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a b s t r a c t 

An analytical approach is presented for the accurate definition of lower and upper bounds 

for the pull-in voltage and tip displacement of a micro- or nanocantilever beam subject to 

compressive axial load, electrostatic actuation and intermolecular surface forces. The prob- 

lem is formulated as a nonlinear two-point boundary value problem and has been trans- 

formed into an equivalent nonlinear integral equation. Initially, new analytical estimates 

are found for the beam deflection, which are then employed for assessing novel and accu- 

rate bounds from both sides for the pull-in parameters, taking into account for the effects 

of the compressive axial load. The analytical predictions are found to closely agree with 

the numerical results provided by the shooting method. The effects of surface elasticity 

and residual stresses, which are of significant importance when the physical dimensions 

of structures descend to nanosize, can also be included in the proposed approach. 

© 2018 Published by Elsevier Inc. 

1. Introduction 1 

Several MEMS and NEMS current applications in sensors, actuators and memory devices [1,2] exploit the switching be- 

Q2 

Q3 
2 

tween two stable positions of a flexible electrode nanobeam suspended above a fixed electrode. Under the action of the 3 

electrostatic force the nanocantilever deflects toward to the ground and the electrostatic force increases correspondingly. At 4 

the pull-in voltage the micro-beam leaves the principal equilibrium path, which becomes unstable, and pulls-in onto the 5 

fixed electrode, thus creating an electrical connection. Since the pull-in voltage determines operation voltage and power 6 

dissipation, its accurate determination becomes of the primary importance in MEMS and NEMS design. On one side, a low 7 

pull-in voltage implies a limited power consumption and small amount of energy stored in the system, thus enhancing 8 

the device performance [1] . A method for reducing the pull-in voltage consists in applying a compressive axial load to the 9 

nanobeam. On the other side, if the pull-in voltage is too small, the intermolecular surface forces may cause the collapse of 10 

the nanocantilever tip onto the fixed electrode, even in the absence of electrostatic actuation. These quantum mechanical 11 

interactions are usually described by van der Waals (vdW) or Casimir forces according to the gap between the electrodes 12 

[3] . Their effects are negligible for MEMS, where the separation distance is of the order of micron, but they play a significant 13 

role for NEMS, where the gap descends to the nanoscale. 14 

The cantilever beam deflection is described by a nonlinear fourth-order boundary value problem (BVP) that can be solved 15 

by using approximate approaches only. The most exploited ones are based on the assumption of 1D lumped models or 16 

specific shape functions for the beam deflection. Perturbation approaches or Taylor series expansions of the loading term 17 
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have been frequently employed also. Detailed information can be found in review papers by Lin and Zhao [4] , Chuang et 18 

al. [5] , Zhang et al. [6] . However, these approximated methods provide random estimates of the pull-in parameters and 19 

their accuracy considerably decreases as the actuation voltage gets closer to the pull-in voltage. In order to be effective, the 20 

approach should instead offer accurate lower and upper bounds, both for the pull-in voltage and tip deflection. 21 

According to the theory of elastic stability, slender beams have critical compressive load limits beyond which they buckle 22 

[7] . If they are also subject to electrostatic loading, their deflection increases nonlinearly with the magnitude of the com- 23 

pressive axial load. Therefore, the determination of the electromechanical buckling (EMB) characteristics of axially-loaded 24 

nanobeams is essential for designing such devices [8–12] . Indeed, the application of an adaptable compressive load, e.g. by 25 

means of an axial elastic constraint applied at the tip of the beam, allows to modify the deflection and the pull-in behavior 26 

of a nanocantilever. It may also affect the occurring of stiction [13–15] , namely the phenomenon that takes place when the 27 

intermolecular surface forces overcome the restoring elastic forces and keep the cantilever tip attached to the ground. In 28 

general, stiction may be avoided or favoured by reducing or increasing the axial compressive load, respectively. Stiction has 29 

been advantageously exploited in applications such as non-volatile memory cells, since it allows holding the switch in the 30 

closed state with no need for supplying continued power input. On the contrary, in sensor and actuator applications it may 31 

cause permanent adhesion and other unexpected occurrences that may reduce the range of operability of the device. 32 

The axial load provides an additional linear second-order term in the governing fourth-order ODE of the Eulero-Bernoulli 33 

(EB) beam model, which can either stiffen, if tensile, or soften, if compressive, the nanostructure. Many authors investigated 34 

the influence of the axial load and, in general, of the additional second-order term on the beam pull-in displacement and 35 

voltage by using a numerical approach [3,16–20] . They clearly found that critical pull-in voltage decreases under the action 36 

of a compressive axial load, whereas an opposite stiffening effect is observed for a tensile axial load. Therefore, the presence 37 

of a compressive axial load is an important issue in the fabrication and design of sensors and actuators, because it may 38 

cause degradation or even failure of the devices. 39 

The work [21] focuses on the effects of the support flexibility on the pull-in instability of an electrostatically actuated 40 

micro- or nanocantilever and accurate analytical bounds are found for the pull-in parameter in the absence of axial load. 41 

The present work focuses instead on the effects of a compressive axial load on the pull-in instability. To this aim, the 42 

analytical approach proposed in [21] is extended by taking into consideration an additional term in the governing ODE 43 

and in the boundary conditions coming from the contribution of the axial load. This contribution is indeed expected to 44 

have a significant influence on the pull-in parameters [ 3 , 22 ] as well as on the critical gap for a freestanding compressed 45 

nanocantilever, which is an essential parameter in the design of NEMS for avoiding the collapse of the flexible electrode 46 

on the ground plane when the electrostatic loading is removed. Moreover, the additional term may also include the effects 47 

of surface elasticity and residual stresses, which are important factors that may explain the experimentally measured size 48 

dependent behavior of nanobeams. 49 

The nonlinear BVP governing the beam deflection is presented in Section 2 and then transformed into an equivalent 50 

nonlinear integral equation by using the Green’s function of the compressed cantilever beam. Here, we consider a linear 51 

elastic EB beam subject to a distributed load that depends nonlinearly on the beam deflection. The total deflection of the 52 

beam is formally given by the sum of all the contributions offered by the load acting on each infinitesimal part of the beam. 53 

