cloud, one such node uses its sensor to read environ-

mental values such as CPU speed, current load, etc.; effectors

may be used to configure an IaaS solution. Inputs and outputs

refer to a user interacting with deployed applications. The

control and emitter ports are used for ensemble adaptation

(see below).

By using the proactive service component pattern, individual

SCP nodes are self-aware and able to self-adapt, each fol-

lowing the goal of achieving best performance for deployed

apps while saving energy. The internal feedback loop created

through the AM part of the node is used for checking these

conditions and adapting properly.

Furthermore, multiple nodes work together to execute appli-

cations. On this level, the p2p negotiation service components
ensemble pattern [7] is a fitting description of this behavior,

since each node (potentially) communicates with every other

node for adaptation, there is no central coordinator, and each

90

Figure 1. Proactive Service Component

node follows a goal (which in this case is the same for each

node, though with different data depending on deployed apps).

The use of this pattern is also possible because the components

that form the ensemble are proactive and need to communicate

with others to propagate adaptation. This is done, as indicated

above, through the control and emitter interfaces of the service

component.

Using this pattern, multiple SCP nodes work together: For

each application, one ensemble consisting of a subset of the

overall cloud nodes is formed which is then responsible for

executing the application (which includes deployment, finding

an executor, executing, and monitoring). We call such an

ensemble an SCPe (Science Cloud Platform ensemble).

IV. MODELING ENSEMBLE BEHAVIOUR

Modeling the behavior of the individual components and

the ensembles which implement the cloud functionality is

challenging due to the complexity and dynamics of the par-

ticipating ensembles. In ASCENS, existing techniques such

as component-based software engineering ([8], [9]) have thus

been augmented with features that focus on the particular char-

acteristics of ensembles. Among these are the fact that ensem-

bles are dynamically formed on demand, realizing collective,

goal-oriented behavior through communication between the

individual participants; furthermore, multiple ensembles may

run concurrently using the same basic resources, but dealing

with different tasks on a higher level. To be able to model these

issues on a first-class basis, the Helena approach [10] has been

developed, which uses a UML-like notation for collaborations

founded on a rigorous formal semantics.

A particular property of ensembles is the fact that although

the platform on which ensembles run may itself be plain

component-based, each component can take part in different

ensembles and in the course of doing so take up different,

ensemble-specific roles [11]. A service component may play

different roles at the same time, both in one ensemble and in

different, concurrently running ensembles; it may also dynam-

ically change its role(s) in order to adapt to new situations.

The Helena approach is centered on this notion of roles

and the collaboration of roles in ensembles for pursuing the

ensemble goal. In the present case study, there may be multiple

such ensembles; one for each of the applications which are

executed within the cloud. Each ensemble has the goal of

deploying the application, finding an execution target node,

executing, and finally monitoring the application execution.

This is illustrated in Figure 2.

Figure 2. Ensembles in the Helena approach

The first or basic level (on the bottom of the figure) shows

the pool of all SCPi nodes which are, in principle, able

to provide resources to the cloud. In the figure, these are

the four nodes labeled i1 to i4, which may be physical or

virtual machines on which instances of the science cloud

platform (SCPis) are running. Each of these may participate

in ensembles for executing an application. As indicated in the

figure, executing an application requires different responsibil-

ities taken up by different roles in the ensemble. These are

the deployer (node from which the application originates), the

initiator (leading the search for an execution node), the actual

executor, and a monitor which keeps tab on the executor.

As an example, the figure shows two different ensembles,

each executing one application, where nodes concurrently play

different roles or do not participate at all.

Ongoing research in Helena currently focuses on the de-

scription of the behavior of each role as well as on the behavior

on the ensemble level. These descriptions are given a rigorous

formal foundation, which can then be exploited for ensuring

that the ensemble behavior actually reaches the desired goal.

We believe that the analysis of ensembles of collaborating

roles can be beneficial to developers due to the reduction of the

complexity of the models, since the combination of all roles

within one service component must only be integrated into a

component-based architecture in the following implementation

phase. This is discussed in the next section, where a language

is presented to which a systematic transition from Helena is

currently being investigated.

V. SYSTEM SPECIFICATION IN SCEL

ASCENS has been studying linguistic primitives suitable for

the autonomic computing paradigm, and has developed the

language SCEL (Software Component Ensemble Language)

[12], [13] which is geared towards describing autonomic

systems, taking into consideration the behaviors, knowledge,

and aggregations involved, based on specified policies. SCEL

in particular supports programming context-awareness, self-

awareness, adaptation and ensemble-wide interactions.

