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Abstract The most direct scope of Fourier Transform (FT) is to give an alternative representation of 

a signal: from the original domain (time-domain or space-domain or whatever independent-

variable-domain) to the corresponding frequency domain. This subject has been dealt with in Part 

1 [1] In particular, the ‘Fourier-transformed’ signal, or simply ‘spectrum’ of the signal, has been 

exploited to calculate the lowest sampling frequency suitable to achieve a correct representation 

of the signal itself. In a section of the present contribution, it is illustrated how a process called 

windowing allows the application of FT to periodic sequences: proper preliminary truncation, i.e., 

isolation of a finite portion of the signal, is necessary. The meaning of the convolution and 

deconvolution operations is also discussed. It is shown how, through the convolution theorem, FT 

allows a very effective alternative path to the execution of these operations in the original 

domain. Examples are given of manipulation, through deconvolution, of experimentally measured 

signals that arise as a result of the ‘spontaneous’ convolution of two concurrent events, in order to 

isolate the responses ascribable to the single events. 
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Introduction 

In Part 1 of this series [1] we dealt with quite a diffused mathematic tool: Fourier Transform (FT or 

DFT for Discrete Fourier Transform, when applied to a numerical sequence of data, rather than to 

a function) [2-9]. DFT constitutes an algorithm of fundamental importance in the treatment of 

signals and data. However, in the common practice, the computational details, as well as the 

operations exploiting DFT, are most often ‘transparent to the user’, being directly executed by the 

software managing an instrument. As a result, the operator could ignore the way how the final 

instrumental response is obtained: DFT is at the basis of modern spectroscopic techniques like 

infrared (FT-IR), microwave and nuclear magnetic resonance (FT-NMR) spectroscopies, but also of 

faradic impedance, mass spectrometry (Ion Cyclotron Resonance Spectroscopy [6]), and other 

instrumental methods [6,7].  

It is evident that, in the case of FT-based instrumentation, little or even no expertise at all is 

requested to the user to obtain the output signal. However, aiming at the most suitable treatment 

of data and signals of different nature, a completely ‘passive’ approach does not always constitute 

the best choice. In Ref. [1] we dealt with more or less trivial examples of original signals that are 

transformed by means of FT into the corresponding spectra, leading to an equivalent 

representation in the frequency domain. It often happens that such a transformation into a 

spectrum is the best (or even the only) way to obtain useful information, i.e., to interpret the data 

collected in chemical terms. 

Furthermore, as to elaboration of signals or data sets, the execution of a number of 

operations on the relevant spectra results definitely more simple in comparison to the equivalent 

calculations executed directly on the original responses. This is the case of operations described in 

the present article, such as convolution and deconvolution. In particular, performing deconvolution 

of signals in the original domain may require long times and high computational loads, while, by 

using FT, this operation is much faster and easier to be accomplished. 

When manipulating signals, the term convolution is often used as a synonym of signal 

filtering, or digital signal filtering [2,3,5,9]. It is a branch of science that was born in the frame of 

electronics and is nowadays a very important issue in all experimental sciences. For chemists, the 

meaning of signal filtering is often restricted to the low-pass filtering operation, which means 

removal of the high frequency content of the signal. However, filtering can be also used to 

perform many other operations, ranging from the simplest ones, such as differentiation, to more 

complex elaborations. 
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On the one hand, convolution and deconvolution operations may be intentionally 

performed to achieve a variety of goals; on the other hand, they are also often ‘hidden’ within a 

signal that results from ‘mixing’ of different physical phenomena. In principle, whenever mixing 

occurs through convolution, deconvolution is the mathematical operation that may separate the 

individual contributions to the overall signal. It is evident that the analysis of the effects of the 

individual components may lead back to the identification of the characteristics of the 

corresponding individual sources. 

FT algorithm operates on a finite number of data, i.e., on finite sequences. When an infinite 

length signal is submitted to Fourier transformation, it must be therefore properly truncated, i.e., 

sectioned. However, FT implicitly ascribes periodic character to the signal that is analysed: the 

isolated segment is viewed as the period of a sequence, not necessarily coincident with that of the 

original signal, as depicted in Fig. 1. The procedures to properly truncate the whole original 

sequence (windowing) constitute therefore the beginning of the present contribution.  

In this respect, it is worth noticing that this Part 2 should be considered as the prosecution 

of Part 1 [1]. For this reason, arguments already discussed there will be considered as if they were 

treated here, in preceding pages. This also holds for the meaning of some symbols. 

 

Fig. 1 (a) A single period accounts for the whole periodic sequence; (b) a fraction of one single period does 
not. 
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Windowing 

In Ref. [1] we have dealt with a periodic signal of infinite length, as expressed by the 

function f(t) and by the equivalent sequence y(k); the corresponding fitting function g(t) and fitting 

sequence x(k) are defined. For short, whenever possible, y and x are used instead of y(k) and x(k), 

respectively, from here onwards.  

