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Abstract

We present the results of analytical study and molecular dynamics simula-
tion of low energy nonlinear non-stationary dynamics of single-walled carbon
nanotubes (CNTs). New phenomena of intense energy exchange between dif-
ferent parts of CNT and weak energy localization in the excited part of CNT
are analytically predicted in the framework of the continuum shell theory.
Their origin is clarified by means of the concept of Limiting Phase Trajec-
tory, and the analytical results are confirmed by the molecular dynamics
simulation of simply supported CNTs.

Keywords: carbon nanotubes, nonlinear optical vibrations, energy
transfer, energy localization

1. Introduction

The study of the nanoscale objects is extremely exciting not only from
theoretical viewpoint, that allows to extend our knowledge of the fundamen-
tal principles, but also as a basis of development of materials and devices.
New effects and properties, which may appear at the nanoscale, permit to
elaborate the materials and devices with properties, which are unreachable
at the macroscale. Precisely what R.Feynman kept in mind more than 50
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years ago in his talk at the annual meeting of the American Physical Society
at the California Institute of Technology [1].

The theoretical analysis of the various phenomena at the nanoscale is
the important stage that has to stimulate the experimental and engineering
progress. The study presented in this paper deals with the new phenomenon
in the CNT nonlinear dynamics that is the capture of the optical vibra-
tions energy into some domain of the single-walled carbon nanotube. This
phenomenon consists in strongly non-uniform distribution of the vibration
energy along the CNT axes which is preserved during the time, which ex-
ceeds significantly the period of the oscillations in the numerical calculations
and forever-theoretically. The opposite process is the slow vibration energy
exchange between different domains in the CNT. The latter is similar the
beating in the system of two weakly coupled oscillators. Both regimes may
be observed in the CNT under the change of the initial energy. The capture
of vibration energy may be observed for the low-frequency optical oscilla-
tions with the amplitude that exceeds some threshold value, while at the
smaller amplitudes only the slow energy migration along the CNT occurs.
The derivation of nonlinear equations for the low-frequency oscillations of
the CNT as well as the analysis of the bifurcations may be very useful for
understanding of the energy exchange in the CNT and for the experimental
revealing of transition between different oscillation regimes.

Since the discovery in 1991 [2] up to date, the CNT physical properties
excite the great interest of the specialists in the micro- and nanoelectronics
as well as the researches in the material science, physics, chemistry, bio-
physics and related fields of the science and technologies [3]. The unique
mechanical properties of the CNTs (unsurpassed Young module, large elas-
tic deformation, highest tensile yield strength) and their high electrical and
thermal conductivity can dramatically improve the mechanical, electrical and
thermal properties of the polymer composites [4, 5, 6].

The great perspectives in the development of the new super-small and
ultra-fast nanodevices stimulate the investigations of the electronic proper-
ties of the CNTs in the dependence on their size, structure (chirality), the
presence of the impurities or structural defects and others [7] In this con-
nection, the electron-phonon coupling is important to the properties of the
CNTs [8, 9, 10, 11]. Ballistic transport, excited-state dynamics, superconduc-
tivity, Raman spectra all are also connected with electron-phonon interaction
[12, 13].

The phonons are the carriers in the processes of the thermal energy trans-
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fer in the CNTs and the composite materials containing the CNTs [14, 15]. In
particular, the problem of the heat transfer in the CNTs [16, 17] directly re-
lates to the problem of the thermoconductivity finiteness in one-dimensional
anharmonic lattices [18, 19, 20, 21]. Both the stationary and nonstationary,
but non-resonant, dynamics of the CNTs can be treated in terms of linear
or nonlinear normal modes (NNMs). Using the normal mode combinations,
one can describe (exactly or approximately) the CNT oscillations under ar-
bitrary initial conditions. However, the situation drastically changes if we
deal with non-stationary resonance processes such as energy transfer. In the
framework of the linear theory, the energy transfer requires the formation
of a wave packet, the time evolution of which depends strongly on the dis-
persion properties of the system. The dispersion leads to the wave packet
spreading that strongly affects the energy transfer efficiency. In the nonlin-
ear systems, the dispersive spreading can be compensated by nonlinearity.
As a result, a soliton (breather) mechanism of energy transfer in the infinite
quasi-one-dimensional nonlinear lattices arises. The presence of the localized
excitations as well as other nonlinear phenomena may essentially influence
on the thermal and electron properties of the CNTs [22].

The origin of the envelop solitons (breathers) in the various physical sys-
tems has been usually associated with the phenomenon of self-modulation
or modulation instability [23, 24] (see also the references in [24]). This phe-
nomenon is the interaction between a carrier wave with eigen-frequency ω
and the sidebands with the nearest frequencies ω ± δω. The superposition
of the sidebands and the carrier waves in the harmonic waves leads to the
carrier wave modulation. The nonlinear interaction of waves results to the
modulation instability, that is revealed in the amplification of modulation
amplitude as well as the growth of the modulation period. The investiga-
tion of the self-modulation was initially started in the hydrodynamics and
nonlinear optics and it was subsequently expanded in the numerous physical
systems including water waves, plasma physics, laser beam, and the theoret-
ical model of various nonlinear lattices [24].

However, it was recently shown [25, 26, 27] that the resonant interaction of
NNMs in the finite lattices leads to the existence of significant non-stationary
phenomena, which disappear in the infinite case: i) the intensive energy ex-
change between different parts of the system, which can be observed at a
small enough excitation level, ii) the existence of an instability threshold for
the zone-bounding mode, iii) the transition to weak energy localization in
some part of the system. All these phenomena can be understood and effi-
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ciently described by a unified viewpoint in the framework of Limiting Phase
Trajectory (LPT) concept. The LPTs correspond to strongly non-stationary
processes, which are characterized by the maximum possible (under given
conditions) energy exchange between different parts of the system. In the
present paper we study the processes of intense energy exchange and the
transition to the energy capture of the CNT low-frequency optical vibration.
The appropriate description in the framework of the nonlinear thin elastic
shell theory was used for the derivation of the nonlinear Schrödinger-type
equation and for the investigation of the resonant NNM interaction. The an-
alytical results were confirmed by the molecular dynamics simulation data.
A brief preliminary discussion of the revealed phenomena was presented in
[28].

2. The model

2.1. CNT low-frequency dynamics in the framework of modified Sanders-
Koiter thin shell theory

The dynamics of carbon nanotubes is one of the few areas of solid state
physics, in which the classical theory of thin elastic shells (TTES) can be
legitimately applied [29]. It is noteworthy that, in contrast to macroscopic
mechanics, where the fundamental limits of TTES are restricted by the pos-
sibility of plastic deformation, this theory can also be used for description
of large displacements of CNTs, even in the analysis of their collapse. The
only complicating factor is the uncertainty of the parameter characterizing
the thickness of the CNT [30]. The applicability of a well-designed TTES
allows us to obtain an effective description of the vibrational spectrum in
the framework of the linear approximation [31, 32, 33]. This can be easily
performed for the simplest of the boundary conditions, when a CNT of finite
size can be considered as a part of an infinite CNT. However, the modified
theory presented below admits efficient study of both linear and nonlinear
dynamics of CNTs under arbitrary boundary conditions.