91

In the following, we discuss the application of SCEL to the

service components of the cloud case study. The concept of

a service component – or autonomic component – lies at the

heart of SCEL. This concept directly matches the notion of an

SCPi, i.e. an individual node in the science cloud. Furthermore,

the notion of an ensemble in SCEL matches the notion of an

SCPe, since both are based on components’ attributes, which

in the science cloud usually take the form of participation in

the management of a cloud application.

As an example, we consider here the SCEL implementation

for a situation in the cloud where a node is overloaded, i.e. the

CPU load exceeds a certain threshold and an application needs

to be moved to a different node. This scenario includes the use

of an IaaS solution, that is we include the ability to spawn a

new virtual machine and moving the application there.

The full SCEL specification for the scenario of high load

and moving an element to a newly created VM can be found

in [13]. We will outline the general idea of the behavior here.

The SCPi where the application is running initially is the

SCEL component I[K,Π, (AM [ME])]. The interface I of the

component encapsulates the remaining three elements. K rep-

resents the knowledge of the SCPi, which includes attributes

relevant for adaptation. Π is the policy the component follows,

which in this case is specified in SACPL, the SCEL Access

Control Policy Language [13], discussed below. AM [ME]
is the (controlled) composition of processes AM and ME
running in the component.

As we have seen in the section on adaptation patterns,

an SCPi follows the proactive service component pattern.

This means it contains, as in a SCEL component, internal

knowledge and goals. In the above definition, the main work

of the node, including the application logic, is performed in

the Service Component (SC) which here is called Managed

Element (ME). The component also contains its own, im-

plicit, Adaptation Manager (AM), which specifies actions for

adaptation (in particular, spawning a new machine).

The actual adaptation logic (i.e., when to adapt) is dealt

with using the policy Π. The component’s interface I exposes

the attribute CPULoad, whose value (i.e., a percentage of

load) is a context information sensed by the component from

the underlying infrastructure. The policy Π detects when the

attribute value is over a given threshold (e.g., 80%) and

triggers the autonomic manager. More specifically, the policy

says that the main application logic, which is part of ME,

may only be performed as long as CPULoad is less than the

threshold, while the spawning of a new machine (realized by

means of an action new in AM) may not be performed until

CPULoad is greater than the threshold.

An interesting problem in this context is that Π, ME and

AM in a dynamically created VM are the same as those within

the corresponding source node of the science cloud; however

the application logic which is part of ME may only be

executed on one machine at a time (since we assume that the

application is a singleton). To ensure such behavior, multiple

options have been explored with different power of expression.

First, it is possible to add a new attribute to the component

which keeps track of its execution status; AM is thus modified

to properly set such an attribute. Second, the policy Π can be

extended to include obligations that are actions executed as

part of a node switch to take care of dealing with the execution

status attribute (in place of AM). Finally, it is possible to

use several policies instead of a single one, and dynamically

switch between policies on an adaptation by means of a sort

of automata where states are policies and state transitions

represent adaptivity events (expressed as policy targets). The

details of these three options are discussed in [13].

To summarize, the above description has shown the use of

SCEL and a policy language, SACPL, to model a scenario

within the science cloud where high load of a node leads to

the spawning of a new virtual machine with an additional SCPi

which can take over the application logic. An implementation

of these abstract descriptions can be done in Java (as discussed

in the following chapter) or more directly in jRESP [13], which

is currently work in progress.

VI. IMPLEMENTING THE SCIENCE CLOUD PLATFORM

As identified in the previous sections, the cloud system will

need to be implemented in a peer-to-peer manner with a heavy

focus on being aware of changes in the available nodes and

the load of each node. There are obviously multiple options of

implementing such a system, and we are experimenting with

several of them. Here, we are reporting on an implementation

which is based on the existing peer-to-peer substrate Pastry

[14] and accompanying protocols as well as an interpretation

of the ContractNET protocol [15] used for the decision process

on application execution.

The implementation is split into three layers: A network

layer, which implements routing and message passing along

with network self-healing properties; a data layer which han-

dles data storage, including redundancy, and an application

layer, which handles execution and fail-over of applications.

On the network level, the nodes which form the science

cloud need to know about one another and be able to pass

messages, either to single nodes (unicast), a group of nodes

(multi- or anycast), or all nodes (broadcast). Given that the

network can potentially become large, it is advisable that not

all nodes need to know all other nodes. Furthermore, routing

needs to be stable under adverse conditions (i.e. nodes that are

part of the science cloud leave, or new nodes are added).