In order to consider a finite number of points that are representative of the whole signal, it 

is necessary to truncate it, i.e., to look at it through a window: windowing is necessary in order to 

deal with a finite length sequence, consisting of a finite number of points, N. 

Actually, the finite sequences which are most often encountered in chemistry, where the 

phenomena are most often of finite length, should be considered in the same way as the results of 

a proper truncation of periodic signals  

In the frame of FT, considering cosines and sines as the set of basis functions [1], Eq. (1) 

[Eq. (15) in Ref. [1]] expresses the periodic character of the result of the transformation (as 

anticipated, see Ref. [1] for the meaning of symbols): 

 

𝑥(𝑘) = ∑ [𝐴ℎcos
2πℎ𝑘

𝑁
+ 𝐵ℎsin

2πℎ𝑘

𝑁
]

𝑁/2
ℎ=0  (1) 

 

As it was discussed in Ref [1], to many purposes, such as to perform simple filtering 

operationsa, it is sufficient to consider the modulus of the spectrum of x, which is generally 

referred to as the magnitude spectrum: 

 

𝑀ℎ  =  √(𝐴ℎ
2 + 𝐵ℎ

2) (2) 

 

                                                           
a In the forthcoming discussion, we will be focused on the modulus of the frequencies contained in the spectrum, 
more than on their phase. To this aim, the use of the magnitude spectrum, as defined in Eq. (2), is therefore enough, 
since it accounts for the weight of each frequency in the spectrum. The phase spectrum describes instead the ‘delay’ 
in the original domain of each one of the h frequency components, which depends on the ratio between the 
corresponding Ah and Bh coefficients, and is defined as θh = artctan(Bh/Ah). By considering two different signals with 
the same magnitude spectrum but with different phase spectra, they will not appear identical in the time domain. 
Therefore, magnitude spectrum and phase spectrum are independent from each other, since they account for 
different aspects of the signal, and are both necessary to reconstruct the sequence through inverse Fourier Transform. 
This also holds whenever the frequencies are submitted to filtering operation, where the phase spectrum is 
untouched. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5 
 

As it was anticipated in the Introduction section, when dealing with a finite sequence, this 

is considered by DFT as the single period of a periodic sequence, repeated an infinite number of 

times. Fig. 2a reports the points obtained by sampling and truncating a cosine function to generate 

a (finite) sequence: the length of the window, i.e., of the truncation interval, is an integer multiple 

of the cosine period, so that the plot of the vector modulus vs. frequency only exhibits one 

component with amplitude different from 0 (Fig. 2b). On the basis of the spectrum in Fig. 2b,and 

of the corresponding plot of phase vs. frequency, the cosine periodic sequence in Fig. 2a is 

reconstructed. 

 

 

Fig. 2 In (a) and (c) two cosine sequences obtained by truncation with a boxcar (see Fig 3a); (e) cosine 
sequence obtained by truncation with a Hanning window (Fig. 3c). In (b), (d) and (e) the magnitude spectra 
obtained from (a), (b) and (c), respectively , are reported. 

 

In the windowing operation outlined in Fig. 2a the weight attributed to the points that are 

selected on the cosine function is either 1 (points within the window) or 0 (points outside the 

window), according to what accounted for by the so-called rectangular window, reported in Fig. 

3a. Since the truncation interval is a multiple of a period of the windowed cosine, the obtained 

spectrum (Fig. 2b) accounts for the original periodic function, which is correctly reconstructed.  
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Fig. 3 (a) Rectangular window and (b) relevant magnitude spectrum; (c) Hanning window and (d) relevant 
magnitude spectrum. 

 

On the other hand, the windowed interval in Fig. 2c, where the rectangular window in Fig. 

3a is once more used, is not an integer multiple of the cosine period. As a result, in Fig. 2d more or 

less high values are found for the amplitudes of any frequencies of the spectrum: spurious 

frequencies arise. Such an undesired effect is called spectral leakage: a periodic function different 

from a cosine is actually processed by the DFT operation. There is, in fact, a sharp discontinuity at 

the extremes of two adjacent periods: the spectrum computed by DFT should account for a 

periodic function in which similar sharp discontinuities are present. As a consequence, high 

frequencies should be part of the spectrum. The reconstructed signal exhibits spurious oscillations 

in the proximity of the discontinuity: they are ascribed to the so-called Gibbs phenomenon b. Gibbs 

phenomenon may be reduced by using a window  suitable to smooth the discontinuities at the 

beginning and end of the truncated sequence: such a window performs effective apodizationc. 