Therefore, it can be calculated by exploiting the Green’s function of the compressed cantilever EB beam. A similar approach 54 

has been employed also in the papers [ 3 , 21 ], where the contribution of the axial load has not been introduced. The solution 55 

of the extended BVP considered here is then proved to be positive, monotonic and convex and novel lower and upper 56 

estimates on the deflection are obtained in Section 3 . These estimates are then employed in Section 4 for assessing novel 57 

and accurate bounds from both sides for the pull-in in voltage and tip deflection, taking into account for the effects of the 58 

compressive axial load. Estimates of the critical level of the intermolecular surface forces causing the pull-in instability in the 59 

absence of electrostatic loading are also provided for various values of the axial compressive load. The proposed approach is 60 

then validated in Section 5 by comparing the analytical estimates with the numerical solution of the BVP obtained by using 61 

the shooting method. 62 

Since no closed form solution can be achieved for the extremely nonlinear BVP governing the pull-in instability of a 63 

micro- or nanobeam subject to a compressive axial force, but, to authors’ knowledge, only numerical or approximate meth- 64 

ods have been proposed in the Literarture – e.g. differential quadrature method, Adomian decomposition method, finite el- 65 

ement method and the Galerkin method - then, the analytical bounds provided here can be considered as extremely useful 66 

for validating the number of numerical strategies and approximated methods used for approaching this very difficult non- 67 

linear BVP. Moreover, the approach is flexible enough to allow for further generalization aiming to consider more complex 68 

interactions arising at the micro- and nanoscale, such as electrochemical and double layer interactions. 69 

2. Mathematical model 70 

The problem of an elastic micro- or nanocantilever clamped at one end and subject to electrostatic actuation with the 71 

effects of fringing field, vdW or Casimir forces, and compressive axial load P , sketched in Fig. 1 , can be described by the 72 

following fourth-order, non-linear ODE 73 

u 

IV ( x ) + k 2 u 

′′ ( x ) = f ( u ( x ) ) , for x ∈ [ 0 , 1 ] , (1) 
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Fig. 1. A compressed micro/nanocantilever under electrostatic actuation. 

where u = v / d and x = z / l are nondimensional variables, being v the beam deflection, d the initial gap between the electrodes, 74 

z the position along the beam as measured from the clamped end, and l the beam length, so that 0 ≤ z ≤ l , and the apex de- 75 

notes differentiation with respect to x . The loading term in ( 1 ) includes the contributions of electrostatic actuation, fringing 76 

field and van der Waals or Casimir forces, namely 77 

f ( u ) = 

γ β

1 − u 

+ 

β

(1 − u ) 
2 

+ 

αW 

(1 − u ) 
3 

+ 

αC 

(1 − u ) 
4 
, (2) 

being γ = 0.65 d / w the fringing coefficient, where w is the cross-section width. The nondimensional parameters β , αW 

and 78 

αC are given by 79 

β = 

ε 0 w V 

2 l 4 

2 d 3 EI 
, αW 

= 

A w l 4 

6 π d 4 EI 
, αc = 

π2 h c w l 4 

240 d 5 EI 
, (3) 

where V is the electric voltage applied to the electrodes, E is the Young’s modulus of the elastic material and I is the moment 80 

of inertia of the beam cross-section, ε0 = 8.854 × 10 −12 C 2 N 

−1 m 

−2 is the permittivity of vacuum, A is the Hamaker constant, 81 

h = 1.055 × 10 −34 Js is the Planck’s constant divided by 2 π , c = 2.998 × 10 8 m / s is the speed of light. 82 

The boundary conditions for the cantilever beam then require vanishing of displacement and rotation of the cross section 83 

at x = 0, and vanishing of the bending moment and shearing force at x = 1, namely [7] 84 

u ( 0 ) = 0 , u 

′ ( 0 ) = 0 , u 

′′ ( 1 ) = 0 , u 

′′′ ( 1 ) + k 2 u 

′ ( 1 ) = 0 , (4) 

where the non-dimensional parameter 85 

k = 

√ 

P l 2 

EI 
, (5) 

denotes the square root of the ratio between the compressive axial load P and the beam bending stiffness. The buckling 86 

axial load for a cantilever EB beam is attained as k approaches π /2 [7] . Therefore, in the following we assume 0 ≤ k < π /2. 87 

Since the scale effect of the nanostructure is generally compatible with the size of molecular and/or atomic interactions, 88 

advanced beam models are usually required for an accurate simulation, such as those derived by the non-local or couple 89 

stress elastic theory [10,11,19,20,23] . These sophisticated constitutive models contain an internal length scale as a material 90 

parameter, which introduce in the governing ODE ( 1 ) a further term proportional to the second derivative. The effects of 91 

surface tension and residual stresses are also significant in nanobeams. They occur because the physical properties of surface 92 

layer are different from that of the bulk of nanoscale material and structure. For conductive metals these effects appear at 93 

the submicron scale. They have been simulated in many recent works by using enhanced constitutive models accounting for 94 

surface elasticity [24–27] . 95 

All these contributions can be included in the present model just by modifying the value of the parameter k and/or 96 

introducing additional terms in the flexural stiffness EI of the nanobeam [28–32] . 97 

2.1. Nonlinear integral equation formulation 98 

The nonlinear BVP ( 1 ) and ( 4 ) can be equivalently formulated by means of a nonlinear integral equation once the Green’s 99 

function G ( t ) of the differential problem is worked out, as done in [21] for a nanocantilever in the absence of the axial load. 100 

The deflection of a cantilever EB beam subject to a compressive axial load and a transversal unit load acting at position x is 101 

described by the following linear ODE 102 

G 

IV ( t ) + k 2 G 

′′ ( t ) = δ(x − t) . (6) 
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where δ( x ) denotes the Dirac delta function. The general solution to the ODE ( 6 ) is 103 

G ( t ) = 

{
A 0 + A 1 t + A 2 cos kt + A 3 sin kt, 0 ≤ t < x, 

B 0 + B 1 t + B 2 cos kt + B 3 sin kt, x < t ≤ 1 . 
(7) 

