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Teaser: 1,2,3-Triazole is an effective bioisostere and a convenient tool to creatively combine pharmacophores. 

 

Highlights 

Triazoles mimic different functional groups, justifying their wide employment as bioisosteres for the 

synthesis of new active molecules.  

Triazoles present a marked stability under hydrolytic, oxidative and reductive conditions. 

Triazoles exploitation in medicinal chemistry has recently received increasing attention, considering the 

development of new methodologies, which allows its regioselective synthesis  

This review is focused on 1,2,3-triazoles.  Among the plethora of the selected examples, the amide bond 

replacement is clearly a predominant approach.  

 

 

1,2,3-Triazole is a well-known scaffold that has a widespread occurrence in different compounds characterized by 

several bioactivities, such as antimicrobial, antiviral, and antitumor effects. Moreover, the structural features of 1,2,3-

triazole enable it to mimic different functional groups, justifying its wide use as a bioisostere for the synthesis of new 

active molecules. Here, we provide an overview of the 1,2,3-triazole ring as a bioisostere for the design of drug 

analogs, highlighting relevant recent examples. 

Introduction 

The synthesis of analogs of current drugs is currently one of the most relevant approaches in medicinal chemistry 

and the drug discovery process. Different issues, such as the need to overcome drug resistance, the search for more 

selective and less toxic drugs, or attempts to improve their pharmacokinetic profile, result in the need for a 

continuous optimization process. It is clear that analog design has a key role in this process [1], given that this 

strategy involves the structural modification of already active molecules rather than ex novo synthesis. 

Application of a bioisosteric substitution is a widely used technique in the modification of active molecules, and 

triazoles, which are fundamental building blocks in different bioactive compounds, are among the most widespread 

bioisosteres. In fact, their structural characteristics, such as polarity, rigidity, and ability to act as both hydrogen 

bond donors (HBD) and acceptors (HBA), enable them to mimic the features of different functional groups (Figure 



1), with the additional advantage of a marked stability under hydrolytic, oxidative, and reductive conditions. Over 

the past few years, the use of triazoles in medicinal chemistry has received increasing attention, thanks to research 

by Sharpless, Medal and colleagues, which led to the development of highly regioselective methodologies for 

triazole synthesis, based on the metal catalyzed Huisgen 1,3-dipolar cycloaddition between alkynes and azides [2–

4] (Figure 1). 

However, new advanced synthetic routes has been recently developed to improve the regioselectivity and scope of 

copper and ruthenium catalysed cycloadditions, as well as to overcome some related drawbacks, such as the use of 

expensive and toxic metal catalysts. Among these new approaches, the use of metal-free organocatalyzed and 

multicomponent-cascade reactions are particularly noteworthy [5–8] (Figure 1). All these methodologies have 

enabled the successful design of novel drug analogs via combinatorial synthesis. 

Here, we provide an overview of the potential of triazole rings as bioisosteres, highlighting various examples and 

focusing our attention on 1,2,3-triazoles to stimulate and to guide their use in drug design. Amide bond 

replacement is a predominant approach among the examples selected, demonstrating the versatility of this isosteric 

effect. In addition, heterocyclic substitutions are often used, whereas esters and carboxylic acid triazole isosteres 

are less common. 

1,2,3-triazoles as amide bond isosteres 

1,2,3-triazoles are among the most common amide bond isosteres. In fact, despite some differences concerning the 

overall dipolar moment and distance between the substituents, their structural features allow a good overlap with 

amide-binding moiety . For example, 1,4-disubstituted 1,2,3-triazoles are good Z-trans-amide isosteres, because the 

C-4 atom can act as electrophilic site, the C-H bond acts as a hydrogen bond donor (HBD), and the lone pair of N-3 

electrons acts as a hydrogen bond acceptor (HBA). This isosteric replacement is illustrated in Figure 2, where the 

conformations of a trans-amide and a 1,4-disubstituted triazole moieties are superimposed for comparison. 

Despite some polarization differences because of the replacement of the amide carbonyl group with a negatively 

polarized nitrogen atom, 1,5-disubstituted 1,2,3-triazoles are relatively good mimics of E-cis-amides as a result of 

the optimal spatial overlap between their substituent parts [9]. 

The ability to obtain stable amide isosteres has resulted in their wide application in the peptidomimetics field 

(reviewed in [10]) and in the design of analogs of bioactive molecules, including approved drugs. Figure 3 provides 

22 examples in which the exploitation of the bioisosteric character of triazoles resulted in the development of active 

compounds. Table 1 lists the lead compounds and provides an indication of their biological activity, together with 

the corresponding reference. 

