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Abstract 
 

Thermally sprayed tungsten carbide (WC) and chromium carbide (Cr3C2) based hard metal coatings are 

commonly applied on component surfaces as corrosion and wear resistant layers. Typically, WC-Co/Ni with 

optional Cr addition and Cr3C2-25NiCr powders are sprayed with high velocity oxy-fuel (HVOF) or high 

velocity air-fuel (HVAF) processes. Due to the poor oxidation resistance of the WC particles, Cr3C2-25NiCr 

composition is typically selected for high temperature environments, up to 800-900 °C. In this study, two 

distinct Cr3C2-based compositions of Cr3C2-50NiCrMoNb and Cr3C2-37WC-18NiCoCr were selected as 

interesting alternatives to conventional Cr3C2-25NiCr. Sliding wear behavior of the coatings sprayed with 

HVOF and HVAF processes were tested with a ball-on-disk configuration against an Al2O3 ball at room 

temperature and at 700 °C. It was found that both alternative materials had comparable coefficients of 

friction with the Cr3C2-25NiCr coatings. The Cr3C2-37WC-18NiCoCr coatings provided improved wear 

resistance at room temperature conditions, but at 700 °C the wear rate was increased to the level of the 

Cr3C2-50NiCrMoNb coatings. Cr3C2-25NiCr coatings experienced the lowest wear rates at elevated 

temperatures, which was even lower than at room temperature. 

 

Keywords: Sliding wear; Thermal spray coatings; Cr3C2; HVOF; HVAF. 

 

 

 

1. INTRODUCTION 
 

Surface engineering provides a wide range of techniques that can be used to alter the component surface in 

order to remarkably improve its performance, e.g. wear and corrosion resistance [1]. Thermal spraying 

belongs to these techniques and consists of coating processes that are capable of applying thick material 

layers on large surfaces [2]. Currently, high velocity oxygen-fuel (HVOF) sprayed hard metal coatings are 

the industrial standard solution for wear protection of components. 

 

Hard metals are known for their wear resistance and the most common compositions used in thermal 

spraying are WC-Co/Ni with optional Cr addition and Cr3C2-NiCr [3]. The WC-based coatings are hard and 

provide good wear resistance compared to electroplated hard chromium [4,5]. However, their use at high 

temperatures (over 500 ºC) is limited by the low oxidation resistance of the hard WC particles embedded in 

the ductile metal matrix [6,7]. The Cr3C2-25NiCr coatings have often lower wear resistance compared to the 

WC-based coatings [4,5,8] but significantly higher oxidation resistance [9]. Therefore, they are used as wear 

resistant coatings at high temperatures up to 800-900 °C [10].  

 

Several commercial Cr3C2-based powder materials are available that are designed to provide improved 

corrosion or wear resistance compared to the standard Cr3C2-25NiCr composition. The corrosion resistance 

can be improved closer to that of the metallic materials by increasing the metallic matrix content and by 

tailoring its composition, e.g. Cr3C2-50NiCrMoNb, while providing also good wear resistance [11]. On the 

other hand, the wear resistance of typical Cr3C2-25NiCr coatings can be improved by replacing some of the 

Cr3C2 particles with harder WC particles, e.g. Cr3C2-37WC-18NiCoCr [12].  

 

The sliding wear behaviour of HVOF sprayed Cr3C2-25NiCr coatings has been studied at room temperature 

[8,13–15] and at elevated temperatures [8,16–18]. However, the performance of the alternative compositions 

has not been investigated and a comparative study is therefore needed to provide understanding about the 

room temperature and high temperature performance of these coatings.  
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As the deposition technique significantly affects the coating structure, it is of high interest to compare also 

the most viable spray processes used to produce the hard metal coatings, namely high velocity oxygen-fuel 

(HVOF) and high velocity air-fuel (HVAF) flame spray processes. The good properties of the coatings 

produced with the HVOF spray process are due to the high temperature supersonic gas stream which heats 

up and accelerates the powder particles to high velocities (500-800 m/s) and produces dense coatings [19]. 

However, some of the drawbacks especially of the gas fuelled HVOF process are related to the deposition 

rate and overheating of the finer particles, which causes carbide dissolution and brittle phase formation that 

in conjunction with tensile residual stresses can result in crack formation [20,21]. In the HVAF spray process 

the combustion takes place between gaseous fuel and compressed air instead of pure oxygen [22]. This 

dramatically decreases the flame temperature below 2000 °C [23,24] while producing even higher particle 

velocities compared to HVOF, over 900 m/s [25,26]. As a result, the coatings are denser and less oxidised, 

and finer particle size distributions can be used [27]. Several studies on long-term microstructural 

development and high temperature erosion have been carried out on Cr3C2-25NiCr coatings sprayed with the 

older HVAF torches [28–30]. The early HVAF torches used kerosene as the fuel and suffered from low 

particle temperature and deposition efficiency. The ease of operation and the deposition efficiency were 

significantly improved by later developments of the combustion chamber design allowing for the effective 

burning of gaseous fuels [22]. The research on coatings sprayed with the modern gaseous fuel HVAF torches 

has mostly focused on WC-based materials [21,31–33] and only recently studies on Cr3C2-based coatings 

have emerged [8,26,27,34].  

 

This study compares the sliding wear behaviour of commercially available Cr3C2-25NiCr, Cr3C2-

50NiCrMoNb and Cr3C2-37WC-18NiCoCr materials sprayed with HVOF and HVAF spray processes. The 

performance is assessed with a ball-on-disk test at room temperature and at 700 °C against an Al2O3 

counterpart. 

 

 

2. EXPERIMENTAL 
 

2.1 Coating Materials 
 

Commercial agglomerated and sintered Cr3C2-37WC-18M (M=NiCoCrFe) and Cr3C2-50NiCrMoNb 

powders were selected as interesting alternatives to conventional Cr3C2-25NiCr. In addition, two powders 

with the Cr3C2-25NiCr composition were chosen as reference materials. One of the Cr3C2-25NiCr materials 

was a common agglomerated and sintered powder whereas the other one was plasma densified after the 

agglomeration and sintering process (marked with (d)). Two particle size distributions were chosen for each 

of the four powders, which are hereafter designated as -d90+d10 [µm]. Finer particle size (-30+5 or -30+10 

µm) was used with HVAF spraying and the coarser one (-38+10 µm or -45+15 µm) with HVOF spraying. 

The details of the powders are listed in Table 1.  

 
Table 1: Details of the powders, processes and nominal particle size distribution given by manufacturer. 

 

Powder composition 
Manufacturing 

process 

Spray 

process 

Particle 

size (µm) 
Manufacturer 

Cr3C2-50NiCrMoNb A&S HVOF -45+15 H.C. Starck 

Cr3C2-50NiCrMoNb A&S HVAF -30+5 H.C. Starck 

Cr3C2-25NiCr A&S HVOF -38+10 H.C. Starck 

Cr3C2-25NiCr A&S HVAF -30+5 H.C. Starck 

Cr3C2-25NiCr (d) A&S, densified HVOF -45+15 Oerlikon Metco 

Cr3C2-25NiCr (d) A&S, densified HVAF -30+10 Oerlikon Metco 

Cr3C2-37WC-18NiCoCr A&S HVOF -45+15 Oerlikon Metco 

Cr3C2-37WC-18NiCoCr A&S HVAF -30+10 Oerlikon Metco 

A&S = Agglomerated and sintered, (d) = densified 

 

2.2 Spray Processing  
 

Coatings were produced with commercial HVOF and HVAF guns, Diamond Jet Hybrid 2700 (Oerlikon 

Metco, Wohlen, Switzerland) and M3 (Uniquecoat Technologies LLC, Oilville, USA), respectively. The 

spray parameters are given in Table 2. Standard spray parameters were used for the HVOF spray process, 
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while the HVAF spray parameters were selected based on preliminary tests aiming to provide high heating of 

the fine particles without creating coating defects. The flows of the process gases in the HVAF spray process 

are pressure-controlled and therefore given in bar, while the gas flow rates for HVOF are given in slpm. The 

M3 HVAF spray process uses two propane injections designated here as Propane 1 and Propane 2. Propane 

1 is premixed with air and injected into the combustion chamber for the primary combustion, whereas 

Propane 2 is injected into the secondary extension nozzle with additional air [35]. Coatings were sprayed on 

5 mm-thick low carbon steel substrates (S235) measuring 200x50 mm and the substrates were grit-blasted 

prior to spraying with mesh 36 alumina grit. A long combustion chamber, 4L2 nozzle and long powder 

injector were used as the hardware for HVAF spraying and propane as the fuel gas. Target coating thickness 

was 300 µm. 