The eight constants A i and B i ( i = 0,1,2,3) can be determined by using the boundary conditions ( 4 ), namely 104 

G ( 0 ) = 0 , G 

′ ( 0 ) = 0 , G 

′′ ( 1 ) = 0 , G 

′′′ ( 1 ) + k 2 G 

′ ( 1 ) = 0 , (8) 

and the continuity conditions at t = x for the deflection, slope, bending moment and shear force 105 

G ( x + ) = G ( x −) , G 

′ ( x + ) = G 

′ ( x −) , G 

′′ ( x + ) = G 

′′ ( x −) , 

G 

′′′ ( x + ) + k 2 G 

′ ( x + ) − G 

′′′ ( x −) − k 2 G 

′ ( x −) = 1 , 
(9) 

respectively, thus providing 106 

G ( t ) 

{{ sin kt − kt + (1 − cos kt)[ sin kx + (1 − cos kx ) tan k } / k 3 , 0 ≤ t < x, 

{ sin kx − kx + (1 − cos kx )[ sin kt + (1 − cos kt) tan k } / k 3 , x < t ≤ 1 . 
(10) 

Therefore, the BVP ( 1 ) and ( 4 ) is equivalent to the following non-linear integral equation 107 

u ( x ) = 

1 

k 3 

∫ x 

0 
{ sin kt − kt + (1 − cos kt)[ sin kx + (1 − cos kx ) tan k ] } f (u (t)) dt 

+ 

1 

k 3 

∫ 1 

x 
{ sin kx − kx + (1 − cos kx )[ sin kt + (1 − cos kt) tan k ] } f (u (t)) dt. (11) 

As k → 0, the non-linear integral Eq. (11) recovers that obtained in [3,33,34] for a cantilever EB beam not axially loaded. 108 

According to ( 11 ), the normalized deflection of the cantilever tip then is given by 109 

u ( 1 ) = 

1 

k 3 

∫ 1 

0 
[ sin kt − kt + (1 − cos kt) tan k ] f (u (t )) dt . (12) 

By taking the derivatives of Eq. (11) one obtains 110 

u 

′ ( x ) = 

cos kx + sin kx tan k 

k 2 

∫ x 

0 

(1 − cos kt ) f (u (t )) dt 

+ 

1 

k 2 

∫ 1 

x 
{ [ sin kt + (1 − cos kt) tan k ] sin kx + cos kx − 1 } f (u (t )) dt , (13) 

111 

u 

′′ ( x ) = 

cos kx tan k − sin kx 

k 

∫ x 

0 

(1 − cos kt ) f (u (t )) dt 

+ 

1 

k 

∫ 1 

x 

{ [ sin kt + (1 − cos kt) tan k ] cos kx − sin kx } f (u (t)) dt, (14) 

112 

u 

′′′ ( x ) = −( cos kx + sin kx tan k ) 

∫ x 

0 

(1 − cos kt ) f (u (t )) dt 

−
∫ 1 

x 
{ [ sin kt + (1 − cos kt) tan k ] sin kx + cos kx } f (u (t )) dt , (15) 

and, thus, the following lemma holds true. 113 

Lemma 2.1. Let u ( x ) be the solution to the nonlinear integral Eq. (11) , then the following conditions hold for f ( u ) ≥ 0, k ∈ [0, 114 

π /2) and x ∈ [0, 1]: 115 

u ( x ) ≥ 0 , u 

′ ( x ) ≥ 0 , u 

′′ ( x ) ≥ 0 , u 

′′′ ( x ) ≤ 0 . (16) 

Proof. Conditions ( 16 ) follow from Eqs. (11) , ( 13 )–( 15 ), respectively, being 116 

[ sin kt + (1 − cos kt) tan k ] sin kx + cos kx 

≥ [ sin kx + (1 − cos kx ) tan kx ] sin kx + cos kx = 

1 

cos kx 
≥ 1 , (17) 

117 

[ sin kt + (1 − cos kt) tan k ] cos kx − sin kx 

≥ [ sin kt + (1 − cos kt ) tan kt ] cos kx − sin kx = ( tan kt − tan kx ) cos kx ≥ 0 , (18) 

for t ∈ [ x , 1]. 118 

Therefore, the function u is positive, increasing and convex for compressive axial load. 119 
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3. A priori estimates on the beam deflection 120 

We prove here some bounds for the solution of the BVP ( 1 ) and ( 11 ) for 0 ≤ u ( x ) ≤ 1. 121 

Let us start by providing an upper bound for the solution u ( x ) to the problem ( 1 ) and ( 4 ). 122 

Lemma 3.1. Let u ( x ) be the solution to the BVP ( 1 ) and ( 4 ), then 123 

u ( x ) ≤ u ( 1 ) b ( x ) , for x ∈ [ 0 , 1 ] , (19) 

where 124 

b ( x ) = 

1 

3 

[
6 x 2 − 4 x 3 + x 4 − 4 k 2 

18 − k 2 

(
3 x 2 − 5 x 3 + 2 x 4 

)]
. (20) 

Proof. Let us introduce the function 125 

h ( x ) = u ( 1 ) 

(
2 x 2 − 4 

3 

x 3 + 

1 

3 

x 4 
)

− k 2 

3 

u 

′ ( 1 ) 

(
1 

2 

x 2 − 5 

6 

x 3 + 

1 

3 

x 4 
)

− u ( x ) , (21) 

whose derivatives are 126 

h 

′ ( x ) = 4 u ( 1 ) (x − x 2 + 

1 

3 

x 3 ) − k 2 

3 

u 

′ ( 1 ) (x − 5 

2 

x 2 + 

4 

3 

x 3 ) − u 

′ ( x ) , 

h 

′′ ( x ) = 4 u ( 1 ) (1 − 2 x + x 2 ) − k 2 

3 

u 

′ ( 1 ) (1 − 5 x + 4 x 2 ) − u 

′′ ( x ) , 

h 

′′′ ( x ) = −8 u ( 1 ) (1 − x ) + 

k 2 

3 

u 

′ ( 1 ) (5 − 8 x ) − u 

′′′ ( x ) , 

h 

IV ( x ) = 8 

[
u ( 1 ) − k 2 

3 

u 

′ ( 1 ) 