We use the existing protocol Pastry [14] in the form

of the FreePastry implementation [16] as the basis of this

layer, extended with the SCRIBE protocol [17] for any- and

broadcast purposes. The inner workings of Pastry are similar

to that of classic Distributed Hash Tables (DHTs), that is,

each node is assigned a unique hash and nodes are basically

organized in a ring structure, with appropriate shortcuts for

faster routing. The protocol has built-in network resilience

(self-healing). Efforts are under way to verify these properties

formally [18].

The second layer handles data. When an application is

deployed, the code needs to be available to all nodes which can

possibly execute it; furthermore, application data needs to be

stored in such a way that resuming an application, after a node

which ran it failed, is possible. We thus need data storage with

data redundancy, not only of immutable data (application code)

92

but also of mutable data (application data). Data is handled on

top of Pastry using gcPAST, which is an implementation of

the PAST protocol [19] with support for mutable data. PAST

basically implements a DHT and includes a data redundancy

mechanism which works by keeping k copies of a data package

in the nodes surrounding the primary storage node (which is

the one the data package hash is closest to).

The final layer, and the one implementing the actual

platform-as-a-service idea, is the application layer. Applica-

tions can only run on some machines (based on requirements)

so these must be found in the network. Every user of the cloud

runs (at least) one instance of an SCPi and uses this instance

both for deploying and using applications.

Deploying an application first means simply storing the

executable code (as an OSGi bundle), which is based on

the primary storage node idea introduced above. The primary

storage node assumes the role of the initiator in the Contract-

NET protocol [15] and uses a SCRIBE-based communication

channel to request bids for execution. The request for bids

includes the requirements of the application extracted from

the stored bundle. Bids received back are evaluated and an

executor node is selected.

While the executor runs the application, the initiator

switches to a monitoring mode to ensure application availabil-

ity on a regular basis. If the executor itself detects that it can no

longer execute an application (for example, due to high load),

it informs the initiator which initiates a new bidding process.

The same applies if the executor node goes down, which is

detected by regular checks from the initiator. If the initiator

itself goes down, the hash-based node and data identification

automatically leads to a new nearest node and thus initiator.

The SCP implementation is open-source and available from

the ASCENS website [4].

VII. MOBILE CLOUD COMPUTING

An interesting aspect of the case study is the fact that the

individual nodes can be personal computers. As such, the

concept also includes mobile nodes: laptops, tablets, or even

smartphones. Mobile devices have some noteworthy properties

in addition to standard nodes. They are devices (a) whose

neighbors – in the sense of network proximity – may change,

(b) whose battery capacity is limited, and (c) whose computing

capacity may be (severely) limited as well.

Applications running on top of the science cloud may want

to take those properties into consideration. In fact, we can

imagine that applications intended to run on mobile devices be

effectively split into two components, or smaller applications,

communicating with one another. In one scenario, they may

both run on one SCPi — if the node is powerful enough and

access to power is not an issue; in another, they may be split

between two SCPis, one on a mobile node (which handles

UI) and another on a stationary node (which handles the

computationally extensive background work). In order to keep

the user interface responsive, the network latency between the

two nodes may not exceed a certain threshold, which becomes

problematic in the presence of (physical) node mobility.

This scenario has been investigated within ASCENS [20].

The envisioned method for this case uses a specialized adap-

tation architecture which, through two components, takes care

of the planning and monitoring involved.

The first component involved is the monitor, which works

within an application and can operate in one of two modes:

Running mode. In running mode, the monitor executes

as part of a running application, i.e. it reflects the actual

deployment. The monitor gathers data about the current node,

which includes the performance and battery life. This non-

functional propeties data (NFPData) is used by the planner

(see below) to decide on adaptation.

Mock mode. A monitor may also be detached from its

application and spawned on a different node where it runs

in mock mode, testing the performance of the node with the

performance model of the application (MonitorDef) in mind,

but without actually moving the whole application. Again,

NFPData is generated which can be used by the planner.

The second component is the planner. The planner provides

the SCPi with the MonitorDefs for the monitors involved,

which the SCPi can distribute to interesting nodes for gath-

ering NFPData. Based on information about the application,

which are included in a deployment plan, the planner is able

to restrict which nodes are interesting; for example, this may

include nodes which are a limit of two hops away. Based on the

information in the NFPData from affected nodes, the planner

instructs the underlying SCPi(s) to deploy the applications

appropriately given the data.