 
Table 2: Spray parameters used in HVAF and HVOF processes. 

 
Parameter HVAF HVOF 

Oxygen - 240 slpm 

Air 7.4 bar 383 slpm 

Propane 1 7.0 bar 70 slpm 

Propane 2 7.3 bar - 

Nozzle length 255 mm 95 mm 

Spray distance 300 mm 230 mm 

Surface speed 1.9 m/s 0.8 m/s 

Pass spacing 4 mm 5.4 mm 

Powder feed rate 130-200 g/min 60 g/min 

 

2.3 Sliding Wear 

 
Sliding wear tests were performed with a ball-on-disk configuration on a high temperature tribometer 

(Anton-Paar Tritec, Peseux, Switzerland). The 23 x 23 mm
2 

sized samples were ground and polished to 

obtain a surface roughness of Ra ≈ 0.02 μm. The polished samples were ultrasonically cleaned in acetone 

and mounted onto the rotating disk of the tribometer. Tests were performed both at room temperature and at 

700 °C; in the latter case, the entire test area was enclosed in a refractory casing. The coated sample disk was 

induction heated to 700 °C and the temperature was monitored with a thermocouple in contact with the 

sample. Alumina sphere counterpart with 6 mm diameter was pressed on polished coating surfaces with 10 N 

normal load. The relative sliding speed was set to 0.10 m/s and wear track radius to 5 mm for room 

temperature tests and 7 mm for high temperature tests. A total sliding distance of 5000 m was used. The 

coefficient of friction was monitored during the test by using a load cell. The volume losses of the samples 

were measured by using an optical confocal profilometer (CHR150, Stil, Aix en Provence, France) and the 

ball wear was inspected with an optical microscope. Volume losses were converted to wear rates by 

normalizing over the sliding distance and normal load. 

 

2.4 Characterisation  
 

Metallographic samples of the as-sprayed coatings were prepared by mounting the cut section of the coating 

in resin and by grinding the samples with P220, P600 and P1200 SiC papers and polishing subsequently with 

3 µm and 1 µm diamond suspensions. Final polishing was carried out with submicron colloidal silica. Cross 

sections of the as-sprayed coatings were analysed with scanning electron microscope (SEM: XL-30, Philips, 

Netherlands) by using the backscattered electron (BSE) detector. Porosity, carbide and matrix content were 

determined by image analysis with ImageJ [36] from ten SEM micrographs per coating. In addition, the 

areas of the carbides were determined from the SEM images and a diameter of a circle corresponding the 

measured surface area of each carbide was calculated. A mean carbide diameter (d50) was calculated from 

the resulting volume distribution of the analysed carbides. 

 

The surfaces and cross sections of the wear scars were inspected with a field emission gun-scanning electron 

microscope (FEG-SEM: Nova NanoSEM 450, FEI, Eindhoven, Netherlands). The cross section samples 

after wear testing were prepared by cold mounting the specimen in epoxy resin prior to cutting to preserve 

the damaged wear surface. After cutting, the samples were ground and polished with diamond pads (up to 

P1200), 3 µm diamond suspension and submicron colloidal silica. 
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Moreover, micro-Raman spectroscopy (LabRam, Horiba Jobin-Yvon, Villeneuve D’Ascq, France) was 

employed to characterise the structure of the wear debris sticking to the wear tracks and of the oxide scale 

formed outside the wear track after testing at 700 °C. The laser radiation with a wavelength of 632.81 nm 

was focused onto the samples using a 100x-magnification objective, achieving a lateral resolution of few 

micrometres and a penetration depth of some tens of nanometres [37].Loose wear debris was further 

analysed with a transmission electron microscope (TEM: JEM2010, Jeol, Tokyo, Japan), equipped with an 

EDX microanalysis detector. 

 

Microhardness measurements were carried out on the cross sections of the coatings, both in the as-sprayed 

condition and after the high temperature tests, with an MMT-X7 Vickers microindenter (Matsuzawa, Akita, 

Japan) by using 0.3 kg load and 10 s dwell time to calculate an average hardness value from ten indentations.  

 

 

3. RESULTS AND DISCUSSION 

 

3.1. Coating characterisation 
 

The microstructures of the as-sprayed coating cross sections in Figure 1 show distinctive differences 

between the material compositions and between the two spray processes. When comparing the HVOF (top 

row) and HVAF (bottom row) sprayed coatings, it becomes clear that the higher processing temperature of 

HVOF spraying results in significant carbide dissolution and in some cases even complete melting of the 

carbides. 

This is seen as numerous dark stripes in the coating structure, especially well visible in the HVOF sprayed 

Cr3C2-50NiCrMoNb coating in Figure 1a (pointed by arrows). The Cr3C2-50NiCrMoNb (a-b) and Cr3C2-

25NiCr (c-d) coatings in Figure 1 both represent very similar structures consisting of dark carbide particles 

surrounded by metal matrix. Some small white spots are visible in the metal matrix of Cr3C2-50NiCrMoNb 

coatings, which were confirmed to be NbC precipitates by the XRD patterns in Figure 2a. 

 

Compared to the agglomerated and sintered feedstock material, the HVOF sprayed coating from the 

densified Cr3C2-25NiCr powder shows some local large and grey matrix areas indicating significant carbide 

dissolution and increase in carbon content of the matrix (pointed by arrows in Figure 1e). This is promoted 

by the finer carbide size present in the feedstock material and in the resulting as-sprayed coating. Many of 

the densified particles indeed contain fine carbide structures, which are transferred into the as-sprayed 

coating structures (particularly in the HVAF-sprayed one) in Figure 1e-f. The formed coatings have 

seemingly high carbide content compared to the coatings in Figure 1a-d. 

 

The XRD patterns also confirm the significant presence of Cr7C3 carbides in all coatings except for the 

HVAF sprayed Cr3C2-25NiCr one. Formation of Cr7C3 is often accompanied by the substitution of Cr in the 

carbides, e.g. by Ni to create (Cr,Ni)7C3 carbides [38]. Such changes increase the molecular weight of the 

structure, which shows in the BSE images as lighter grey carbides, e.g. in Figure 1a-c and Figure 1e-f. The 

HVAF sprayed Cr3C2-25NiCr coating microstructure in Figure 1d and the XRD pattern in Figure 2b 

contain only Cr3C2-type carbides with limited dissolution and increase in matrix carbon content due to lower 

combustion temperature. Some matrix areas in the coating structure represent minimal increase in carbon 

content, which leaves them brighter than the surrounding matrix in the BSE image due to higher molecular 

weight (arrows in Figure 1d). Another interesting feature can be detected in the XRD patterns of the plasma 

densified powder and the as-sprayed coatings; namely, they contain metastable Cr3C2-x (0≤x≤0.5), 

presumably resulting from the powder manufacturing process [39]. 