We have found analytically the corresponding part of the oscillation spec-
trum and estimated the effect of the boundary conditions taking into account
the existence of boundary layers [34]. As for the non-stationary nonlinear
problems for CNT, in particular, resonant intermodal interaction, they can
be, in principle, studied by numerical methods [35, 36, 37]. However, such
approach is insufficient when dealing with prediction of new phenomena. On
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the contrary, we show that the analytical approach to nonlinear dynamics of
the CNT turns out to be efficient from this viewpoint.

This analytical investigation is based on the reduced nonlinear Sanders-
Koiter thin shell theory, and it is a far going extension of our recent study
relating to the origin of the oscillation localization in the nonlinear lattices
of various types [25, 26, 27].

Two optical-type vibration branches in the CNT spectrum (fig. 1) are
of interest from the viewpoint of the energy exchange processes mentioned
above: the first of them is the well-known Radial Breathing Mode (RBM),
which is associated with the circumferential wave number n = 0 and corre-
sponds to uniform radial extension-compression. The lowest optical mode in
the CNT spectrum (Circumferential Flexure Mode - CFM) is specified by
n = 2, and the main deformation is a deviation of the CNT cross-section
from the initial circular one [38]. To the best of our knowledge, the nonlinear
dynamic processes on CNTs were analytically studied only on the basis of a
simplest modal analysis (RBM and its parametric instability) [35, 36, 37].

The CFM oscillations are characterized by relative smallness of ring and
shear deformations (in particular, the contour length of the lateral section is
not essentially changed during deformation). So, we can assume that only the
bending, torsion and longitudinal deformations contribute to the potential
energy.

Considering the small-amplitude oscillations of the CNT in the limiting
case of a large aspect ratios, one can write the following equation of motion
in terms of the radial component of the displacement (see Appendix A for
details)

∂2W

∂τ 2
0

+W − ε2 µ

ω2
0

∂2W

∂ξ2
− ε2γ

∂4W

∂ξ2∂τ 2
0

+ ε2 κ

ω2
0

∂4W

∂ξ4
+ a1W

∂

∂τ0

(
W
∂W

∂τ0

)
= 0, (1)

where W characterizes the (dimensionless) radial displacement of the
shell. Independent variables ξ and τ0 = ω0τ are the dimensionless coor-
dinates along the CNT axis (0 ≤ ξ ≤ 1) and the dimensionless time reduced
to the gap frequency ω0, respectively. The parameters ω0, µ, γ, κ and a1

depend on the circumferential wave number n (= 2), the inverse aspect ratio
of the CNT (i.e. the ratio of the CNT radius R to its length L) α, the ratio
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Figure 1: (Color online) The example of the CNT vibration spectrum according to the
exact Sanders-Koiter thin shell theory: solid curves correspond to circumferential wave
number n = 0, dashed ones - to n = 1 and dot-dashed ones - to n = 2. The insert shows
the small longitudinal wave number part of the CFM branch. All the frequencies ω are
measured in dimensionless units and k - denotes the number of longitudinal half-waves
along the CNT. The aspect ratio of the CNT λ = 20 and the effective wall thickness
β = 0.08
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of the thickness of the CNT wall h to its radius - β and the Poisson ratio
ν. These parameters are determined in the Appendix A (see the equations
(A.11)). Introducing a small parameter ε ∼ β one can point clearly the order
of the different terms in equation (1) (see the discussion in the Appendix A,
equation (A.13)).

Equation (1) is a useful tool to analyse the effect of various boundary
conditions on the spectrum of natural oscillations of CNT. It was shown in
our previous paper [34] devoted to linear CNT vibrations that the solution
for periodic boundary conditions can be considered as a basic one for con-
struction of the solutions under other conditions (see brief discussion in the
Appendix B). Such conditions as clamping or free edges may be taken into
account in the frameworks of the dynamic boundary layer concept, which
is extended to nonlinear problems also [39]. The frequency spectrum in the
case of simply supported edges is determined by the following expression:

ω2 =
ω2

0 + µ π2k2 + κπ4k4

1 + γπ2k2
, (2)

where k is a longitudinal wave number corresponding to the number of
half-waves along the CNT axis. The conditions corresponding to simply sup-
ported CNT is a particular case of periodic boundary conditions. As for
their realization, the more realistic case is the CNT bounded by hemispheres
of fullerene ( in the case of macroscopic cylindrical shell this corresponds to
presence of hemispherical shells at the boundaries that is frequently consid-
ered by engineers as an approximate realization of the simple supporting).

It is convenient to rewrite the equation (1) using complex variables:

Ψ =
1√
2

(
∂W

∂τ0

+ iW

)
W =

−i√
2

(Ψ−Ψ∗)
∂W

∂τ0

=
1√
2

(Ψ + Ψ∗) ,

(3)

where the asterisk denotes the complex conjugation.
Performing the multiscale expansion procedure (see Appendix C) one

can get the equation for the amplitude of the main order in the ”slow” time
τ2 = ε2τ0:

i
∂χ0

∂τ2

− µ− ω2
0γ

2ω2
0

∂2χ0

∂ξ2
+

κ

2ω2
0

∂4χ0

∂ξ4
− a1

2
|χ0|2χ0 = 0, (4)
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where the main order value χ0 is coupled with the complex function Ψ =
εχ0 exp (−iτ0).

First of all, equation (4) admits the plane-wave solution

χ0 = A exp (−i(ωτ2 − kξ))
with the dispersion ratio

ω =
(µ− ω2

0γ)k2 + κk4

2ω2
0

− a1

2
A2, (5)

where A is the amplitude. As it can be seen, this dispersion relation is in
accordance with the relation (2).

Equation (4) is the modified Nonlinear Schrödinger Equation (NLSE),
in the standard version of which the fourth derivative is absent. As it is
well known, the standard NLSE admits the localized solution - the envelope
soliton or the breather. The presence of fourth derivative complicates the
problem, but using Pade approximation [40] one can obtain the following
localized solution

χ0 = X0e
−iωτ2sech(λξ), (6)

where

λ =

√√√√µ− γω2
0 −

√
(µ− γω2

0)
2

+ 8κωω2
0

2κ

X0 =
2
√

2

ω0

√
−9λ2 (µ− γω2

0)− 20ω2
0ω

a1

(7)

Solution (6) describes a set of soliton-like excitations, which are parametrized
by the ”frequency” parameter ω. The permissible values of ω are determined
by the conditions of the reality of the magnitude (λ) (the inverse soliton
width) as well as of the amplitude X0. Therefore, these values have to be
negative. It is a natural requirement because the localized solutions can exist
in the gap of the vibration spectrum.