The search for new drugs active against resistant strains of bacteria prompted Phillips et al. [11] to replace the 

acetamide group in linezolid with a triazole; one of the triazoles derivatives (1) displayed marked antimicrobial 

activity against both Gram-positive and linezolid-resistant bacteria. Monceaux and colleagues [12] exploited the 

amide-triazole isosteric relationship to design a library of analogs (2) inspired by potent Merck BACE1 inhibitors, 

as possible Alzheimer’s disease therapy. Some of these derivatives proved to be relatively active, being also more 

potent than a similar triazole analog also developed by Merck [13]. 

This isosteric approach has also allowed the development of several HIV-1 protease inhibitors to treat AIDS. 

Mohammed and collaborators [14] synthesized a new class of antagonists (3) of the protein HIV-1 viral infectivity 

factor (Vif), based on a RN-18 structure, obtaining triazole analogs with enhanced activity, whereas Brik and 

colleagues [15–18] developed analogs of approved HIV-1 protease inhibitors, such as amprenavir, to address the 

issue of drug resistance resulting from viral mutations. Two compounds, AB2 and AB3 (4), showed nanomolar 

activity against wild-type and resistant HIV-1 proteases. Interestingly, crystallographic determination of the HIV-1 

complexes showed that both inhibitors were bound in a position identical to that of amprenavir, confirming that the 

triazole was a suitable mimic of the peptide group (Figure 4) [16]. 

The need for novel chemotherapeutics has encouraged various groups to synthetize triazole analogs (5) of 

imatinib, an anticancer agent used for leukemia treatment. For example, FA030 showed comparable or even 

enhanced potency against different cancer cell lines [19]. Furthermore, in situ click chemistry experiments 

performed on the Abl tyrosine kinases demonstrated that this enzyme was able to synthesize its best inhibitor. In 

fact, when the enzyme was simultaneously incubated with different azides and alkynes, the only detectable product 

was FA030, confirming the high affinity of this compound for Abl tyrosine kinases [20]. Other imatinib analogs 

showed good potency against leukemia cell lines and, in some cases, significant inhibitory activity against KG1a 

cells, suggesting possible applications in the treatment of leukemia stem-like cells [21]. 

The structure of vorinostat, an approved histone deacetylase inhibitor, was modified to prepare isosteres (6) 

characterized by similar cytotoxic activity and enzyme inhibitory properties [22]. To improve colchicine in vivo 

administration, which usually occurs via its encapsulation in nanosized liposomes, triazole analogs (7) were 

developed; in contrast to colchicine, no leaking outside the liposomes was observed [23]. 

The triazole ring has also been incorporated in macrocycle derivatives, such as the cryptophycin-52 analog (8) 

[24] and migrastatin analogs (9) [25]. Cryptophycin-52 is a synthetic derivative of a family of natural macrocycles 

known for their cytotoxic activity against multidrug-resistant cancer cells. Its triazole analog (8) was synthetized 

and maintained nanomolar activity, although this was lower than its parent compound. Migrastatin is an inhibitor 

of fascin, a protein involved in cell motility. The triazole analogs of an active lactam derivative of migrastatin (9), 

displayed comparable inhibitory activity of cancer cell migration. Research interest in resistant cancer cells, in 



particular those with stem cell-like behaviors, resulted in researchers considering a structural modification of 

vismodegib, a synthetic Hedgehog signaling pathway inhibitor. Its triazole derivative (10) was found to be active in 

the lower micromolar range against different cancer and endothelial cells [26]. 

In an attempt to develop new potential anticancer agents, a triazole derivative of triflorcas (11), a Met signaling 

inhibitor, was developed. Its triazole analog displayed similar activity in the inhibition of HGF-induced scattering 

in epithelial cells and in vitro tumorigenesis in different cancer cell lines [27]. 

The triazole amide bioisosterism also has applications in the agrochemical field, as demonstrated by the 

synthesis of derivatives of mandipropamid, an antifungal compound used for the treatment of diseases of crop 

plants. Unfortunately, its triazole derivatives (12) exhibited a reduced activity, probably because of a weak HBD in 

the triazole [28]. 

