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ABSTRACT 11 

The use of 2D Discrete Wavelet Transform in the Feature Enhancement phase of 12 

Multivariate Image Analysis is discussed and implemented in a comparative way with 13 

respect to previous publications. In the proposed approach, all the resulting sub-images 14 

obtained by Discrete Wavelet Transform decomposition are unfolded pixel-wise and 15 

mid-level datafused to a Feature Matrix which is used for the Feature Analysis phase. 16 

Congruent sub-images can be obtained either by reconstruction of each decomposition 17 

block to the original pixel dimensions, or by using the Stationary Wavelet Transform 18 

decomposition scheme. The main advantage is that all possible relationships among 19 

blocks, decomposition levels and channels are assessed in a single multivariate analysis 20 

step (Feature Analysis). This is particularly useful in a monitoring context where the 21 

aim is to build multivariate control charts based on images. Moreover, the approach can 22 

be versatile for contexts where several images are analysed at a time as well as in the 23 

multispectral images analysis.  24 
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Both a set of simple artificial images and a set of real images, representative of the on-25 

line quality monitoring context, will be used to highlight the details of the methodology 26 

and show how the wavelet transform allows extracting features which are informative of 27 

how strong the texture of the image is and in which direction it varies. 28 

 29 

Keywords: 2D Wavelet Transform, Multivariate Image Analysis, Multi resolution, 30 

Quality monitoring  31 
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1. INTRODUCTION 32 

The use of Multivariate Analysis to evaluate images dates to the mid-late 80’s, with the 33 

work of Esbensen and Geladi
1
 who introduced the use of Principal Component Analysis 34 

for the study of multi-channel images. Multivariate Image Analysis (MIA) has soon 35 

gained boost with the application in many contexts, typically those with images of such 36 

complexity that they could benefit of a multivariate analysis approach (e.g. remote 37 

sensing
2-4

 and medical imaging
5-9

). In the 90’s, the pioneering works of MacGregor and 38 

his group made the field of process industry accessible by the MIA approach
2, 10

. The 39 

possibility to acquire images for on-line process monitoring purposes and effectively 40 

analyse them represents a viable, PAT-like sensor to investigate process changes in time 41 

in an environment, the process line, where often the room for installing new 42 

“traditional” sensors is poor, not to mention the fact that often a single image can 43 

acquire simultaneously several different potential sources of variability. 44 

At present, several uses of MIA are reported in literature for different tasks
11-29

, all of 45 

which are characterised by being well described by the two main sources of information 46 

an image can carry. Textural variability, which can be gathered by analysing the “two” 47 

dimensions relationship structure of pixels and “spectral” properties variability, which is 48 

based on the “third” dimension, that is the channels acquired for each pixel. The latter 49 

aspect becomes the more relevant as the number of channels increases, moving from 50 

simple binary or grey-scale images (where not much information can be given more 51 

than texture homogeneity/non homogeneity), to RGB images (where changes in colour 52 

can be related to the presence of non homogeneous texture or underlying phenomena 53 

which alter the composition), to multi-channel images and spectral images (where 54 

chemical information can effectively be acquired for each pixel). Therefore, most 55 
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image-based challenges, which can be addressed with MIA approach, represent the 56 

detection of product defects in quality control
11-18

, the monitoring of changes in process 57 

behaviour and its feed-back control
16, 19-21

, the prediction of product properties on the 58 

basis of the joint evaluation of texture and channel information (in particular addressed 59 

to by the development of Multivariate Image Regression – MIR – methods
22-23

); or 60 

more recently the development of imaging biomarkers in cancer diagnosis
8-9

.  61 

As far as the core details of the MIA approach and its evolution in time are concerned, 62 

the MIA approach proposed by Bharati and MacGregor is based on a framework
11-12

 63 

which can be summarised in two main steps: a Feature Extraction (or Enhancement) 64 

phase, and a Feature Reduction (or Analysis) phase. In the Enhancement phase the 65 

image (pre-processed, if necessary) is treated so that texture information carried out by 66 

the pixels is made clearer. In the Analysis phase, a suitable Multivariate Analysis 67 

method is applied (e.g. Principal Component Analysis, Partial Least Squares 68 

Regression, Partial Least Squares Discriminant Analysis) on the feature matrix obtained 69 

after the first phase. The two phases are strictly connected to each other, since the first 70 

step can strongly influence the outcome of the following analysis in a way which is not 71 

much different from the effect of data pre-processing in many other situations. 72 

However, a certain degree of freedom can be considered when choosing the feature 73 

enhancement method (whilst the feature analysis phase is more application driven). The 74 

fundamental aspect to be considered in this case is that it is not only important to 75 

preserve the information given by the channels, for which a simple unfolding of the 76 

image structure so that each pixel becomes a sample could be sufficient, but to retain the 77 

correlation among neighbouring pixels (that is, the texture information) and, most of all, 78 

to present it to the following analysis step in such a way that both sources of variability 79 
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(texture and channel-based properties) can be easily evaluated. In the approach 80 

proposed by Bharati and MacGregor
2
 the texture information is extracted by 81 

augmenting column-wise the unfolded pixel vector with a series of its copies, shifted 82 

row-wise so that each row of the generated matrix is formed by a pixel and all its 83 

surrounding neighbours. This corresponds to stacking copies of the original image 84 

shifted according to a given step. The number of neighbours, hence of columns, of the 85 

feature matrix is (2w + 1)
2
, governed by the window aperture parameter w, which 86 

indicates the dimension of the window, centred on the pixel, encompassing the 87 

neighbours to be considered (typically, w = 1 or 2). In Prats-Montalbán et al.
17
 this 88 

augmentation is extended to each channel of the image, and will be referred to from 89 

now on as colour-textural MIA (ct-MIA). Facco et al.
14

 proposed a method to reduce the 90 

computational cost when operating with a larger window size, w > 2. Other approaches 91 

have been proposed and discussed, among which the most common are based on the 92 

application of a transformation of the image, again for each channel, in a different 93 

domain, such as the Fourier domain (via the 2D Fourier Transform) or the wavelet 94 

domain
10-12, 18, 24-29

. The wavelet advantage with respect to Fourier is that it has both 95 

good frequency and spatial resolution.  96 

There may be several advantages by moving to wavelet domain in terms of image 97 

compression, background removal and denoising. Moreover, the use of wavelet 98 

transform allows a better understanding of the pixels correlation structure at different 99 