Reduction of the amplitudes of the spurious frequency components may be realised by properly 

weighting the points of the truncated sequence. Windows doing this most often represent 

preferable alternatives to the rectangular window in Fig. 3a; as an example, Fig. 2e shows a cosine 
                                                           
b The Gibbs phenomenon arises from the inherent difficulty in approximating a discontinuity by a finite number of 
sines and cosines. The example of a square wave is reported in the following. 
c Recalling the etymology of the word, the term is self-explanatory: removing the foot (from the Greek word podos – 
ποδός). 
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function truncated in the same way as in Fig. 1c, in which, however, each point of the resulting 

sequence is weighted by the Hanning window (see Fig. 3c): the leakage is strongly reduced. The 

resulting spectrum, reported in Fig. 2f, better accounts for frequencies that ‘do count’ in the 

description of the original signal, i.e., those closest to the only frequency present in Fig. 2b. Much 

lower values are instead assumed by spurious frequencies, with respect to Fig. 2d. As it will be 

shown in the following sections, this is strictly related to the shape of the spectra of the 

rectangular window and of the Hanning window, reported in Fig. 3b and in Fig 3d, respectively. 

Summarising, Fig. 3 shows two different windows through which to look at the original 

signal: a rough rectangular window (Fig. 3a), which has been invoked for truncation of the 

sequences in Fig. 2a and 2c, and a Hanning window (Fig. 3c). In Fig. 3b and in Fig. 3d the spectra 

corresponding to the two windows are shown. The presence of spurious oscillations, more evident 

in Fig. 3b than in Fig. 3d, constitutes a key point of the spectra of the window: the lower the 

amplitude of the oscillations, the lower the alteration of the windowed signal. 

The so-called rotate-translate procedure constitutes an alternative strategy to minimize 

leakage in the case of finite sequences [10]. The procedure is illustrated in Fig. 4.  

 

 

 

Fig. 4  Finite sequence with sharp discontinuity between the last and the first points (a); how the rotate-
translate procedure may reduce this discontinuity (b) and the consequent spectral leakage. 
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Convolution 

The analysis of the convolution operation is necessary to further evidence the potentialities 

of FT. 

As it was mentioned in the Introduction section, it often happens that a measured signal 

results from a peculiar ‘mixing’, rather than superimposition, of individual signals relative to 

different sources. In many cases, convolution accounts for the way how two ‘pure’ signals 

combine with each other to give the resulting signal; furthermore, convolution of two sequences 

may be intentionally performed to reach a variety of goals. In mathematic terms, convolution is a 

multistep operation, consisting of: 

 

 folding: reversing one of the two sequences to be convolved;  

 displacement: shifting of the reversed sequence along the other one, by integer values that 

constitute the index of the resulting convolution sequence y;  

 multiplication: point by point product of the values of the two sequences; 

 integration: calculation of the overlap area as the sum of the point by point products: the 

result of the sum constitutes the value of the convolution sequence y at that index 

 

Fig. 5 reports in graphical form these steps, through which convolution is realised.
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Fig. 5 Graphical representation of the steps involved in the convolution of two sequences p and x to give the sequence y. 
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The mathematic formulation of convolution of two sequences x and p is expressed by Eq. (3): 

 

y(k) = x(k)  p(k) =∑ [𝑝(𝑚) × 𝑥(𝑘 − 𝑚)]𝑀
𝑚=−𝑀  (3) 

 

where the symbol  stands for convolution operation, and where the number of points of the p(k) 

(p for short from here onwards) sequence is P = 2M+1; the number of points of the x sequence is 

Q, and the number of points of the resulting y sequence is equal to L = P+Q-1 (actually, y may be 

prolonged by zeroes left and right the L points).  

 

 

The convolution theorem 

We cited above that it is much more advantageous to perform some mathematic 

operations in the alternative domain of the frequencies, than in the original domain of the signal. 

In the case of the convolution operation, we take advantage of the convolution theorem, sketched 

in Fig. 6, which can be summarized as follows: the spectrum expressing convolution between two 

sequences can be obtained through the multiplication of the relevant spectra, frequency by 

frequency d.  

In detail, given two sequences x and p, the convolution theorem requires the following 

stepse: 

i) calculation on the relevant spectra: X(h)=FT[x(k)] and H(h)=FT[p(k)]; 

ii) multiplication of the two spectra term by term, i.e., frequency by frequency, to give the 

spectrum Y(h) = X(h) × H(h); 

iii) inverse transform of the spectrum Y(h): y (k)= FT-1[Y(h)]. 

