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Abstract

We report a Direct Numerical Simulation (DNS) of the flow around a rectangular

cylinder with a chord-to-thickness ratio B/D = 5 and Reynolds number Re =

3000. Global and single-point statistics are analysed with particular attention

to those relevant for industrial applications such as the behaviour of the mean

pressure coefficient and of its variance. The mean and turbulent flow is also

assessed. Three main recirculating regions are found and their dimensions and

turbulence levels are characterized. The analysis extends also to the asymptotic

recovery of the equilibrium conditions for self-similarity in the fully developed

wake. Finally, by means of two-point statistics, the main unsteadinesses and the

strong anisotropy of the flow are highlighted. The overall aim is to shed light

on the main physical mechanisms driving the complex behaviour of separating

and reattaching flows. Furthermore, we provide well-converged statistics not

affected by turbulence modelling and mesh resolution issues. Hence, the present

results can also be used to quantify the influence of numerical and modelling

inaccuracies on relevant statistics for the applications.
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1. Introduction1

The flow around bluff bodies with sharp corners is known to be of over-2

whelming interest for several wind engineering applications [1]. The case of3

a rectangular cylinder encompasses the range of bluff bodies from a flat plate4

normal to the flow, to a square cylinder, and, finally, to a flat plate parallel5

to the flow, as its chord-to-thickness ratio is varied from zero to infinity. For6

these reasons, these kind of flows have been the subject of several numerical and7

experimental studies. Of particular interest for civil engineering applications is8

the case of slender bodies typical of buildings and structures. A peculiarity of9

these shapes resides in the fact that the flow exhibits a large-scale separation at10

the leading-edge and also a reattachment before the definitive separation at the11

trailing-edge. Indeed, while the shedding instability in the wake is observed in12

all bluff bodies, only long bluff bodies present further instabilities which are due13

to the separating and reattaching leading-edge shear layer. This leads to the14

formation of an additional shedding of large-scale vortices before the trailing15

edge. A detailed investigation into the nature of this separating and reattach-16

ing flow is found in Cherry et al. [2]. Despite the fact that these kind of flows17

have been the subject of several numerical and experimental studies, the topic18

is still attractive, as highlighted in a recent work by Bruno et al. [3]. From an19

applicative point of view, the interest is given by the fact that both experimen-20

tal and numerical techniques appear to be unable to tackle the problem in a21

unequivocal way. Indeed, a large variability of results is found in the literature,22

even for global or first order statistics, see again the review of Bruno et al. [3].23

The reason of these discrepancies is the high sensitivity of the flow on the test24

boundary conditions and measurement accuracy in experiments and on the tur-25

bulence model, numerical schemes and mesh properties in CFD analysis. Here,26

we focus on the numerical approach.27

For low Reynolds numbers, 102 < Re < 103 where Re = U∞D/ν, U∞28

the free-stream velocity, D the rectangular cylinder thickness and ν the kine-29

matic viscosity, the flow around rectangular cylinders has been studied in several30
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works, see e.g. Nakamura et al. [4], Ohya et al. [5], Hourigan et al. [6], and31

Tan et al. [7]. The main aim of the above mentioned works is the assessment of32

the main instabilities of the flow and of the self-sustaining mechanisms which33

generate them. Concerning the high Reynolds number regime, Re > 104, it is34

worth mentioning the works of Shimada and Ishihara [8] and of Yu and Ka-35

reem [9] where RANS (Reynolds Average Navier-Stokes) and LES (Large Eddy36

Simulation) techniques are respectively used. In this context, it is important to37

point out a benchmark activity on the aerodynamics of rectangular cylinders at38

Reynolds numbers of the order of 104, i.e. the BARC project (Benchmark on39

the Aerodynamics of a Rectangular 5:1 Cylinder) [10]. Within this framework,40

a series of experiments and simulations have been conducted aiming at estab-41

lishing reliable standards for the simulation and measurement of such a flow42

configuration, see e.g. Bruno et al. [11], Mannini et al. [12], Ricci et al. [13]43

and Patruno et al. [14] for its extension to non-null angles of attack.44

As summarized in Bruno et al. [3], the recent results within the BARC45

project are still characterized by a large scatter, thus highlighting that a clear46

picture of the combined influence of mesh resolution, turbulence model and47

boundary conditions on the flow statistics is still missing. One of the possible48

reasons is that, up to now, no reference data are available in the literature, i.e.49

experimental data obtained under well-defined boundary conditions (e.g. free-50

stream turbulence level) and unaffected by measurement errors, or numerical51

data not influenced by modelling and mesh resolution issues. Indeed, to the52

best of the authors’ knowledge, no Direct Numerical Simulation (DNS) for suf-53

ficiently high Reynolds number has been performed in such a flow configuration.54