]
− u 

IV ( x ) , 

h 

V ( x ) = −u 

V ( x ) = −df ( u ) 

du 

u 

′ ( x ) + k 2 u 

′′′ ( x ) ≤ 0 . (22) 

The latter inequality follows from ( 16 ), ( 1 ) and ( 2 ) for u ( x ) ≤ 1, being 127 

df (u ) 

du 

= 

γ β

(1 − u ) 
2 

+ 

2 β

(1 − u ) 
3 

+ 

3 αW 

(1 − u ) 
4 

+ 

4 αC 

(1 − u ) 
5 

≥ 0 . (23) 

Therefore, the function h ( x ) satisfies the following conditions 128 

h ( 0 ) = 0 , h ( 1 ) = 0 , h 

′ ( 0 ) = 0 , h 

′′ ( 1 ) = 0 , h 

′′′ ( 1 ) = 0 . (24) 

By using the mean value theorem, continuity of the function h ( x ) and conditions ( 24 ) 1,2 imply that there exists x 1 ∈ [0, 129 

1] such that h ′ ( x 1 ) = 0. Then, by using conditions ( 24 ) 3,4 there exists x 2 ∈ [0, x 1 ] such that h ′ ′ ( x 2 ) = 0 and also x 3 ∈ [ x 2 , 1] 130 

such that h ′ ′ ′ ( x 3 ) = 0. Moreover, h ′ ′ ′ ( x ) is concave being h V ( x ) ≤ 0. It follows that h ′ ′ ( x ) ≤ 0 for x ∈ [ x 2 , 1] and h ′ ′ ( x ) ≥ 0 for x 131 

∈ [0, x 2 ], and thus h ′ ( x ) ≥ 0 for x ∈ [0, x 1 ] and h ′ ( x ) ≤ 0 for x ∈ [ x 1 , 1]. Since h (0 ) = h (1 ) = 0, then it necessarily follows that 132 

h ( x ) ≥ 0 for x ∈ [0, 1], namely 133 

u ( x ) ≤ u ( 1 ) (2 x 2 − 4 

3 

x 3 + 

1 

3 

x 4 ) − k 2 

3 

u 

′ ( 1 ) 

(
1 

2 

x 2 − 5 

6 

x 3 + 

1 

3 

x 4 
)
, for x ∈ [ 0 , 1 ] (25) 

Moreover, from the conditions h ′ (1 ) ≤ 0 and h ′ ′ (0 ) ≥ 0, by using ( 22 ) one obtains 134 

h 

′ ( 1 ) = 

4 

3 

u ( 1 ) −
(

1 − k 2 

18 

)
u 

′ ( 1 ) ≤ 0 , h 

′′ (0) = 4 u ( 1 ) − k 2 

3 

u 

′ ( 1 ) − u 

′′ ( 0 ) ≥ 0 , (26) 

and thus 135 

u 

′ ( 1 ) ≥ 24 

18 − k 2 
u ( 1 ) , u 

′′ ( 0 ) ≤ 4 u ( 1 ) − k 2 

3 

u 

′ ( 1 ) ≤ 12 

6 − k 2 

18 − k 2 
u ( 1 ) . (27) 

The introduction of ( 27 ) 1 in the inequality ( 25 ), considering that the term multiplying u ′ (1) is non negative for x ∈ [0, 136 

1], then yields the upper bound ( 19 ). 137 

From conditions ( 16 ) 4 and ( 27 ) 2 it follows that 138 

u 

′′ ( x ) ≤ u 

′′ ( 0 ) ≤ 12 

6 − k 2 

18 − k 2 
u ( 1 ) , (28) 

and thus from ( 1 ) and ( 28 ) one obtains the following lower bound for u IV 139 

u 

IV ( x ) ≥ β∗ − 12 k 2 
6 − k 2 

18 − k 2 
u ( 1 ) , (29) 
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being f ( u ) ≥β∗, where 140 

β∗ = β(1 + γ ) + αW 

+ αC . (30) 

The result ( 19 ) holds also in the absence of the compressive axial load, namely for k = 0, as stated in the next corollary 141 

that follows from Lemma 3.1 . 142 

Corollary 3.1. Let u 0 ( x ) be the solution to the BVP ( 1 ) and ( 4 ) for k = 0 then 143 

u 0 ( x ) ≤ u ( 1 ) 

(
2 x 2 − 4 

3 

x 3 + 

1 

3 

x 4 
)
. (31) 

The same result was obtained in [35] and it has been recovered recently in [21] as a special case for an elastically 144 

constrained cantilever under electrostatic actuation. 145 

In the following we derive a lower bound for the solution u ( x ) to the BVP ( 1 ) and ( 4 ). 146 

Lemma 3.2. Let u ( x ) be the solution to the BVP ( 1 ) and ( 4 ), then 147 

u ( x ) ≥ u ( 1 ) a 1 ( x ) + β∗a 2 ( x ) for x ∈ [ 0 , 1 ] , (32) 

where 148 

a 1 ( x ) = 

1 

2 

(
3 x 2 − x 3 

)
−

k 2 
(
6 − k 2 

)
4 

(
18 − k 2 

)(
3 x 2 − 5 x 3 + 2 x 4 

)
, a 2 ( x ) = 

1 

48 

(
3 x 2 − 5 x 3 + 2 x 4 

)
, (33) 

Proof. Let us introduce the following function 149 

g ( x ) = u ( x ) − u ( 1 ) 

2 

−
(
3 x 2 − x 3 

)
−

[
β∗

48 

− k 2 (6 − k 2 ) 

4 (18 − k 2 ) 
u (1) 

](
3 x 2 − 5 x 3 + 2 x 4 

)
, (34) 

whose derivatives are 150 

g ′ ( x ) = u 

′ ( x ) − 3 

2 

u ( 1 ) 
(
2 x − x 2 

)
−

[
β∗

48 

− k 2 (6 − k 2 ) 

4 (18 − k 2 ) 
u (1) 