scales. At each level of decomposition, the coefficients carry both the information 100 

pertaining to the energy which characterise a frequency range (based on the selected 101 

filter) and an indication about the orientation in which varies (according to the type of 102 

decomposition block, being it Approximation or one of the three Details blocks, namely 103 
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Horizontal, Vertical and Diagonal). In this way, the features extracted by wavelet 104 

transform are a truly enhanced visualization of how strong, and in which direction, the 105 

texture of the image varies. Literature differs in the way these features could be 106 

expressed and handled. Some authors have pointed the attention to the use of global 107 

indicators to synthesise the relevant information for a given decomposition level and 108 

block, by using, e.g. the Frobenhius norm (Energy), the entropy, statistical momenta or 109 

the standard deviation of the coefficients
18, 26-28

. In this way, a single variable 110 

summarises the effect, while the orientation information is maintained by means of the 111 

level-block combination at which it is computed. This approach surely reduces the 112 

computational cost of the following analysis, but carries with itself the potential loss of 113 

interesting information, which goes together with an “averaging” procedure of a richer 114 

set of data. Also, since all the information of an image is compressed in a single vector 115 

of descriptors for each decomposition block and level, a somehow conspicuous set of 116 

images must be considered to create a reference set, for example of Normal Operating 117 

Conditions (NOC), when moving to the following Feature Analysis phase. On the 118 

contrary, working at pixel level, that is considering each pixel as a sample, opens the 119 

possibility to reduce the requirements when building a reference set, often allowing the 120 

use of a single representative image, being it a real one, or a combination of snapshots 121 

of NOC texture areas. 122 

Liu and MacGregor
10

 have proposed an approach where the wavelet transform is used 123 

for Feature Enhancement of images working at pixel level, i.e. the MultiResolutional 124 

Multivariate Image Analysis (MR-MIA). MR-MIA is conjugated in two frameworks 125 

that differ in the stage at which the wavelet transform is applied, i.e. before (MR-MIA I) 126 

or after (MR-MIA II) the Feature Analysis step (in this case PCA). In particular, in MR-127 
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MIA I by applying the discrete wavelet transform (2D DWT) to each channel of the 128 

image, each decomposition block, at a given level, can be seen as an image itself with 129 

the same number of channels, but representing a different “resolution” and texture 130 

orientation. The Feature Analysis (e.g. PCA) step is then applied to each of these 131 

images, once unfolded pixel-wise, so that as many latent variable models as number of 132 

blocks per decomposition level (L) are obtained. This approach relies on the 133 

orthogonality of the wavelet decomposition blocks, thus implying that there is no 134 

interest in evaluating correlations among blocks at different scales, and the possibility to 135 

evaluate texture – channel correlation is maintained. However, the complexity aspect of 136 

this approach can be a hindrance when considering how many multivariate models one 137 

should compute and the necessity of a high-level data fusion step where all the results 138 

are combined to create a decision rule in order to e.g. decide if a new product image has 139 

to be rejected when compared to the NOC modelled one. Recently, basing on similar 140 

considerations, Juneau et al.
25
 proposed an approach where all sub images obtained by 141 

wavelet decomposition, once unfolded pixel-wise, are merged row-wise and analysed 142 

by a single PCA. However, they used the continuous wavelet transform (undecimated 143 

scheme, UWT) and in this way a rather large number of features is obtained, since scale 144 

and shift parameters vary continuously.  145 

The MSMIA approach proposed by Reis
18
 is similar to the MR-MIA I, although more 146 

images are considered at the same time as references NOC, but it differs in the way 147 

information from the Feature Analysis step (e.g. PCA) of each WT decomposition block 148 

is fused. In this approach, an index evaluating the distance to the scores distribution 149 

histogram of the reference NOC images for each decomposition block, at a given scale, 150 

is calculated in order to obtain a set of variables, which are then used for building a 151 
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monitoring chart. In addition to this, multivariate control charts based on PCA of 152 

wavelet features (e.g. standard deviation of wavelet coefficients for each decomposition 153 

block), extracted for each decomposition block, at a given scale, are also considered. 154 

The approach is effective in compressing information and for on-line implementation, 155 

however defects location requires a further step. This step, similarly to MR-MIA II, 156 

consists in building a spatial shifting feature matrix (then analysed by PCA) for each of 157 

the sub-images contributing to “out of control” observations in the preceding step. 158 

Moreover, correlation structure among textural/colour pattern at different scales is only 159 

indirectly taken into account (the information from different scales is always merged at 160 

features, not pixels level).   161 

Here we present an approach, which is named 2D WT-MIA, where the Feature 162 

Enhancement step is similar to MR-MIA I, but as in Juneau
25
 all of the resulting sub-163 

images obtained by the 2D-DWT decomposition are unfolded pixel-wise and mid-level 164 

datafused to a Feature Matrix which is used for the Feature Analysis phase. In order to 165 

have congruent sub-images all decomposition blocks are reconstructed separately to the 166 

original pixel dimensions. This reconstruction step can be omitted, when the Stationary 167 

Wavelet Transform (2D-SWT) is used
30-31

. In this way, all possible relationships among 168 

blocks, decomposition levels and channels are assessed in a single multivariate analysis 169 

step (Feature Analysis). This is particularly useful, in a monitoring context, when the 170 

aim is building multivariate control charts based on NOC images. Thus, our proposed 171 

approach can be versatile to handle contexts where several images are analysed at a time 172 

as well as in the multispectral images analysis. 173 

The rest of this paper is organised as follows: in Section 2: Methods, the proposed 2D 174 

WT-MIA approach is described into more details and compared to colour-textural MIA 175 
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approach to highlight common and differing aspects; in Section 3: Materials, the images 176 

datasets will be presented, consisting in a set of simple artificial binary images, used to 177 

illustrate how texture is captured within the two approaches and a set of real images, 178 

and in Section 4: Results and Discussion, these images will be analysed according to the 179 

two-step MR-MIA framework, using Principal Component Analysis as Feature Analysis 180 

technique with the target of simulating a quality control task. 181 

2. METHODS 182 

The approach here described belongs to the more general framework of MultiResolution 183 

Multivariate Image Analysis, thus basing on a two-phase elaboration of the image: a 184 

first step of Feature Extraction (Enhancement) and a second step of Feature Reduction 185 