We found only two attempts in the literature. In the first one, Tamura et al.55

[15] approached the problem by means of a finite difference technique at high56

Reynolds number, Re = 104. However, the grid resolution adopted was not57

fine enough to capture the smallest scales of motion and, hence, the simulation58

reported appears to be more an implicit LES than a DNS. More recently Houri-59

gan et al. [6] proposed a more accurate analysis through a spectral-element60

method. However, the DNS data reported refer to very low Reynolds numbers,61
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namely from Re = 350 to Re = 500, and a fully developed turbulent state is62

not achieved.63

In the present work we produce, for the first time, high-fidelity data of64

the flow around a rectangular cylinder with chord-to-thickness ratio B/D =65

5 and Reynolds number Re = 3000. The study is aimed at understanding66

the main physical mechanisms driving the flow and at providing statistics, not67

affected by numerical issues, to be used for the validation and calibration of68

CFD techniques. For obvious computational cost reasons, the Reynolds number69

considered, Re = 3 · 103, is smaller than the ones considered in the recent70

literature. However, let us point out that as shown by Sasaki and Kiya [16], the71

flow develops the main turbulent structures typical of larger Reynolds numbers72

already for Re > 380. By further increasing Re, it is also found that the bubble73

length does not increase significantly anymore. It is also worth mentioning that,74

based on spectral arguments, Nakamura et al. [17] argue that an asymptotic75

large Reynolds number regime is attained for Re = 3000 since for Re > 300076

the Strouhal number of the spectral peak does not increase anymore. Based on77

these results, we argue that the considered Reynolds number is sufficiently large78

to capture the main physical features observed at larger Reynolds numbers. As79

an example, the two main unsteadinesses observed by Kiya and Sasaki [18, 19]80

for very large Reynolds numbers and consisting of a shedding of vortices from81

the separation bubble and of a large scale oscillation encompassing the entire82

flow field, are found to be reproduced both qualitatively and quantitatively at83

the present Reynolds number (see section §3 for the details).84

The paper is organized as follows. A description of the numerical simulation85

and of the statistical procedure is reported in section §2. The main statistical86

properties of the flow, with particular attention to those mostly debated in87

the BARC project, are shown in section §3. In order to rigorously assess the88

physical features characterizing the flow, single-point and two-point statistics89

are analysed in detail in sections §4 and §5. The paper is then closed by final90

remarks in section §6.91
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2. Direct Numerical Simulation and statistical convergence92

A Direct Numerical Simulation has been performed to study the flow around93

a rectangular cylinder. The evolution of the flow is governed by the continuity94

and momentum equations,95

∂ui

∂xi
= 0

∂ui

∂t
+

∂uiuj

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂xjxj
(1)

where x = x1 (u = u1), y = x2 (v = u2), z = x3 (w = u3) are the stream-96

wise, vertical and spanwise directions (velocity components), p is the pressure97

field and Re = U∞D/ν is the Reynolds number where U∞ is the free-stream98

velocity, D is the thickness of the rectangular cylinder and ν is the kinematic99

viscosity. In accordance with the above equations, all the variables presented in100

the following will be reported in a dimensionless form by using D as length scale101

and D/U∞ as time scale. A cell-centered finite volume method has been chosen102

to discretize the equations by means of the OpenFOAM R© open source code103

[20]. Time integration is performed by means of a second-order backward Euler104

implicit scheme while convective and diffusive fluxes at the volume faces are105

evaluated through a second-order central difference scheme. Finally, a pressure-106

implicit split-operator algorithm [21] is used to numerically solve the pressure-107

velocity coupling. Given the simple geometry of the problem, a block-structured108

Cartesian grid is adopted. Inlet-outlet boundary conditions are imposed in the109

streamwise direction. The inlet condition is a simple unperturbed flat velocity110

profile. The outlet boundary condition combines a Neumann/Dirichlet condi-111

tion. In particular, a stress-free (zero gradient) condition is enforced when the112

flow exits the boundary, while a zero velocity vector is imposed when an in-113

ward flow is detected. The same kind of boundary condition is imposed in the114

vertical direction, the only difference being that in case of inward flow the im-115

posed Dirichlet condition equals the free-stream inlet velocity. Finally, periodic116

conditions are imposed in the spanwise direction.117

The flow case consists of a rectangular cylinder whose dimensions are (Lx, Ly) =118
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Figure 1: Configuration of the system.

(5D,D). The Reynolds number considered is Re = 3000. The extent of the nu-119

merical domain is (Dx,Dy,Dz) = (112D, 50D, 5D) and is found large enough to120

not interfere with the flow dynamics, see the analysis of the spanwise correla-121

tion function shown in section §5. A sketch of the system configuration and of122

the reference coordinate system is reported in figure 1. The structured Carte-123

sian grid employed is composed by 1.5 · 107 volumes. A multi block-structured124

approach is used by employing 5 main blocks characterized by a stepwise vari-125

ation of the number of volumes in the spanwise direction. In particular, in126

the inner block, the number of volumes in the (x, z)-plane above the rectangle127

is (Nx,Nz) = (128, 144) in the streamwise and spanwise direction, respec-128

tively. The volume distribution is homogeneous in the spanwise direction while129

in the streamwise and vertical directions a geometric progression is adopted,130

∆xi = ki−1
x ∆x1 and ∆yj = kj−1

y ∆y1 with kx = 1.06, ky = 1.04, ∆x1 = 0.004131

and ∆y1 = 0.004. This approach is used to obtain higher resolution levels in the132

near-wall leading- and trailing-edge regions. Such a practice leads to a mean133

wall resolution of (∆x+,∆y+,∆z+) = (6.1, 0.31, 5.41), where (·) denotes the134

streamwise average along the rectangle length and the superscript + implies135

normalization with friction units. The time step varies during simulation to136

obtain a condition CFL < 1 in each point of the domain, the resulting average137
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Figure 2: Time-behaviour of the friction drag coefficient Cf . The vertical line denotes the

end of the initial transient and the start of the fully developed state used for the computation

of the statistics. To note that the plot starts from t = 115. Indeed, from t = 0 to t = 115 a

precursory coarser simulation has been used to reduce the computational time for reaching a

flow state close to the statistical equilibrium.