 

The Cr3C2-37WC-18NiCoCrFe structures in Figure 1g-h contained homogeneously dispersed WC particles 

surrounded by darker and larger Cr3C2 particles and the light grey metal matrix. The WC particles are seen in 

the SEM images as blocky white particles and in the XRD patterns as high intensity peaks of WC. 
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Figure 1: Detailed SEM images (BSE) of the cross section microstructures of HVOF (top row) and HVAF (bottom row) 

sprayed coatings of a-b) Cr3C2-50NiCrMoNb, c-d) Cr3C2-25NiCr, e-f) Cr3C2-25NiCr, plasma-densified, and g-h) 

Cr3C2-37WC-18NiCoCr. 

 

 

 
Figure 2: XRD patterns of the feedstock powders and as-sprayed coatings of a) Cr3C2-50NiCrMoNb, b) Cr3C2-25NiCr, 

c) Cr3C2-25NiCr (densified) and d) Cr3C2-37WC-18NiCoCr. 

 
The coating microstructures in Figure 1 seemed to contain varying amounts of porosity and this was further 

confirmed by the image analysis results in Table 3. In general, the HVAF sprayed coatings contained lower 

amounts of porosity and were denser than the HVOF sprayed coatings. This was also supported by the open 

circuit potential tests in our previous study [27], confirming the significant reduction of open porosity. This 

results from the high particle velocities produced by the HVAF spray process when convergent-divergent 

4L2 nozzle is used [35]. Lowest porosities were determined for the Cr3C2-50NiCrMoNb coatings with high 

matrix content and the Cr3C2-37WC-18NiCoCr coatings with the WC addition. One important factor 

decreasing the porosity of these coatings could be the higher material density, i.e. kinetic energy, compared 

to the other two compositions with higher Cr3C2 content. An additional factor can be the improved 

deformability of the Cr3C2-50NiCrMoNb particles due to the higher metallic matrix content. The highest 

porosity, on the other hand, was measured for the HVOF sprayed Cr3C2-25NiCr (d) coating, which shows 

many of the pores in conjunction with carbides in Figure 1e.  

 

The coating microstructure and carbide content can be expected to play an important role in sliding wear. For 

this reason, the main structural components, namely carbide and matrix content, were determined by image 
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analysis from the coating cross sections. Mean carbide sizes were also determined for all coatings. The 

results in Table 3 confirm that the Cr3C2-50NiCrMoNb coatings contain the lowest volume percentage of 

carbides. They are followed by the conventional Cr3C2-25NiCr coatings with approximately 55 vol% of 

carbides, which is significantly lower than the nominal 80 vol%. This may be ascribed to the rebounding of 

coarse carbide particles, in accordance with prior literature works [40]. The coatings sprayed from the 

densified Cr3C2-25NiCr powder are closer to the nominal carbide content, supposedly due to the finer 

measured carbide size, which is also visible in Figure 1e-f. The carbide content of the Cr3C2-37WC-

18NiCoCr coatings again indicate loss of carbides especially when the HVAF spray process is used. The 

image analysis results indicate that significant carbide loss had taken place via dissolution and carbide 

rebounding during the spraying [40] with both processes. While the dissolution can be expected to be more 

significant with the HVOF spray process due to the higher process temperature supported by the before 

mentioned microstructural evidence of higher carbide dissolution, rebounding is probably responsible for 

most of the carbide loss in HVAF sprayed coatings, where much less evidence of dissolution exists.  

 

The microhardness values in Table 3 were lower for the Cr3C2-50NiCrMoNb with the lowest carbide content 

and higher for the HVAF sprayed Cr3C2-37WC-18NiCoCr. All Cr3C2-25NiCr coatings demonstrated similar 

hardness values of approximately 950 HV0.3. The HVOF sprayed coatings showed consistently higher 

standard deviations of the measured values, which indicates more heterogeneous structure with significant 

variation in the local mechanical properties. This is caused by the variation in the heating of the particles 

when HVOF spray process is used. The high process temperature is causing significant carbide dissolution in 

the finer particles, which then create local carbon-saturated matrix areas with decreased carbide content. The 

variation in the individual hardness values was especially high for the HVOF sprayed Cr3C2-37WC-

18NiCoCr coating compared to the HVAF sprayed counterpart.  

 
Table 3: Measured porosity, chromium carbide, matrix, tungsten carbide content and microhardness, as well as 

determined Cr3C2 and WC carbide sizes for all the sprayed coatings. 

 

  
Porosity 

[vol%] 

Cr3C2 

[vol%] 

Matrix 

[vol%] 

WC 

[vol%] 

Cr3C2 / WC 

size [µm] 

Hardness 

[HV0.3] 

Cr3C2-50NiCrMoNb HVOF 0.8 (±0.3) 44.5 (±3.5) 54.7 (±3.4)  2.4 806 (±117) 

Cr3C2-50NiCrMoNb HVAF 0.5 (±0.3) 44.9 (±3.9) 54.6 (±3.9)  2.1 885 (±58) 

Cr3C2-25NiCr HVOF 1.7 (±1.0) 54.7 (±4.8) 43.6 (±5.2)  2.5 938 (±79) 

Cr3C2-25NiCr HVAF 1.5 (±0.5) 55.1 (±3.2) 43.5 (±3.3)  2.1 920 (±51) 

Cr3C2-25NiCr (d) HVOF 2.2 (±0.4) 61.1 (±4.8) 36.7 (±4.7)  2.2 947 (±144) 

Cr3C2-25NiCr (d) HVAF 1.0 (±0.7) 70.1 (±3.7) 28.8 (±3.7)  1.6 958 (±69) 

Cr3C2-37WC-18NiCoCr HVOF 0.5 (±0.2) 45.9 (±4.7) 37.7 (±4.8) 15.9 (±2.2) 1.6 / 0.7 934 (±195) 

Cr3C2-37WC-18NiCoCr HVAF 0.6 (±0.2) 32.4 (±3.1) 46.6 (±3.4) 20.3 (±1.4) 1.5 / 0.7 1104 (±118) 

 

3.2. Sliding Wear at Room Temperature 
 

3.2.1. Wear Rate and Coefficient of Friction  
 

The friction curves recorded on all coatings exhibit an initial running-in stage with increasing friction 

coefficient and a subsequent steady-state regime, which lasts for most of the test duration. All samples but 

the HVOF and HVAF sprayed Cr3C2-25NiCr (d) coatings from plasma densified powder attain the steady 

state within the initial 500 m. Steady state coefficients of friction are comprised in a relatively narrow range 

between 0.64 and 0.78, as summarised in Table 4. Such narrow range indicates a small effect of the spray 

process and the composition on the steady-state coefficient of friction. 

 

Interestingly, the HVOF and HVAF sprayed Cr3C2-25NiCr (d) coatings exhibit an extended running-in 

regime, a less stable friction coefficient in the steady-state regime (Figure 3), and experience significantly 

higher wear rates compared to the other coatings: 8.14*10
-6

 mm
3
/(Nm) for the HVOF sprayed coating and 

9.74*10
-6

 mm
3
/(Nm) for the HVAF sprayed one. The Al2O3 counterpart did not experience measurable 

material loss during the testing of the Cr3C2-25NiCr (d) coatings. 
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Figure 3: evolution of the friction coefficient during room temperature ball-on-disk testing of HVOF (a) and HVAF (b) 

sprayed coatings. 

 

The HVOF and HVAF sprayed coatings from the agglomerated and sintered Cr3C2-25NiCr powder 

experienced significantly lower wear rates of 1.58*10
-6

 mm
3
/(Nm) and 1.77*10

-6
 mm

3
/(Nm), respectively. 