In addition to the aforementioned studies, several authors have reported the synthesis of triazole derivatives of 

small bioactive molecules, such as N-acetyl β-D-glucopyranosylamine (13) [29–31], ceramides (14) [32–35], 

dopamine D3 receptor ligands (15) [36–38], N-acyl-homoserine-lactone (16) [39,40], capsaicin (17) [41], 

hydroxyflutamide (18) [42], biocytin (19) [43], oroidin RA analogs (20) [44], 4-quinolone-3-carboxamides (21) [45], 

and α-lipoic acid amide derivatives (22) [46,47]. 

1,2,3-triazoles as ester bond isosteres 

Here, we provide examples in which 1,2,3-triazoles are used as ester isostere to reduce their in vivo susceptibility to 

enzymatic degradation. The structures are detailed in Figure 5 and a summary of their biological activity is 

provided in Table 1. This isosteric relationship was used for the replacement of the lactone moiety in steganacin 

and podophyllotoxin, two naturally occurring antitubulin compounds; their triazole derivatives (23 and 24, 

respectively) displayed good activity against a neuroblastoma cell line (although with lower potency) and 

maintained the antitubulin properties of their parent compounds [48]. 

The need to improve the selectivity and the pharmacokinetic properties of arecoline, a natural muscarinic 

agonist that, during the 1990s, attracted considerable interest as a potential Alzheimer’s disease therapy, resulted 

in the synthesis of a large library of triazole analogs (25) that contained compounds characterized by a range of 

efficacy, affinity, and selectivity [49]. The same approach was also used in an attempt to enhance the stability of 

the labile ester bond in β-glucogallin. Both amide and triazole derivatives were synthesized, but although the first 

were stable in extreme conditions and maintained the inhibitory activity of the parent compound, triazole isosteres 

(26) proved to be totally inactive, This was because the slight differences in the spatial arrangement of the 

substituents did not result in appropriate interactions with the receptor binding site [50]. 

1,2,3-triazoles as carboxylic acid isosteres 

The 1,2,3-triazole ring does not appear among the typical carboxylic acid moiety isosteres. However, Pippione et al. 

[51] reported an interesting example in which the role of N-substituted 4-hydroxy-1,2,3-triazoles (27) (structure 

reported in Figure 5, biological activity summarized in Table 1) as possible carboxylic acids bioisosteres was 

investigated. This substitution should allow modulation of the acidic moieties present in lead molecules, as well as 

proper substituent regiodirection, depending on which of the triazole nitrogens is substituted. The replacement of 

the distal (S)-glutamic acid carboxyl group with a 4-hydroxy-1,2,3-triazole was considered as a possible tool to 

enhance the selectivity for AMPA glutamate receptors (GluRs). Two compounds (27) emerged as promising 

isosteres, displaying good activity and selectivity toward AMPA GluRs. 

1,2,3-triazoles as olefins rigid analogs 

1,2,3-triazoles, being flat bivalent elements, mimic the rigid conformational constrain exerted by double bonds in 

alkyl chains, avoiding typical olefin drawbacks, such as undesired isomerization or in vivo degradation. This 

principle was extensively used to fix the combretastatin [52–56] and cyanocombretatstin A-4 [56] cis configurations, 

preventing their isomerization in the more stable but less active trans isomers. Several of the different synthetized 

analogs (28 and 29) displayed nanomolar activity against different cell lines. 

A similar approach was used for the design of constrained analogs of resveratrol (30) [57], resorcylic acid lactone 

(31) [58] (in which the triazole substituted a cis-enone system), and chalchones [59]. In the first two cases, the 

isosteres maintained some activity, whereas the chalcones analogs (32) proved to be inactive. The structures of 

these compounds are reported in Figure 5, while information regarding their bioactivities is detailed in Table 1. 

1,2,3-triazoles as heterocycles isosteres 

The triazole ring can efficiently mimic other heterocycles, in particular five-member nitrogen-containing cycles; this 

principle has been widely used for the synthesis of new active compounds. Figure 5 details 15 examples that 

highlight the versatility of triazoles as isosteres of different heterocycles, while their bioactivities are summarized 

in Table 1. 

In terms of a imidazole isostere, Al-Azmi and collaborators [60] synthetized several losartan analogs (33), as 

potential nonpeptidic angiotensin (II) receptor antagonists. The same isosteric substitution was applied to improve 

EICAR antiviral and anticancer properties, leading to triazole analog (34) [61] and also to the synthesis of 2,4(1H)-

diaryl imidazoles isosteres (35) as NaV1.6 sodium channel blockers [62]. 