time step being ∆t = 0.0023.138

In the present flow case, the computational demand for well-converged statis-139

tics denoted as 〈·〉, is mitigated by the statistical stationarity of the flow field140

and by the statistical homogeneity in the spanwise direction. Furthermore, the141

flow exhibits certain statistical symmetries in the vertical direction which are142

better expressed by shifting the origin of the vertical coordinate to the centre of143

the prism, ỹ = y −D/2. Indeed, the transformation ỹ → −ỹ leaves quantities144

like U = 〈u〉, 〈uiui〉 statistically invariant while reversing the sign of quantities145

like V = 〈v〉, 〈uv〉 and ∂〈·〉/∂ỹ. In conclusion, the average of a generic quantity146

β is defined as147

〈β〉(x, ỹ) = 1

N

N∑

i=1

1

2

(
1

Lz

∫ Lz/2

−Lz/2

β(x, ỹ, z, t)dz ± 1

Lz

∫ Lz/2

−Lz/2

β(x,−ỹ, z, t)dz

)
,

(2)

where the sum and difference of the two integrals is given by the symmetric or148

antisymmetric property of the considered variable, respectively. The number of149

fields sampled during time is N = 317. These samples are taken once the initial150
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Figure 3: (a) Time evolution of the lift coefficient Cl. (b) Frequency spectrum of the lift

coefficient, φf
cl , as a function of the Strouhal number St.

transition of the flow field is washed out, see figure 2, and are taken with a time151

separation ∆T = T where T = D/U∞ is the characteristic time scale of the152

flow. In the following, the customary Reynolds decomposition of the velocity153

field is adopted, ui = Ui+u′
i, where Ui and u′

i denote the mean and fluctuating154

velocity.155

3. Main properties of the flow156

We start the analysis by considering the main integral parameters of the flow,157

i.e. the lift, Cl, and drag, Cd, coefficients. Obviously, for symmetry reasons,158

the average lift coefficient is null, C̃l = 0 where ·̃ denotes the time average.159

As shown in figure 3(a), instantaneously the lift coefficient is not zero, but it160

fluctuates in time. Different time scales are recognized and can be studied by161

considering the frequency spectrum defined as162

φf
Cl
(St) = ĈlĈ

∗
l (3)

where ·̂ denotes the Fourier transform, ∗ the complex conjugate and St the163

dimensionless frequency, i.e. the so-called Strouhal number. As shown in figure164

3(b), the frequency spectrum confirms the presence of different temporal scales.165

In particular, a clear peak for St ≈ 0.14 is present and will be shown in the166

following to be related with the frequency of the large scale vortex detachment167
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Figure 4: Streamlines of the mean velocity field (U, V )(x, y). The green lines show the primary

vortex, the red lines mark the secondary vortex and the black lines denote the wake vortex.

The red dots denote the locations of the probes used for the computation of time spectra in

section §5.

in the wake. A second peak is recognizable at a lower frequency, namely St ≈168

0.042. This very low frequency is responsible for the long term fluctuations of Cl169

observed in figure 3(a) and could explain the scatter of the data of C̃l obtained170

in different works, see the review of Bruno et al. [3], as a result of statistical171

convergence problems. The frequencies of the two spectral peaks detected here172

quantitatively agree with those observed in Kiya and Sasaki [18, 19] for very173

large Reynolds numbers. In accordance with these works, we argue that the174

peak at St ≈ 0.14 is related with a large scale shedding of vortices from the175

main recirculating region while the very slow peak at St ≈ 0.042 is due to176

the presence of a low-frequency unsteadiness encompassing the entire flow field.177

Concerning the drag coefficient, we measure that C̃d = 0.96.178

Let us now consider the topology of the mean flow field. As shown in figure179

4, the streamlines of the mean flow highlight the presence of a large scale recir-180

culation extending from the leading edge up to xr ≈ 3.65, see the green lines in181

figure 4. The centre of rotation, defined as the singularity point within the recir-182

culating region where the mean velocity field vanishes (U, V ) = (0, 0), is located183

at (xpv
c , ypvc ) = (2.04, 0.35). This separation bubble will be hereafter called the184

primary vortex. As shown by the isocontours of mean pressure in figure 5, this185

separated region is associated with a large area of low pressure with a mini-186
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Figure 5: Isocontours of the mean pressure field P (x, y). The dashed lines report the location

of the primary vortex, secondary vortex and wake vortex.

mum located at (xpv
p , ypvp ) = (1.81, 0.42). It is worth noting that the location187

of this minimum does not coincide with the centre of the primary vortex, thus188

highlighting the strongly inhomogeneous non-axisymmetric shape taken by the189

recirculating flow. Actually, a second recirculating region is present and high-190

lighted with red lines in figure 4. This secondary vortex takes place below the191

primary vortex. Indeed, the reverse flow induced in the near-wall region by the192

primary vortex creates a boundary layer moving upstream. As shown by the193

isocontours of the mean pressure field in figure 5, the induced boundary layer194

undergoes an adverse pressure gradient, hence it decelerates, becomes thicker195

and, finally, breaks down leading to a further separation. Hence, the secondary196

vortex, being induced by the primary vortex, is counter-rotating with respect197

to the primary vortex and its characteristic length and time scales are smaller198

than those of the primary vortex. The secondary vortex is found to extend for199

0.4 < x < 1.4. The intensity of the mean flow within this region is very low,200

thus highlighting how this object is difficult to capture from a statistical point201

of view, see Bruno et al. [3] for a review of the different results in literature.202

After the reattachment point, for x > xr, the flow evolves in a downstream203

boundary layer and finally detaches at the trailing edge where it develops into204

the wake. As shown with black lines in figure 4, the separated wake highlights205