Slightly higher wear rates of 2.18-2.19 *10
-6

 mm
3
/(Nm) were measured for the Cr3C2-50NiCrMoNb coatings. 

The higher wear rate compared to the Cr3C2-25NiCr coatings is likely due to the higher matrix content of the 

coatings. However, the difference in wear rate between the coatings from agglomerated and sintered Cr3C2-

25NiCr and Cr3C2-50NiCrMoNb powders is very small when considering the difference in matrix content 

and coating hardness, e.g. HVOF sprayed Cr3C2-50NiCrMoNb with 806 HV0.3 microhardness compared to 

the HVOF sprayed Cr3C2-25NiCr coating with 938 HV0.3. 

 

The lowest coating wear rates were measured for the Cr3C2-37WC-18NiCoCr coatings with additional WC 

hard particles. The wear rate of the HVAF sprayed coating, 0.38 *10
-6

 mm
3
/(Nm), was approximately one 

fifth of the wear rate of the common Cr3C2-25NiCr coatings. However, the ball wear rate was significantly 

higher in the case of the HVOF sprayed Cr3C2-37WC-18NiCoCr coating which is probably promoted by the 

coarse surface with protruding WC particles. Similar behaviour between HVAF and HVOF sprayed Cr3C2-

37WC-18NiCoCr coatings was observed by Hulka et al. when using WC-Co ball as the counterpart [12]. 

They also found that the ball wear rate was significantly higher in the case of the HVOF sprayed coating. 

The reason for this could be the potentially coarser wear debris size arising from the brittle cracking of the 

coating surface or the higher carbide content compared to the HVAF sprayed coating. The Cr3C2-37WC-

18NiCoCr coatings exhibited higher wear rates compared to the HVOF and HVAF sprayed WC-10Co4Cr 

coatings tested with the same parameters by Bolelli et al. in [7,21]. The WC-10Co4Cr coatings experienced 

wear rates of 2-8*10
-8

 mm
3
/(Nm), which highlights the effect of the material composition. Similarly 

improved wear resistance was observed on the WC-(W,Cr)2C-Ni coating with 1.5*10
-7

 mm
3
/(Nm) wear rate 

in [7]. 

  
Table 4: Coefficients of friction, wear rates and hardness values of the tested coatings at room temperature. Standard 

deviation is given inside the brackets. 

 

Powder composition 
Spray 

process 

Wear rate 

[*10
-6

 

mm
3
/(Nm)] 

Ball wear rate 

[*10
-8

 

mm
3
/(Nm)] 

Coefficient 

of Friction 

Cr3C2-50NiCrMoNb HVOF 2.18 (±0.38) 9.73 (±1.10) 0.68 (±0.01) 

Cr3C2-50NiCrMoNb HVAF 2.19 (±0.02) 3.06 (±1.36) 0.71 (±0.01) 

Cr3C2-25NiCr HVOF 1.58 (±0.75) 2.41 (±0.86) 0.68 (±0.00) 

Cr3C2-25NiCr HVAF 1.77 (±0.04) 6.81 (±0.44) 0.64 (±0.03) 

Cr3C2-25NiCr (d) HVOF 8.14 (±1.05) 0 0.78 (±0.01) 

Cr3C2-25NiCr (d) HVAF 9.74 (±4.69) 0 0.70 (±0.06) 

Cr3C2-37WC-18NiCoCr HVOF 0.63 (±0.04) 21.80 (±10.81) 0.69 (±0.02) 

Cr3C2-37WC-18NiCoCr HVAF 0.38 (±0.06) 8.43 (±2.24) 0.71 (±0.00) 

 

3.2.2. Wear mechanism 
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At room temperature, the wear mechanism was similar for all coatings. In all cases, wear depended on a 

combination of i) abrasive grooving, ii) brittle fracture, iii) delamination and iv) tribo-oxidation [8].  

 

Abrasive grooving can be seen on all of the wear tracks presented in Figure 4. The grooving and resulting 

material removal was less obvious in the case of the Cr3C2-37WC-18NiCoCr in Figure 4g-h, where the 

protruding harder WC particles decreased the wear of the surrounding coating surface. These protruding 

particles created shadowed areas behind them, preventing the material removal. For instance, in Figure 4h, 

the arrows point out to some abrasive grooves which, starting from the edges of a cluster of hard, protruding 

WC particles, cross a large chromium carbide-based area; immediately behind the WC particles, on the other 

hand, no grooves are seen due to the mentioned shadowing effect. The higher resistance to grooving resulted 

in the lowest wear rates among the tested coatings.  

 

Brittle fracture, caused by the cyclic stresses of the wear test, led to pull-outs of material from the sample 

surfaces. The created cavities, which were often filled with wear debris, can be seen on HVOF sprayed 

Cr3C2-25NiCr (d) coating in Figure 4e (arrows).Material removal by brittle cracking was particularly 

noticeable on both Cr3C2-25NiCr (d) coatings. This cracking eventually led to the delamination of the 

topmost layers of the coating, e.g. on the HVAF sprayed coating in Figure 4f (circled area). Such aggressive 

material removal increased the wear rates of both HVOF and HVAF sprayed coatings. Repeated 

delamination events are also the most likely explanation for the greater instability of the steady-state friction 

coefficient of these samples, as noted in Section 3.2.1 and Figure 3. The delamination phenomena of the 

Cr3C2-25NiCr (d) coatings could be linked to the significantly higher measured carbide content (see Section 

3.1). The high carbide content with smaller mean carbide size compared to Cr3C2-25NiCr coatings 

effectively reduced the carbide mean free path, i.e. amount of metallic matrix between the carbides. On the 

one hand, the smaller mean free path may help lowering the friction coefficient in the initial sliding stages 

(see the friction curves in Figure 3), as most of the contact is borne by the carbide particles. On the other 

hand, it embrittles the coating, favouring the onset of severe brittle fracture and delamination after enough 

sliding cycles have accumulated to trigger significant surface fatigue phenomena. In addition, reduced 

carbide size promotes the carbide dissolution during HVOF spraying due to the increased surface area, as 

mentioned in Section 3.1, which further embrittles the metallic matrix. Crack formation can also be noticed 

on the HVOF sprayed Cr3C2-37WC-18NiCoCr coating in Figure 4g (arrows), while such distinct cracks 

were not formed on the wear track of the HVAF sprayed coating in Figure 4h. Similar behaviour on the 

HVOF sprayed Cr3C2-37WC-18NiCoCr coating was observed in [12]. The susceptibility to cracking in the 

case of the two HVOF sprayed coatings is supported by the detected high standard deviation of the 

microhardness measurements in Table 3, indicating heterogeneous coating structure and possible presence of 

brittle areas in the coating caused by carbide dissolution.  

 

Tribo-oxidation occurred as a result of the high contact pressure between the surface asperities or loose 

debris and the Al2O3 counterpart, which resulted in locally elevated temperature. This led to the formation of 

fine oxidised wear debris as well as smeared oxide clusters on the sample surfaces. An example of the 

smeared material can be seen on the surface of the HVAF sprayed Cr3C2-50NiCrMoNb coating in Figure 

4b, where an area is covered by an oxide cluster. The presence of substantial amounts of oxygen in the 

smeared clusters is confirmed by EDX spectra (Figure 5). The clusters (Figure 4b and Figure 5a,c,e) often 

had a wave-like shape because of the smearing under high pressure between the coating and the Al2O3 ball 

surface. This morphology reveals the action of large tangential forces inducing out-of-plane shear stresses 

and, consequently, out-of-plane plastic flow. The smeared oxide clusters on the coating surfaces did not 

seem to have a significant effect on the coefficients of friction in Table 4. While the wear debris on sample 

surfaces consisted mostly of oxidised material clusters, also some rolled material and individual pull-out 

particles were observed, e.g. on the HVAF sprayed Cr3C2-25NiCr coating in Figure 4d (circles). 
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Figure 4: Detailed views of the wear tracks after testing a-b) the Cr3C2-25 NiCrMoNb coatings, c-d) the Cr3C2-25NiCr 

coatings, e-f) the Cr3C2-25NiCr (d) coatings and g-h) the Cr3C2-37WC-18NiCoCr coatings. The HVOF sprayed 

coatings are presented on the left side and HVAF sprayed coatings on the right side. Solid lined circle indicates wear 

debris, dashed line fractured area and arrows individual cracks or grooves.  
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Figure 5: Backscattered electrons SEM micrographs and corresponding EDX spectra, showing oxide clusters formed 

on the worn surfaces of (a,b) HVAF-sprayed Cr3C2-50NiCrMoNb, (c,d) HVOF-sprayed Cr3C2-25NiCr and (e,f) HVAF-

sprayed Cr3C2-NiCr, plasma-densified. 