(Analysis) (Figure 1). In particular, the 2D WT-MIA (wavelet based feature 186 

enhancement) and the colour-textural MIA (spatial shifting based feature enhancement) 187 

approaches will be discussed and compared in terms of results in the present work. 188 

2.1 Spatial Shifting Feature Enhancement 189 

Colour-textural MIA
17

 is summarised in Figure 2. This approach to Feature 190 

Enhancement consists in capturing, for each channel ch, the pixel proximity correlation 191 

by means of a spatial shifting of neighbouring pixels with respect to each pixel of the 192 

original image, according to a selected window aperture parameter, w. In practice, 193 

starting from a pixel element of the image pi,j, a row vector is created by adding the 194 

intensity value of the channel corresponding to the closest surrounding pixels: if w = 1, 195 

the composition appears as reported in Figure 2. When this is done for all the pixels of a 196 

pixel-wise unfolded channel matrix, and the feature matrices for the different channels 197 

are then fused, a total Feature Matrix is obtained which has as many rows as the number 198 
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of pixels I = n1 × n2, and as many columns as the number of channels ch times the 199 

number of spatial shifted pixels, which is given by (2w + 1)
2
. This means that, 200 

regardless of the number of channels, for a window parameter w = 1 (the closest 201 

neighbours) the Feature matrix is 9 × ch, and when moving to w = 2 (the closest 202 

neighbours and the next surrounding layer), the Feature matrix is 25 × ch. This implies 203 

a fast increase of the number of variables considered in the analysis, the higher is the 204 

number of channels.  205 

Since we need, at each pixel location, to use all the neighbouring pixels up to a distance 206 

w, this implies that we lack information for all those pixels in the borders with width w. 207 

Therefore, the solution commonly adopted is to diminish the size of the image from 208 

n1×n2 to (n1-2w) × (n2-2w) 209 

2.2 2D Wavelet-based Feature Enhancement 210 

Figure 3 shows the general scheme of the Feature Enhancement step involving 2D – 211 

DWT application, through the fast Mallat algorithm
32-33

, on an image. For each channel 212 

ch, the low-pass and high-pass filters (which are the same as in the 1D case) are first 213 

operated row-wise on the image and then, after downsampling of the coefficients, in 214 

each of the resulting blocks column-wise. In this way four decomposition blocks are 215 

obtained: Approximations (low-pass + low-pass), namely CA; Horizontal details (low + 216 

high), namely CH; Vertical details (high + low), namely CV, and Diagonal details (high 217 

+ high), namely CD. The procedure is then iterated by applying it to the 218 

Approximations, i.e. increasing the decomposition level. Downsampling is skipped 219 

when the 2D - SWT scheme is used since, instead, the filters are up-sampled
26

. The 220 

maximum possible decomposition level, L, depends on the image size. The four 221 
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decomposition blocks obtained from each level of decomposition (CA, CH, CV and 222 

CD) when 2D DWT is used are independently reconstructed by means of the inverse 2D 223 

– DWT so that their dimensions are the same of the original image, while they are 224 

already of the same size when 2D SWT is used (in fact, each block of coefficients at 225 

every level maintains the same size as the original image, and congruent images are 226 

obtained). This leads to a set of 4 × L images for each channel ch, which can be 227 

unfolded and column-wise merged to obtain a total Feature Matrix which has as many 228 

rows as the number of pixels I = n1 × n2, and as many columns as 4 × L × ch. If we 229 

compare this column dimension to the one obtained with the Spatial Shifting approach, 230 

which is (2w + 1)
2
 × ch, it might appear that there is little benefit in terms of reduction 231 

of the Feature Matrix dimensions. However, two aspects have to be underlined:  232 

i) in the spatial shifting approach the image is analysed by moving a (2w + 1)x(2w + 1) 233 

pixels  window by step of 1 in all image directions; on the other hand, with wavelet, a 234 

filter length x filter length pixels window is moved by step of 1 in all image directions, 235 

but using a larger filter does not increase the number of features, which remain always 236 

four; 237 

ii) the two approaches lead to the same number of feature descriptors if L = round[(w + 238 

½)
2
]. This corresponds, for e.g. a window parameter of w = 2, to a decomposition level 239 

L = 6, which in terms of multiresolution means to have gone very deep in the analysis of 240 

coarse and smooth aspects of the image. In other words, such a decomposition level (if 241 

allowed by the nature of the chosen wavelet) usually leads to the possibility of 242 

evaluating correlations and high distance relationships among pixels to an extent, which 243 

is superior to the use of a moving window of fixed size.  244 
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When applying the wavelet transform, the selection of the most appropriate wavelet 245 

filter is considered a critical issue and a limiting step in the implementation of routine 246 

applications (i.e. which wavelet family and which filter length, to analyse the specific 247 

characteristics of the images at hand). This issue has been dealt in literature by 248 

analysing the different properties of the decomposition filter in terms of texture 249 

description capability in order to propose general criteria
34

 or focusing on goodness of 250 

image reconstruction
33

, or proposing a design of experiments approach
36
. We recently 251 

proposed
37

 a methodology based on N-way modelling to provide a range of possible 252 

wavelet choices (in terms of families, filters, and decomposition levels), for each image 253 

and problem at hand. Any of these strategies require a preliminary analysis step to be 254 

conducted by experienced people in the field, although this step is only required once in 255 

model building. However, some considerations, based on our experience can be drawn: 256 

i) there is in general a relationship between the decomposition level and the filter length, 257 

i.e. by using a larger filter a lower decomposition level is required to capture the 258 

different image aspects (coarse and smooth) and ii) taking into account the wavelet 259 

families characteristics, such as degree of symmetry or regularity or number of 260 

vanishing moments
38-39

 it is possible to focus on a small number of wavelet filters to 261 

test, by choosing a representative one for each type of property. 262 

 263 

3. MATERIALS 264 

3.1 Artificial Images datasets 265 

These sets are used to illustrate how the colour-textural MIA and 2D WT-MIA 266 

approaches analyse texture and their capability to detect faulty pixels. These images are 267 
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characterized by two main features: a particularly limited pixel size, so that 268 

computational time is not a relevant benchmark property at this stage, and a simple, yet 269 

well defined, pattern. Also, the differences between “normal”, i.e. reference image, and 270 