Figures (2.1) show the solution (6) and its parameters λ and X0 at the
various values of the frequency ω. Equation (4) describes the nonlinear dy-
namics in the asymptotic limit of the infinitely long CNT. Commonly speak-
ing, it is the only limit when the localized soliton-like excitations occur in the
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(a)

(b)

Figure 2: (Color online) (a) The ”soliton” solution of Eq. (4) at the variuos values of the
”frequency” ω (−0.2,−0.1,−0.05,−0.01); (b) The amplitude (thick curve) and the inverse
width (dashed curve) of the solution (6) vs the ”frequency” ω.

nonlinear one-dimensional systems, keeping in mind the boundary conditions
in the infinity.

Nonlinear equation (4) can be used for the analysis of nonlinear normal
modes interaction and, in particular, in order to find out the transition be-
tween two regimes - the intensive energy exchange and energy localization
[28]. To perform this, one should take into account that the vibration spec-
trum for any CNT with finite length is discrete, i.e. the longitudinal wave
numbers are integers. To consider the intermodal interaction let us use the
sum of the resonant NNMs with the wave numbers k1 and k2.

χ0 = χ01(τ2) sin (πk1ξ) + χ02(τ2) sin (πk2ξ) (8)

Substituting solution (8) into equation (4) one should use the Galerkin
procedure to obtain the equations for complex amplitudes χ01 and χ02:

i
∂χ01

∂τ2

+ δω1χ01 −
3a1

8
(|χ01|2 χ01 + 4 |χ02|2 χ01 + 2χ2

02χ
∗
01) = 0

i
∂χ02

∂τ2

+ δω2χ02 −
3a1

8
(|χ02|2 χ02 + 4 |χ01|2 χ02 + 2χ2

01χ
∗
02) = 0,

(9)
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where

δωi =
µ− ω2

0γ

2ω2
0

π2k2
i +

κ

2ω2
0

π4k4
i , i = 1, 2

are the intervals between the modal frequencies. (One can estimate that
the frequency shift between the lowest modes (k1 = 1, k2 = 2) is approxi-
mately twice smaller than that for the next pair of modes (k2 = 2, k3 = 3).)

It is easy to see that the nonlinear terms in equations (9) are separated
into two groups: the terms |χ0j|2χ0i (i, j = 1, 2) determine the nonlinear
frequency shift, while the terms χ2

0iχ
∗
0j(i 6= j) describe the nonlinear inter-

action between modes. The Hamiltonian corresponding to equations (9) can
be written as

H = δω1 |χ01|2 + δω2 |χ02|2 −
3a1

16

(
|χ01|4 + |χ02|4

)
−a1

8

(
4 |χ01|2 |χ02|2 +

(
χ∗202χ

2
01 + χ∗201χ

2
02

)) (10)

Equations (9), besides the obvious energy integral (10), possess another
integral

X = |χ01|2 + |χ02|2 , (11)

which characterises the excitation level of the system, and it is an analogue
of the occupation number integral in quantum-mechanical terminology.

2.2. LPT and localization of CNT vibrations

As it was shown in [25, 28], the modal analysis becomes inadequate at
the resonance conditions. Therefore we introduce new variables as the linear
combinations of resonating modes with preservation the integral X:

φ1 =
1√
2

(χ01 + χ02);φ2 =
1√
2

(χ01 − χ02). (12)

The new variables describe the dynamics of some domains of the CNT
[28] (similarly to some groups of the particles in the effective discrete one-
dimensional chain [25, 26, 27]). Considering the energy distribution along the
nanotube one can see that the combination φ1 = 0 and φ2 6= 0 corresponds to
a predominant energy concentration in certain domain of the CNT, while the
rest of which has a lower energy density. The inverse combination (φ1 6= 0,
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φ2 = 0) leads to the opposite energy distribution. In the rest of φ1 and φ2

values the energy distributes more uniformly along the CNT’s axis.
Because of small difference between frequencies of the modes, the men-

tioned domains of CNT demonstrate a coherent behaviour similar to beating
in the system of two weakly coupled oscillators. Therefore we can consider
these regions as new large-scale elementary blocks, which can be identified
as specific elements of the system - the coherence domains. The coherence
domains were introduced for the nonlinear chain as the ”effective particles”
in [25].

The existence of integral of motion (11) allows to reduce the dimension
of the phase space up to 2 variables - θ and ∆, which characterize the rela-
tionship between the amplitudes and the phase shift between the coherence
domains, respectively:

φ1 =
√
X cos θe−i∆/2; φ2 =

√
X sin θei∆/2. (13)

Substituting these expressions into equations (9), the equations of motion
in the terms of ”angular” variables (θ,∆) one can obtain:

sin 2θ(
∂θ

∂τ2

− 1

2
(δω2 − δω1) sin ∆ +

a1X

8
cos ∆ sin 2θ) = 0

sin 2θ
∂∆

∂τ2

+ (δω2 − δω1) cos 2θ cos ∆ +
a1X

8
sin 2θ(cos2 ∆− 4)) = 0

(14)

First of all, it is easy to show that equations (14) have two stationary
points with coordinates (θ = π/4,∆ = 0) and (θ = π/4,∆ = π). Taking
into account the relations (13, 12), one can observe that these points cor-
respond to the stationary states χ01 and χ02, respectively. All trajectories
surrounding the stationary points describe the evolution of ”mixed” states
with different contributions of χ01 and χ02. The trajectory, which separates
the NNMs attraction domains, performs the function of separatrix, but it
is not possessed of the main quality of the latter. Namely, the motion of
imaginary point along this trajectory is continued a finite time. Such a tra-
jectory is the most distant from the stationary points and it is named as the
Limiting Phase Trajectory (LPT). As it was mentioned above the last notes
the extremely nonuniform distribution of the energy (from a possible ones).

The numerical solutions of Eq. (14) with the initial conditions corre-
sponding to the point (θ = 0, ∆ = π/2) for the various values of the excita-
tion X are shown in the Fig. 2.2 (a-f).
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a b

c d

e f

Figure 3: Solutions of equations (13) - θ (left panel) and ∆ (right panel) at the different
occupation numbers X for the CNT (20,0) ( α = 0.08 and β = 0.009): (a-b) X = 0.1Xloc;
(c-d) X = 0.995Xloc; (e-f) X = 1.05Xloc. The initial conditions correspond to nearest
vicinity of the LPT.
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Figs. 2.2(a, b) show the evolution of θ(τ2) and ∆(τ2) for small value of X,
when the system is close to the linear one. In this case one can see the non-
smooth behavior of the relative amplitudes as well as of the phase shift of the
coherence domains φ1 and φ2. Such a behaviour correlates with that the any
states belonging to the lines θ = 0 or θ = π/2 with ∆ 6= (π/2±mπ), in fact,
are some ”virtual” ones, and they must be passed in the infinitesimal time.
The respective solutions should be described in the terms of ”non-smooth”
functions [41].

Figs. 2.2(c,d) demonstrate the behaviour of the functions θ and ∆ if the
excitation level X is large enough and is extremely close, but smaller than
the threshold value Xloc, the origin of which we will consider below. These
figures show that this behaviour qualitatively does not different from that in
fig. 2.2(a,b).

