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Fig. 1. (a) I–V characteristics for HfO2 RRAM. The gray lines show 100 
reliable switching cycles. Abruptly (or gradually) transited current states 
during SET (or RESET) indicated by bold red (or blue) lines are shown. (b) 
Binary and multiple states are shown by identical pulses at the fixed Vg during 
potentiation and depression, respectively. Whereas, varying Vg results in 
multiple states in potentiation at the fixed SET conditions. 

  
Abstract— We perform a comparative study of HfO2 and Ta2O5 

RRAM devices for their possible application as electronic 
synapses. By means of electrical characterization and simulations, 
we link their electrical behavior (digital or analog switching) to 
the properties and evolution of the conductive filament (CF). 
More specifically, we identify that bias-polarity-dependent digital 
switching in HfO2 RRAM is primarily related to the creation and 
rupture of an oxide barrier. Conversely, the modulation of the CF 
size in Ta2O5 RRAM allows bias-polarity-independent analog 
switching with multiple states. Therefore, when the Ta2O5 RRAM 
is used to implement a synapse in multilayer perceptron neural 
networks operated by back-propagation algorithms, patterns in 
handwritten digits can be recognized with high accuracy.  

 
 Index terms—Resistive switching memory (RRAM), 

filamentary switching, synaptic device, neuromorphic systems 

I. INTRODUCTION 
 euromorphic technology has recently demonstrated 
brain-inspired computing systems that can process massive 

amounts of data using low-power operations [1]. These systems 
are based on structures similar to the human brain, consisting of 
neurons connected by numerous synapses. They follow a 
simple weight update rule through synapses, similar to how 
humans remember information [2]. Different electronic devices 
are currently investigated for the development of artificial 
synapses, such as three-terminal transistor [1], phase change 
memory [3-4], spin-based memory [5], and resistive switching 
memory (RRAM) [6-11]. Among them, the RRAM based on 
filamentary switching is very promising owing to its excellent 
scalability, which enables the construction of large-scale 
neuromorphic systems.  

In order for the RRAM to function as a synapse that can 
transfer weight in the form of either conductance or current, 
multiple current states that can be continuously increased 
(potentiation) or decreased (depression) using electrical signals 
are essential. Such states can be obtained by controlling the 
formation and rupture of the conductive filament (CF) in the 
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RRAM. However, many studies have reported that only two 
discrete states are demonstrated during potentiation, whereas 
depression demonstrates multiple states [9-11]. This 
asymmetric synaptic characteristic degrades the pattern 
recognition accuracy in neuromorphic systems [3].  
 In this study, we compare two different RRAM device stacks 
and use experiments and simulations to understand and explain 
their different behavior in terms of properties and evolution of 
the CF. Our findings shed some light on the physical 
mechanisms allowing achieving analog switching with multiple 
states required by RRAM synaptic devices.    

II. EXPERIMENTS 
Two RRAM systems using HfO2 and Ta2O5 as switching 

layers were utilized in this study. A 6-nm-thick HfO2 layer was 
deposited on top of a 400-nm TiN bottom electrode (BE) 
connected to a 0.35 µm transistor. A 15-nm-thick Ti top 
electrode (TE) was then deposited, resulting in Ti TE/HfO2/TiN 
BE stack [7]. Meanwhile, for the Ta2O5 RRAM, bilayered 
TiOx/Ta2O5 was sandwiched between TiN BE/TE, where TiOx 
served as an oxygen reservoir [12]. RRAM operations were 
simulated using the Ginestra™ software package that described 
self-consistently charge transport, power dissipation and 
temperature increase and oxygen ions/vacancies generation, 
diffusion, and recombination processes [13-14].    

 
III. RESULTS AND DISCUSSION  

Fig. 1(a) shows the current-voltage (I-V) characteristics of an 
HfO2 RRAM operated under 100 µA compliance current in 
1T-1R configuration. During cycling the high-resistance state 
(HRS) was abruptly transited to a low-resistance state (LRS) 
during the SET operation. Then, the current of the LRS began 
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Fig. 2. I–V characteristics of Ta2O5 RRAM. 100 switching cycles are shown in 
gray lines. Gradually transited current states during SET and RESET indicated 
by bold red and blue lines are shown.  

 
 
Fig. 3. (a) Continuously increasing current during potentiation by current 
ramping in the Ta2O5 RRAM. (b) and (c) Linearly modulated potentiation and 
depression behaviors as functions of the number of identical positive pulses of 
2 to 3.5 V for 10 µs and negative pulses of −3 to −5 V for 100 µs.  
 