“defective”, i.e. image (or images) for which a perturbation of the pattern was created, 271 

are well controlled, in the sense that the number and position of pixels which have been 272 

changed is known, and the entity of the disturb is enough to obtain simulated test 273 

images which are not too similar to their reference image. In spite of the simplicity of 274 

this simulated case, the information which can be acquired from the analysis with both 275 

approaches is interesting to better understand how the two methods under comparison 276 

work, and the conclusions which can be drawn are helpful and can be extended, as 277 

shown in the next section where real images are presented and dealt with, to cases of 278 

higher complexity. 279 

The set is composed by three binary images, as reported in Figure 4, of size 32 × 32 280 

pixels. Figure 4 “SimSetA” reports the “normal” (reference) image, on the basis of 281 

which an alternation pattern has been generated. In this case, the squares which alternate 282 

in both image directions to give a chequered pattern have a dimension of 8 × 8 pixels: 283 

starting from upper left corner and moving over columns dimension, a white (1’s) 8 × 8 284 

pixel square is alternated to a black (0’s) 8 × 8 pixel square, and the same alternated 285 

pattern is repeated over the rows dimension. Starting from this image, two changes in 286 

pattern were produced, leading to two “defective” (test) images. Figure 4 “SimSetB” 287 

shows an overlying irregular shape which extends from the diagonal to the lower left 288 

part of the image: for this figure, a total of 55 pixels have been inverted in value (from 1 289 

to 0 or from 0 to 1) over the total of 32 × 32 = 1024 pixels. Figure 4 “SimSetC” shows 290 

another change in the pattern, this time according to a regular shape which is applied on 291 
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top of each of the 8 × 8 pixel squares: for each of these squares, starting from the second 292 

diagonal element, a single pixel every fourth has been modified both in the rows and in 293 

the columns, thus resulting in a change of four pixels for each of the squares. For this 294 

figure, a total of 64 pixels have been inverted in value (from 1 to 0 or from 0 to 1) over 295 

the total of 32 × 32 = 1024 pixels.  296 

3.2 Real Images datasets  297 

To further explore the performance of the method proposed in this work and compare it 298 

to the results of the ct-MIA approach, additional datasets have been taken into account, 299 

belonging to different applicative contexts, tiles and bread production, respectively. In 300 

both cases, the control of the final product undergoes visual inspection, while the 301 

datasets differ as for image dimensions and number of channels.  302 

3.2.1 Tiles  303 

These datasets come from a production of tiles of marble-like materials for surface 304 

coverage: all the cases share a common issue, that is presenting product samples which 305 

do not comply to a strict definition of “normal” images, characterized, for instance, by a 306 

precise colour shade or by the absence of defects such as spots and scratches. Therefore, 307 

it is necessary to develop a method, complementary or alternative to visual inspection, 308 

which is able to: a) recognize the presence of a defectiveness when a new tile is 309 

compared to the reference one(s); b) indicate the kind of defectiveness (e.g. colour 310 

shade and/or presence of unwanted changes in surface pattern); c) locate on the surface 311 

the position of the defect in order to obtain an enhanced perception of the same, so that 312 

its visualization and recognition by the operator is made easier. Samples from two 313 

different products were considered with different degree of irregularity of the pattern in 314 
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the defective tiles. They both consists of RGB images of dimensions 256 × 256 pixels 315 

(Figure 5).  Figure 5a reports dataset 1: Blanco Zeus, from now on referred to as 316 

BZdataset, which is composed by three reference images (BZN01, BZN02 and BZN03), 317 

and three images of tiles showing defects (BZD01, BZD02, and BZD03). This kind of 318 

tile shows a mostly homogeneous shade of grey all over its surface, so that defects (as 319 

for instance white or dark spots and scratches) do not usually present particularly high 320 

difficulty of detection also by visual inspection. Figure 5b reports dataset 2: Blanco 321 

Norte, from now on referred to as BNdataset, which is composed by three reference 322 

images (BNN01, BNN02 and BNN03), and three images of tiles showing defects 323 

(BND01, BND02, and BND03). In this case, the tile main colour is grey, but the surface 324 

is characterized by an inhomogeneous distribution of darker spots, in a grainy structure, 325 

which makes quite difficult to detect the presence of defectiveness, both when 326 

represented by darker and paler areas. 327 

3.2.2 Bread 328 

This data set comes from an industrial production of bun bread, where a digital scanner 329 

is already used to automatically assess defects concerning mainly bun dimensions, 330 

while surface defectiveness, such as dark spots, blisters, and pale areas is still evaluated 331 

by visual inspection of expert personnel. These defects arise from different causes, some 332 

of which not perfectly known, and are also often difficult to be detected by RGB online 333 

cameras. Thus, a feasibility study has been undertaken
29
 by acquiring offline 334 

multispectral images, covering the UV-visible range (from 430 to 700 nm, 10 channels) 335 

and the short-wavelength NIR range (from 850 to 970 nm, 8 channels), which can 336 

improve the acquisition of information on bread quality, combining spectral (NIR may 337 

represent also a “chemical signature”) and textural information. The whole data set has 338 
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been analysed by WT-MIA (DWT scheme) approach and described in detail in ref. 33 339 

while here a subset of images has been analysed in order to discuss comparatively the 340 

performance of WT-MIA (DWT and SWT) and ct-MIA. 341 

The raw images were cropped to remove the distortion effect of the round bun shape, 342 

background and noise were removed via preliminary wavelet analysis
29

, finally giving 343 

images of dimensions of about 387 x 420 pixels for 18 channels. Here two non-344 

defective images (N01, used as reference, and N02) and two defective ones (D04 and 345 

D07) are analysed, shown in Figure 6. 346 

 347 

4. RESULTS AND DISCUSSION 348 

4.1 Artificial Images datasets 349 

All the three images (SimSetA, SimSetB and SimSetC) have been treated according to 350 

the same Feature Enhancement step, by considering: 351 

- Spatial Shifting, colour-textural MIA (ct-MIA) with window size parameter w = 352 

1 353 

- Wavelet Decomposition (WT-MIA) by using a Daubechies 1 (db1) at 354 

decomposition level L = 1, both DWT and SWT.  355 

The Feature Enhancement step gave a Feature Matrix of dimensions I = 900 rows 356 

(reduction from 32 x 32 to 30 x 30 is necessary to cope with borders) and 9 columns for 357 

the ct-MIA approach and I = 1024 rows x 4 columns for the WT-MIA approaches.  358 

SimSetA was used as the reference set, upon which for the ct-MIA approach a Principal 359 

Component Analysis model was obtained after mean centring of the Feature Matrix. 360 
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Figure 7 reports the PCA results, from left to right in the order are shown: scores image 361 