10



a wake vortex extending from the trailing edge down to x ≈ 6.2 and centered at206

(xwv
c , ywv

c ) = (5.5,−0.25). As for the primary vortex, the wake vortex sets a low207

pressure region centered at (xwv
p , ywv

p ) = (5.52,−0.27), see figure 5. The main208

difference with respect to the leading-edge recirculation is given by the fact that209

the extent and intensity of the low pressure area are smaller.210

Let us now study the streamwise behaviour of the skin friction and pressure211

coefficients along the horizontal surface of the rectangular cylinder. As shown212

in figure 6(a), the mean skin friction coefficient 〈cf 〉(x) exhibits strong negative213

values in the very first part of the rectangular cylinder, close to the leading-edge214

corner. Then, 〈cf 〉 increases and reaches small but positive values in the region215

0.4 < x < 1.4. This region of positive shear is the near-wall footprint of the216

secondary vortex. Moving downstream, for 1.4 < x < 3.65, the average skin217

friction coefficient becomes negative again and shows a minimum at x ≈ 2.37.218

This region of negative shear is the near-wall footprint of the primary vortex.219

Actually, the primary vortex is responsible also for the previously observed220

strong negative values of 〈cf 〉(x) in the leading-edge region thus indicating that221

the primary vortex reattaches upstream the secondary vortex. Finally, in the222

last part of the rectangular cylinder, for x > 3.65, a forward attached boundary223

layer takes place. Indeed, the skin friction is positive and assumes increasingly224

large values moving downstream.225

Let us now considering the streamwise behaviour of the pressure coefficient226

〈cp〉(x) and of its variance 〈c′2p 〉(x) shown in figure 6(b). These two observables227

are of paramount relevance for the applications since they carry information228

about the aerodynamic loads and their fluctuations. However, as pointed out229

in Bruno et. al [3], the prediction of these two statistical observables is very230

challenging for numerical simulations, as highlighted by the variability of the231

results obtained within the BARC project. The reason is that the behaviour232

of 〈cp〉(x) and 〈c′2p 〉(x) is strongly influenced by the shape and extent of the re-233

circulating regions of the flow, which in turn are determined by the turbulence234

levels therein. Hence, the turbulence modelling and mesh resolution adopted235

in numerical simulations strongly impacts the resolved turbulent dynamics and,236
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Figure 6: (a) Streamwise behaviour of the average skin friction coefficient 〈cf 〉(x). (b)

Streamwise evolution of the average pressure coefficient 〈cp〉(x) and of its standard devia-

tion
√

〈c′2p 〉(x).

hence, the predicted extent of the recirculation regions. Accordingly, the present237

data should help to clarify the behaviour of mean and fluctuating pressure field238

at the wall, since they are not affected by turbulence modelling and mesh reso-239

lution issues.240

Figure 6(b) shows that the mean pressure coefficient 〈cp〉(x) is always nega-241

tive on the rectangular cylinder. It starts from its minimum at the leading-edge242

corner and shows a sharp increase in a very small region corresponding to the243

region of upstream reattachment of the primary vortex. Then, for x > 0.13,244

a weak decrease is observed up to x ≈ 1.81. This streamwise location is the245

wall footprint of the low-pressure levels associated with the primary vortex core.246

Further downstream, the wall pressure shows a significant increase. This pres-247

sure rise is maintained up to x ≈ 4.39 where it forms a maximum, since a slight248

pressure decrease follows up to the trailing edge corner.249

As shown again in figure 6(b), the variance of the wall pressure fluctuations is250

very low in the very first part of the rectangular cylinder. However, a monotonic251

increase with the streamwise location is observed, leading to a maximum inten-252

sity for x ≈ 2.96. Downstream this maximum, an almost equivalent decrease of253

the intensity of the wall pressure fluctuations is observed and maintained up to254

the trailing edge corner.255
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4. Single-point statistics256

In figure 7, the behaviour of the turbulent intensities and of the fluctuating257

pressure is reported in the (x, y)-plane. These plots show that the separation at258

the leading-edge gives rise to a free-shear layer which is essentially laminar in its259

first portion. The instabilities associated with the shear layer are then amplified260

moving downstream and, for x > 1, a three dimensional turbulent pattern is261

observed. Indeed, all the three components of turbulence are different from262

zero. By following the streamline of the primary vortex, shown with dashed263

line in figure 7, it is evident that the most amplified fluctuations in the leading264

edge free shear layer are the streamwise ones, while the vertical and spanwise265

fluctuations are still significant but remain weaker.266

Let us analyze in detail the behaviour of each component of turbulent fluc-267

tuation. By considering first the intensity of the streamwise fluctuations, figure268

7(a), a well-defined region of maximum turbulent intensity can be identified.269

This region crosses the external paths of the average recirculating bubble for270

1.5 < x < 3.5 with a maximum reached at (x, y) = (2.57, 0.44). The iso-levels of271

streamwise fluctuations are stretched in the streamwise direction. Apparently,272

no deflection of the isocontours towards the wall is observed, indicating that273

detached streamwise fluctuations are mostly convected from the primary vortex274

to the wake region without interacting with the wall. A second weaker region275

of streamwise fluctuations is observed in the wake with a relative maximum lo-276

cated at (x, y) = (6.05,−0.05). The vertical location suggests that this relative277

maximum is a result of the amplification, throughout the trailing edge shear278

layer, of fluctuations produced in the attached forward boundary layer.279

The vertical fluctuations show a substantially different behaviour with re-280

spect to the streamwise ones. As already mentioned, the typical intensity of281

vertical fluctuations is smaller than the streamwise ones. However, as shown282

in figure 7(b), significant differences are observed also from a topological point283