However, Figs.2.2(e,f) exhibit the drastic changes in the evolution of the
functions θ and ∆ in spite of excitation of the system was increased of 0.5%
only. First of all the variation range of the function θ becomes twice less.
It is the most important fact, which shows, that the state with θ = π/2 is
inaccessible, if the initial conditions correspond to θ = 0 and vice versa. The
second feature in the fig. 2.2(f) is the unlimited growth of the function ∆.
Such a behaviour corresponds to the transit-time trajectories.

To clarify the bifurcations of the solution of equations (14) let us rewrite
the Hamilton function (10) in terms of angular variables θ and ∆ and consider
the topology of the phase space.

H =
X

2
(δω1 + δω2 + (δω1 − δω2) cos ∆ sin 2θ

− a1X

16
(9 + (cos2 ∆− 4) sin2 2θ)) (15)

Fig. 4 shows the phase portraits for various values of the parameter X.
The initial structure of the phase space for the small X, when the system
is close to the linear, is clearly shown in the left panel of Fig. 4. The
representative domains of the phase space are bounded by the intervals 0 ≤
θ ≤ π/2 and −π/2 ≤ ∆ ≤ 3π/2. Two stable stationary points correspond
to the normal modes χ01 and χ02. The LPT contains two lines θ = 0 and
θ = π/2, and two fragments, which connect the pairs of points: ((θ = 0,∆ =
−π/2); (θ = π/2,∆ = −π/2)) and ((θ = 0,∆ = π/2); (θ = π/2,∆ = π/2)).
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The analogous trajectory rounds the stationary state χ02. The motion along
the LPTs leads to the non-smooth behaviour as it is shown in the Fig. 2.2

However, the stationary state χ01 becomes unstable if the parameter X
exceeds some threshold. Its value Xins can be calculated from the instability
condition:

∂2H

∂θ2
= 0, (θ = π/4,∆ = 0)

Xins =
8(δω2 − δω1)

3a1

.

(16)

Two new stationary points arise after loosing the mode χ01 its stability.
They are new NNMs. The distance between them grows while the parameter
X increases. These new stationary points correspond to some non-uniform
distribution of the energy along the CNT, however, this non-uniformity is
weak. The main feature of these states consists in that any trajectory sur-
rounding them cannot attain the separatrix, which passes through the unsta-
ble stationary state χ01. Therefore, the non-uniformity of energy distribution
remains for the infinite time. Nevertheless, any trajectories, which are situ-
ated in the gap between the separatrix and the LPT, preserve the possibility
to pass from the vicinity of φ1 state (θ = 0) into the vicinity of φ2 state
(θ = π/2) (see Fig. 2.2(c, d). This process is accompanied with the slow
energy transfer from one part of the CNT to another one and vice versa.

However, the behavior of the solution of equations (14) is changed dras-
tically if the value of X overcomes next threshold Xloc. The existence of this
threshold results from that the new stationary states move away from the
unstable state and the separatrix grows while the LPT moves to the unsta-
ble state in the vicinity of θ = π/4. The principal changes happen when the
LPT reaches the point (θ = π/4,∆ = 0). At this instant the gap between
the LPT and the separatrix disappears and the only trajectory passing from
θ = 0 to θ = π/2 is the LPT. The further increasing of the parameter X
leads to that new separatrix passing through the unstable stationary points
(θ = π/4,∆ = 0) and (θ = π/4,∆ = 2π), arises (see Fig. 4(c)). It separates
the phase space of the system into uncoupled parts and any trajectories,
which start near the θ = 0, cannot attain the value θ = π/2 and vice versa.
It means that the energy originally given to in a part of CNT is kept in this
part. The new LPTs enclose the stationary points, which correspond to the
stable NNMs. Fig. 4(c) shows the transit-time trajectories, which are in
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(a) (b)

(c)

Figure 4: (Color online) Phase portraits of the system with Hamiltonian (15) for different
values of the excitation: (a) X = 0.1Xloc, (b) X = 0.995Xloc, (c) X = 1.05Xloc (see text).

the domain between LPTs and separatrix. Therefore the solution, which is
shown in the Fig. 2.2(f), demonstrates the infinite rise of the variable ∆.

The condition of the bifurcation discussed is the degeneration of the en-
ergy of the states χ01, φ1 and φ2, i.e.

H(θ = π/4,∆ = 0) = H(θ = 0,∆ = ±π/2)

= H(θ = π/2,∆ = ±π/2).
(17)

So, the value of the localization threshold turns out to be

Xloc =
16(δω2 − δω1)

3a1

(18)

Fig. 2.2 demonstrates the dependence of the localization threshold in the
terms of the radial displacement w from the inverse aspect ratio of the CNT.
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Figure 5: (Color online) Radial displacement W at the localization threshold for the (20,0)
zigzag CNT vs inverse aspect ratio α: solid black and doted blue curves are the analytical
predictions based on the Eqs. (4) and analogous procedure, based on the direct modal
analysis [28], respectively. The dashed red curve shows the threshold value estimated
by the numerical method (see Appendix D for detail). Periodic boundary conditions are
considered.

2.3. MD simulation

According to equation (12) the energy distribution corresponding to the
first or second effective particles is the predominantly concentrated in the one
or other part of the CNT. The motion along the LPT, as it is shown in Fig.
4(a), leads to slow energy transfer from the one effective particle to another
one. These processes may be observed in the numerical simulation of the
CNT vibration. Also the transition from the regime of energy exchange to
the energy capture should be revealed while the amplitude of initial excitation
grows.

To verify the results of analytical model the simulation of the low-frequency
vibrations of CNTs was performed by molecular dynamics (MD) techniques
using the realistic inter-atomic potential functions (force fields). The force
fields contain the energies of the covalent C-C bonding, valence and torsion
angels deformation, and Van-der-Waals interaction. The potential energy of
CNT may be written in the form:

E =
∑
j,j

U1(ρi,j) +
∑
i,j,n

U2(~ρi,j, ~ρj,n)

+
∑
i,j,n,m

U3(~ρi,j, ~ρj,n, ~ρn,m) +
∑
i,j

U4(ρi,j).
(19)

The energy of covalent bonding U1 is written as follows:
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U1(ρi,j) = K1(ρi,j − ρ0)2

~ρi,j = ~Ri − ~Rj, ρi,j =| ~ρi,j |,
(20)

where ~Rj is the coordinate of j-th atom and ρ0 = 1.42, Å is the equilib-
rium length of C − C bond. Only three nearest neighbours are taken into
account for each j-th atom in equation (20). The force constant K1 = 20.564,
eV /Å2.

The potential energy of valence angle deformation is

U2(~ρi,j, ~ρj,n) = K2(φ− φ0)2

cosφ = ~ρi,j~ρj,n/ (ρi,jρj,n) ,
(21)

where the equilibrium valence angle φ0 = 1200 and the force constant
K2 = 3.852 eV/degree2. The second sum in equation (19) consists of the
triads of the atoms, which form the valence angels.