 

                                                           
d Actually, this operation is most conveniently performed on the spectra represented in terms of complex numbers, 
rather than of sines and cosines. As in Part 1 of this series, in this paper we make use of sines and cosines to describe 
how FT works, but it must be recalled that this is equivalent to alternative representations, such as the one based on 
complex numbers. For the relationships existing among the different representations, the reader is referred to Ref. 
[3]. 
e Note again that, though we often refer only to magnitude spectra, both magnitude and phase spectra have to be 
used here (X, H, Y) and anywhere else, unless otherwise explicitly specified. 
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Fig. 6 Schematic representation of the convolution theorem. 

 

A graphical example of the application of the convolution theorem, involving two 

sequences, x and p, is reported in Fig. 7. 

 

  

Fig. 7 Graphical example of the convolution theorem. For the sake of simplicity, in this graphical 
exemplification only the magnitude spectra are reported. 
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Fig. 7 highlights the equivalence between the convolution of x and p in the original domain 

(upper portion of the figure), in agreement with the definition given in Eq. (3), and the convolution 

performed by exploiting the convolution theorem (lower portion of the figure), i.e., by multiplying 

frequency by frequency the spectrum of x, X(h), with the spectrum of p, H(h). 

According to the scheme in Fig. 6 and to the relevant discussion, Eq. (4) expresses the 

mathematic steps when applying the convolution theorem: 

 

y(k) = L  FT-1{FT[x(k)] × FT[p(k)]}(k) = x(k)  p(k) = p(k)  x(k) (4) 

 

where x and p are supposed to be equal to 0 outside Q and P points, respectively; y will be equal 

to 0 outside an interval consisting of L = P+Q-1 points. 

 

 

Digital Filters 

In Fig.7, the sequence x, once undergone to convolution with sequence p, typically a filter, 

leads to the sequence y. The spectrum of the filter, H(h) = FT[p], is called transfer function, which is 

nothing else than the filter spectrum: the multiplication of FT[x] by the transfer function leads to 

FT[y]. The key question is: what does convolution between two sequences mean in physical 

terms? After illustrating how to perform convolution, we get now to the point. 

Filtering is usually performed by exploiting the convolution theorem. The digital filtering 

issue [2,5,9] constitutes a topic of huge importance in the treatment of signals and data. The most 

widely used digital filters are low-pass filters or band-pass filters, which remove undesired 

frequencies from a signal. Low-pass filtering is a very profitable operation in the case of the 

presence of random noise. This may be identified with the random errors in many cases; random 

noise affects the signal introducing spurious high frequency components. Low-pass digital filters 

more flexibly substitute for the analog low-pass filters that are inserted in the circuits of analog 

instrumentation. 

Digital low-pass filtering is a very common operation in experimental frames. The 

components of interest, suitable to represent a signal or sequence of data with a certain shape, 

are most often accounted for by lower frequencies than those ascribed to random noise. It should 

be noticed that random noise is always present in data of chemical interest; differently structured 
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noises are met with in different frames, which are differently named (white noise, pink noise, red 

or Brownian noise, blue noise, etc.) based on the shape of the noise spectrum [11] 

Fig. 8 sketches a low-pass filtering operation, performed using a rectangular transfer 

function (this shape is often referred to as boxcar), with the consequent effect on a measured 

sequence affected by high frequency noise. 

 

 

Fig. 8 The original noisy signal is either directly convolved with a sinc function or, in equivalent way, 
through the convolution theorem, by means of a rough boxcar: the spectrum of the signal is multiplied by 
that of the sinc function (adapted from Ref [12]). 

 

Coherently with the convolution theorem (Fig. 6), the path followed to perform the low-

pass filtering operation is highlighted by the blue arrows in Fig. 8: the measured sequence in the 

original domain is transformed into the corresponding spectrum in the frequency domain. In turn, 

this latter one is multiplied, point by point, by the boxcar transfer function. From the resulting 

filtered spectrum, it is clear that the boxcar transfer function does not alter the frequency 

components of the spectrum till a value below which the information content necessary to 

reconstruct the ‘clean’ sequence is supposedly brought, and sets the coefficients of the higher 

frequencies to 0.  
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This is actually a very coarse filtering method that, however, is quite often used, even 

leading to satisfactory results when the components of the noise to filter off are well separated 

from the useful ones. In these cases, the cutoff frequency, i.e., the frequency value above which 

the magnitude values are set to 0, is located in a region of the spectrum where the magnitude 

values are equal or very close to 0, and lower frequencies constitute the whole ‘useful’ portion of 

the signal. 

