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Abstract

A local dyshomeostasis of zinc ions in the vicinity of amyloid aggregates has been proposed 
in Alzheimer’s disease (AD) due to the sequestration of zinc in senile plaques. While an 
increase in zinc levels may promote the aggregation of amyloid beta (Aβ), increased brain 
zinc might also be beneficial rescuing some pathological alterations caused by local zinc 
deficiency. For example, increased Aβ degradation by metalloproteinases, and a reduction in 
inflammation can be hypothesized. In addition, zinc may allow a stabilization of the number 
of synapses in AD brains. Thus, to evaluate whether altering zinc-levels within the brain is a 
promising new target for the prevention and treatment of AD, we employed novel zinc loaded 
nanoparticles able to deliver zinc into the brain across the blood-brain barrier. We performed 
in vivo studies using wild type (WT) and APP23 mice to assess plaque load, inflammatory 
status and synapse loss. Furthermore, we performed behavioral analyses. After chronically 
injecting these nanoparticles for 14 days, our results show a significant reduction in plaque 
size and effects on the pro-inflammatory cytokines IL-6 and IL-18. On behavioral level we 
could not detect negative effects of increased brain zinc levels in APP23 mice and treatment 
with g7-NP-Zn normalized the observed hyperlocomotion of APP23 mice. Therefore, we 
conclude that a targeted increase in brain zinc levels may have beneficial effects in AD.

Keywords: blood brain barrier, Alzheimer, drug delivery, Nanoparticle, Zn2+, amyloid 
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Introduction

A neuropathological hallmark of Alzheimer’s disease (AD) is the formation of amyloid 
plaques [1]. The amyloid beta (Aβ) peptide is able to aggregate and generate fibrils that are 
deposited to form these plaques [2,3], which exhibit neurotoxicity via increase of oxidative 
stress and alteration in cellular processes [4].
Altered levels of trace metals are associated with pathological events in neurodegenerative 
diseases [5,6]. Specifically, zinc-deficiency causes alterations in brain function and cognition 
[7]. Zinc is highly concentrated in the Aβ plaques, for example shown in post mortem brain 
samples and also in AD transgenic mouse models [8]. 
Aβ plaques act as a metal sink causing zinc ions to reach abnormally high concentrations with 
depleted levels in the surrounding vicinity [8]. This zinc-ion sequestration by Aβ leads to 
decreased synapse density [9], and increased expression of pro-inflammatory cytokines. 
Therefore, local zinc deficiency may lead to activation of microglia and astrocytes resulting in 
cell death and neuroinflammation [10-12]. 
Zinc levels in the brain are tightly maintained [13] due to the blood-brain barrier (BBB) 
impermeability of the ion. Studies indicate that zinc traverses the plasma membranes on the 
luminal surface of the endothelial cells within the BBB [14-16]. As a hydrophilic and charged 
ion, transporters are therefore needed that restrict uptake. Although in vitro studies have 
shown that low levels of zinc

 
induce protease-resistant aggregation of Aβ [11], Aβ 

degradation involves metalloproteinases, which need zinc ions for proper function [12]. It is 
thus necessary to understand the consequences of varying levels of zinc on the pathology of 
AD. However, few methods so far have been available to reach a fast and significant increase 
in brain zinc.

Previously, we examined the ability of zinc-loaded polylactide-co-glycolide (PLGA) 
nanoparticles (NPs), with a glycopeptide consisting of 7 amino acids (g7), to cross the BBB 
[17]. These modified NPs were shown to effectively transport therapeutic agents across the 
BBB [18], and demonstrated increased brain zinc levels post-injection [19]. Therefore, these 
NPs are a non-invasive, non-toxic and time-efficient method to selectively enrich brain zinc 
levels [19,20]. 
Here, we performed chronic application of zinc-loaded NPs in wild-type and APP23 mice. 
We evaluated the effect zinc-loaded NPs have on plaque load, inflammation and synapse 
stability, as well as plaque amount, plaque area, and zinc concentration. Further, behavioral 
analyses were performed to assess activity, anxiety and cognition of treated mice.