 
Wear debris was collected from the wear surfaces after testing to further analyse the size, morphology and 

crystal structure of the debris with TEM. Fine particles and clusters of particles from HVOF sprayed Cr3C2-

25NiCr (d) coating are seen in Figure 6a. The wear debris consisted of very fine particles with the size 

ranging from micrometric to nanometric. The high resolution TEM image of the particles in Figure 6b 

reveals a structure which is missing the crystalline features. This is confirmed by the amorphous halo and the 

faint diffraction spots visible in the selected area electron diffraction (SAED) pattern in Figure 6c.  
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Figure 6: TEM images of the wear debris from HVOF sprayed Cr3C2-25NiCr (d) showing a) cluster of debris particles, 

b) poorly crystalline structure of the fine particles and c) the SAED pattern of the poorly crystalline debris. 

 
The debris clusters on the coating surfaces (such as those seen in Figure 5) were also analysed with Raman 

spectroscopy. The spectra in Figure 7 were obtained from three separate clusters on the wear surfaces of 

HVOF sprayed Cr3C2-25NiCr, Cr3C2-50NiCrMoNb and Cr3C2-37WC-18NiCoCr coatings, respectively, and 

they confirm the TEM observations of the poorly crystalline structure of the wear debris. Specifically, the 

debris on Cr3C2-25NiCr coatings in Figure 7a features broad peaks in the 500 – 700 cm
-1

 region, suggesting 

the formation of amorphous Cr- and Ni-based oxides and hydroxides [41]. Additional bands around 1360 

cm
-1

 and 1580 cm
-1

 are ascribed to graphitic C [42], and may reflect the embedment of non-oxidised carbide 

fragments containing some excess C. This could come either from a pre-existing excess of C in the feedstock 

material or from some alteration of the debris fragments related to the partial oxidation of Cr. The debris 

clusters on Cr3C2-50NiCrMoNb coatings in Figure 7b accordingly exhibit bands in the 500 – 700 cm
-1

 

region, but the features at about 680 – 700 cm
-1

 are slightly more pronounced than in Figure 7a, which may 

be ascribed to the formation of poorly crystalline spinel oxides such as NiCr2O4 [43]. Graphitic C is again 

detectable, revealing the presence of excess C as in the former case. In the Cr3C2-37WC-18NiCoCr coatings, 

broad peaks also occur at about 900 cm
-1

 (Figure 7c), which may belong to WO3 [44] and/or to tungstate 

compounds [45–47]. The peaks of graphitic C are again present, but the intensity is significantly lower. 

 

A direct relation between the formation of amorphous, oxidised debris, as it has been inferred from TEM and 

Raman analyses, and high friction values, as listed in Table 4, has been postulated by Wesmann et al. [48]. 

Amorphous oxides, which lack any easy shear plane, do not exert a solid lubricant action. To the contrary, 

debris clusters on the coating surface may get stuck with similar clusters built up on the counterbody, which 

are seen in optical micrographs of the latter (Figure 8), also because of the presence of humidity in the 

environment. Accordingly, the Cr3C2-NiCr (d) coatings retain their low friction (Figure 3) until severe 

delamination phenomena (in accordance with the previous discussion on wear mechanisms) cause the rapid 

appearance of large amounts of debris. Sudden drops of friction during the steady-state regime in these 

coatings can similarly be ascribed to the fact that some delamination events can also result in the removal of 

the oxidised clusters responsible of high friction. Wesmann et al. [48] also detected free C in the debris, as in 

the present case (Figure 7), yet this is not effective to reduce friction either. 

 

 
Figure 7: Raman spectra of the oxidised debris clusters on HVOF sprayed a) Cr3C2-25NiCr, b) Cr3C2-50NiCrMoNb 

and c) Cr3C2-37WC-18NiCoCr coatings. 
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Figure 8: Optical micrographs of the worn Al2O3 surfaces after ball-on-disk wear testing at room temperature against 

HVOF-sprayed a) Cr3C2-25NiCr, b) Cr3C2-25NiCr, plasma-densified, and c) Cr3C2-37WC-18NiCoCr coatings. 

 

 

3.3. Sliding Wear at 700 °C 

 

3.3.1. Wear Rate and Coefficient of Friction  
 

The results from the high temperature sliding wear tests and coating hardness values after the tests are 

summarised in Table 5. The hardness measurements were performed on the cross sections similar to the as-

sprayed coatings. The wear rate and coefficient of friction results differ significantly from those of the room 

temperature test (in Table 4). Firstly, the Al2O3 counterpart did not experience any measurable material loss 

during the high temperature tests. Secondly, the Cr3C2-50NiCrMoNb and Cr3C2-37WC-18NiCoCr coatings 

experienced increased wear rates compared to the room temperature results. By contrast, the coatings with 

Cr3C2-25NiCr chemical composition experienced mainly decreased wear rates at high temperature. 

 

More specifically, the HVAF Cr3C2-25NiCr coating experienced the lowest wear rate of 0.68*10
-6

 

mm
3
/(Nm). As a term of comparison, HVOF-sprayed WC-(W,Cr)2C-Ni coatings tested under very similar 

conditions at 750 °C exhibited wear rates ≥4*10
-6

 mm
3
/(Nm) [7]. The HVOF Cr3C2-25NiCr and Cr3C2-

25NiCr (d) coatings both reached the same wear rate of ≈3*10
-6

 mm
3
/(Nm), while higher standard deviation 

can be observed for the latter. The HVAF-sprayed Cr3C2-25NiCr (d) coating, on the other hand, experienced 

the highest wear rate from the group of Cr3C2-25NiCr coatings, with an average value of 5.9*10
-6

 mm
3
/(Nm).  

 

The wear rates of both Cr3C2-50NiCrMoNb coatings were significantly higher than those of Cr3C2-25NiCr 

coatings, reaching >10*10
-6

 mm
3
/(Nm). However, the wear rates are significantly lower than those measured 

for HVOF sprayed iron and nickel based metallic coatings at 700 °C [18]. Indeed, the measured wear rates 

for FeNiCrBSi and NiCrFeSiB coatings were approximately 4*10
-4

 mm
3
/(Nm) and 8*10

-4
 mm

3
/(Nm), 

respectively [18]. The performance of the Cr3C2-50NiCrMoNb coating is comparable to that of 

NiCrAlY+Al2O3 composites characterised in [49], which also experienced wear rates slightly higher than 

10*10
-6

 mm
3
/(Nm) when tested at 700 °C under analogous ball-on-disk conditions. 

The wear rates of both HVAF and HVOF Cr3C2-37WC-18NiCoCr coatings were comparable with the wear 

rates of the Cr3C2-50NiCrMoNb coatings.  