In the dashed frame in the same Fig. 8 the inverse Fourier transform of the boxcar transfer 

function, namely the sinc filterf is included: an alternative path can be followed to obtain the same 

result, i.e., to obtain the same filtered sequence, which consists of convolving the measured 

sequence with a sinc filter. It gives reason of the fact that if the cutoff frequency of the boxcar 

transfer function is located where the magnitude values are different from zero, artefacts in the 

filtered sequence are introduced: the higher the magnitude values in proximity to the cutoff, the 

higher the intensities of the side lobes in the sinc filter. In this case, the frequencies are truncated 

too abruptly, and the side lobes present in the sinc filter induce oscillations in the filtered 

sequence, due to Gibbs phenomenon. 

Some examples of other simple transfer functions used to perform low-pass filtering are 

shown in Fig. 9, together with the resulting filtered sequences. The transfer functions in Fig. 9 are 

among the simplest ones in the big number of transfer functions that can be used for this purpose. 

                                                           
f The sinc function is commonly defined for x ≠ 0 by sinc(x) = sin(x)/x, while the value at x = 0 is defined as the limiting 
value sinc(0) = 1. The Fourier Transform of the sinc function is the rectangle function, i.e. the boxcar. 
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Fig. 9 Results obtained by low-pass filtering the measured sequence of Fig. 8 with different transfer 
functions (adapted from Ref [12]).  

 

In conclusion, the design of the most suitable low-pass filters or of the corresponding 

transfer functions aims at introducing as low as possible artefacts in the signal bearing useful 

information, as it would be recorded whether the noise were not present.  

As mentioned above, in addition to those performing low-pass filtering, filters have been 

designed to differently manipulate the input x sequence: differentiating filters, integrating filters, 

etc. have been designed and optimised for different possible cases. As an example, Fig. 10 

sketches the transfer function of a differentiating filter (Fig 10b), together with the result (Fig 10c) 

obtained by its application to a couple of peaks (Fig 10a). 
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Fig. 10 Example of the application to a couple of peaks (a) of the transfer function of a differentiating filter 
(b), together with the resulting differentiated sequence (c) (adapted from Ref. [12]). 

 

We are aware of the possibility that confusion arises from what written so far about 

windowing and filtering, since the description of both operations has induced to often shift from 

the original domain to the frequency domain and vice versa. In the attempt to make the matter as 

clear as possible, Scheme 1 gives an idea of the computational analogies and of the deep, not only 

conceptual, differences between the two operations, at the same time. Actually, both windowing 

and filtering make use of the convolution theorem; however, they are completely different 

operations, using similar tools in ‘reverse order’ we could say, and which are used to completely 

different purposes. 
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Scheme 1. What happens in windowing and in filtering operations. 

 

Maybe it is not redundant to schematically summarise the issue, even running the risk of 

repeating some concepts. Let’s recall that windowing is used to truncate a sequence before 

calculating the relevant spectrum, and that the windowed sequence is given by the point by point 

multiplication between the sequence x and the window p. Due to the reversible character of the 

FT operation, the reverse of what shown in Fig. 6 also holds: the convolution between the spectra 

of x and of p corresponds to the spectrum of the sequence obtained by multiplying point by point 

x and p. Therefore, the convolution theorem can be applied to windowing: the spectrum of the 

windowed sequence can be also obtained by convolving the sequence spectrum with the window 

spectrum. For this reason, knowing the shape of both the window and the window spectrum 

allows one to understand what happens both in the original and in the frequency domains. Making 

reference to Fig. 2 and Fig. 3, this accounts for the effect of the oscillations in Fig. 3b (spectrum of 

the rectangular window) on the corresponding spectrum of Fig. 2d. The side lobes of the window 

spectrum cause the arising of spurious frequencies in the spectrum of the windowed sequence, 

which in turn are responsible for the Gibbs phenomenon, i.e., for the spurious oscillations in the 

reconstructed sequence. 
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Smoothing filters 

Quite a common way to apply low-pass filtering consists in convolving the signal with a 

short length filter that ‘moves’ along the signal itself, piece by piece, one point at a time, filtering 

off the high frequencies: Moving Average (Smoothing) Filters. A sequence consisting of a given 

number of points of the signal is convolved with an equally long sequence constituting the filter. 

Such an operation is nothing else that the already discussed convolution between the sequences 

expressing subsequent pieces of the signal and the p sequence of the filter. However, the 

widespread use of similar operation and of the relevant denomination deserves a specific 

treatment. 

In this frame, a number of filters are widely diffused. Limiting once more the exam to low-

pass filters, also when following this ‘piecewise’ approach the most common filter is the very 

simple rectangular one. The way how the smoothing average low-pass filter operates is illustrated 

in Fig. 11. The moving filter constitutes itself the convolution sequence p. In practice, using a 

rectangular 5 point long p sequence, every y filtered point is obtained by re-calculation as the 

mean value of 5 points: a convolution of five points of the original sequence x with the filtering 

sequence p is performed. Assuming 0 index for the point of p coincident with the point of x to 

recalculate, p values are set to 1 for index assuming integer values from -2 to +2 and to 0 outside 

this interval. As noticed above, Eq. (3) expresses that points of the sequence x are convolved with 

the 5 point long p sequence constituting the filter, to give the y filtered sequence. Noteworthy, the 

number of points of p in the moving average operation is always odd, in a way that, for each k 

value, y(k) is the average value calculated including the same number of points both on the left 

and on the right of x(k). 
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Fig. 11 Scheme of the moving average filter.  