of view. The region of maximum intensity is located further downstream and284

closer to the wall with a maximum at (x, y) = (2.96, 0.31). This aspect could be285
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Figure 7: Isocontours of the turbulent intensities and of the fluctuating pressure in the (x, y)-

plane:
√
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partially ascribed to the mean velocity paths associated with the downstream286

part of the primary vortex. Indeed, downstream the peak of intensity of the287

streamwise fluctuations, the mean velocity field bends towards the wall before288

reattaching. Hence, the structures associated with these intense streamwise289

fluctuations, being advected and stretched by the mean velocity field, undergo290

a deflection towards the wall thus leading to a partial reorientation of stream-291

wise fluctuations in vertical ones. Also in this case, the shape of the isocontours292

of vertical fluctuations is found to be essentially elongated in the streamwise293

direction. Hence, as for the streamwise ones, the produced vertical fluctua-294

tions do not seem to interact with the wall, but rather they appear to be freely295

advected downstream towards the free flow. The second region of activity of296

vertical fluctuations occurs in the wake region. Contrarily to what happens for297

streamwise fluctuations, this region is centered in the symmetry plane of the298

wake at y = −0.5 for x ≈ 6.15. This is a clear footprint of the periodic shedding299

of large scale vortices in the separated wake.300

The most interesting aspect of the spanwise fluctuations shown in figure 7(c)301

is that the region of high turbulent intensity, located at (x, y) = (2.96, 0.28) and302

associated with the primary vortex, extends also to the wall region and forms a303

thin layer of turbulent activity centered at (x, y) = (2.96, 0.06). A possible ex-304

planation for the high intensity of spanwise fluctuations in the near-wall region is305

the following. Turbulent fluctuations produced through the primary vortex are,306

on average, transported towards the wall due to the deflection of the streamline307

paths of the mean velocity field. The consequent impingement gives rise to hor-308

izontal fluctuations, since the impermeability constraint of the wall leads to a309

dumping of the vertical fluctuations in the near-wall region. Actually, as shown310

here in quantitative terms, the impingement essentially gives rise to spanwise311

fluctuations. Indeed, we observe a near-wall layer in the reattachment region312

characterized by intense spanwise and weak streamwise fluctuations. From the313

reattachment region, a reverse flow takes origin, transporting turbulent fluctu-314

ations towards the leading-edge shear layer. Since the higher levels of turbulent315

intensities in the reattachment region are detected in the spanwise direction,316
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Figure 8: (a) Streamwise behaviour of the centerline velocity defect 1 − U0(x̃) (solid line).

The self-similar power law decay (4) is reported in dashed line where A = 0.66 and x̃0 = 4

are considered. (b) Vertical profiles of velocity defect [U0(x̃)− U(x̃, ỹ)]/[U0(x̃)− 1] evaluated

at different streamwise locations and reported as function of ỹ/ỹ1/2(x̃) where ỹ1/2(x̃) is the

wake half-width defined such that U(x̃,±ỹ1/2) = (1 + U0)/2.

these fluctuations result to be the most intense also in the reverse flow region,317

thus forming the observed near-wall layer of intense spanwise fluctuations.318

Let us now analyse the behaviour of the fluctuating pressure field shown in319

figure 7(d). The most intense region of fluctuations is again the leading-edge320

shear layer and its consequent evolution along the primary vortex. In accordance321

with the behaviour of the pressure coefficient shown in figure 6(b), the region of322

reverse flow of the primary vortex is essentially unperturbed. Only for x > 2 the323

high levels of pressure fluctuations above the primary vortex are felt in the near-324

wall region. Interestingly, the variance of the pressure fluctuations associated325

with the vortex shedding in the separated wake forms a second region of activity,326

which however appears to be much weaker with respect to the region associated327

with the leading-edge shear layer.328

To conclude this section, we consider the evolution of the wake also in the329

far field. For this analysis it is useful to consider a shifted reference frame330

(x̃, ỹ) = (x + 5D, y − D/2). In figure 8(a) the streamwise behaviour of the331

wake centerline velocity defect, 1 − U0(x̃) with U0(x̃) = U(x̃, 0), is shown. As332
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Figure 9: Vertical profiles of turbulent intensities evaluated at different streamwise locations

and scaled in similarity variables. (a) streamwise, (b) vertical and (c) spanwise turbulent

intensities.
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apparent, the wake centerline velocity approaches the self-similar decay,333

1− U0(x̃) ≈
A√

x̃− x̃0

(4)

for x̃ > 10. The self-similarity of the mean streamwise velocity is confirmed in334

figure 8(b) where the vertical profiles of the velocity defect,335

U0(x̃)− U(x̃, ỹ)

U0(x̃)− 1
(5)

evaluated at different streamwise locations for x̃ > 10 are reported as a function336

of the similarity variable ỹ/ỹ1/2(x̃) where ỹ1/2(x̃) is the wake half-width defined337

such that,338

U(x̃,±ỹ1/2) = (1 + U0)/2 . (6)