SimSetA, loadings, projected scores images SimSetB and SimSetC (in the order PC1 to 362 

PC4 from top to bottom). PC1 captures, for the reference (“normal”) image both the 363 

difference in grey intensity value (colour) and the variation in pattern (texture) when 364 

passing from the pixels having zero value to pixels with value one, i.e. it shows the 365 

change of value when moving along the borders from one square to another, where pixel 366 

values invert, leading to a “blurring” effect of the borders. This is the expected effect 367 

since ct-MIA window of one (which is actually 3 × 3 pixels) moves pixel by pixel on 368 

the image structure, which is made of 16 squares of dimensions 8 × 8.   All features 369 

contribute similarly to the PC1 loadings since the pattern change takes place in all 370 

directions. Thus, PC1 works as an average grey scale image, which in fact extracts out 371 

the spectral information (we have no other source of spectral information than a single 372 

grey scale channel). The following PCs capture only the borders effects, i.e. only the 373 

frames around the squares are visible in the scores images, and by inspecting the 374 

loadings it is possible to understand the directions of the pattern variation, e.g. to PC4 375 

the features accounting for diagonal shift do not contribute.  376 

When the Feature Matrix corresponding to SimSetB and SimSetC are projected onto 377 

this model, the same chequered pattern is correctly reproduced (Figure 7), but the 378 

changes in pixel correlations due to the small scale modifications of its regularity 379 

produce a large blurred area, which roughly encompasses the whole shape of the 380 

differences but extends further with respect to the faulty pixels, i.e. an area of about 3×3 381 

pixels around each defective pixel as it is detailed in the following text. This is due to 382 

the fact that the perturbation, although being well defined (in particular for SimSetC) to 383 
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a small number of pixels, influences the neighbouring correlation structure of all the 384 

pixels, which are contained by the moving window.  385 

In a monitoring context the defective images with respect to the reference one/s can be 386 

identified by the Hotelling-T
2
 and squared residuals (RSS, SPE or Q) multivariate 387 

control charts by using the percentage of pixels beyond control limits
16
. However, in 388 

this case being the images binary, simply the pixel by pixel difference of the residuals 389 

sum of squares (RSS) of the test images with respect to the reference image (NOC) can 390 

be used. Both the RSS from a one or a four components PCA model are suitable to 391 

depict the faulty pixels for SimSetB and SimSetC, but also an area of about 3 x 3 392 

around each faulty pixel will show up differing in RSS values with respect to NOC 393 

(Figure S2, supplementary material). This can be expected on the basis of the 394 

considerations made above on the neighbouring pixels correlation structure. 395 

In the WT-MIA both decomposition schemes, DWT and SWT, have been applied, 396 

considering the simulated pattern, i.e. inversion of the binary value of some not 397 

consecutive pixels, db1 seems an appropriate filter. The feature matrix, holding the four 398 

decomposition blocks CA, CH, CV and CD (reconstructed only in DWT case), already 399 

captures the texture pattern, as highlighted in Figure 8 (DWT) and Figure 9 (SWT) 400 

where the sub-images corresponding to each block of the DWT and SWT 401 

decomposition of SimSetA and SimSetB are reported. This is a first difference with 402 

respect to ct-MIA approach where the feature matrix holds just the shifted version of the 403 

raw image in all possible neighbouring direction (as shown in Figure S1, supplementary 404 

material) and thus PCA (or, more in general, a multivariate decomposition technique) is 405 

needed to reveal the texture pattern. Further, in this case with only one reference image 406 
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and one channel the feature analysis step by PCA is not needed at all (the decomposition 407 

blocks are orthogonal).  408 

In the DWT the Approximation Block is the only one which carries the structural 409 

information of image SimSetA (Figure 8, top). This is explainable by considering that 410 

the db1 filter is of length two, thus operates like a window of pixel size 2 × 2 which 411 

moves at steps of one, and due to the down-sampling scheme of DWT only one 412 

coefficient every two is retained. Thus, since the binary values change every 8 x 8 413 

pixels, there is no blurring effect at the squares edges; also the coefficients in all the 414 

other decomposition blocks are zeros (Figure 8, top). On the contrary, the presence of 415 

deviations in the two test images, related to “sharper” structures i.e. alternating by one 416 

pixel, is well captured by all decomposition blocks (Figure 8, middle). In particular 417 

Approximation (CA) shows both intensity change and texture, while Details blocks 418 

capture horizontal (CH), vertical (CV) and diagonal (CD) neighbouring pixels 419 

alternation of binary values. Thinking of a monitoring context, in this case the defects 420 

can be depicted by the difference between the decomposition sub-images of the 421 

reference and test image, as shown in Figure 8, bottom; to this aim, considering the 422 

specific pattern of the defects in SimSetB, CA and CD are the most suitable blocks. 423 

Figure 9 shows the results of the SWT decomposition. Similar considerations can be 424 

drawn. The only difference is that now the effect of the variation in the binary values of 425 

the pixels at the edges of the 8 x 8 pixels squares are visible (similarly to ct-MIA). This 426 

is well explainable by the fact that in SWT down-sampling of the coefficients is not 427 

operated (it is worth mentioning that the window size and the moving step remain the 428 

same). Analogous considerations hold for SimSetC decomposition (figure not shown for 429 

sake of brevity). 430 
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The behaviour of a larger filter, i.e. Daubechies 2 (db2) of length 4, has been also 431 

inspected by using the SWT scheme on SimSetB (Figure S3, supplementary materials). 432 

The db2 operates as a 4 × 4 window moving at steps of one pixel: the result is similar to 433 

the one obtained by ct-MIA, leading to a blurring of the borders among squares and 434 

around the area (of wideness about 3 x 3) which is interested by the defect.  435 

Finally in Figure 10 the performance of ct-MIA and WT-MIA (SWT, db1) are compared 436 

in terms of capability of detection and localization of the faulty pixels for SimSetB 437 

(Figure 10a) and SimSetC (Figure 10b), respectively. The detection is good in both 438 

approaches being all the faulty pixels correctly identified, the difference is in the 439 

blurring area, which is strictly connected to the wideness of the analysing window, i.e. 3 440 

x 3 for ct-MIA and 2 x 2 for db1. This is a general known advantage of WT of being 441 

more efficient for feature enhancement because of the availability of several filter 442 

shapes and length compared to spatial shifting approach. 443 

 444 

4.2 Real Images datasets  445 

4.2.1 Tiles  446 

Several wavelet filters, belonging to Daubechies (filter length from 1 to 5), Symlet 447 