 

Since a convolution operation is performed, also in this case the convolution theorem can 

be applied. The transfer functions that result for different numbers of points constituting the 

rectangular convolution filter are reported in Fig. 12.  

 

Fig. 12 Magnitude spectra of transfer functions corresponding to the 3, 5, 11, 25, and 31 point-long 
rectangular convolution smoothing filters. 
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Looking at the plots in Fig. 12, the analysis of what the more or less explicit convolution 

operation actually implies, does not seem redundant with respect to the simple “mean of 3, 5, 11, 

25 or 31 subsequent points” operation. Since similar transfer functions are the spectra of 

rectangular filters, it is not surprising that they have the same shape as the window spectrum 

reported in Fig. 3b. Making reference to Scheme 1, however, in the windowing operation the 

spectrum of the window is convolved with the spectrum of the sequence, while in this case the 

spectrum of the window (transfer function) is multiplied by the spectrum of the sequence, exactly 

as it happens in filtering. In fact, moving average smoothing corresponds to low-pass filtering, as 

described in the lower part of Scheme 1. 

The plots in Fig.12 all represent transfer functions relative to low-pass filters, i.e., filters 

that smooth the signal, aimed at cutting off the highest frequencies. The smoothing operation 

involving an increasing number of points may ‘filter too much’, only considering lower and lower 

frequencies. In the limit, a p sequence that is as long as the signal only gives the mean value of the 

signal itself. On the opposite, a p sequence consisting of 1 point… does not filter anything, only 

‘copying’ the x sequence into the y one. 

In addition to moving average, many other smoothing filters have been proposed in the 

literature; they constitute a more sophisticated and often effective portion of the issue, and a 

detailed description of them is out of the aims of the present contribution. In an article published 

in 1964 in the journal Analytical Chemistry, a number of different, still widely used and quite 

effective filtering sequences were proposed by Abraham Savitzky and Marcel J. E. Golay, which are 

known as Savitsky-Golay filters [13]. This article is still one of the most widely cited contributions 

in the field of Analytical Chemistry [14]. 

A Gaussian curve also represents a possible convolution filter alternative to the rectangular 

one, suitable for smoothing purposes: Gaussian smoothing may be modulated through the 

standard deviation of the Gaussian curve [15]. Compared to the rectangular moving average filter, 

a Gaussian filter provides for gentler smoothing: the relevant spectrum gives reason of one of the 

most attractive features. Fig. 13 compares the transfer functions, in terms of magnitude, for a 

rectangular filter with width 5 and for a Gaussian filter with standard deviation of 3. Both filters 

attenuate the high frequencies more than the low ones, but the Gaussian filter transfer function 

shows no oscillations (absent or poor leakage): the Gaussian filter and the corresponding transfer 

function are a Gaussian and (half a) Gaussian, respectively. This implies that side lobes are absent 
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in the filter spectrum, which minimises the spurious oscillations arising in the filtered signal 

(limited evidence of Gibbs phenomenon) [15]. 

 

 

Fig. 13 Magnitude spectra of a rectangular filter with width 5 (a) and of a Gaussian filter with standard 
deviation of 3 (b). 

 

 

Spontaneous convolutions 

In addition to many cases of data treatment in which a convolution of two sequences is 

intentionally performed to whatever scope, convolution often occurs ‘spontaneously’. On the one 

hand, some signals arise by simple sum of two or more components and, on the other hand, other 

signals are the result of convolution. In other words, it may happen that the signal recorded 

actually results from a ‘blend’ of two or even more components. Each one of them accounts for 

one ‘phenomenon’ which, by convolution with each other, generates the measured signal.  

A typical example may be observed in UV-Vis spectroscopy, due to the effect of the finite 

width of the exit slit of a monochromator on the spectrum of a substance. Fig. 14a sketches what 

happens: the polychromatic light, by traversing the diffraction grid, is ‘decomposed’ in such a way 

that radiations at different wavelengths are addressed to different directions, according to 

different deflection angles.  
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Fig. 14 Decomposition of polychromatic light by a diffraction grid and selection of a narrow wavelength 
range by the monochromator slit (a); in (b) a simulated ‘ideal’ spectrum is depicted; by convolution with 
the sequence accounting for the monochromator slit in (c) the actual spectrum in (d) is recorded. 