It is worth noting that the above self-similar behaviour implies [22] that339

1

1− U0

dỹ1/2

dx̃
≈ const (7)

and, hence, that the wake spreads as a power law, i.e. ỹ1/2 ∼ x̃1/2.340

To complete the analysis of the wake in the far field, let us analyse the341

behaviour of the turbulent intensities shown in figure 9. Similarity variables342

are again utilized and a good degree of scaling is observed for the streamwise343

and spanwise components of turbulent fluctuations. In contrast, the vertical344

fluctuations do not exhibit self-similarity, at least at the considered streamwise345

locations. This aspect denotes a slower asymptotic recovery of the equilibrium346

conditions needed for self-similarity, i.e. the vertical fluctuations are found to347

maintain memory of the shedding mechanisms of separating and reattaching348

flow over a longer distance.349

5. The structure of turbulence and two-point statistics350

In this section, the main unsteadiness of the flow and the inherent multiscale351

nature of the turbulent fluctuations are analysed by means of two-point statis-352

tics. Before that, we start by addressing the topological pattern taken by the353

main turbulent fluctuations populating the flow. To this aim we consider the354
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eduction scheme proposed by Jeong et al. [23] and based on the second largest355

eigenvalue (λ2) of the tensor356

SikSkj +ΩikΩkj (8)

where357

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)

Ωij =
1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
(9)

are the symmetric and antisymmetric part of the velocity gradient tensor. This358

eduction scheme is known to accurately extract the three-dimensional pattern359

of vortical structures, see e.g. Cucitore et al. [24] and Dubief et al. [25].360

In figure 10, the instantaneous pattern taken by λ2 = −2 is shown with361

iso-surfaces colored by ỹ. From the perspective and top views, it is evident that362

in the very first part of the leading-edge shear layer, for x < 0.3, the flow is lam-363

inar, in accordance with the statistical analysis reported so far. Then, almost364

two-dimensional spanwise rolls appear as a result of the well-known Kelvin-365

Helmholtz instability. Under the effect of the mean shear, perturbations of the366

flow field lead to the lift up and stretching of these spanwise vortices, thus367

forming hairpin-like structures [6, 26, 27]. Hence, the flow motion develops368

streamwise vortices [19, 28, 29], the legs of the hairpin vortices, which in turn369

induce high- and low-speed streaks in between them. The statistical evidence of370

the presence of streamwise vortices and streaks is reported in the following anal-371

ysis of the two-point spanwise correlation function. These sparsely distributed372

structures, grow, burst and decay thus giving rise to a fully turbulent flow for373

x > 1. Most of this complex multiscale pattern, particularly the large scale374

structures, is shed downstream in the free flow. On the other hand, a por-375

tion of the structures, in particular small scale fluctuations, are pushed towards376

the wall. The consequent impingement gives rise to both forward and reverse377

boundary layers characterized by small scale motions. By following the branch378

moving downstream, we observe that turbulent fluctuations become more and379
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Figure 10: Instantaneous isosurfaces of λ2 = −2 colored with ỹ. Perspective, top and lateral

views in (a), (b) and (c) plots, respectively.
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more aligned in the streamwise direction. Finally, by reaching the trailing edge,380

these relatively small fluctuations are encompassed by an oscillatory large scale381

motion reminiscent of the laminar von Kármán instability of the separated wake.382

The statistical signature of the above mentioned turbulent motion can be383

highlighted by means of two-point statistics, such as the correlation function in384

physical space and the energy spectrum in wavenumber/frequency space. While385

the spatial correlation function is a measure of how the velocity fluctuations386

are coherent in space, the energy spectrum allows us to analyse how turbulent387

kinetic energy is distributed across the different scales of motion. Let us start388

with the spatial correlation function. Due to the symmetry of the flow, the389

only statistical homogeneous direction where it is possible to define a space390

of homogeneous scales not affected by the inhomogeneity of the flow, is the391

spanwise direction (see Cimarelli et al. [30] for an example of the complexity392

emerging from the study of the space of inhomogeneous scales). In this setting,393

the spatial spanwise correlation function is rigorously defined and for a generic394

quantity β can be written as,395

Rββ(x, y, rz) =
〈β′(x, y, z + rz/2, t)β

′(x, y, z − rz/2, t)〉
〈β′β′〉(x, y) . (10)

In figure 11, the spanwise correlation function of the three components of396

velocity and pressure fluctuations evaluated in the shedding region of the pri-397

mary vortex, is shown. This region of the flow is fully turbulent and relatively398

small spanwise correlation lengths are observed. In particular, the fluctuating399

velocity field shows a zero value of correlation at rz ≈ 0.3 for the vertical and400

streamwise fluctuations and at rz ≈ 0.5 for the spanwise ones. Interestingly,401

for larger values of the spanwise increment rz, a degree of negative correlation402

is observed. The peak of anticorrelation occurs at rz ≈ 0.45, 0.5 and 0.9 for403

the vertical, streamwise and spanwise fluctuations, respectively. These negative404

correlation peaks are in accordance with the presence of streamwise vortices405

and streamwise velocity streaks as a result of motions induced by the hairpin406

vortices observed in figure 10. Indeed, the peak of negative correlation of ver-407

tical and spanwise fluctuations can be understood as a statistical evidence of408
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Figure 11: Spanwise correlation function of streamwise, vertical, spanwise and pressure fluctu-

ations evaluated in the shedding region of the primary vortex at a (x, y)-position corresponding

to probe 9. The specific location of the probe within the flow is shown in figure 4.