] (
6 x − 15 x 2 + 8 x 3 

)
, 

g ′′ ( x ) = u 

′′ ( x ) − 3 u ( 1 ) (1 − x ) −
[
β∗

8 

− 3 k 2 (6 − k 2 ) 

2 (18 − k 2 ) 
u (1) 

](
1 − 5 x + 4 x 2 

)
, 

g ′′′ ( x ) = u 

′′′ ( x ) + 3 u ( 1 ) + 

[
β∗

8 

− 3 k 2 (6 − k 2 ) 

2 (18 − k 2 ) 
u (1) 

]
(5 − 8 x ) , 

g IV ( x ) = u 

IV ( x ) − β∗ + 12 k 2 
6 − k 2 

18 − k 2 
u (1) ≥ 0 , (35) 

where the latter inequality follows from relation ( 29 ). Therefore, the function g ( x ) satisfies the following conditions 151 

g ( 0 ) = 0 , g ( 1 ) = 0 , g ′ ( 0 ) = 0 , g ′′ ( 1 ) = 0 . (36) 

By using the mean value theorem, continuity of g ( x ) together with conditions ( 36 ) 1,2 imply that there exists x 1 ∈ [0, 1] 152 

such that g ′ ( x 1 ) = 0. Moreover, by using conditions ( 36 ) 3,4 there exists x 2 ∈ [0, x 1 ] such that g ′ ′ ( x 2 ) = 0 and also x 3 ∈ [ x 2 , 1] 153 

such that g ′ ′ ′ ( x 3 ) = 0. Condition ( 35 ) 4 implies that g ′ ′ ( x ) is convex. It follows that g ′ ′ ( x ) ≤ 0 for x ∈ [ x 2 , 1] and g ′ ′ ( x ) ≥ 0 for x 154 

∈ [0, x 2 ], and thus g ′ ( x ) ≥ 0 for x ∈ [0, x 1 ] and g ′ ( x ) ≤ 0 for x ∈ [ x 1 , 1]. Since g (0 ) = g (1 ) = 0, then it necessarily follows that 155 

g ( x ) ≥ 0 for x ∈ [0, 1], namely 156 

u ( x ) ≥ u ( 1 ) 

2 

(
3 x 2 − x 3 

)
+ 

[
β∗

48 

− k 2 (6 − k 2 ) 

4 (18 − k 2 ) 
u (1) 

](
3 x 2 − 5 x 3 + 2 x 4 

)
, for x ∈ [ 0 , 1 ] (37) 

so that the lower bound ( 32 ) is attained. 157 

The result ( 32 ) holds also in the absence of the compressive axial load, namely for k = 0, as stated in the next corollary, 158 

which follows straight from Lemma 3.2 . 159 

Corollary 3.2. Let u 0 ( x ) be the solution to the BVP ( 1 ) and ( 4 ) for k = 0, then 160 

u 0 ( x ) ≥ u ( 1 ) 

2 

(
3 x 2 − x 3 

)
+ 

β∗
48 

(
3 x 2 − 5 x 3 + 2 x 4 

)
. (38) 

4. Lower and upper bounds on the pull-in parameters 161 

In the following we denote with r = u (1) the normalized deflection of the cantilever tip. By using ( 12 ) and the estimates 162 

( 19 ), ( 32 ) and ( 27 ) 1 on the solution of the BVP ( 1 ) and ( 4 ), the following lower and upper bounds can be derived for the 163 

pull-in parameters βPI and r PI . 164 
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4.1. Lower bounds on the pull-in parameters 165 

By using ( 19 ) and ( 20 ), from ( 12 ) it follows 166 

β ≥ r k 3 − F (r) 

L (r) 
, (39) 

where the following functions can be calculated numerically 167 

L ( r ) = 

∫ 1 

0 

sin kt − kt + (1 − cos kt) tan k 

1 − r b(t) 

(
γ + 

1 

1 − r b(t) 

)
dt , 

F ( r ) = 

∫ 1 

0 

sin kt − kt + (1 − cos kt) tan k 

[1 − r b(t)] 
3 

(
αW 

+ 

αC 

1 − r b(t) 

)
dt. (40) 

Inequality ( 39 ) defines a lower bound to the exact relation between the normalized voltage β and the normalized tip 168 

deflection r provided by the solution of the BVP ( 1 ) and ( 4 ). Therefore, the maximum value of the left hand side of ( 39 ) 169 

yields the lower bounds β l and r l for the pull-in parameters, such that βPI ≥β l and r PI ≥ r l . Therefore, the lower bounds for 170 

the pull-in parameters are given by the following equations obtained from the stationary condition of the left hand side of 171 

( 39 ) 172 

βl L ( r l ) + F ( r l ) = r l k 
3 , βl L 

′ ( r l ) + F ′ ( r l ) = k 3 , (41) 

where also the following functions can be calculated numerically 173 

L ′ ( r ) = 

∫ 1 

0 

sin kt − kt + (1 − cos kt) tan k 

[1 − r b(t)] 
2 

(
γ + 

2 

1 − r b(t) 

)
b(t ) dt , 

F ′ ( r ) = 

∫ 1 

0 

sin kt − kt + (1 − cos kt) tan k 

[1 − r b(t)] 
4 

(
3 αW 

+ 

4 αC 

1 − r b(t) 

)
b(t ) dt . (42) 

4.2. Upper bounds on the pull-in parameters 174 

By using ( 32 ) and ( 33 ), from ( 12 ) it follows 175 

r ≥ [ β K(r, β) + H(r, β)] / k 3 , (43) 

where 176 

K(r, β) = 

∫ 1 

0 

sin kt − kt + (1 − cos kt) tan k 

1 − r a 1 (t) − β∗a 2 (t) 

(
γ + 

1 

1 − r a 1 (t) − β∗a 2 (t) 

)
dt, 

H(r, β) = 

∫ 1 

0 

sin kt − kt + (1 − cos kt) tan k 

[1 − r a 1 (t) − β∗a 2 (t)] 
3 

(
αW 

+ 

αC 

1 − r a 1 (t) − β∗a 2 (t) 