The energy of torsion angles contains two terms:

U3(~ρi,j, ~ρj,n, ~ρn,m) = K3,1(1− cos 2Θ)

+K3,2(1− cos 3Θ)

cos Θ = ~hi,j,n~hj,n,m/
(
| ~hi,j,n || ~hj,n,m |

)
~hi,j,n = ~ρi,j × ~ρj,n, ~hj,n,m = ~ρj,n × ~ρn,m,

(22)

where the force constants are K3,1 = 0.1285 eV and K3,2 = 0.01585 eV and
the equilibrium dihedral angle Θ0 = 0. The torsion terms corresponding to
the equilibrium dihedral angle Θ0 = π are negligible and they were not taken
into account in the current simulation [42].

The last term in equation (19) corresponds to the Van der Waals inter-
action of the non-covalent bonding carbon atoms:

U4(ρi,j) = 4ε

[(
σ

ρi,j

)12

−
(
σ

ρi,j

)6
]
, (23)

where σ = 1.750Å and the force constant ε = 1.414 10−3 eV/Å.
One should note, that in spite of that the potential functions (equations

(20) - (21)) contain the quadratic forms only, the nonlinearities of geometrical
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origin are taken into account in accordance with the analytical model of the
thin elastic shell ( Appendix A).

Because the analytical model discussed above does not taken into account
the chirality of the CNT, we tested the processes of the energy exchange and
its localization during the MD simulation of the zigzag CNTs (m, 0) with
indexes m = 10 and m = 20, and with the different aspect ratios.

The CNT vibrations in the current system were modelled using the pro-
gram complex ”PUMA”. This program uses the Verlet algorithm for the
integration of the equations of motion with the time step δt = 0.5 fs. The
temperature was controlled by the collision-type thermostat [43].

The typical MD experiment consisted of several stages. At the first stage
the CNT was kept at high temperature (' 400K) for structural relaxation.
The duration of this stage was approximately 20-25 ps. Then the thermo-
stat temperature was decreased with a constant rate (∼ 1K/ps) down to
approximately 1 K with a subsequent low-temperature relaxation. The third
stage dealt with CNT deformation according to analytical solution with sub-
sequent relaxation. The relaxation times for second and third stages were
approximately 15-20 ps. (Another version of initial conditions was given by
initial velocities of atoms at zero initial displacements.) The short relaxation
times during the MD simulation concern to the relaxation of the special pre-
pared state of the CNT, when the initial deformations correspond to a linear
combination of the modes considered. In such a case, the differences between
the CNT profiles which are described by the analytical expressions and those
defined by the MD potentials, were minimal. Therefore, the relaxation times
were smaller than those which may be observed in the realistic experiments.
Nevertheless, the relaxation processes were continued until the essential pa-
rameters of the system became stationary (corresponding to thermodynamic
equilibrium). After that the external field was turned off, and the free nat-
ural oscillations of CNT with the fixed boundary conditions were realized.
To assert the boundary conditions according to the analytical model, the
atoms at the edges of CNT were fixed by the force field against any radial
displacements (W (0, t) = W (1, t) = 0) that corresponds to the boundary
conditions similar to simply supported shell. At that time any longitudinal
and circumferential displacements of the edge atoms were not suppressed.
The consequent analysis of MD simulation data included the control of nat-
ural frequencies and energy distribution along the CNT axis via variation of
the oscillation amplitude. The ”maps” of energy distribution along the CNT
axis measured during the MD simulations are shown in the figures 6 (a-c).
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Figure 6: (Color online) (a) The ”map” of the energy distribution along the (20,0) zigzag
CNT during the MD-simulation with the small excitation level X = 0.15Xloc, that corre-
sponds to phase portrait in the Fig. 4(a). (b, c) The same as in the panel (a) with initial
excitation level X = 0.995Xloc and X = 1.25Xloc, respectively. Insets show the energy
measured in kelvins.

Figure 6(a) corresponds to the small value of the excitation level X, when
the nonlinearity does not appreciably influence on the modes behaviour and
the periodic process that is similar to the beating in the system of two weakly-
coupled oscillators, results in the slow energy exchange between different
parts of the CNT. Near the localization threshold the process of the energy
transfer is changed appreciably (Fig. 6(b)). The period of it essentially
grows and the maximum of the energy distribution slowly drifts along the
CNT in contrast to the case of small excitation, where the change of the
energy location likes the series of jumps (Fig. 6(a)). After overcoming the
localization threshold the energy of CNT vibration turns out to be captured
in the initially excited part of the CNT (Fig. 6(c)). The reason of that is
obvious from considering the phase portrait on figure 4(c). One should notice
of that the energy localization is weak enough, because only two modes form
the energy distribution. However, for the best of our knowledge, the presence
of additional modes leads to the greater energy localization [25]. So we can
conclude that the bifurcation of the LPT at high excitation level brings to
the energy capture in some domain of the CNT.

Fig. 2.3 shows the variation of the CNT vibration spectrum with changing
of the initial excitation level. The dot, black and red curves correspond to
the excitation X < Xloc.

One should note, that the large narrow peak near the frequency ω '
0.05 corresponds to the lowest eigenvalue of the system under considera-
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Figure 7: (Color online) CNT vibration spectra at various excitation levels: X = (0.01−
1.1)Xloc.

tion. Therefore no vibration with the smaller frequency exists in the gap for
any initial excitation, if it does not exceed the localization threshold Xloc.
However, the overcoming of the localization threshold changes the spectrum
drastically. From one side, one can see in Fig. 6(c), that the shape of the
initial excitation is deformed essentially during the MD simulation and the
local temperature reaches a great value (∼ 1000K). Therefore, the onset
of high-frequency modes is naturally sufficient. On the other side, the in-
tensive oscillations in the gap of the spectrum can not be explained by the
increasing of the local temperature. To fill this gap, the excitation of another
low-frequency modes is required (they may be acoustic type modes like the
bending or the longitudinal stretching modes - see Fig. 1). Another possi-
bility is forming of the localized excitation, because the Fourier spectrum is
wide enough. Unfortunately, the two-mode approximation used in our analy-
sis can not answer in this question. The accurate study of this problem needs
in the consideration of the inter-branch mode interaction. This problem will
be formulated in our future studies.

3. Conclusion

We demonstrate that instability of edge-spectrum optical modes of CNT
vibrations is only the preliminary condition of non-stationary (in slow time
scale) energy localization in some domain of CNT. The energy capture in one
of the CNT parts can be achieved, if the excitation level exceeds the specific
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threshold X = Xloc, which corresponds to merging two trajectories, which
are the LPT and the separatrix appeared at X = Xins. When this threshold
is exceeded the phase portrait of the system under consideration changes
drastically: the separatrix passing through the unstable stationary point (θ =
π/4, ∆ = 0) (see fig. 4(b)) encircles the stable stationary point (θ = π/4, ∆ =
π) and prevents full energy exchange between effective particles ψ1 and ψ2.
Simultaneously a set of transit-time trajectories, which involve any values of
phase difference ∆, is created. It means that initial conditions corresponding
to identical velocities or displacements of both modes lead to the energy
capture by the coherence domains. Then only a partial energy exchange
becomes possible along the trajectories, surrounding the stable stationary
point and situated inside the separatrix. One should keep in mind that the
process of energy capture does not suggest the creation of strongly localized
solutions whose formation requires a participation of more components of the
spectrum. This can be achieved for CNT with larger aspect ratio.