A particular advantage of the monitor approach with mock

modes is the availability of real data: The monitor deployed

on remote nodes is able to report, based on its MonitorDef,

precisely those measurements which are relevant for the ap-

plication. As usual, the nodes which may take part in the

execution of an application form an ensemble with the specific

task to figure out the best configuration for all entities involved.

All in all, the adaptation architecture based on planners and

(mock) monitors allows for a very flexible awareness of the

network environment. While this approach is useful for all

kinds of nodes the SCP may run on, it is particularly helpful

in the presence of mobile nodes.

VIII. RELATED WORK

The topic of this paper is a vision of a peer-to-peer,

voluntary-computing-based cloud platform-as-a-service. Taken

individually, the related work in these three areas has tradi-

tionally focused on a) routing and distributed storage of data

(p2p), b) distributing workload from a central server (voluntary

computing), and c) provisioning resources inside centralized

data centers (cloud computing). Combining these areas has

started to attract attention in recent years; we believe however

that this research is far from concluded.

Voluntary clouds have been identified as a recent research

trend in a state-of-the-art survey [21] in 2010. Another survey-

type paper [22] by Panzieri et al. from 2011 also lists im-

plementing cloud implementation on top of P2P networks

as an open problem, and observes the usually centralized

nature of voluntary computing. Panzieri et al. list the work

by Babaoglu et al. from 2006 [23] as the first proposal for a

“fully decentralized P2P cloud”. The group has since followed

93

up with additional works, of which a very interesting recent

one is [24] from 2012, which implements a similar system to

the one presented here on the infrastructure-as-a-service level.

An approach to bridge volunteer and cloud computing, but

without going for a fully decentralized organization, is the

work by Cunsolo et el. [25] in 2009. There, the idea is for

users to contribute additional resources to certain centralized

components. Also in 2009, Chandra and Weissman [26] have

come up with the term Nebulas instead of clouds for dis-

tributed voluntary resource use. They list three requirements

for such systems, which we have addressed partially in this

paper.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have explored the idea of an autonomic

cloud in the sense of a voluntary computing, peer-to-peer

based platform-as-a-service infrastructure which uses self-

awareness and self-adaptation as the main ingredients for

managing the execution of arbitrary applications.

We have shown several methods from the ASCENS project

which can be helpful for discussing, modeling, and implement-

ing such a system. Many aspects of this vision still require

further research. In particular, we are interested in further

exploring self-adaptation performance in the cloud, perform

large-scale tests, explore alternative implementation models,

and gather feedback on the methods discussed here.

ACKNOWLEDGEMENTS

This work has been partially sponsored by the EU project

ASCENS, FP7 257414. We thank all partners who have

contributed to the cloud case study.

REFERENCES

[1] J. Kephart and D. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[2] F. Zambonelli, N. Bicocchi, G. Cabri, L. Leonardi, and M. Puviani, “On
self-adaptation, self-expression, and self-awareness in autonomic service
component ensembles,” in Self-Adaptive and Self-Organizing Systems
Workshops (SASOW), 2011 Fifth IEEE Conference on. IEEE, 2011,
pp. 108–113.

[3] M. Wirsing, M. Hölzl, M. Tribastone, and F. Zambonelli, “ASCENS:
Engineering Autonomic Service-Component Ensembles,” in Formal
Methods for Components and Objects, 10th International Symposium,
FMCO 2011, ser. LNCS, B. Beckert, F. Damiani, M. Bonsangue, and
F. de Boer, Eds. Springer, 2012.

[4] “The ASCENS Project.” [Online]. Available: http://www.ascens-ist.eu
[5] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky,

“Seti@home-massively distributed computing for seti,” Computing in
Science and Engineering, vol. 3, no. 1, pp. 78–83, 2001.

[6] G. Cabri, M. Puviani, and F. Zambonelli, “Towards a Taxonomy of
Adaptive Agent-based Collaboration Patterns for Autonomic Service
Ensembles,” in Proc. of CTS. IEEE, May 2011, pp. 508–515.

[7] M. Puviani and R. Frei, “Self-management for cloud computing,” in SAI
Conference, London, UK, 2013.

[8] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Boston, MA, USA: Addison-Wesley, 2002.

[9] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, Eds., The Com-
mon Component Modeling Example: Comparing Software Component
Models, ser. LNCS, vol. 5153. Springer, 2008.