 

Friction curves (Figure 9) are remarkably different from the room-temperature ones (Figure 3): at 700 °C, a 

steady-state regime characterised by a relatively low friction is readily attained very soon after the beginning 

of the test. The average steady-state coefficients of friction are presented in the Table 5. All Cr3C2-25NiCr 

coatings experienced values of ≈0.35, which are significantly lower than the values of 0.60-0.78 measured at 

room temperature in Table 4 or of 0.65, reported in another study [18]. The Cr3C2-50NiCrMoNb coatings 

experienced slightly higher values of ≈0.4, while the HVOF Cr3C2-37WC-18NiCoCr coating reached the 

highest coefficient of friction, 0.48. The highest values are in the same range with those of the iron based 

metallic coatings tested previously by Bolelli et al. [18]. 

 
Table 5: Coefficients of friction and wear rates of the tested coatings at 700 °C. Hardness measurements were done 

after the tests at room temperature. Standard deviation is given inside the brackets. 

 

Powder composition 
Spray 

process 

Wear rate [*10
-

6
 mm

3
/(Nm)] 

Coefficient of 

Friction 

Hardness 

(HV0.3) 
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Cr3C2-50NiCrMoNb HVOF 24.66 (±5.07) 0.39 (±0.02) 905 (±100) 

Cr3C2-50NiCrMoNb HVAF 15.73 (±0.40) 0.40 (±0.01) 847 (±52) 

Cr3C2-25NiCr HVOF 3.13 (±0.18) 0.36 (±0.01) 1000 (±83) 

Cr3C2-25NiCr HVAF 0.68 (±0.02) 0.37 (±0.06) 838 (±49) 

Cr3C2-25NiCr (d) HVOF 3.20 (±0.94) 0.35 (±0.01) 1188 (±99) 

Cr3C2-25NiCr (d) HVAF 5.86 (±1.20) 0.35 (±0.01) 1003 (±71) 

Cr3C2-37WC-18NiCoCr HVOF 23.79 (±5.86) 0.48 (±0.01) 1258 (±110) 

Cr3C2-37WC-18NiCoCr HVAF 19.13 (±4.25) 0.40 (±0.04) 1275 (±92) 

 

 

 
Figure 9: evolution of the friction coefficient during ball-on-disk testing of HVOF (a) and HVAF (b) sprayed coatings 

at 700 °C. 

 

3.3.2. Tribolayer and Wear Mechanism 
 

The overall good wear resistance and low coefficient of friction values of the HVOF and HVAF sprayed 

Cr3C2-25NiCr coatings are a result of a tribo-oxidation wear regime shown in Figure 10a. Indeed, a smooth 

oxide-based tribolayer was formed on the wear track of the conventional Cr3C2-25NiCr coatings. The layer 

probably forms in the beginning of the test as a result of breaking and smearing of the oxide scale developed 

on the coating surface. Wear proceeds by a dynamic process, in which the smooth tribolayer breaks out in 

small flakes (delamination may occur within the tribolayer or within the underlying hardmetal as better 

detailed later on in Section 3.4.2.), exposing new coating surface to be oxidized. The partial breaking up of 

the tribolayer can be seen in Figure 10b, where small cracks have formed on the surface and parts of the 

layer are getting loose. The newly formed wear debris is then removed from the wear track or smeared on the 

exposed coating surface. The tribolayer is eventually reformed by the combination of smearing of the debris 

and oxidation of the exposed surface. Smooth smeared areas can be detected in Figure 10c with fine-grained 

material clusters around the edges. The formation of the smooth oxide layer on the sliding contact is clearly 

one of the benefits of chromium carbide based coatings compared to metallic coatings. The structure of the 

metallic coatings is softened and they experience high wear rates [18]. This softened structure does not 

provide sufficient support for the formation of a uniform oxide layer. The tribolayer and the supporting 

microstructure underneath protects the coating from the direct contact of the alumina ball.  

 

The collected wear debris from the tested coating surfaces was further analysed with TEM. It can be 

observed from Figure 11a that the imaged debris cluster collected from HVOF sprayed Cr3C2-25NiCr 

coating consists of fine submicron particles. Contrary to the debris collected after the room temperature test, 

the high resolution image in Figure 11b shows the crystalline structure of the fine particles, confirmed by 

the SAED image in Figure 11c. Dynamic re-crystallisation of these highly deformed and comminuted debris 

particles is probably due to the high temperature of the system during the sliding wear test. 

 

Whilst the amorphous debris clusters accumulating on the coating and on the counterbody at room 

temperature promoted high friction (Section 3.2.2), the smooth, crystalline oxide tribofilms (seen in Figure 

10) are probably responsible for the low steady-state friction. Accordingly, friction spikes sometimes 

appearing during the steady-state regime (Figure 9) can be related to tribofilm delamination events (in 

accordance with the previous discussion on wear mechanisms), which briefly allow direct contact between 
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the counterbody and the uncovered coating surface. It is also important to note that no oxide clusters formed 

on the counterbody surface (Figure 12), which only exhibits mild grooving without forming a flattened wear 

cap 

 

  
 

Figure 10: SEM micrographs of the a) wear track, b) flaking of the tribolayer and c) smearing of the wear debris on the 

surfaces of the wear scars obtained after ball-on-disk testing at 700 °C on HVOF-sprayed Cr3C2-25NiCr. 

 
Figure 11: TEM images of the wear debris from HVOF sprayed Cr3C2-25NiCr coating showing a) cluster of debris 

particles, b) crystalline structure of the fine particles and c) the SAED pattern confirming the crystalline nature of the 

debris. 
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Figure 12: Optical micrographs of the worn Al2O3 surfaces after ball-on-disk wear testing at 700 °C against HVOF-

sprayed a) Cr3C2-25NiCr, b) Cr3C2-25NiCr, plasma-densified, and c) Cr3C2-37WC-18NiCoCr coatings. 

 

The tribolayer formation was similar between the coatings sprayed from the conventional and the densified 

Cr3C2-25NiCr powders, but analysis of the wear surfaces showed significant difference in wear mechanisms. 

Both HVOF and HVAF Cr3C2-25NiCr (d) coatings were susceptible to large-scale delamination of the top 

surface layer and the tribolayer. The HVOF coating surface in Figure 13a shows large delaminated areas 

instead of the flaking and small-scale material removal observed in conventional Cr3C2-25NiCr coatings 

(Figure 10b). The detailed view of the cracking in Figure 13b suggests that the tribolayer is not strong 

enough or strongly enough attached to the underlying coating to withstand the continuous stress cycles, and 

in many cases, direct failure of the underlying hardmetal occurs, as better detailed in Section 3.4.2. 

 

  
 

Figure 13: SEM image from HVOF sprayed Cr3C2-25NiCr (d) coating a) indicating the delaminated area (oval) on the 

wear track and b) more detailed view of the tribolayer delamination.  

 

The Cr3C2-50NiCrMoNb coatings experienced similar wear mechanisms as the coatings with Cr3C2-25NiCr 

composition. Uniform oxide layers were formed on the wear tracks of both coatings, which enabled the low 

coefficient of friction. However, the values were slightly higher than in the case of the Cr3C2-25NiCr 

coatings, which might have been caused by different oxide scale composition. Raman spectra were measured 

to study the compounds present in different locations of the tribolayer and in the oxide scales outside the 

wear track. The results of the analysis are presented in Figure 14 and reveal that the tribolayer of the Cr3C2-

50NiCrMoNb coatings mainly consisted of NiCr2O4 [43] with minor amounts of Cr2O3 [41,50] (Figure 14b), 

while Cr2O3 was the main constituent of the tribolayer of the conventional compositions (Cr3C2-25NiCr in 

Figure 14a). These distinct oxide films probably possess different sliding properties, which is displayed by 

the Cr3C2-50NiCrMoNb coatings producing slightly higher friction than do the Cr3C2-25NiCr ones (from 

0.35 to 0.40,  Table 5). The Raman spectra of the tribofilms formed on the Cr3C2-25NiCr coatings also 

include a peak at 790 cm
-1

 that could not be undoubtedly identified. 