It should be noted once more that the development and the use of the
analytical framework based on the LPT concept is motivated by the fact that
resonant non-stationary processes occurring in a broad variety of finite di-
mensional physical models are beyond the well-known paradigm of nonlinear
normal modes (NNMs), fully justified only for quasi-stationary processes and
non-stationary processes in non-resonant case. While the NNMs approach
has been proved to be an effective tool for the analysis of instability and bi-
furcations of stationary processes (see, e.g., [44]), the use of the LPTs concept
provides the adequate procedures for studying strongly modulated regimes
as well as the transitions to energy localization and chaotic behaviour [25].
Such an approach clarifies also the physical nature of the breathers formation
in infinite discrete or continuum systems.

As a conclusion we would like to note that the phenomenon of energy
localization considered above has universal character and it is the common
peculiarity of the systems possessing the optical-type branches of vibrational
spectrum. However, as it was studied early [25, 27, 26], the occurrence of the
localization depends on the types of nonlinearity as well as on the relations
between coefficients σi,j in the Hamiltonian (10). If some ratios between
coefficients σi,j are satisfied, an additional integral of motion arises that leads
to the effective linearization of the equations of motion and, as consequence,
to the absence of the localization processes [41]. So, in spite of that the
interaction of resonating nonlinear modes described by the Hamiltonian (10)
is valid for a wide class of the nonlinear systems, the results of this interaction
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may vary considerably. In any case, the analysis of the Hamiltonian (10) in
combination with the LPT concept gives us a useful tool for the study of
nonlinear systems.
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Appendix A. The reduced Sanders- Koiter thin shell theory

It is convenient to use the dimensionless variables into expression of the
elastic deformation of the circular thin shell. In such a case all the com-
ponents of the displacement field (u - longitudinal along the CNT axis, v
- tangential and w - radial displacement, respectively) are measured in the
units of CNT radius R. The displacements and respective deformations re-
fer to the middle surface of the shell. The coordinate along the CNT axis
ξ = x/L is measured via the length of nanotube and varies from 0 up to 1,
and θ is the circumferential angle.

One can define the dimensionless energy and time variables, which are
measured in the units E0 = Y RLh/(1 − ν2) and t0 = 1/

√
Y/ρR2(1− ν2),

respectively. Here Y is the Young modulus of graphene sheet, ρ - its mass
density, ν - the Poisson ratio of CNT, and h is the effective thickness of CNT
wall. There are two dimensionless geometric parameters which characterize
CNT: the first one is inverse aspect ratio α = R/L and the second - effective
thickness shell β = h/R.

The energy of elastic deformation of CNT in the dimensionless units is
written as follows:

Eel =
1

2

1∫
0

2π∫
0

(Nξεξ +Nϕεϕ +Nξϕεξϕ+

Mξκξ +Mϕκϕ +Mξϕκξϕ)dξdϕ

(A.1)

where εξ, εϕ and εξϕ are the longitudinal, circumferential and shear de-
formations, and κξ, κϕ and κξϕ are the longitudinal and circumferential cur-
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vatures, and torsion, respectively. The respective forces and momenta may
be written in the physically linear approximation:

Nξ = εξ + νεϕ, Nϕ = εϕ + νεξ,

Nξϕ =
1− ν

2
εξϕ

Mξ =
β

12
(κξ + νκϕ), Mϕ =

β

12
(κϕ + νκξ),

Mξϕ =
β

24
(1− ν)κξϕ

(A.2)

One should note that both curvatures and torsion are the dimensionless
variables in accordance with our definition of displacement field (u, v, w).

Taking into account the relationships (A.2) one can rewrite the expression
for the elastic energy deformation as

Eel =
1

2

1∫
0

2π∫
0

(
ε2
ξ + ε2

ϕ + 2νεξεϕ +
1− ν

2
ε2
ξϕ

)
dξdϕ+

+
β2

24

1∫
0

2π∫
0

(
κ2
ξ + κ2

ϕ + 2νκξκϕ +
1− ν

2
κ2
ξϕ

)
dξdϕ.

(A.3)

The Sanders-Koiter approximation of defectless thin shell allows to write
the nonlinear deformations (ε) and curvatures (κ) in the following form

εξ = α
∂u

∂ξ
+
α2

2
(
∂w

∂ξ
)2 +

1

8
(α
∂v

∂ξ
− ∂u

∂ϕ
)2

εϕ =
∂v

∂ϕ
+ w +

1

2
(
∂w

∂ϕ
− v)2 +

1

8
(
∂u

∂ϕ
− α∂v

∂ξ
)2

εξϕ =
∂u

∂ϕ
+ α

∂v

∂ξ
+ α

∂w

∂ξ
(
∂w

∂ϕ
− v)

(A.4)

23



(a) (b)

Figure A.8: (Color online) (a) CNT cross-section for circumferential flexure mode with
circumferential wave number n = 2. Solid black and red dashed curves show the unde-
formed and deformed cross-section of the CNT, respectively. R is the radius of the CNT
and ϕ is the circumferential angle. (b) The comparison of elastic energy components for
the circumferential flexure deformation of the CNT with aspect ratio λ = 20. Dashed,
dotted, dot-dashed, and solid curves show the energies of longitudinal, circumferential,
shear and bending deformations, respectively. The effective wall thickness β = 0.1 and
the Poisson ratio ν = 0.2. The energies are measured in the dimensionless units.

κξ = −α2β
∂2w

∂ξ2
,

κϕ = β

(
∂v

∂ϕ
− ∂2w

∂ϕ2

)
,

κξϕ = β

(
−2α

∂2w

∂ξ∂ϕ
+

3α

2

∂v

∂ξ
− 1

2

∂u

∂ϕ

)
.

(A.5)

One should make some physically grounded relationships between the
displacement components to simplify the description of the CNT nonlinear
dynamics. We consider the low-frequency optical-type vibrations which are
specified by circumferential wave number n = 2. The deformation of the
CNT cross-section for the amplitude of the radial displacement W0 = 0.2 is
shown in figure Appendix A (a).

This branch is characterized by relatively small circumferential and shear
deformations, while the displacements themselves may not be small. The
comparison of elastic deformation energies associated with different type of
deformations is shown in figure Appendix A (b). One can see that the bend-
ing deformation (defined by curvatures (A.5)) contains the majority of elastic
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deformation energy, while the energies of circumferential and shear deforma-
tions may be negligible. The energy of longitudinal deformation is consider-
ably smaller than the bending one only for the longitudinal wave numbers
k = 1, 2.

In such a case one can formulate the hypotheses:

εϕ = 0; εξϕ = 0 (A.6)

However, these hypotheses don’t mean that the displacements included
to circumferential and shear deformations are small.