 

The selection of the radiations entering the sample occurs through a slit: only the 

radiations along the directions that cross the slit reach the sample. For a given dispersion, the 

narrower the slit, the narrower the selected range of wavelengths. With such a system, true 

monochromatic radiation would be only obtained by an infinitesimal slit width, which would 

however lower to zero the intensity of the radiation. The compromise implies that a finite interval 

of wavelengths should be accepted to pass across the slit and to reach the sample. As a result, 

broadening of the absorption bands is observed. Fig. 14b reports the theoretic spectrum, recorded 

by an ideal selection of one single radiation wavelength at a time, and Fig. 14c reports the square 

function accounting for the slit. The broadened recorded spectrum, reported in Fig 14d, results 

from the convolution of the theoretic spectrum with the square function accounting for the slit. 
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Similarly to the finite width of a slit in a spectrometer, the width of the tip of the probe 

affects the resolution in an Atomic Force Microscopy (AFM) image. In fact, the shape of the tip is 

convolved with the true surface profile, leading to record a ‘smoothed’ image, as it is sketched in 

Fig. 15. 

 

 

 

Fig. 15 Schematic representation of the convolution of the tip shape with the surface profile in AFM.  

 

A further example of an analytical signal that can be expressed as the convolution of two 

functions is given by a chromatographic peak. Its shape, around which a huge literature amount 

has been written, may be expressed by convolution of the injection profile of the species with the 

impulse response of the chromatographic system; this represents the peak shape under the 

condition that a Dirac delta or impulse function, δ, [1, 2] represents the injection profile. 

In addition to the examples reported above, many other cases may be cited, in the fields of 

electrochemistry, NMR and X-ray spectroscopies, crystallography, seismology, image processing, 

and remote sensing.  

 

Deconvolution 

In the cases like those of the previous examples, it may be useful or even necessary to 

separate the individual contributions to the overall measured signal, in order to achieve UV-Vis 

spectra, AFM images or chromatographic peaks that are not ‘polluted’ by undesired effects. This 

allows the achievement of more correct information about the observed sample and about the 

physical laws determining the responses. Since, as above illustrated, ‘mixing’ comes out from a 

convolution operation, it may be fruitful to operate deconvolution, which is the process used to 

reverse the effects of convolution. 

Re-examining the example of the UV-Vis spectrum reported in the previous section, the 

ideal spectrum in Fig. 14b may be obtained by deconvolving the slit sequence in Fig. 14c from the 

recorded spectrum in Fig. 14d. The convolution operation does not present particular 
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computational difficulties, except for eventual computational load, even when performed in the 

original domain [see Eq.(3)]. Conversely, deconvolution requires the solution of a system of linear 

equations that becomes increasingly heavy at increasing the number of points constituting the 

sequences. On the other hand, in view of the convolution theorem reported in Eq (4), the 

following equations hold: 

 

p(k) = L  FT-1{FT[y(k)] / FT[x(k)]}(k) = y(k) -1 x(k) (5) 

 

and 

 

x(k) = L  FT-1{FT[y(k)] / FT[p(k)]}(k) = y(k) -1 p(k) (6) 

 

where -1 is the symbol used to indicate the deconvolution operation. 

A sophisticated example of the potentialities of convolution and deconvolution operation is 

found in an ‘exercise’ of Donald Smith [16]. In Fig. 16 two impulses located at the relevant E1/2,r ≈ 

E°, with intensity proportional to the concentration of the corresponding electroactive species 

(Fig. 16c), are convolved with the so-called ‘Nernstian broadening’, i.e., 1/cosh2(j/2), j representing 

the distance of the polarising potential from E1/2,r. (Fig. 16b) .g In turn, additional convolution with 

t-1/2 (indicated, not shown), accounting for linear semiinfinite diffusion, leads to the well-known 

linear sweep voltammetric response (Fig. 16a) [17].  The two impulses may be the starting point 

or, conversely, they may be the final goal, resulting from subsequent deconvolution of t-1/2 and of 

the plot in Fig. 16b from the (recorded or constructed) signal (Fig. 16a). 

 

 

                                                           
g E1/2,r, the so-called half wave potential, is a good experimental approximation of the standard potential in the case of 
a reversible charge transfer, differing from E° as far as the activity coefficient and the diffusion coefficients of the 
species of the redox couple involved are different from one another; cosh x = (ex+ e-x)/2. 
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Fig. 16 From impulses to ‘Nernstian broadened’ sequences and to linear sweep voltammetric response, by 
subsequent convolution operations. The opposite path is followed by the relevant deconvolutions (adapted 
from Ref. [16]). 