In an interesting study, a 1,2,3-triazole ring was used as a miconazole imidazole bioisostere as well as a linker to 

join together two pharmacophores: the miconazole and a piperazine fragment of ketoconazole. Some of these hybrid 

compounds (36) showed moderate antifungal and antibacterial activity [63]. However, this isosteric substitution 



failed in the synthesis of the triazole analogs (37) of a more active derivative of Imiquimod, showing that the 

efficiency of an isosteric replacement is rarely predictable and has to be evaluated on a case-by-case basis [64]. 

1,2,3-tirazoles can also be used as pyrazole ring isosteres, as in the case of rimonabant (38), a CB-1 receptor 

antagonist used in obesity treatment. Benzyl amide-containing analogs [65] and some members of a 4-

alkoxycarbonyl-1,5-diaryl-1,2,3-triazoles library [66] showed good activity and CB-1 selectivity, as well as 

potentially improved bioavailability, being less lipophilic than the parent compound. Other examples were the 

synthesis of analogs (39) of the insecticide fipronil, leading to promising inhibitors of the insect GABA receptor [67], 

the development of pyrazolo[3,4-d]pyrimidines analogs (40) as possible antifungal agents [68], and of new dopamine 

D2 and D4 receptors antagonists (41) [69,70]. 

1,2,3-triazoles act also as 1,2,4-triazole ring isosteres, as demonstrated by the synthesis of ribavirin and 

fluconazole derivatives. Ribavirin [71] is a well-known antiviral compound that is active against different viruses, 

such as HIV-1, herpes simplex virus (HSV), and hepatitis C virus. However, its cytotoxicity has limited its clinical 

application, encouraging the search for active analogs. One of these (42) was found to be more potent and less 

cytotoxic than ribavirin against certain viruses. To broaden the antifungal activity spectrum of fluconazole, the 

same approach was applied, resulting in potent antifungal compounds (43) that were also active against resistant 

fungi [72]. 

The isosteric replacement of the morpholine ring in linezolid led to active, but less potent antibacterial analogs 

(44) [73]. Interestingly, a double isosteric substitution, involving both morpholine and acetamide moieties, was also 

reported [74]. Other tested isosteric relationships involved the oxazole ring of the VEGFR2 inhibitor AAZ (analog 

45) [75], the isoxazole ring of an Ebola virus inhibitor (analog 46) [76], and the oxazolidinone of a T box 

antiterminator RNA binder (analog 47) [77]. Finally, 1,2,3-triazoles are a possible nucleobase heterocycle 

bioisostere (for further details, please see [78–85]).  

1,2,3-triazoles as miscellaneous isosteres 

Here, we discuss examples of isosteric replacements that do not fit into the previous classifications. Their 

structures and their biological activities are detailed in Figure 6 and Table 1, respectively. 

Some 1,2,3-triazoles-curcuminoids (48) were shown to mimic the curcumin 1,3-dicarbonyl group, maintaining 

some characteristics of the parental compound, such as enhanced cytotoxicity and similar inhibition of TNFα-

induced NF-κΒ-dependent transcription [86]. The ethynyl group replacement in Sazetidin-A, a selective 42 

neuronal nicotinic acetylcholine receptor (nAChRs) desensitizer, led to a more selective 42 nAChRs analog (49) 

[87], whereas the substitution of a labile thiourea resulted in the development of more cytotoxic derivatives (50) of 

PIT-1, a PIP3 antagonist responsible for the induction of apoptosis in cancer cells [88]. Docking studies also 

demonstrated that 1,2,3-triazoles can act as more stable isosteres of phosphate linkers [89]; examples include the 

synthesis of analogs of biotinyl-5’-AMP (51) [90,91] and cyclic di-GMP (52) [92], resulting in more selective 

compounds, or the development of novel NAD-mimetics (53), such as inosine monophosphate dehydrogenase 

inhibitors [93]. Again, the substitution of phosphate linkers led to oligothymidine triazole analogs (54) for antisense 

therapy [84] and to uncharged and rigidified nucleoside ATP mimetics (55), such as inhibitors of NTP-dependent 

enzymes [95]. 

Concluding remarks 

In conclusion, here we have highlighted the importance of bioisosterism in the drug discovery process, focusing on 

the successful synthesis of various triazole compounds*. Interestingly, more than half of the studies cited were 

published over the past 10 years (2007–2017), demonstrating that this approach is only a relatively recently 

developed tool for the design of pharmaceutically active compounds. 
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Figure 1. Synthetic strategies aimed at 1,2,3-triazoles regioselective synthesis (b) and the principal isosteric relationships (a). 