(filter length from 1 to 5), Coiflet (filter length form1 to 3) and biorthogonal (1.3 and 448 

1.5) families were tested (decomposition levels from 1 to maximum), by using an 449 

approach as described in ref. 30.  For both BZdataset and BNdataset Daubechies filter 450 

length 1 (db1 or Haar) resulted among the best performing wavelet filters and we report 451 

results relative to this filter, at decomposition level L = 3. While for the ct-MIA 452 

approach window size 1 and 2 were considered, better performance was obtained with w 453 
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= 1 for BZdataset and w = 2 for BNdataset. This led, considering the three RGB 454 

channels, to an unfolded feature matrix of size 65536 × 27 (w = 1), or 65536 x 75 (w = 455 

2) in the ct-MIA case, and 65536 × 36 in the WT-MIA case.  456 

In both datasets, a single reference image has been used to calibrate the PCA models 457 

and build the Hotelling’s T
2
 and Q statistics (control charts). Autoscaling pretreatment 458 

gave for both datasets and approaches the best results. 459 

The choice of model dimensionality, i.e. number of principal components, in this 460 

context cannot be automated, i.e. assessed on the basis of a priori fixed criterion, since it 461 

is problem dependent
40
. General guidelines that we adopted in this work consist in: i) 462 

inspecting how spatial features of the image are accounted for in scores images and ii) 463 

scree-plot to ensure the systematic variation is modelled. Further, when enough defects 464 

images are available, to preserve some for model validation, few can be used to see 465 

which are the components that maximize detection capacity. It is worth noticing that 466 

minimizing the squared prediction error in cross validation, as most used in PCA 467 

modelling, is not appropriate in this context, because it is not necessarily related to the 468 

capability of fault detection which is the objective pursued in process monitoring. 469 

Image BZN01 has been used as reference NOC image for BZdataset. The PCA model 470 

dimensionalities were 4 PC’s for both approaches ct-MIA (captured variance 77%) and 471 

WT-MIA (captured variance 44%), which correspond to a number of components each 472 

explaining more than 1% variance (ct-MIA) and to the first minimum in the scree-plot, 473 

i.e. number of components vs. eigenvalues plot, (WT-MIA), respectively. All the 474 

remaining images of the dataset were projected onto the models and distances were 475 

calculated. Table 1 reports the results in terms of percentage of pixels scoring above the 476 
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critical limits, which were chosen on the basis of the reference image by obtaining the 477 

99
th
 percentile values of its distances distributions. Both models are able to accept as 478 

normal behaving images such as BZN02 and BZN03, which are actually defectless, and 479 

indicate, especially in terms of T
2
 distance, the presence of anomalies on all of the three 480 

defective tiles, BZD01, BZD02 and BZD03; albeit the results are quite similar, a higher 481 

percentage of pixels above the critical limits is detected by the WT-MIA approach. Both 482 

approaches show similar results, although the WT-MIA identification of defects appears 483 

better defined, especially for image BZD02 where more clusters of pixels are identified, 484 

which are in particular connected to the presence of darker spots on the surface of the 485 

tile, especially when using SWT (Figure S4, supplementary Material). SWT monitoring 486 

results are also shown on Table 1 and are very close to DWT ones. 487 

Interpretation of the features enhancement step can be gathered by loadings analysis. ct-488 

MIA loadings are shown in Figure 11 (left) both as bar plot (top left) and refolded 489 

(bottom left) in the corresponding position of neighbours window (the central pixel is 490 

the pixel itself). As usual, PC1 is gathering an (approximately) average colour effect (all 491 

loadings have the same sign). Moreover, it can be observed that colour intensity varies 492 

left to right for red and blue channels, while green is more uniform; similarly does PC1 493 

of WT-MIA (bar plot, top right, and decomposition sub-images, bottom right), to which 494 

the Approximations of all levels and channels contribute (Approximations in fact act as 495 

an averaging tool at each decomposition level, hence extracting out the same 496 

phenomenon as ct-MIA).  Also the WT-MIA Approximations sub-images (Figure 11, 497 

bottom right) highlight the varying intensity from left to right, especially for 498 

decomposition levels two and three (the green channel is uniform at level 1). This effect 499 
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may be due to illumination and eventually (not the aim here) it could be easily removed 500 

in WT domain, e.g. by suppressing level 2 or 3 approximations as data pre-treatment
29
. 501 

PC2 and PC3 show the main contrast in horizontal and vertical directions, respectively 502 

both for ct-MIA and WT-MIA (for PC2, the Horizontal details of level 3 for all channels 503 

are the most relevant, and for PC3 the vertical details, level 1 opposite to level 3). PC4 504 

shows a mixed pattern, loadings sign and values vary in all directions for ct-MIA and 505 

for PC4 in WT-MIA the vertical details of level 2 are the most relevant. 506 

It can be noticed that the possibility to analyse the images at different resolution (the 507 

different decomposition levels) enhances the colour-textural pattern recovery, with 508 

respect to ct-MIA where only the neighbouring window size can be varied (that in WT-509 

MIA can roughly corresponds to the filter length/family). 510 

Table 1 to be inserted about here 511 

As reference NOC image for BNdataset, image BNN01 has been used, the PCA model 512 

dimensionalities were 2 PC’s for both approaches ct-MIA (variance captured 39%) and 513 

WT-MIA (variance captured 26%), which correspond to the first minimum in the scree-514 

plot. All the remaining images of the dataset were projected onto the models and 515 

distances were calculated. Table 2 reports the results in terms of percentage of pixels 516 

scoring above the critical limits, which were chosen on the basis of the reference image 517 

by obtaining the 95
th
 percentile values of its distances distributions. 518 

 Table 2 to be inserted about here 519 

Neither of the models appear particularly satisfactory, since the normal behaving images 520 

BNN02 and BNN03, which are defectless, appear to have Q distances higher than 5%. 521 

The defective tiles, BND01 and BND03 appear above limits for both models, according 522 
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to T
2
 distance statistic. On the contrary, defective BND02 is only detected by WT-MIA, 523 