 
 
Fig. 4. Simulation results showing the current responses of CFs evolved by 
modulating either the δ or the size in the HfO2 RRAM systems. (a) Change in 
the δ (> 1 nm) primarily induces an exponential current change, whereas a 
linear increase in the current is observed for an increase in the CF size (b).  

to decrease gradually toward the HRS during the RESET 
operation. A similar bias-polarity-dependent switching 
behavior was observed when identical SET/RESET pulses with 
a fixed gate voltage (Vg) of 1.2 V were applied sequentially to 
the HfO2 RRAM, as shown in Fig. 1(b). A sudden increase in 
the current is caused by the first positive pulse leading to a 
current saturation region. No further changes in the current are 
observed after subsequent pulses, resulting in binary states 
during potentiation. Instead, applying non-identical pulse that 
increases the transistor Vg from 0.6 to 1.2 V at the fixed SET 
voltage allowed proportionally increased read currents, which 
enabled the binary states to be divided into multiple states. 
During depression, the current began to decrease continuously, 
in accordance with the number of negative pulses.  

On the other hand, the Ta2O5 RRAM exhibited bias-polarity- 
independent I-V curves, as shown in Fig. 2. After an abrupt 
forming process, analog switching corresponding to a gradual 
SET transition from the HRS to the LRS, and vice versa, was 
observed. Furthermore, we analyzed the current response by 
applying consecutive electrical inputs to the Ta2O5 RRAM. As 
can be seen in Fig. 3(a), the current increased continuously for a 
continuous increase in the compliance current. The current was 
thus tuned monotonically when 100 positive identical pulses 
between 2 and 3.5 V and 100 negative identical pulses between 
-3 and -5 V were applied for 10 µs and 100 µs, respectively, 
differently from the abrupt current jump exhibited by the HfO2 
RRAM under similar pulse operation, as shown in Figs. 3(b) 
and 3(c). The large amplitudes of the pulses showed high 
degrees of increase and decrease in the current change. 

The results shown in Figs. 1 and 3 demonstrate that the 
binary and analog switching types depend on both the material 
system and on the way the RRAM cell is operated (compliance 
current modulation and identical pulse train), suggesting a 
strong connection with the properties and evolution of the CF in 
the RRAM system during switching. We used simulations to 
shed some light on these important aspects. First of all, we 
investigated how the read current (IR) depends on the evolution 
of the CF considering two scenarios where the applied pulses 
are assumed to modulate either an oxide barrier (δ) or the CF 
size, as shown in Figs. 4(a) and 4(b), respectively. Simulations 
reveal that the CF current depends exponentially on the 
thickness of a large δ (> 1 nm) and linearly on the size of the CF 

(Fig. 4(b)). A linear current variation is also observed with the 
thickness of a small δ (< 1 nm); see state ‘B’ in Fig. 4(a). 

We then simulated switching dynamics and pulsed operation 
in both HfO2 and Ta2O5 based RRAM devices. RESET 
simulations of the HfO2 device show the formation of a clear δ 
(∼1.5-2 nm, Fig. 5(b)) that allows to nicely reproduce the 
measured HRS current (not shown for brevity). Based on the 
results in Fig. 4(a), the modulation of such a thick δ is expected 
to lead to an exponential variation of the current. This is 
consistent with the large jump of IR observed during 
potentiation, Fig. 1(b), whose abrupt nature – determining the 
binary switching exhibited by HfO2 devices – can be 
understood by looking at pulsed SET dynamics. Simulations 
reveal that when the train of identical SET pulses is applied, the 
voltage drops almost entirely across the δ, owing to the 
metallic-like nature of the remaining CF portion [14]. As a 
consequence, vacancies (V0) are massively generated, quickly 
restoring the CF already within the first pulse, see Figs. 5(a) and 
(c). The electric field becomes thus lower and uniform across 
the restored CF, strongly reducing the probability to generate 
additional V0 during the subsequent pulses and determining the 
observed saturation of the read current, Figs. 1(b) and 5(a). This 
also explains why subsequent pulses do not lead to an 
enlargement of the CF. Once the CF is recreated, the electric 
field is approximately equal to VP/tOX ∼ 1.7 MV/cm (being tOX 
the HfO2 thickness), which is far lower than the critical field of 
∼ 4-5 MV/cm needed to break Hf-O bonds [15]. 