Figure 2. Superimposition of the conformations of trans-amide (yellow) and 1,4-disubstituted 1,2,3-triazole (cyan) moieties. 

Figure 3. Structures of the principal amide triazole isosteres discussed in the main text. 

Figure 4. Superimposition of the crystal structures of HIV-1 protease in complex with amprenavir [yellow; Protein Data Bank (PDB) code: 1HPV] and the two triazole 

analogs AB2 and AB3 (cyan, PDB codes: 1ZP8 and 1ZPA, respectively). For the sake of  clarity, only the co-crystallized ligands are shown. 

Figure 5. Structures of the principal triazole analogs as bioisosteres of esters, carboxylic acids, heterocycles, and rigidifying elements, as discussed in the main text. 

Figure 6. Structures of the miscellaneous triazole isosteres discussed in the main text. 

 

 

Figures  

Figure 1 

 

 

 

 

Figure 2 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

[continue in the next page] 

Figure 3 



 

Figure 4 

 

[continue in the next page] 



Figure 5 

 

 

 

 



 

[continue in the next page] 

Figure 6 

 

  



 

Table 1. The activity of 1,2,3-triazole analogsa,b,c 

Compound Parent compound Biological target Isostere activity 

evaluation 

Parent compound activity 

evaluation 

Refs 

Amide isosteres 

1 Linezolid Staphylococcus aureus 0.5–1 Mg/mlii 0.5–2 Mg/mlii [11] 

2 Merck compound BACE1 2.0 MMiv 16.3 MM iv [12] 

3 RN-18 H9 cells (HIV-1 Vif) 0.001 MMiv 6 MM iv [14] 

4 Amprenavir HIV-1Pr wt 6±0.5 nMiv – [15–18] 

HIV-1Pr 6X 15.7 nMiv – 

5 Imatinib K562 (Bcr-Abl) 0.89±0.003 MMiv 0.37±0.09 MMiv [19,20] 

0.03 MMiv 0.38 MMiv [21] 

6 Vorinostat K562 (HDACs) 1.21±0.2 MMiv 1-10 MMiv [22] 

7 Colchicine BJAB  4 nMiv 20 nMiv [23] 

8 Cryptophycin-52 KB-VI 32 nMiv 0.7 nMiv [24] 

9 Migrastatin analog MDA-MB-361 – – [25] 

10 Vismodegib BAEC 0.42±0.04 MMiv 50±4 MMiv [26] 

11 Triflorcas MDCK (HGF scatter factor) 0.6 MMiv 0.2 MMiv [27] 

12 Mandipropamid Pseudoperonospora cubensis 90% inhibition – [28] 

13 N-Acetyl-β-D-glucopyranosylamines RMGPb 14 MMi 18 MMi [29–31] 

14 Ceramides K-562 8.2 MMiii 35.1 MMiii [32] 

iNKT (T-cells receptor) – – [33,34] 

– – [35] 

15 USCA401 D3 receptor 2.7 nMi 2.6 nMi [36] 

WC10 D3 receptor <4 nMi 0.8 ±0.1 nMi [37] 

D3 receptor 5.05 ± 0.141 nMi 0.233±0.0089 nMi [38] 

16 N-Acyl-homoserine-lactone Vibrio fischeri (LuxR) 51±2 MMiv – [39] 

Pseudomonas aeruginosa 

(LasR) 

49.9±20.1 %QS 

inhibition 

– [40] 

17 Capsaicin hCB1 0.44 MMi >5.6 MMi [41] 

hTRPV1 0.69±0.16 MMiv – 

18 Hydroxyflutamide LNCaP (androgen receptor) 40 MMiv - [42] 

19 Biocytin Avidin (biotinidase) Picomolar KD - [43] 

20 Oroidin RA analog P. aeruginosa 14 27±4 MMiv 40 MMiv [44] 

21 4-Quinolone-3-carboxamides hCB2 11.1±3.6 nMi 0.7±0.2 nMi [45] 

22 α-Lipoic acid amide derivatives HT22 0.90±0.04 MMiii 2.10±0.4 MMiii [46,47] 

Ester isosteres 

23 (-)-Steganacin SH-SY5Y 1.1 ± 0.4 MMiv - [48] 

24 (-)-Podophyllotoxin SH-SY5Y 1.5 ± 0.7 MMiv 7.0 ± 0.9 nMiv [48] 

25 Arecoline Guinea Pig ileum (muscarinic 

receptors) 

130 nMiii 190 nMiii [49] 