[10] A. Klarl and R. Hennicker, “Foundations for Ensemble Modeling - The
Helena Approach,” Submitted, 2013.

[11] G. Gottlob, M. Schrefl, and B. Röck, “Extending object-oriented systems
with roles,” ACM Trans. Inf. Syst., vol. 14, no. 3, pp. 268–296, Jul. 1996.

[12] R. Nicola, G. Ferrari, M. Loreti, and R. Pugliese, “A language-based
approach to autonomic computing,” in Formal Methods for Components
and Objects, ser. Lecture Notes in Computer Science, B. Beckert,
F. Damiani, F. Boer, and M. Bonsangue, Eds. Springer Berlin
Heidelberg, 2013, vol. 7542, pp. 25–48.

[13] R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi, “SCEL: a
Language for Autonomic Computing,” IMT Lucca, Tech. Rep., January
2013. [Online]. Available: http://rap.dsi.unifi.it/scel/pdf/SCEL-TR.pdf

[14] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, ser. Middleware ’01. London, UK, UK:
Springer-Verlag, 2001, pp. 329–350.

[15] Foundation for Intelligent Physical Agents, “FIPA
Contract Net Interaction Protocol Specification,”
http://www.fipa.org/specs/fipa00029/SC00029H.html, March 2013.

[16] P. Druschel, A. Haeberlen, J. Hoye, S. Iyer, A. Mislove, A. Nandi,
A. Post, A. Singh, M. Castro, M. Costa, A.-M. Kermarrec, A. Rowstron,
S. Iyer, D. Wallach, Y. C. Hu, M. Jones, M. Theimer, A. Wolman, and
R. Mahajan, “FreePastry,” http://www.freepastry.org/, March 2013.

[17] M. Castro, P. Druschel, A.-M. Kermarrec, and A. I. Rowstron, “Scribe: A
large-scale and decentralized application-level multicast infrastructure,”
Selected Areas in Communications, IEEE Journal on, vol. 20, no. 8, pp.
1489–1499, 2002.

[18] T. Lu, S. Merz, and C. Weidenbach, “Towards verification of the pastry
protocol using tla+,” in Formal Techniques for Distributed Systems.
Springer, 2011, pp. 244–258.

[19] A. Rowstron and P. Druschel, “Storage management and caching in past,
a large-scale, persistent peer-to-peer storage utility,” in ACM SIGOPS
Operating Systems Review, vol. 35, no. 5. ACM, 2001, pp. 188–201.

[20] L. Bulej, T. Burea, V. Horký, and J. Keznikl, “Adaptive deployment in
ad-hoc systems using emergent component ensembles: vision paper,”
in Proceedings of the 4th ACM/SPEC International Conference on
Performance Engineering, ser. ICPE ’13. New York, NY, USA: ACM,
2013, pp. 343–346.

[21] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” J. Internet Services and Applications, vol. 1,
no. 1, pp. 7–18, 2010.

[22] F. Panzieri, Ö. Babaoglu, S. Ferretti, V. Ghini, and M. Marzolla,
“Distributed computing in the 21st century: Some aspects of cloud
computing,” in Dependable and Historic Computing, ser. Lecture Notes
in Computer Science, C. B. Jones and J. L. Lloyd, Eds., vol. 6875.
Springer, 2011, pp. 393–412.

[23] Ö. Babaoglu, M. Jelasity, A.-M. Kermarrec, A. Montresor, and M. van
Steen, “Managing clouds: a case for a fresh look at large unreliable
dynamic networks,” Operating Systems Review, vol. 40, no. 3, pp. 9–
13, 2006.

[24] Ö. Babaoglu, M. Marzolla, and M. Tamburini, “Design and implemen-
tation of a p2p cloud system,” in SAC, S. Ossowski and P. Lecca, Eds.
ACM, 2012, pp. 412–417.

[25] V. D. Cunsolo, S. Distefano, A. Puliafito, and M. Scarpa, “Cloud@home:
Bridging the gap between volunteer and cloud computing,” in ICIC (1),
ser. Lecture Notes in Computer Science, D.-S. Huang, K.-H. Jo, H.-H.
Lee, H.-J. Kang, and V. Bevilacqua, Eds., vol. 5754. Springer, 2009,
pp. 423–432.

[26] A. Chandra and J. Weissman, “Nebulas: using distributed voluntary
resources to build clouds,” in Proceedings of the 2009 conference on
Hot topics in cloud computing, ser. HotCloud’09. Berkeley, CA, USA:
USENIX Association, 2009.

94