)
dt, (44) 

where the parameter β∗ has been defined in ( 30 ). 177 

The inequality ( 43 ) defines an upper bound to the exact relation between the parameters β and r . Indeed, by equating 178 

both sides of condition ( 43 ) we obtain an implicit relation for β as a function of r that is greater than the exact relation 179 

provided by the solution of the BVP ( 1 ) and ( 4 ). The maximum value of the implicit function β( r ) obtained from ( 43 ) by 180 

using the stationary condition 181 

dβ

dr 
= 0 , (45) 

then yields the upper bounds βu and r u for the pull-in parameters, such that βPI ≤βu and r PI ≤ r u . Therefore, the upper 182 

bounds for the pull-in parameters are given by the following conditions 183 

βu K( r u , βu ) + H( r u , βu ) = k 3 r u , βu K 

′ ( r u , βu ) + H 

′ ( r u , βu ) = k 3 , (46) 

where 184 

K 

′ ( r, β) = 

∫ 1 

0 

sin kt − kt + (1 − cos kt) tan k 

[ 1 − r a 1 ( t ) − β∗a 2 ( t ) ] 
2 

(
γ + 

2 

1 − r a 1 ( t ) − β∗a 2 ( t ) 

)
a 1 ( t ) dt, 

H 

′ (r, β) = 

∫ 1 

0 

sin kt − kt + (1 − cos kt) tan k 

[1 − r a 1 (t) − β∗a 2 (t)] 
4 

(
3 αW 

+ 

4 αC 

1 − r a 1 (t) − β∗a 2 (t) 

)
a 1 (t ) dt . (47) 
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Table 1 

Lower and upper bounds for the pull-in parameters of a micro/nanocantilever subjected to a compressive axial load with k = 0.5, for several 

values of the vdW and Casimir parameters αW , αC , and geometric ratio d / w . 

k = 0.5 d / w = 0 d / w = 1 d / w = 2 

αW αC r l β l r u βu r l β l r u βu r l β l r u βu 

0.0 0.0 0.4433 1.5112 0.4520 1.5374 0.4873 1.0564 0.4960 1.0736 0.5139 0.8181 0.5226 0.8309 

0.0 0.2 0.3771 1.0939 0.3853 1.1194 0.3978 0.7437 0.4060 0.7602 0.4086 0.5650 0.4168 0.5772 

0.0 0.4 0.3347 0.7260 0.3428 0.7513 0.3461 0.4858 0.3543 0.5022 0.3518 0.3655 0.3601 0.3777 

0.0 0.6 0.3022 0.3869 0.3103 0.4121 0.3075 0.2559 0.3159 0.2723 0.3102 0.1913 0.3186 0.2035 

0.0 0.8 0.2753 0.0679 0.2835 0.0930 0.2762 0.0445 0.2846 0.0609 0.2766 0.0331 0.2852 0.0453 

0.0 1.0 0.2522 −0.236 0.2604 −0.211 0.2494 −0.153 0.2580 −0.137 0.2481 −0.114 0.2568 −0.101 

0.0 0.0 0.4433 1.5112 0.4520 1.5374 0.4873 1.0564 0.4960 1.0736 0.5139 0.8181 0.5226 0.8309 

0.2 0.0 0.4168 1.2164 0.4255 1.2426 0.4468 0.8400 0.4556 0.8572 0.4635 0.6445 0.4723 0.6573 

0.4 0.0 0.3945 0.9303 0.4032 0.9567 0.4150 0.6363 0.4238 0.6537 0.4259 0.4 84 9 0.4348 0.4979 

0.6 0.0 0.3751 0.6513 0.3838 0.6777 0.3882 0.4419 0.3971 0.4594 0.3950 0.3350 0.4041 0.3481 

0.8 0.0 0.3577 0.3781 0.3664 0.4046 0.3648 0.2547 0.3738 0.2724 0.3684 0.1923 0.3776 0.2055 

1.0 0.0 0.3419 0.1098 0.3507 0.1364 0.3438 0.0735 0.3530 0.0913 0.3448 0.0553 0.3542 0.0686 

Table 2 

Lower and upper bounds for the pull-in parameters of a micro/nanocantilever subjected to a compressive axial load with k = 1, for several values 

of the vdW and Casimir parameters αW , αC , and geometric ratio d / w . 

k = 1 d / w = 0 d / w = 1 d / w = 2 

αW αC r l β l r u βu r l β l r u βu r l β l r u βu 

0.0 0.0 0.4460 1.0217 0.4545 1.0424 0.4901 0.7141 0.4987 0.7278 0.5167 0.5529 0.5255 0.5632 

0.0 0.2 0.3573 0.6174 0.3654 0.6375 0.3728 0.4161 0.3812 0.4293 0.3808 0.3145 0.3892 0.3243 

0.0 0.4 0.3054 0.2711 0.3135 0.2907 0.3109 0.1793 0.3194 0.1922 0.3137 0.1341 0.3223 0.1437 

0.0 0.6 0.2666 −0.045 0.2748 −0.025 0.2658 −0.029 0.2744 −0.017 0.2654 −0.022 0.2742 −0.012 

0.0 0.8 0.2351 −0.340 0.2433 −0.321 0.2294 −0.220 0.2381 −0.207 0.2267 −0.162 0.2356 −0.153 

0.0 1.0 0.2082 −0.620 0.2165 −0.601 0.1986 −0.397 0.2073 −0.385 0.1940 −0.292 0.2030 −0.283 

0.0 0.0 0.4460 1.0217 0.4545 1.0424 0.4901 0.7141 0.4987 0.7278 0.5167 0.5529 0.5255 0.5632 

0.2 0.0 0.4082 0.7291 0.4168 0.7499 0.4333 0.5009 0.4421 0.5148 0.4470 0.3830 0.4559 0.3933 

0.4 0.0 0.3782 0.4482 0.3868 0.4690 0.3916 0.3041 0.4006 0.3180 0.3986 0.2306 0.4078 0.2410 

0.6 0.0 0.3528 0.1761 0.3616 0.1969 0.3576 0.1183 0.3668 0.1323 0.3600 0.0891 0.3694 0.0995 

0.8 0.0 0.3307 −0.089 0.3395 −0.068 0.3284 −0.059 0.3378 −0.046 0.3273 −0.044 0.3370 −0.034 