T
2
 distance, albeit close to the limit. 524 

By considering the T
2
 distance values reshaped in the original pixel domain it is 525 

possible to identify the groups of pixels which have distances higher than the critical 526 

values. Figure 12a) and 12b) shows the comparison of defective images and the normal 527 

images, with the corresponding distance images for ct-MIA and WT-MIA (DWT). The 528 

WT-MIA identification of defects appears better defined, while ct-MIA seems to find 529 

fewer clusters of pixels and more darker, well separated, spots all over the surface. 530 

In a monitoring context, the results of Table 2 would indicate products BNN02 and 531 

BNN03 as defective (false negatives) and shed doubt on rejecting or not product 532 

BND02. On the other hand the possibility to look at above limits T
2
 distance images (or 533 

in general to the images corresponding to the above limit statistic) may clarify if defects 534 

are present or not. In particular, this is a case were the defects are mainly due to a non 535 

uniform distribution of pixels with a given colour content and texture that if normally 536 

distributed on the image, as in the case of BNN01, BNN02 and BNN03, would be 537 

acceptable. In this situation, it may be useful to calculate and represent the local 538 

entropy
41

 of the scores images, were the defective area is a region of low entropy 539 

encircled by high entropy values, as shown in Figure 13. 540 

WT-MIA model based on SWT in this case yielded lower performance. 541 

 542 

4.2.2 Bread 543 

The Daubechies 2 (db2) wavelet filter was used up to decomposition level 5 and for 544 

both DWT and SWT decomposition schemes. The feature data matrix results of 545 
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dimension Ipixels x 360 (4 blocks x 5 levels x 18 channels). In ct-MIA both a window 546 

size of 1 (162 features) and 2 (450 features) were tested. Since results were similar we 547 

will discuss the ones corresponding to w = 1, which gave a better defects localization. 548 

The reference PCA model for non-defective image has been calculated by considering 549 

as feature matrix the one obtained for N01 image (Figure 6). The PCA model refers to 550 

mean centred data and model dimensionalities were 6 PC’s for both approaches ct-MIA 551 

(variance captured 66%) and WT-MIA (variance captured 52%), which correspond to 552 

reaching the plateau in the scree-plot. We tested also a model made on two NOC images 553 

but the results were analogous. Q and T
2
 statistics were computed, and the critical limits 554 

for each of the two statistics were computed on the basis of the 99th percentile. The 555 

total percentage of pixels exceeding the critical limits is reported in Table 3. For all 556 

approaches a clear detection of the two defective images can be obtained, with relevant 557 

percentages of pixels above the critical limits for both distances, as well as N02 being 558 

defectless.  559 

However, when the Q and T
2
 values above the reference limits are refolded to the 560 

original pixel x pixel domain to locate the defective areas on the image (Figure 14), 561 

differences among the approaches emerge. ct-MIA is less efficient to detect the 562 

defective area for D07 and for D04, it is also worth noticing that ct-MIA provides these 563 

results when applied on the pretreated images, i.e. after denoising and background 564 

removal with WT; otherwise it detects as faulty only pixels on the borders of the image. 565 

DWT seems more efficient than SWT to locate the faulty pixels, notwithstanding the 566 

fact that the same wavelet filter and resolution have been used.  567 

Now focusing on the WT-MIA DWT results, it is worth noticing that not only the 568 

stains, which are also easy to detect visually, but also the blisters and tiny scratches can 569 
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be detected. Moreover, we can assess which features are responsible of the defects by 570 

inspecting the T
2
-contributions, which can be interpreted in terms of the spectral 571 

channels. In particular, Figure 15 shows the T
2
-contributions for some of the blisters. To 572 

make the representation clearer distinct plots are made for each decomposition block, 573 

and each decomposition level is represented as a distinct line, so that the x-axis reports 574 

just the channels (wavelengths): the main contributions are from approximations 575 

decomposition levels 1-3. Interestingly, besides the visible channels, some of the NIR 576 

ones (11
th
 to 18

th 
corresponding to the range from 850 to 970 nm at 20 nm resolution) 577 

contribute, which point to carbohydrate, fat and water bands. This may indicate a 578 

segregation of some of the ingredients on surface spots where blisters appear. 579 

 580 

CONCLUSIONS 581 

The artificial image datasets allowed highlighting the distinct way in which textural 582 

information can be recovered by the ct-MIA and WT-MIA approaches: both are 583 

efficient in depicting the salient pattern of the images and the area were the defects are 584 

located. The main distinctive characteristics of the two methods are: 585 

 i) the feature matrix obtained by ct-MIA just holds the shifted version of the raw image 586 

thus always requires coupling to a multivariate decomposition technique to highlight 587 

textural patterns while the feature matrix obtained by WT-MIA already captures it; 588 

ii) in general WT-MIA is more efficient for feature enhancement because of the 589 

availability of several filter shapes and length compared to the spatial shifting approach 590 

where only the window size can be varied. 591 
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The analysis of the tiles data sets reveals a similar behaviour of the two considered 592 

approaches although identification of defects appears better defined with the WT-MIA 593 

approach. Also both decomposition schemes DWT and SWT show similar performance. 594 

In a monitoring context it is worth noticing that when the defects are due to a non 595 

uniform distribution of pixels, whose colour content and texture if normally distributed 596 

on the image would be instead acceptable, further image analysis tools (e.g. local 597 

entropy or any other to assess homogeneity or heterogeneity of pixels distribution), on 598 

the beyond Q or T
2 
limits images, are required to avoid false negative to be detected. 599 

In the analysis of multispectral images (bread data set) the WT-MIA approach 600 

performed better and it was possible to highlight the full benefit of the proposed 601 

approach from both the correct defects identification/location and interpretation in terms 602 

of spectral features point of view. 603 

A further remark is that the proposed WT-MIA approach is rather straightforward 604 

requiring only the Feature Extraction (Enhancement) and Reduction (Analysis) steps, as 605 

in ct-MIA; one or more NOC images can be analysed at the same time and assembled in 606 

the same WT features matrix which is organized pixels wise, thus allowing defect 607 

localization directly. Images denoising and background removal can be as well 608 

accomplished at WT decomposition stage.  609 

The proposed WT-MIA approach can be as well applied to hyperspectral images, the 610 

bread data set being an example limited to eighteen channels. However, the 611 

computational costs will be a limiting factor and further strategies could be considered 612 

to render it more efficient, work is in progress in this direction.  613 

  614 
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Table 1. BZDataset. Percentage of pixels above Hotelling’s T
2
 and Residuals Q 718 

distances critical limits based on normal image BZN01 99
th
 percentile 719 

 720 

  721 

 
ct-MIA 

 w = 1, 4 PCs 

WT-MIA  (DWT) 