26 β-Glucogallin AKR1B1 Inactive 8±1 MMiv  [50] 

COOH isosteres 

27 Glutamic acid AMPA receptors (GluRs) 1.4 MMiv 0.34 MMiv [51] 

Triazoles as rigid analogs 

28 Combretastatin Cancer cell line panel <10 nMv - [52] 

SK-OV-3 0.9–32.4 nMiv 1.7 nMiv [53] 

Cancer cell line panel <10 nMv 0.0032 nMv [54] 

Cancer cell line panel 3.9–5.1 nMiv 2.8–6.0 nMiv [55] 

29 Cyanocombretatstin A-4 Cancer cells line panel Nanomolar rangev – [56] 

30 Resveratrol MDA-MB-231 1 MM–100 nMiv – [57] 

31 LL-Z1640-2 MNK2 7.2 MMiv – [58] 

32 Chalcones H-SY5Y Inactive 0.21 nMiv [59] 

Heterocycles 

33 Losartan Ang (II) receptor – – [60] 

34 EICAR – – – [61] 

35 2,4(1H)-diarylimidazoles isosteres rNaV1.6 28.5 MMiv 19.6 MMiv [62] 

36 Miconazole-Ketoconazole hybrid Escherichia coli >64 Mg/mlii – [63] 

37 Imiquimod derivative TLR7 Inactive 2.0 MMiii [64] 

38 Rimonabant hCB1 11.6 ± 3.4 nMiv 15.0 ± 1.8 nMiv [65] 

4.6± 0.012 nMi – [66] 

39 Fipronil Housefly GABA receptor 9.04 nMiv 2.3–6.3 nMiv [67] 

40 Pyrazolo[3,4-d]pyrimidines Gram-negative bacteria – – [68] 

41 N-phenylpiperazine derivatives D4receptor 2.7 nMi 12 nMi [69] 

D2 receptor 0.74 MMi – [70] 

42 Ribavirin HIV-1 RT 3.8 MMiv – [61] 

43 Fluconazole Candida albicans 0.0011 Mg/mlii 0.5 Mg/mlii [62] 



44 Linezolid S. aureus 0.5 Mg/mlii 2 Mg/mlii [63] 

Streptococcus pneumoniae 2 Mg/mlii 1 Mg/mlii [74] 

45 AAZ VEGFR2 TK 6.96 MMiv 22 nMiv [75] 

46 Ebola virus inhibitor 293T (Ebola GP-mediated viral 

entry) 

5 MMiv 30 MMiv [76] 

47 ANB-22 and ANB-40 – – – [77] 

Miscellaneous 

48  Curcumin HeLa 1.5 ± 0.3 MMiv 21.8±1.2 MMiv [86] 

49 Sazetidin-A α4β2 nAChRs 1.3 nMi 0.062±0.06 nMi [87] 

50 PIT-1 A2780 (PI3K) 11.9 MMiii – [88] 

51 Biotinyl-5’-AMP S. aureus (SaBPL) 0.09 ± 0.01 MMi – [90,91] 

52 c-di-GMP PleD (DGCs) 17.5 ± 1.1mMvii – [92] 

53 MAD mtIMPDH 1.5 MMviii >100 MM [93] 

hIMPDH2 0.044 MMi 0.038 MMi 

54 Thymidine oligonucleotides – – – [94] 

55 Nucleoside triphosphates BaPanK 164 MMi 510±19 MM (KM for ATP) [95] 

aThe table summarizes the activity of the triazole analogs detailed in the main text, reporting the name of the parent compound, the biological target on which the analogs were 

tested, and the activity evaluation of both the isosteres and the corresponding parent compounds. 

bThe biological activity is expressed as: i inhibition constant (Ki); ii minimum inhibitory concentration (MIC); iii half maximal effective concentration (EC50); iv half maximal inhibitory 

concentration (IC50); v half maximal growth inhibitory concentration (GI50); vi half maximal cytotoxic concentration (CC50); vii residual enzymatic activity; viii uncompetitive Kiu, 

compared with NAD; – = exact value not reported or not yet determined. 

cFor the activity evaluation, the best results for each analog class are reported. Tests on other targets are therefore omitted. 

 

*It is noteworthy that 1,2,4-triazoles also find applications as bioisosteres, although their use is less common compared with their 1,2,3-triazole 

regioisomers. The description of 1,2,4-triazoles applications in analog syntheses is beyond the scope of this review, but examples are reviewed in [96] 

and references therein. 

 