1.0 0.0 0.3108 −0.349 0.3197 −0.328 0.3027 −0.230 0.3122 −0.217 0.2987 −0.172 0.3085 −0.162 

Table 3 

Lower and upper bounds for the pull-in parameters of a micro/nanocantilever subjected to a compressive axial load with k = 1.2, for several 

values of the vdW and Casimir parameters αW , αC , and geometric ratio d / w . 

k = 1.2 d / w = 0 d / w = 1 d / w = 2 

αW αC r l β l r u βu r l β l r u βu r l β l r u βu 

0.0 0.0 0.4476 0.7249 0.4556 0.7399 0.4918 0.5066 0.4999 0.5166 0.5185 0.3922 0.5267 0.3998 

0.0 0.2 0.3350 0.3342 0.3427 0.3485 0.3458 0.2233 0.3538 0.2327 0.3512 0.1679 0.3593 0.1749 

0.0 0.4 0.2741 0.0079 0.2819 0.0217 0.2743 0.0052 0.2825 0.0142 0.2744 0.0038 0.2827 0.0106 

0.0 0.6 0.2296 −0.287 0.2374 −0.274 0.2230 −0.185 0.2312 −0.176 0.2199 −0.136 0.2283 −0.130 

0.0 0.8 0.1937 −0.561 0.2016 −0.549 0.1819 −0.359 0.1902 −0.350 0.1764 −0.262 0.1849 −0.257 

0.0 1.0 0.1633 −0.821 0.1712 −0.809 0.1472 −0.518 0.1555 −0.511 0.1397 −0.378 0.1483 −0.373 

0.0 0.0 0.4476 0.7249 0.4556 0.7399 0.4918 0.5066 0.4999 0.5166 0.5185 0.3922 0.5267 0.3998 

0.2 0.0 0.3967 0.4349 0.4048 0.4499 0.4165 0.2971 0.4249 0.3071 0.4271 0.2263 0.4357 0.2338 

0.4 0.0 0.3586 0.1597 0.3668 0.1746 0.3647 0.1074 0.3734 0.1174 0.3679 0.0810 0.3768 0.0885 

0.6 0.0 0.3273 −0.105 0.3356 −0.091 0.3236 −0.070 0.3325 −0.060 0.3218 −0.052 0.3310 −0.045 

0.8 0.0 0.3004 −0.363 0.3088 −0.348 0.2889 −0.239 0.2980 −0.229 0.2833 −0.178 0.2927 −0.170 

1.0 0.0 0.2766 −0.613 0.2850 −0.599 0.2585 −0.400 0.2677 −0.391 0.2499 −0.297 0.2594 −0.290 

5. Results 185 

The lower and upper bounds predicted by the present analytical approach for the normalized pull-in voltage β l and 186 

βu and for the normalized pull-in deflection r u and r l have been reported in Tables 1–3 for some particular set of the 187 

parameters d / w , αW 

and αC and for specific values of the axial load parameter k defined in ( 5 ) ranging between 0 and 1.5. 188 

It can be observed that the results for vanishing compressive axial load, namely for k = 0, recover those found in [21] , thus 189 

validating the present approach. Moreover, if the surface intermolecular parameters are greater than their critical values 190 
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Fig. 2. Variations of lower and upper bounds for the pull-in voltage β l and βu (a) and tip deflection r l and r u (b) with the axial load parameter k for a 

microcantilever, for negligible fringing fields and intermolecular surface forces. 

Fig. 3. Numerical results for the tip displacement u tip as a function of the electrostatic loading parameters β provided by the shooting method, for k = 1 

and for some values of the geometric ratio d / w. The lower and upper bounds of the pull-in parameters provided by the present analytical approach are 

denoted by small circles and small points, respectively. 

that cause pull-in instability in the absence of electrostatic actuation and axial load, then a repulsive electrostatic force 191 

characterized by negative values of β is required to prevent pull-in instability and the occurring of stiction. The results 192 

obtained for αW 

= αC = 0, namely by neglecting the contribution of Casimir or vdW attractions, are significant for MEMS, 193 

which are not affected by these forces. 194 

The effects of the axial load parameter k on the lower and upper bounds for the pull-in parameters βPI and r PI are shown 195 

in Fig. 2 for vanishing small fringing and intermolecular surface forces ( d/ w = αC = αW 

= 0). These results clearly display that 196 

the lower and upper analytical bounds are very close each other for k ranging between 0 and π /2, and thus they provide 197 

very accurate estimates of the actual pull-in parameters βPI and r PI . Moreover, the pull-in voltage becomes null as the axial 198 

load parameter tends to its limit value k = π /2, corresponding to the classical elastic buckling load of a EB cantilever beam. 199 

The analytical bounds have been validated by comparison with the numerical solution of the nonlinear BVP ( 1 ) and ( 4 ) 200 

calculated by using the command NDSolve of the Mathematica software (version number 8), which exploits the shooting 201 

method for the numerical integration of two point BVP [36] . The variation of the tip deflection of the nanocantilever r = u (1) 202 

with the electrostatic loading parameter β obtained from the Mathematica software are reported in Fig. 3 for the same value 203 

of the axial load parameter, k = 1, and for different values of the geometric ratio d / w. The largest pull-in voltage is attained 204 

for d / w = 0, namely for a vanishing small fringing field occurring when the separation distance d is much smaller then the 205 

beam width w . If the effects of fringing fields become more relevant, as it occurs for large values of the ratio d / w , then the 206 

pull-in voltage βPI decreases, whereas the pull-in tip deflection r PI increases. In the following figures, we denote with small 207 
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Fig. 4. Numerical results for the tip displacement u tip as a function of the electrostatic loading parameters β provided by the shooting method, for some 

values k ranging between 0 and 1.5, for negligible intermolecular forces ( αW = αC = 0) and for geometric ratios d / w = 0 ( a ) and d / w = 1 ( b ) . The lower and 

upper bounds of the pull-in parameters provided by the present analytical approach are denoted by small circles and small points, respectively. 