 

It is also interesting to note that the Raman spectra of the tribofilms differ somewhat from those of the 

corresponding oxides scale that are spontaneously developed on the coating at 700 °C, outside the wear scar 

(Figure 14). This confirms the occurrence of tribochemical reactions within the tribofilm, i.e. reactions that 

are not only due to the operating temperature, but also to the additional flash heating occurring at the contact 

point and to the simultaneous mechanical action by the counterbody. The oxide scale spectra often present 

broad peaks at around 1360 cm
-1

 and 1580 cm
-1

, which are suspected of belonging to carbon: oxidation of Cr 
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in the carbide particles probably left an excess C (similar to the observations made for room-temperature 

wear debris). 

 

 
Figure 14: Raman spectra of the oxide scales outside the wear track and tribofilms of a) Cr3C2-25NiCr, b) Cr3C2-

50NiCrMoNb and c) Cr3C2-37WC-18NiCoCr coatings. 

 

The Cr3C2-37WC-18NiCoCr coatings exhibited significant degradation of their wear resistance at 700 °C. 

The main factor causing the high wear rate was the poor oxidation resistance of the WC particles. At lower 

temperatures, the fine WC particles strengthen the coating structure and provide higher hardness than any of 

the other tested coatings (Table 5). The wear track of the HVAF coating after the high temperature test in 

Figure 15a shows protruding oxidised WC particles, while other areas are covered by a smooth oxide layer 

hiding most of the structural details of the wear track surface. It is likely that the higher wear rate of the 

Cr3C2-37WC-18NiCoCr coatings is caused by the fine WC particles as they i) prevent the formation of 

uniform tribolayer by protruding from the surface (which also causes slightly higher steady-state friction in 

comparison to Cr3C2-25NiCr coatings, Figure 9 and Table 5) and ii) oxidise and lose their strengthening 

capability. The protruding oxidised WC particles demonstrate that the chromium carbides and chromium-

containing matrix did not protect the WC particles from oxidation, neither did the smearing of the wear 

debris. This becomes evident also from the cross section view in Figure 15c, which shows the 1 µm thick 

oxide layer (pointed out by arrows over the coating surface) on the wear track covering some of the WC 

particles that have already started oxidising underneath (pointed out by arrows inside the coating). The 

tribolayer on the wear track was proven to consist of WO3 as a result of the direct oxidation of the WC 

particles and NiWO4 as a result of reaction with the nickel from the metallic matrix (Figure 14c). Even 

though the extensive oxidation of the WC particles is evident, the high temperature performance and 

oxidation resistance of this coating is remarkably better than that of the HVOF sprayed WC-CoCr tested at a 

similar temperature of 750 °C in another study [7] (due to the catastrophic oxidation of the latter). However, 

the performance is somewhat poorer than that of the previously mentioned HVOF sprayed WC-(W,Cr)2C-Ni 

coatings. Compared to WC-CoCr, indeed, the currently tested coatings possess significantly lower WC 

content and even distribution of the WC particles within the coating microstructure, as was previously shown 

in Section 3.1. However, WC-(W,Cr)2C-Ni was reportedly able [7] to develop a uniform tungstate-based 

oxide scale (containing no WO3) that covered even the WC particles themselves, preventing their oxidation 

and allowing the formation of a uniform tribofilm without protrusions. This seems not to occur with the 

present Cr3C2-37WC-18NiCoCr, maybe because it does not contain any (W,Cr)2C mixed carbide phase. The 

SEM micrograph in Figure 15b taken from outside the wear track demonstrates the extensive oxidation of 

the WC particles compared to the Cr3C2 particles and the Cr alloyed matrix. The WC particles grow thick 

oxide clusters while rest of the coating structure forms a layer of fine oxides. The WC particles evidently 

lose most of their capability to provide improved wear resistance, but on the other hand, they do not cause 

catastrophic failure of the coating via oxidation, as was the case with the WC-10Co4Cr coating in [7]. 
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Figure 15: SEM images of the HVAF sprayed Cr3C2-37WC-18NiCoCr coating surface after high temperature ball-on 

disk test with top-view, a) from the wear track and b) from outside the wear track, and side-view c) from the cross 

section sample.  

 

3.4. Effect of the Spray Process 
 

The results in Sections 3.2. and 3.3. presented the observed differences in performance between the three 

coating material compositions: Cr3C2-25NiCr, Cr3C2-50NiCrMoNb and Cr3C2-37WC-18NiCoCr. However, 

the HVOF and HVAF spray processes differ significantly from each other and produce different particle in-

flight properties, i.e. velocity, temperature and melting degree. It is therefore important to compare the 

coating performance in relation to the spray process. 

 

3.4.1. Room Temperature Behaviour 
At room temperature, the spray process seemed to have only a small effect on the coating performance when 

carrying out the sliding wear tests. Significant differences between the two processes were observed on the 

coatings produced from the plasma densified Cr3C2-25NiCr (d) and the Cr3C2-37WC-18NiCoCr powders. 

The coefficient of friction values of the former coatings were 0.78 for the HVOF sprayed coating and 0.6 for 

the HVAF sprayed coating. High value on the HVOF sprayed coating could be caused by the potentially 

larger wear debris formed during the brittle cracking of the coating surface. While similar cracking was also 

observed on the HVAF sprayed coating, the coating was sprayed from finer particle size and potentially finer 

wear debris was formed as the result of the brittle fracture. 

 

In the case of the Cr3C2-37WC-18NiCoCr material, the HVAF spray process produced a coating with 

significantly lower wear rates compared to the HVOF sprayed coating. Cracks were observed on the wear 

track of the HVOF sprayed coating, which indicates a higher probability of material removal by brittle 

fracture. The HVAF sprayed coating, on the other hand, did not show such behaviour. The main reason for 

the observed behaviour lies in the process temperature, which in the case of HVOF spraying results in 

localised brittle areas by overheated particles. 

 

3.4.2. High Temperature Behaviour 
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At 700 °C, the effect of the spray process became more significant compared to the results obtained from the 

room temperature tests. The wear rates of the HVAF sprayed coatings, besides the Cr3C2-25NiCr (d) coating, 

were lower compared to the HVOF sprayed coatings. Especially pronounced difference was observed in the 

case of the conventional Cr3C2-25NiCr as significant improvement in wear resistance was measured. One 

reason for this could be the subsurface cracking of HVOF sprayed Cr3C2-25NiCr and Cr3C2-50NiCrMoNb 

coatings during the test. This cracking of the top layer of the HVOF Cr3C2-25NiCr coating is evident in 

Figure 16b. The cracks observed in the structure are probably formed by fatigue fracture caused by the 

continuous loading cycles during the wear test. Such subsurface cracking probably promotes the removal of 

the tribolayer and subjects the underlying coating material to oxidation and wear. Since the HVAF sprayed 

coatings proved to maintain the dense structure without similar cracking behaviour, it seems that the 

uniformity and cohesion of the underlying coating surface plays an important role in the observed behaviour. 

This enabled the formation of the thick oxide-based tribolayer on the wear track of the HVAF sprayed Cr3C2-

25NiCr coating, seen in Figure 16a.  