Simulations allow also to understand and explain the analog 
behavior exhibited by the Ta2O5 RRAM. Forming results show 
that the CF is created only in the thin Ta2O5, whereas the 
overlying TiOx acts as a reservoir for the generated oxygen ions 
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Fig. 5. The amplitude (VP) and width (tP) of the SET/RESET pulse applied to 
the experiment were used in the simulation. The read pulse of 0.12 V and 
width (tR) was applied after the SET/RESET pulse. (a) IR simulated during a 
sequence of 20 SET pulses (VP=1 V, tP=tR=1 ms) and 20 RESET pulses (VP=-1 
V, tP=1 µs, tR=1 ms) applied to the HfO2 device. (b)-(c) 3D maps of V0 (red 
spheres) and O- (blue spheres) distributions corresponding to the device states 
after the RESET pulses and after the 1st SET pulse (marked respectively as A 
and B in (a)). (d) IR simulated during a sequence of 20 SET pulses (VP=3.6 V, 
tP=10 µs, tR=100 µs) and 20 RESET pulses (VP=-5 V, tP=tR=100 µs) applied to 
the Ta2O5 device. (e)-(f) 3D maps of V0 (red spheres) and O- (blue spheres) 
distributions corresponding to the device states after the RESET pulses and 
after the SET pulses (marked respectively as C, and D in (d)). 

 
 
Fig. 6. (a) Schematic diagram of neural network based on multilayer 
perceptron. Pattern recognition in MNIST handwritten dataset is trained by 
back-propagation algorithm. (b) Using HfO2 RRAM with binary states serving 
as synapse in the neural networks, the MNIST image can be recognized with 
94% accuracy in off-chip learning; however, the binary states limit the 
improvement of recognition accuracy during on-chip learning. Thus, the use of 
a Ta2O5 RRAM capable of linearly increasing or decreasing multiple states 
improves the recognition accuracy.  

(O-) [12], [16], Figs. 5(e)-(f). As expected, when applying the 
RESET voltage ramp or pulses, the O- accumulated into the 
TiOx diffuse back into the Ta2O5 under the action of the electric 
field. However, simulations reveal rather different process 
dynamics with respect to the case of the HfO2 RRAM, which 
originates from the different properties of the TiOx/Ta2O5 
material system. In fact, oxygen diffusion in Ta2O5 is 
characterized by a larger activation energy (∼1.2 eV [17]) and 
by a smaller field acceleration factor, respectively determining 
a slower and more random diffusion process (the reduced 
dependence on the applied field makes easier for O- to move 
radially driven by the local temperature and mutual Coulomb 
repulsion [14]). These microscopic material-related aspects 
translate into a more gradual and uniform oxidation of the CF. 
Simulation results clearly show that the RESET operation leads 
to a modulation of the CF size rather than to the creation of the 
δ, see Fig. 5(e). This affects also the following pulsed SET 
operation. Since the electric field is relatively uniform across 
the remaining oxide (no barrier is formed), V0 are generated 
preferentially in the surrounding of the CF (where the local 
temperature is higher [14]), determining its enlargement, Fig. 
5(f). Therefore, the bias-polarity-independent analog switching 
behavior in the Ta2O5 RRAM is primarily related to the change 
in the width of the CF, and not on the abrupt CF reconstruction, 
in full agreement with the results in Fig. 4(b).  

We finally simulated pattern recognition using the MNIST 
database of handwritten digits, for evaluating the operation of 
these RRAM devices as synapses in neural networks based on 
multilayer perceptron, which comprise input, hidden, and 
output layers, as shown in Fig. 6(a). Using a cropped 22 x 24 
image as input, the number of input neurons (528) was defined 
[18]. The signals are transferred from the input neurons to the 
output neurons via the synapse weights. The synaptic weight 

was considered as the conductance difference in a pair of two 
RRAM devices and updated by the back-propagation algorithm 
[3]. We then examined the effect of linearity of the conductance 
change on recognition accuracy. In off-chip learning, where 
training was performed using software, pattern recognition 
with 94% accuracy was achieved by utilizing the binary states 
achieved from the HfO2 RRAM based synapses, as shown in 
Fig. 6(b) [19]. During on-chip learning, however, the 
back-propagation algorithm repeatedly compared the output 
results and correct answers by adjusting the weight of the 
synapse to reduce the error rate of recognition [3]. In this case, 
the synapses with binary states had limitations in improving the 
recognition accuracy. The data could be recognized more 
precisely using the linearly modulated multiple states in the 
Ta2O5 RRAM based synapses in neuromorphic systems, 
thereby enabling improved accuracy (88%) of pattern 
recognition.   

IV. CONCLUSION 
We used experiments and simulations to perform a 

comparative study between HfO2 and Ta2O5 RRAMs and 
revealed that the evolution and properties of the CF play a 
crucial role in determining device electrical behavior (digital or 
analog switching). In particular, switching in the TiOx/Ta2O5 
material system is obtained through a modulation of the CF size, 
which allows achieving analog switching suitable for electronic 
synapses. Our findings provide fundamental insights for the 
development of RRAM devices to be used for neuromorphic 
applications. 
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