Fig. 5. Numerical results for the tip displacement u tip as a function of the electrostatic loading parameters β provided by the shooting method, for some 

values k ranging between 0 and 1.5, for the geometric ratios d / w = 1, for vdW parameters αW = 0.2 (a) and for Casimir parameters αC = 0.2 (b). The lower 

and upper bounds of the pull-in parameters provided by the present analytical approach are denoted by small circles and small points, respectively. 

circles and small points the lower and upper bounds for the pull-in parameters, respectively. It can be observed that the 208 

exact pull-in parameters, namely the maximum point attained by the numerical curves plotted in Fig. 3 , fall between the 209 

lower and upper bounds. 210 

The variations of the deflection r of the cantilever tip with the electrostatic loading parameter β obtained from the 211 

Mathematica software are plotted in Figs. 4 and 5 for some specific set of the parameters d / w , αW 

and αC and for a range 212 

of values of the axial load parameter k between 0 and 1.5. These results show that the combined effects of fringing effect, 213 

intermolecular surface forces and compressive axial load significantly reduce the pull-in voltage. In Fig. 4 , no noticeable 214 

effect of the axial load can be detected on the pull-in deflection, which is almost independent of k in the absence of inter- 215 

molecular surface forces. A moderate reduction for the pull-in deflection as the axial load parameter k is increased is instead 216 

observed in Fig. 5 , due to the combined effects of the axial load and intermolecular forces. Note that the lower bounds for 217 

β and r almost coincide with the exact pull-in parameters predicted by numerical investigation. Moreover, Fig. 5 shows that 218 

the intermolecular surface forces cause a deflection of the nanocantilever also in the absence of electric voltage, namely for 219 

β = 0. 220 

The variations of the upper and lower bounds βu and β l with αW 

and αC are plotted in Fig. 6 for the range of values 221 

of the axial load parameter k . This plot shows that the compressive axial load and the intermolecular surface forces have 222 

similar effects on the electrostatic pull-in parameter, consisting in a significant reduction of the pull-in voltage. It can be 223 

observed that the analytical estimates are very close and thus accurate for the full ranges of variation of the axial load 224 

parameter and intermolecular surface forces. 225 

The variations of the tip displacement u tip with the vdW and Casimir parameters, αW 

and αC , provided by the numerical 226 

integration procedure implemented in the Mathematica software are presented in Figs. 7 a,b for vanishing electric actuation 227 

( β = 0) and for several values of the axial load parameter k . These plots reveal that pull-in instability may occur even in 228 

the absence of electric voltage if the vdW or Casimir parameters exceed their maximum value αW0 or αC0 . Moreover they 229 

show that an increase in the compressive axial load reduces the limit values of the intermolecular surface forces, but has 230 
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Fig. 6. Effects of vdW (a) and Casimir (b) attractions on the lower and upper analytical bounds for the pull-in voltage, for a range of values of k between 

0 and 1.5. 

Fig. 7. Numerical results for the tip displacement u tip as a function of the vdW (a) and Casimir (b) parameters αW and αC in the absence of electrostatic 

actuation ( β = 0) provided by the shooting method for some values k ranging between 0 and 1.5. The lower and upper bounds of the critical vdW and 

Casimir parameters provided by the analytical approach are denoted by small circles and small points, respectively. 

Table 4 

Lower and upper bounds for the critical vdW and Casimir parameters αW , αC , and corre- 

sponding critical tip deflections r W and r C . 

k αWl r Wl αWu r Wu αCl r Cl αCu r Cu 

0.0 1.1967 0.3350 1.2171 0.3423 0.9326 0.2694 0.9492 0.2756 

0.5 1.0828 0.3357 1.1030 0.3430 0.8439 0.2700 0.8602 0.2762 

1.0 0.7323 0.3379 0.7480 0.3449 0.5708 0.2717 0.5834 0.2777 

1.2 0.5197 0.3392 0.5310 0.3458 0.4051 0.2728 0.4141 0.2784 

1.5 0.1129 0.3418 0.1151 0.3466 0.0881 0.2750 0.0898 0.2790 

no significant influence on the pull-in deflection. In these plots, the lower and upper bounds for the parameter αW0 and 231 

αC0 causing the pull-in of the device and the corresponding pull-in deflection r W0 and r C0 are denoted by small circles and 232 

points. The analytical predictions for the lower and upper bounds agree very well with the numerical results obtained by 233 

the Mathematica software. 234 

Since the Casimir force is effective at larger distances than the vdW force, then pull-in instability caused by the effect of 235 

the Casimir force is found to occur at smaller tip deflections, and thus at larger separation distances between the electrodes, 236 

than the pull-in tip instability caused by the action of the vdW force. The lower and upper bounds for the critical vdW and 237 

Casimir parameters αW 0 and αC 0 for a compressed nanocantilever in the absence of electrostatic actuation can be found 238 

also in Table 4 for the considered range of values of the axial load parameter k . 239 

6. Conclusions 240 

A useful analytical method for accurately predicting the pull-in instability of a micro- or nanocantilever subjected to 241 

electrostatic actuation, compressive axial load and vdW or Casimir attractions has been proposed as an alternative to 242 

the numerical solution of the extremely nonlinear BVP. After the influence of the compressive axial load on the pull-in 243 
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instability has been examined, the accuracy of the analytical lower and upper bounds has been verified by comparison with 244 

the numerical solution of the nonlinear BVP obtained by using the shooting method procedure available in the Mathematica 245 

package. In particular, the lower bounds are found to be very close to the exact pull-in parameters. 246 

The provided estimates make the present study particularly significant for developing new practical applications in the 247 

field of MEMS and NEMS and make it crucial for the validation of many numerical investigations. We indeed recover that 248 

the interaction between the compressive axial load, intermolecular surface forces and fringing field can significantly reduce 249 

the pull-in voltage [10–12] . If the contribution of the compressive axial load is neglected then the pull-in voltage may 250 

be considerably overestimated and this inaccuracy may lead to unexpected damage during device operation. Therefore, the 251 

present investigation may be very helpful for assuring the safe operation of MEMS and NEMS current devices, since it allows 252 

avoiding any potential breakage by predicting accurate bounds for the critical pull-in characteristics. 253 
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