the presence of counter-rotating pairs of streamwise vortices. In particular, the409

negative peak of Rvv at rz ≈ 0.45 is a measure of the statistical diameter of410

streamwise vortices while the negative peak of Rww at rz ≈ 0.9 is indicative of411

the mean spacing between counter-rotating vortex pairs. On the other hand,412

the negative peak of Ruu is an evidence of the presence of streamwise velocity413

streaks. In particular, the negative peak of Ruu at rz ≈ 0.5 is a measure of414

the mean spanwise spacing between high and low streamwise velocity streaks.415

See Kim et al. [31] for well-established and analogous considerations in wall-416

turbulent flows. The pressure fluctuations show a wider correlation length and417

no negative correlation peak is observed. Finally, it is worth pointing out that418

the behaviour shown here by the two-point spatial correlation function supports419

the choice of the numerical domain width, Dz = 5. Indeed, figure 11 shows that420

the velocity and pressure fields are uncorrelated for spanwise lengths that are421

significantly shorter than the domain width.422

Let us consider now the scale-space distribution of kinetic energy by means423

of a spectral analysis. In particular, we consider the multiscale features of the424

flow both in time and space by means of one-dimensional spectra of turbulent425

kinetic energy. By taking advantage of the statistical homogeneity of the flow426
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in the spanwise direction and in time, the spectrum of turbulent kinetic energy427

q = uiui/2 can be defined as428

Φqq(kz, St, x, y) =
1

2
〈ũi(kz, St, x, y)ũ

∗
i (kz, St, x, y)〉 (11)

where kz and St are the spanwise wavenumber and frequency, while (̃·) denotes429

the two-dimensional Fourier transform with respect to the spanwise direction430

and time. To simplify the analysis, in the following we consider separately431

the one-dimensional wavenumber spectrum and the one-dimensional frequency432

spectrum. The one-dimensional wavenumber spectrum is derived from the two-433

dimensional one by integration with respect to St,434

Φkz

qq (kz, x, y) =

∫
Φqq(kz, St, x, y)dSt (12)

and, analogously, the one-dimensional frequency spectrum is computed by inte-435

grating with respect to kz,436

Φf
qq(St, x, y) =

∫
Φqq(kz, St, x, y)dkz (13)

By using the Taylor’s hypothesis of frozen turbulence we also address the puta-437

tive wavenumber spectrum in the streamwise direction defined as438

Φkx

qq (kx, x, y) = Φf
qq(St/U(x, y), x, y) . (14)

The main unsteadinesses of the flow are analysed in figure 12 by means of439

frequency spectra of turbulent kinetic energy evaluated in the leading-edge shear440

layer and in the wake. As shown in figure 12(a), the leading-edge shear layer is441

characterized by well-defined peaks of spectral energy at a relatively large range442

of frequencies. In particular, moving from probe P1 to P7 along the shear layer,443

the peaks move from St ≈ 1.8 to St ≈ 0.9. This range of frequencies represents444

the temporal scales of the fluctuations amplified by the transitional mechanisms445

of the shear layer. By looking at the frequency spectrum in the wake 12(b), a446

clear separation of scales is evinced between the vortex detachment in the sepa-447

rated wake and the amplified fluctuations through the leading-edge shear layer.448

In fact, the frequency spectrum in the wake highlights a well-defined peak at449
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Figure 12: Frequency spectrum of turbulent kinetic energy, φf
qq(St), evaluated along the

leading-edge shear layer at probes 1 to 7 (a) and in the wake at probe 10 (b). The arrow in

(a) indicates probes from 1 to 7. The specific location of probes within the flow is shown in

figure 4.

relatively larger temporal scales for St ≈ 0.14. This peak is a clear statistical450

evidence of the oscillatory large scale motion reminiscent of the laminar von451

Kármán instability. Being at much larger temporal scales, the vortex shedding452

mechanisms in the wake are found to be not directly connected with the for-453

mation processes of fluctuations in the transitional region of the leading-edge454

shear layer. To appreciate this, one may compare the spectral peak at frequency455

St ≈ 0.14 shown in figure 12(b) with the amplified spectral peak frequencies456

from St ≈ 1.8 to St ≈ 0.9 in figure 12(a). On the contrary, we find a clear457

matching of scales between the slow vortex detachment in the separated wake458

and the fluctuation of the lift coefficient, which appear evidently by comparing459

the spectral peaks for St ≈ 0.14 in figures 3(b) and 12(b). Being driven by460

the pressure differences between the top and bottom sides of the rectangular461

cylinder, the temporal fluctuations of the lift coefficient are essentially given by462

the instantaneous difference in the extent of the low pressure regions settled by463

the separated recirculating flow in the opposite sides of the rectangle. Hence,464

we argue that the spectral peak frequency St ≈ 0.14 shown by the lift coefficient465

is representative of the time scale of the large scale phenomenon of alternative466

enlargment and shrinking of the separation bubble in the top and bottom sides467

of the rectangle [18, 19]. Accordingly, the clear matching of scales between the468
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Figure 13: Streamwise (a) and spanwise (b) spectrum of turbulent kinetic energy, φkx
qq (kx)

and φkz
qq (kz), respectively, evaluated at probe 8. Streamwise (c) and spanwise (d) dissipation

spectrum of turbulent kinetic energy, k2xφ
kx
qq (kx) and k2zφ

kz
qq (kz), respectively, evaluated again

at probe 8.

vortex detachment in the wake and the fluctuation of the lift coefficient suggests469

a locking of the vortex shedding phenomena in the wake with the alternative470

shedding of large scale vortices from the top and bottom primary vortices and,471

hence, with their enlargment and shrinking [2].472

Let us consider now the spatial scales of the flow. In figure 13(a) and (b),473

the streamwise and spanwise spectra of turbulent kinetic energy in the fully474

developed part of the leading-edge shear layer are shown. The two plots re-475

veal a markedly anisotropic behaviour, consisting of turbulent fluctuations elon-476

gated in the streamwise direction. Indeed, the energy-containing fluctuations477

are found to fill the streamwise spectrum up to kx ≈ 1 while, in the spanwise478

one, up to kz ≈ 10. In other words, the most energetic fluctuations are stretched479

in the streamwise direction and their size is of the order of O(D) and O(10−1D)480

in the streamwise and spanwise direction, respectively. This anisotropy is re-481
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tained up to the small dissipative scales as shown by the spectra of turbulent482

dissipation shown in figure 13(c) and (d). Indeed, the maximum rate of dissi-483

pation is achieved for kx ≈ 1.4 and kz ≈ 15, respectively in the streamwise and484

spanwise direction. These aspects need to be taken carefully into account when485