 

On the other hand, even the HVAF sprayed Cr3C2-25NiCr (d) coating (Figure 16c) experienced sub-surface 

cracking during sliding wear tests at 700 °C, which is consistent with the higher incidence of tribofilm 

delamination phenomena (see Section 3.3.2.). This may be due to the fact that the plasma densification 

process altered deeply the microstructure of the feedstock powder (as was described in Section 3.1) by 

forming elliptical, elongated Cr3C2 particles that leave a small matrix mean free path between them. Such 

microstructural difference is clearly reflected in the resulting coatings (compare Figure 16c to Figures 16a-

b). The low matrix mean free path between the elongated carbide particles clearly impairs the ductility of the 

coating and facilitates the nucleation and propagation of cracks, particularly when the narrow remaining 

matrix areas experience significant re-precipitation of secondary carbides at high temperature, as illustrated 

by the detail of Figure 16d. In addition, the metastable Cr3C2-x (0≤x≤0.5) phase detected in the feedstock 

powders and as-sprayed coatings was found to transform into a stable carbide form, presumably Cr3C2, 

during a 14 h heat treatment experiment done for the powders at 700 °C (XRD patterns in Figure 17). The 

transformation from Cr3C2-x to Cr3C2 can decrease the specific volume per Cr atom in the carbide by roughly 

2% [39], which might create additional localized tensile stresses or reduce existing compressive stresses. It 

can also be noticed that in the as-received state the Ni-alloy peaks (at 44.1° and 51.3° in Figure 17) of the 

powders have shifted to lower diffraction angles, which is caused by the substantial increase of Cr content in 

the alloy [38]. This originates from the melted carbide particles and resulting dissolution of Cr and C into the 

Ni-alloy during the plasma densification process.  

 

Extensive carbide precipitation can be observed in the microstructure of both HVOF and HVAF sprayed 

Cr3C2-25NiCr coatings in Figure 16, which indicates substantial carbon content of the metallic matrix in the 

as-sprayed state. During the high temperature testing, dissolved carbon starts to form fine carbide 

precipitates with chromium [30]. This behaviour demonstrates that melting of the metal matrix has taken 

place during the spraying with both processes. Accordingly, significant increase in microhardness was 

observed for all HVOF sprayed coatings after the high temperature tests. This is related to the carbide 

precipitations, which can increase the hardness as a result of the short-term heat treatment [38]. This increase 

was most significant in the case of the HVOF sprayed Cr3C2-25NiCr (d) and Cr3C2-37WC-18NiCoCr 

coatings. The same coatings experienced some brittle cracking during the high temperature testing. Increased 

microhardness was observed also on the HVAF sprayed coatings from the same materials, while the HVAF 

sprayed coatings from agglomerated and sintered Cr3C2-25NiCr and Cr3C2-50NiCrMoNb powders 

experienced quite significant drop in microhardness. Apparently, in the latter cases the formation of 

precipitates resulted in more ductile coating structure, which may result from the fact that, in these coatings, 

the loss in solid solution strengthening of the C- and Cr-saturated matrix prevails over the effect of secondary 

carbides precipitation. The heat treatment of similar coatings has accordingly been found to increase the 

matrix ductility [51]. The reason why the microhardness of the HVAF sprayed Cr3C2-25NiCr (d) coating was 

not decreasing during the wear test may actually lie in the state of the feedstock powder. The coating 

structure is composed of particles with higher melting degree than was actually produced by the HVAF spray 

process. Instead, the seemingly high melting degree of the particles originates from the plasma densification 

process, which has already once melted and solidified the majority of the powder particles leaving them 

partially in a metastable state with high concentrations of Cr and C in the matrix alloy. Similar reasons 

related to structure stability could be causing the increase of hardness in the case of both Cr3C2-37WC-

18NiCoCr coatings. 
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Figure 16: SEM micrograph of the wear track cross section of a) HVAF and b) HVOF sprayed Cr3C2-25NiCr coatings, 

and of c) HVAF sprayed Cr3C2-25NiCr coating from plasma densified powder, with d) detail of secondary carbides 

precipitation within the NiCr matrix. 

 

 
Figure 17: Measured XRD patterns from the as-received plasma densified powders for HVOF (P1) and 

HVAF (P2) processes, and from powders after heat treatment at 700 °C (P1 700 °C and P2 700 °C). 

 

  



20 

4. CONCLUSIONS 
 

Various Cr3C2-based coatings were produced with HVOF and HVAF thermal spray processes: Cr3C2-

25NiCr, Cr3C2-50NiCrMoNb and Cr3C2-37WC-18NiCoCr. The sliding wear behaviour was tested at room 

temperature and at 700 °C by a tribometer with a ball-on-disk configuration. Alumina ball was used as the 

counterpart. The following conclusions were made from the presented results: 

 At room temperature, the coatings produced very similar values of the coefficient of friction. The 

highest (0.78) and lowest (0.60) values were observed on HVOF and HVAF sprayed Cr3C2-25NiCr 

(d) coatings, respectively. The same coatings experienced also the highest wear rates due to brittle 

cracking of the coating material. The lowest wear rate was achieved with the Cr3C2-37WC-18NiCoCr 

coatings due to the hard WC particles. 

 The wear mechanism was similar for all coatings, a combination of i) abrasive grooving, ii) brittle 

fracture, iii) delamination and iv) tribo-oxidation. Poorly crystalline oxide clusters and small debris 

particles were observed on all surfaces. The amorphous nature of the oxidised debris clusters is 

considered to be one of the causes of the relatively high (≥ 0.6) friction coefficient produced by these 

coatings in the present test conditions. 

 At 700 °C, significantly lower coefficients of friction (0.35-0.48) were achieved for all the tested 

coatings, compared to the room temperature tests. The decreased coefficient of friction values were 

the result of crystalline, oxide based tribolayers on the wear tracks. The tribolayers of Cr3C2-25NiCr 

coatings consisted of Cr2O3 while the tribolayer on Cr3C2-50NiCrMoNb coatings mainly contained 

NiCr2O4. The coatings containing WC formed a discontinuous tribolayer, whose uniformity is 

impaired by the growth of WO3 protrusions over WC particles. 

 The Cr3C2-25NiCr coatings experienced similar or even lower wear rates at high temperature than at 

room temperature. The lowest wear rate was measured for the HVAF sprayed Cr3C2-25NiCr coating. 

The Cr3C2-50NiCrMoNb coatings, on the other hand, experienced higher wear rate due to higher 

matrix content and the Cr3C2-37WC-18NiCoCr coatings suffered from the rapid oxidation of WC 

particles preventing the formation of a uniform tribolayer.  

 Subsurface cracking took place in HVOF sprayed coatings of Cr3C2-25NiCr and Cr3C2-50NiCrMoNb 

during the high temperature sliding tests. The HVAF sprayed counterparts did not show the same 

behaviour, which was beneficial for maintaining the tribolayer intact and for decreasing the wear rate. 

On the other hand, the Cr3C2-25NiCr coatings obtained from the plasma densified feedstock exhibited 

sub-surface cracking regardless of the deposition technique. This is due to the sprayed coating 

retaining the powder microstructure induced by the plasma densification process, which features 

particularly low matrix mean free path between elongated carbide grains. In addition to that, 

secondary carbides precipitation within the matrix at high temperature also contributes to increased 

brittleness at high temperature. 

 All tested coatings performed well under sliding wear conditions and have great potential as wear 

resistant coatings at room temperature and elevated temperature.  
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Highlights 

 Cr3C2-37WC-18NiCoCr coating provided improved wear resistance at room temperature. 

 Smooth oxide tribolayers were formed on the wear tracks at 700 °C. 

 Coefficient of friction was significantly reduced at 700 °C for all coatings. 

 HVAF sprayed coatings maintained their tribolayers intact, decreasing the wear. 

 HVAF sprayed Cr3C2-25NiCr coating provided the best wear resistance at 700 °C. 

 