Daubechies 1, level = 3  

4 PCs  

WT-MIA (SWT) 

Daubechies 1, level = 3  

4 PCs 

 T
2
 distance Q distance T

2
 distance Q distance T

2
 distance Q distance 

BZN01 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 

BZN02 0.6% 0.6% 0.6% 0.7% 0.7% 0.6% 

BZN03 0.9% 0.9% 0.8% 0.7% 0.8% 0.7% 

BZD01 3.6% 1.9% 5.1% 2.8% 4.1% 3.0% 

BZD02 1.6% 0.7% 2.5% 0.7% 1.9% 0.9% 

BZD03 1.9% 0.9% 2.4% 0.7% 2.1% 0.8% 
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Table 2. BNDataset. Percentage of pixels above Hotelling’s T
2
 and Residuals Q 722 

distances critical limits based on normal image BNN01 95
th
 percentile 723 

 
ct-MIA  

w = 2, 2 PCs 

WT-MIA (DWT) 

Daubechies 1, level = 3  

2 PCs 

 T
2
 distance Q distance T

2
 distance Q distance 

BNN01 5.0% 5.0% 5.0% 5.0% 

BNN02 5.0% 6.0% 4.9% 5.7% 

BNN03 4.9% 6.6% 4.4% 6.5% 

BND01 6.2% 3.8% 6.6% 4.1% 

BND02 4.5% 2.5% 5.3% 2.5% 

BND03 5.2% 4.3% 6.3% 4.7% 

 724 

 725 

 726 

  727 
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Table 3.  Bread Dataset. Percentage of pixels above Hotelling’s T
2
 and Residuals Q 728 

distances critical limits based on normal image N01 99
th
 percentile 729 

 
ct-MIA  

w = 1, 6 PCs 

WT-MIA (DWT) 

Daubechies 2, level = 5  

6 PCs 

WT-MIA (SWT) 

Daubechies 2, level = 5  

6 PCs 

 T
2
 distance Q distance T

2
 distance Q distance T

2
 distance Q distance 

N01 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 

N02 0.6% 1.0% 0.5% 0.7% 0.9% 0.2% 

D04 2.7% 3.4% 3.3% 3.2% 11.9% 11.4% 

D07 4.3% 3.0% 4.6% 4.3% 15.7% 14.3% 

 730 

 731 

 732 

 733 
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Figure 1: Feature Extraction (Enhancement)  and Reduction (Analysis) steps in Multivariate Image Analysis 

(MIA).  
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Figure 2: The Colour-textural MIA approach (ct-MIA)  
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Figure 3: The Feature Extraction (Enhancement) step in the 2D WT-MIA approach, illustrated for an RGB 
image. The insert on the top of the figure shows the 2D DWT decomposition scheme at the first level of 

decomposition. CA, CH, CV and CD stand for Approximation, Horizontal details, Vertical details and Diagonal 

details coefficients, respectively.  
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Figure 4: The SimSetA, SimSetB and SimSetC images.  
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Figure 5: top (5a): Blanco Zeus (BZdataset) images; bottom (5b) Blanco Norte (BNdataset) images.  

 

361x270mm (72 x 72 DPI)  

 

 

Page 38 of 49

http://mc.manuscriptcentral.com/cem

Journal of Chemometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 6: The Bread dataset images  
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Figure 7: The features reduction (Analysis) step for ct-MIA approach. PCA model built on SimSetA from left 
to right in the order: scores image, loadings, projected scores images from SimSetB and SimSetC, 

respectively.  
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Figure 8: 2D WT-MIA approach. Decomposition blocks for level 1 by using Daubechies 1 (db1) wavelet filter 
and DWT scheme. In the order, from left to right, Approximations (CA), Horizontal (CH), Vertical (CV) and 
Diagonal (CD) details, respectively. Top) SimSetA; middle) SimSetB and bottom) difference (pixel by pixel) 

between SimSetA and SimSetB; small squares (green on on-line version) highlight location of the defective 
pixels.  
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Figure 9: Figure 8: 2D WT-MIA approach. Decomposition blocks for level 1 by using Daubechies 1 (db1) 
wavelet filter and SWT scheme. In the order, from left to right, Approximations (CA), Horizontal (CH), 

Vertical (CV) and Diagonal (CD) details, respectively. Top) SimSetA; middle) SimSetB and bottom) 

difference (pixel by pixel) between SimSetA and SimSetB; small squares (green on on-line version) highlight 
location of the defective pixels.  
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Figure 10: Differences (normal minus defective) among residuals sum of squares (RSS) images for ct-MIA 
approach (left) and differences among Approximations images from WT-MIA approach (right). Figure 10a 

(top). SimSetA (normal) minus SimSetB (defective). Figure 10b (bottom) SimSetA minus SimSetC.  
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Figure 11: On the right: ct-MIA loadings for BNdataset, as bar plot (top) and as image plot (bottom); on the 
left WT-MIA loadings (top) and WT images for each decomposition block that it is most contributing to the 
loadings:  Approximations from level 1 to 3 contributing to PC1; Horizontal details, level 3, contributing to 

PC2; Vertical details level 1 and 3 contributing to PC3 and Vertical details level 2 contributing to PC4.  
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Figure 12: (a) Defects detection for BNdataset, from left to right the three defective images BND01, BND02 
and BND03, respectively. On top defective images with defect encircled. Middle T2-chart obtained by WT-

MIA (daubechies 1, level 3, DWT scheme). Bottom T2-chart obtained by ct-MIA (w = 2).  
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Figure 12: (b) On top normal images; Middle T2-chart obtained by WT-MIA (Daubechies 1, level 3, DWT 

scheme). Bottom T2-chart obtained by ct- � �MIA (w = 2).   
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Figure 13: Results of local entropy analysis on scores images of normal and defective images for BNdataset. 
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Figure 14: Bread datas set: T2-chart images (from left to right  SWT,  DWT and ct-MIA) for defective images 
compared with raw images.  
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Figure 15: Bread data set, D04 image. T2-chart and contribution plot for some of the pixels highlighted as 
defective (also shown on the raw image), for clarity only the Approximation block, whose T2-contribution is 

the most relevant, is shown (each curve represent a decomposition level) on the x-axis are reported the 
spectral channels.  
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