 

 

The result of deconvolution is fascinating, making an overall response coincide with 

impulses located at E1/2,r’, experimental approximation of E°’ of the two redox couples involved 

(Fig. 16c). The self-deconvolution operation, leading to impulses, is a potentially dangerous one, 

involving computational criticisms arising, for instance, by calculation of ratios between very small 

numbersh, by strong effect of noise or of rounding. 

                                                           
h For example, 8 × 10-15 / 2 × 10-18, where both values are not significant, leads to 4 × 103, which is a high value that 
could strongly affect the final result. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



26 
 

Refs. [18,19] report further possible manipulations of simulated and experimental, 

reversible or non reversible voltammetric responses, by convolution and deconvolution 

procedures.  

 

 

Further FT- based manipulations of signals  

It very often happens that signals obtained by whatever analytical technique, like spectroscopy, 

electrochemistry, chromatography or others, consist of peaks or bands that are severely 

overlapped to each other. Once the shape of the single peak or band is known, deconvolution by 

the function accounting for the proper shape could lead, in principle, to single impulses, similarly 

to the electrochemical case illustrated above. Fig. 17 shows an example in which a deconvolution  

algorithm based on FT is suitable to obtain very satisfactory resolution of overlapped peaks, as 

long as two impulses or very narrow peaks are obtained [20].  

 

 

 

  

Fig. 17 (a) simulated partially overlapped differential pulse polarographic signals; (b) noise is superimposed 
to (a); (c) experimental differential pulse polarographic response for a mixture of cadmium(II) and lead (II). 
The results of suitable deconvolutions are superimposed: impulses are obtained for (a) and (b), very narrow 
peaks for (c) (adapted from Ref. [20]). 

 

Another quite appealing operation is made possible by applying subsequent FT and FT-1 

operations: the trigonometric interpolation [21]. Due to the property of FT to bear a number of 

sine and cosine components equal to the number of points of the analysed sequence, a signal 

consisting of N points exhibits a spectrum consisting of the same number of points. Going back to 

the original domain by FT-1, a sequence with N points is reconstructed. However, the addition to 

the spectrum of a number of ‘fictitious’ frequency components with amplitude equal to 0 does not 
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alter it, since it does not modify the frequency content of the original signal. On the other hand, by 

inverse transform a signal consisting of a higher number of points is reconstructed. The extreme 

values of the interval of the original signal are not altered, nor the shape is changed, since no 

operation on the frequencies that describe the actual signal has been performed. The points in the 

reconstructed signal are closer to each other, allowing to more precisely identify the significant 

points of the signal itself, such as the location on the abscissa of relative maxima. Such an 

interpolation operation is also called zero-filling and is illustrated in Fig. 18.  

 

 

 

Fig. 18 A photodiode array only records 128 points around the Mn triplet located at 403 nm. The resolution 

of 100 m of the rough detector system is unsatisfactory; trigonometric interpolation is of notable help 
(adapted from Ref. 21).  

 

 

Additional complete, orthogonal sets of functions or sequences: further 

transforms methods 

In manipulating a set of data or signals, different aims may be sought, such as calculating 

the spectrum of a signal, filtering the signal, compacting big amount of data, etc. FT is the most 

known and widespread transform technique in the frame of the analysis of signals, using sines and 

cosines as the orthogonal basis set, or equivalent representations through magnitude and phase 

vectors, or through complex numbers. However, this does not always constitute the best choice to 

the purpose: the use of other transform algorithms can be more suitable.  

It has been already evidenced [1] that the transform techniques make use of a set of basis 

functions that are suitable to represent the original signal by a proper linear combination: making 
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best choice of the basis set is crucial. In this frame, it is well known that the intrinsically smooth 

cosine and sine functions are poorly suitable to account for sharp changes or discontinuities: the 

representation of a square wave is a typical example. Fig. 19 reports what is obtained by a higher 

and higher number of sine terms, which forces the Gibbs phenomenon to be less and less evident, 

becoming however effective only when quite a high number of terms is employed. 

 

 

 

Fig. 19 Left column: the individual components in the Fourier series, right column: the partial sum of terms 
in the Fourier series. 

 

It is evident that the more similar the shape of the set of basis functions to that of the 

signal, the lesser the number of terms necessary to achieve best fit of the signal itself. The reader 

is necessarily addressed to dedicated literature to find meaning and properties of additional basis 

sets, suitable to represent signals with peculiar trends through the relevant transform techniques 

[6,22,23]. Among these, which are called according to names of mathematicians developing the 

algorithms, let’s cite Rademacher, Walsh, Hadamard, Hilbert, Haar transforms. In particular, the 

Haar basis set constitutes the first, simplest wavelet, from which Wavelet Transform method 

opened an unprecedented wide field of powerful signal processing techniques [23]. 
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