CFD techniques such as LES (Large Eddy Simulation) are applied for the simu-486

lation of the flow. Accordingly with Bruno et al. [32], the spanwise resolution is487

a central object when setting up a CFD simulation being the site of the smallest488

but energy containing scales of the flow as shown here in quantitative terms.489

6. Conclusions490

The flow around rectangular cylinders is recognized to be an extremely in-491

teresting case both for fundamental and applicative studies. Despite the simple492

geometry, this category of flows contains basic phenomena characterizing the493

behaviour of more complex flows typical of the applications. In this respect, it494

is still difficult to achieve reliable results both from a numerical and experimen-495

tal point of view. The reason is the high sensitivity of the different phenomena496

driving the flow on the experimental conditions from one side and on the tur-497

bulence modelling and mesh properties from the other. Here, we report for498

the first time a Direct Numerical Simulation of such a flow for a moderately499

high Reynolds number. The main goal is to shed light on the main physical500

mechanisms driving the complex behaviour of the flow and to provide well con-501

verged statistics not affected by uncertainties on the boundary conditions and502

by inaccuracies related to turbulence modelling and mesh resolution.503

Global and single-point statistics are reported aiming at defining the exact504

behaviour of relevant statistical quantities. As an example, we characterize the505

behaviour of the pressure coefficient and of its variance which are known to be506

very important quantities for civil engineering applications aiming at predict-507

ing wind loads over buildings. In this respect, also the behaviour of the lift508

coefficient in the frequency space is reported, highlighting a well defined peak509

for St ≈ 0.14. The mean and turbulent flow is then assessed. Three main510
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recirculating regions are found and their dimensions and turbulence levels are511

characterized. The first one is a large scale bubble originating from the flow512

separation at the leading edge corner and it is herein called primary vortex.513

The related shear layer is the locus of the instability and transitional processes514

giving rise to turbulence as shown here in quantitative terms by the increasing515

levels of intensity of the fluctuations along its development. This primary vortex516

is found to shed vortices downstream giving rise to a region of high turbulence517

levels. The primary vortex is responsible for the observed second recirculating518

region, here called secondary vortex. Indeed, it induces a reverse flow at the519

wall which experiences an adverse pressure gradient and thus separates giving520

rise to the second near-wall recirculating region. Finally, the third recirculat-521

ing region, here called wake vortex, takes place in the separated flow at the522

trailing edge. As for the primary vortex, the trailing-edge shear layer is respon-523

sible for additional instability mechanisms, thus giving rise to a second region524

of high turbulence intensity. Finally, the behaviour of the fully developed wake525

is also analysed. A rigorous assessment of the wake flow features is reported526

in a simple way by making use of self-similarity variables. The analysis reveals527

a slower asymptotic recovery of the equilibrium conditions for self-similarity of528

the vertical fluctuations with respect to the streamwise and spanwise ones.529

To complete the study of the flow, two-point statistics are also computed,530

namely the spanwise correlation function and the energy spectrum. The study531

of the two-point spatial correlation function of the fluctuating velocity and pres-532

sure fields allows us first to prove that the width of the numerical domain is large533

enough to reproduce the main flow features. On the other hand, we found a534

clear statistical evidence of the presence of streamwise vortices and high- and535

low- streamwise streaks within the flow. In particular, we found that stream-536

wise vortices statistically occur as pairs of counter-rotating vortices. The spac-537

ing between counter-rotating vortex pairs is 0.9 while the diameter of a single538

streamwise vortex is 0.45. Regarding the velocity streaks we statistically prove539

their presence and we measure that the spanwise spacing between postive and540

negative streamwise velocity streaks is 0.9. We argue that both streamwise541
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vortices and streaks are a result of the flow motion induced by the presence of542

hairpin-like turbulent structures here detected by analysing the instantaneous543

pattern taken by λ2.544

The spectral analysis in the frequency space allows us to identify and quan-545

tify the main unsteadinesses of the flow. In particular, a separation of scales be-546

tween the amplified fluctuations in the leading-edge shear layer for St = O(100)547

and the large scale vortex detachment at the wake for St = O(10−1) is observed.548

Indeed, this low frequency is found to be actually locked with the shedding of549

vortices from the primary vortex and, in particular, with the alternative enlarg-550

ment and shrinking of the recirculating regions in the top and bottom sides of551

the rectangle. On the other hand, the analysis in the wavenumber space allows552

us to study the anisotropy of the flow in the space of scales. It is found that553

both the energy-containing and dissipative fluctuations are anisotropic, being554

elongated in the streamwise direction and thin in the spanwise one. This infor-555

mation should be taken carefully into account when designing meshes in CFD556

applications.557

It is finally worth pointing out that the present results, besides reporting a558

detailed statistical analysis of the flow, are also intended to be a reference for559

CFD studies. Indeed, the statistical objects here reported would be useful to560

quantify and understand the effects of modelling and mesh resolution issues by561

means of a comparison with the same statistics obtained with CFD simulations562

at the same Reynolds number. Hence, they would be useful for developing a563

best practice for CFD.564
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