The components of displacement field should be written as follows

u(ξ, ϕ, τ) = U0(ξ, τ) + U(ξ, τ) cos(nϕ)

v(ξ, ϕ, τ) = V (ξ, τ) sin(nϕ)

w(ξ, ϕ, τ) = W0(ξ, τ) +W (ξ, τ) cos(nϕ)

(A.7)

Relations (A.6) allow us to express the longitudinal and tangential com-
ponents, and axially symmetric part of the radial displacement, via the radial
one. Corresponding relationships can be written as follows:

V (ξ, τ) = − 1

n
W (ξ, τ);

U(ξ, τ) = − α

n2

∂W (ξ, τ)

∂ξ

W0(ξ, τ) = − 1

4n2
((n2 − 1)2W 2(ξ, τ) + α2(

∂W (ξ, τ)

∂ξ
)2);

∂U0(ξ, τ)

∂ξ
= −n

2 + 1

4n2
α(
∂W (ξ, τ)

∂ξ
)2

(A.8)

Because the kinetic energy contains the inertial terms corresponding to
all components of the deformation field

Ekin =
1

2

1∫
0

2π∫
0

(
(
∂u

∂τ
)2 + (

∂v

∂τ
)2 + (

∂w

∂τ
)2

)
dξdϕ (A.9)

we need in taking into account the relations (A.8) also.
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Omitting the calculation details one can write the final equation of motion
in terms of radial displacement W (ξ, t):

∂2W

∂τ 2
+ω2

0W−µ
∂2W

∂ξ2
−γ ∂4W

∂ξ2∂τ 2
+κ

∂4W

∂ξ4
+a1W

∂

∂τ

(
W
∂W

∂τ

)
−a2

3

∂

∂ξ

(
∂W

∂ξ

)3

−a3

(
∂

∂ξ

((
∂W

∂τ

)2
∂W

∂ξ

)
−W

(
∂2W

∂ξ∂τ

)2
)
−a4

2

∂

∂ξ

[
∂W

∂ξ

∂2

∂τ 2

(
∂W

∂ξ

)2
]

= 0

(A.10)

where

ω2
0 = β2n

2(n2 − 1)2

12(n2 + 1)
, µ = α2β2 (n2 − 1)(n2 − 1 + ν)

6(n2 + 1)
; γ =

α2

n2(n2 + 1)
,

κ =
α4(12 + n4β2)

12n2(n2 + 1)
' α4

n2(n2 + 1)
; a1 =

(n2 − 1)4

2n2(n2 + 1)
,

a2 = 2α4 (n2 − 1)2

n2(n2 + 1)
; a3 = α2 (n2 − 1)2

2n2(n2 + 1)
, a4 =

α4

2n2(n2 + 1)
(A.11)

Eq. (A.10) allows us to calculate the eigenfrequencies in the linear ap-
proximation as well as to estimate the effect of nonlinearity on these frequen-
cies at different boundary conditions. The analysis of the different terms of
equation (A.10) shows that the essential contribution is given by the first
nonlinear term only. In further we skip the rest of nonlinear terms.

∂2W

∂τ 2
+ ω2

0W − µ
∂2W

∂ξ2
− γ ∂4W

∂ξ2∂τ 2
+ κ

∂4W

∂ξ4
+ a1W

∂

∂τ

(
W
∂W

∂τ

)
= 0,

(A.12)

The applicability of the thin elastic shell theory requires the smallness of
the effective wall thickness β. Therefore, the characteristic frequency of the
gap ω0 is small. One should note, that the parameter α is small enough in
most cases.

26



It is convenient to introduce the ’new’ time, which is scaled by the gap
frequency ω0: τ0 = ω0τ . Then

∂2W

∂τ 2
0

+W − µ

ω2
0

∂2W

∂ξ2
− γ ∂4W

∂ξ2∂τ 2
0

+
κ

ω2
0

∂4W

∂ξ4
+ a1W

∂

∂τ0

(
W
∂W

∂τ0

)
= 0,

(A.13)

Let us introduce a small parameter ε ∼ β and assume that the inverse
aspect ratio α has the same order of smallness. Then, taking into account
expressions (A.11) one can evaluate the orders of smallness for the parameters
of equation (A.13).

µ

ω2
0

∼ α2 = (εα1)2 ∼ ε2; γ ∼ α2 = (εα1)2 ∼ ε2;

κ

ω2
0

∼ α4

β2
=

(εα1)4

(εβ1)2
∼ ε2

(A.14)

We suppose that the parameters α1 and β1 have the value of order of
unity. In further we can clearly show the smallness of the parameters of
equation (A.13) by assigning the respective order of ε.

Appendix B. Influence of boundary conditions

The presence of boundary conditions different from the simple supporting
affects on the NNMs and their frequency. In this Appendix we consider the
effective method for the solution of boundary problem and demonstrate the
procedure of the normal mode construction on the example of CNT with free
edges.

It is intuitively clear that the strong boundary conditions like the clamp-
ing lead to frequency growth while the more ”soft” conditions can decrease
the frequencies. To estimate the variation of normal modes we used the linear
approximation of RSKTST (reduced Sanders Koiter thin shell theory).

Let us assume that the solution of linearized equation of the the CNT
vibrations

∂2W

∂τ 2
+ ω2

0W − µ
∂2W

∂ξ2
− γ ∂4W

∂ξ2∂τ 2
+ κ

∂4W

∂ξ4
= 0 (B.1)

is represented as the periodic process
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W (ξ, τ) ∼ f(ξ) cos(ωτ). (B.2)

Taking into account expression (B.2) explicitly, one can rewrite equation
(B.1) with the help of the product of two differential operators:

κ

(
d2

dξ2
+ k2

)(
d2

dξ2
− λ2

)
f = 0, (B.3)

where the parameters µ, γ, and ω are linked by the relationships

κλ2k2 = ω2 − ω2
0

κ
(
λ2 − k2

)
= µ− γω2. (B.4)

Because the operators (d2/dξ2 + k2) and (d2/dξ2 − λ2) are commutative
ones, any function f(ξ), which satisfies one of the equations(

d2

dξ2
+ k2

)
f(ξ) = 0 (B.5)

(
d2

dξ2
− λ2

)
f(ξ) = 0, (B.6)

is a solution of equation (B.3).
So a general solution of equation (B.3) is a linear combination of the

solutions of equations (B.5), (B.6):

f(ξ) = (C1 sin k(ξ − ξ0)+

C2e
λ(ξ−ξ1) + C3e

−λ(ξ−ξ1)),
(B.7)

where k, λ, Cj, j = 1, 2, 3 and ξj, j = 0, 1 are the constants determined
by the boundary conditions and the symmetry of solution. Equation (B.7)
shows that the proposed approach allows clearly single out the exponential
boundary layer as a part of the solution. One should note that expressions
(B.4) provide the coupling between the parameters of the solution. The
estimation of the parameters of solution (B.7) is needed for formulation of
the boundary conditions in terms of the radial displacements.

Let us consider the vibrations of CNT under condition of free edges.
One can show that the free edges boundary conditions correspond to two
equations for the radial displacement W (ξ, τ):
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α2∂
2W (ξ, τ)

∂ξ2
− ν

(
n2 − 1

)
W (ξ, τ) = 0

α2∂
3W (ξ, τ)

∂ξ3
− (2− ν)

(
n2 − 1

) ∂W (ξ, τ)

∂ξ
= 0

 ξ = 0, 1 (B.8)

Solving the equations (B.4, B.8), one can estimate all the parameters of
the solution (B.7).

Fig. B.9 shows the spectra for the system under different boundary con-
ditions - the simply supported, free and clamped edges.

Figure B.9: The comparison of CNT vibration spectra for the different boundary condi-
tions. CNT parameters - L = 10 nm and R = 0.79 nm.

Appendix C. The multiscale expansion

Because we consider the small-amplitude oscillations, one can represent
the complex amplitude Ψ as a series of small parameter ε:

Ψ = ε
(
ψ0 + εψ1 + ε2ψ2 + . . .

)
(C.1)

Next we should introduce the ’time’ series: τ1 = ετ0, τ2 = ε2τ0, . . . and
the respective time derivatives:

∂

∂τ0

=
∂

∂τ0

+ ε
∂

∂τ1

+ ε2 ∂

∂τ2

+ . . . (C.2)

Substituting the expansion (C.1) into (1) and taking into account the
hierarchy of the times, we get the equations in the different orders by small
parameter ε.
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ε1 : i
∂ψ0

∂τ0

− ψ0 = 0

So, we get

ψ0 = χ0(ξ, τ1, τ2)e−iτ0

ε2 : i
∂ψ1

∂τ0

− ∂ψ0

∂τ1

− ψ1 = 0

Then we get:

ψ1(ξ, τ0, τ1, τ2) = χ1(ξ, τ1, τ2)e−iτ0

ψ0(ξ, τ0, τ1, τ2) = χ0(ξ, τ2)e−iτ0 .
(C.3)

ε3 :

i
∂ψ2

∂τ0

− ψ2 + i
∂ψ1

∂τ1

+ i
∂ψ0

∂τ2

− µ

2ω2
0

∂2ψ0

∂ξ2

− γ

2

∂2ψ0

∂ξ2
− iγ

2

∂3ψ0

∂τ0∂ξ2
+

κ

2ω2
0

∂4ψ0

∂ξ4

+
µ

2ω2
0

∂2ψ∗0
∂ξ2

− γ

2

∂2ψ∗0
∂ξ2

− κ

2ω2
0

∂4ψ∗0
∂ξ4

+
a1

2

(
|ψ0|2ψ0 − i

∂ψ0

∂τ0

(
ψ2

0 + ψ∗20 − 2|ψ0|2
))

= 0, (C.4)

Taking into account the relations (C.3), one can integrate the equation
(C.4) with respect to τ0 and τ1. Then the condition of the secular terms
absence give us the equation for the main approximation amplitude χ0 (4).

Appendix D. Comparison of two-mode approximation with other
numerical methods

The two-mode approximation in the framework of nonlinear Sanders-
Koiter theory of thin elastic shells allows us to predict the bifurcation of
dynamical behavior of low-frequency CNT vibrations as well as to estimate
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the threshold values of oscillation amplitude. However, the influence of the
other part of the spectrum is very important for the estimation of the relia-
bility of the obtained results. Therefore, they should be verified by numerical
methods. One of the approaches consists in the direct numerical integration
of the modal nonlinear equations of the Sanders-Koiter thin shell theory.

In order to carry out the numerical analysis of the CNT dynamics, a two-
step procedure was used: i) the displacement field was expanded by using
a double mixed series, then the Rayleigh-Ritz method was applied to the
linearized formulation of the problem, in order to obtain an approximation
of the eigenfunctions; ii) the displacement field was re-expanded by using
the linear approximated eigenfunctions, the Lagrange equations were then
considered in conjunction with the nonlinear elastic strain energy to obtain
a set of nonlinear ordinary differential equations of motion.

So, to satisfy the boundary conditions the displacement field was ex-
panded into series

r(ξ, ϕ, t) =

[
Mu∑
m=0

N∑
n=0

Rm,nT
∗
m(ξ) cosnϕ

]
f(t) (D.1)

where function r(ξ, ϕ, t) substitutes the displacements u, v or w.
In equations (D.1) T ∗m(ξ) = Tm(2ξ − 1) are the Chebyshev orthogonal

polynomials of the m − th order, n is the number of nodal diameters, and
f(t) describes the time evolution of the CNT vibrations.

The maximum number of variables needed for describing a general vi-
bration mode with n = 2 nodal diameters (Circumferential Flexural Mode)
is obtained by the relation (Nmax = Mu + Mv + Mw + 3 − p ), where (
Mu = Mv = Mw) denote the maximum degree of the Chebyshev polynomials
and p describes the number of equations for the boundary conditions to be
respected.

A specific convergence analysis was carried out to select the degree of
the Chebyshev polynomials: degree 11 was found suitably accurate, ( Mu =
Mv = Mw = 11).

In the case of a SWCNT with simply supported edges ( p = 8), the
maximum number of degrees of freedom of the system is equal to ( Nmax =
33 + 3− 8 = 28).

The equations (D.1) were inserted into the expressions of the potential
energy Eeland kinetic energy T to compute the Rayleigh quotient R(q) =
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Eel,max/T
∗, where Eel,max = max(Eel) is the maximum of the potential energy

during a modal vibration, T ∗ = Tmax/ω
2, Tmax = max(T ) is the maximum of

the kinetic energy during a modal vibration, ω is the circular frequency of the
synchronous harmonic motion and q = [..., Um,2, Vm,2,Wm,2, ...]

T represents a
vector containing all the unknown variables.

After imposing the stationarity to the Rayleigh quotient, it was obtained
the eigenvalue problem

(−ω2M +K)q = 0 (D.2)

which gives approximate natural frequencies (eigenvalues) and modes of
vibrations (eigenvectors). The results of performed calculation show that the
eigenspectrum values are in the good accordance with the estimations made
in the framework of reduced Sanders-Koiter theory discussed above. The
specific difference between eigenvalues amounts to the values 2− 4% for the
long-wave modes and reachs up to 20% while the longitudinal wavenumber
grows [34].

In the nonlinear analysis, the full expression of the dimensionless potential
energy Eel containing terms up to the fourth order (cubic nonlinearity), was
considered.

In the case of simply supported boundary conditions, the two low-frequency
optical-type circumferential flexure modes (m = 1, n = 2) and (m = 2, n = 2)
were considered.

Using the Lagrange equations

d

dτ

(
∂T

∂q
′
i

)
+
∂Eel
∂qi

= 0, (D.3)

a set of nonlinear ordinary differential equations was obtained; these equa-
tions must be completed with suitable initial conditions on displacements and
velocities. This system of nonlinear equations of motion was finally solved
by using the implicit Runge-Kutta numerical methods with suitable accu-
racy, precision and number of steps. The solution of nonlinear equations
with initial conditions in the vicinity of the bifurcation threshold shows the
coincidence of the threshold values in the analytical model and the numerical
one for the wide interval of aspect ratios (see Fig. 2.2). The procedure and
results will be discussed in the nearest future.
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