Material and Methods

Materials, chemicals and reagents
Poly(D,L-lactide-co-glycolide) (PLGA,RG503H, MW near to 11,000) was used as received 
from the manufacturer (Boehringer-Ingelheim, Ingelheim am Rhein, Germany). Gly-L-Phe- 
D-Thr-Gly-L-Phe-L-Leu-LSer(O-β-D-Glucose)-CONH2 (g7) was prepared as described 
previously and conjugated with PLGA to obtain g7-PLGA [17,20-23]. The PLGA 
derivatization - yield was confirmed by NMR, from the relative peak area of the signals at 
7.2–7.5 ppm, and of the multiplet at 1.80–1.60 ppm corresponding to the aromatic protons of 
the Phe and protons of the methyl groups of the polymer, respectively, and was found to be in 
the range of 30–40 μmol peptide/g of polymer. Zinpyr-1 was purchased from Sigma Aldrich 
and Santa Cruz. Primary antibodies were purchased from Merck Millipore (Aβ1-42 and OC), 
and Synaptic Systems (Bassoon). Alexa Fluor conjugated secondary antibodies were from 
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Invitrogen. Secondary HRP conjugated antibodies were purchased from Dako. A MilliQ 
water system (18MΩ) (Millipore, Bedfrod, USA) provided distilled high-purity water. Unless 
otherwise indicated, all other chemicals were of analytical grade and obtained from Sigma-
Aldrich (Milan, Italy).

Nanoparticles preparation and characterization
NPs were prepared as described in the literature [24] with some modifications in the 
preparation procedure. For the formulation of g7-NPs-Zn , ZnSO4 (350 mg) was dissolved in 
distilled water (0.5 ml) and emulsified by sonication over an ice-bath using a probe sonicator 
(Misonix, MicrosonTM Ultrasonic Cell Disruptor XL, Opto-lab, Concordia, Mo, Italy) at 80 
W output for 45 s with a polymeric solution in dichloro-methane (DCM, 2.5 ml), containing a 
mixture of PLGA 503 H and g7-PLGA (80:10 w/w). The resulting primary emulsion was 
added to distilled water (5 ml) containing 1% w/v polyvinyl alcohol (PVA, 15000 MW, 
Sigma- Aldrich) and sonicated for 45 s at 80 W amplitude over an ice-bath to form the double 
emulsion. Double emulsion was diluited with 3 ml of distilled water containing 1% w/v of 
PVA and stirred at room temperature (RT) (1,400 rpm) until the organic solvent was removed 
(at least 1 h) and finally purified by high-speed refrigerated centrifugation (Beckman J21) at 
14,000 rpm for 10 min. 
To obtain unloaded NPs (g7-NPs) used as control, we applied the same procedure without 
adding ZnSO4 to the hydrophilic phase. All batches of the NPs were characterized in terms of 
their surface, chemico-physical, and morphological properties. In particular, for surface 
properties (size and surface charge), NPs suspended in distilled water were analyzed by 
photon correlation spectroscopy (PCS) and laser Doppler anemometry using a Zetasizer Nano 
ZS (Malvern, UK; Laser 4 mW He–Ne, 633 nm, Laser attenuator Automatic, transmission 
100% to 0.0003%, Detector Avalanche photodiode, Q.E. > 50% at 633 nm, T = 25°C). The 
results were normalized with respect to a polystyrene standard solution. 
To evaluate the shape and morphology of NPs, a scanning electron microscope (SEM) (XL-
40; Philips, Eindhoven, Netherlands) operating at 8 kV was used. NPs were re-suspended in 
distilled water after washing at least thrice with water. A drop of the suspension was placed 
onto the SEM sample holder and dried under vacuum (10–2 mmHg). The dried samples were 
coated with gold palladium with a thickness of 10 nm (Emitech K550 Super Coated; Emitech 
Ltd, Ashford, Kent, UK) under argon atmosphere to increase electrical conductivity. The NPs 
were then processed for the evaluation of their morphology and shape by analyzing images at 
different magnifications (13,000× to 16,000×). 

Evaluation of zinc content
To determine the Zn2+ content, an exact amount of NPs (10 mg) loaded with ZnSO4 (g7-NPs-
Zn) were dissolved in DCM (1 ml), and MilliQ water (5 ml) was added to the organic 
solution. The organic solvent was removed by stirring at RT for at least 3 h, and finally the 
aqueous solution was filtered through a syringe filter (cellulose acetate, 0.45 µm) to remove 
water-insoluble polymer. The final volume of the aqueous solution was adjusted to 50 ml with 
distilled water. This final aqueous solution was analyzed using atomic absorption 
spectrophotometry.

Evaluation of zinc - release from NPs
The release of Zn2+ from loaded NPs samples was assessed by means of dialysis method as 
reported before [19]. Briefly, a weighted sample of NPs (1 mg) was suspended in distilled 
water and placed in a dialysis membrane (Spectra/Por 7 MWCO:10000) of 5 cm length. The 
membrane was maintained under stirring in a receiving environment (distilled water or  
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phosphate buffer pH 7.4) at 37°C. At established time points, samples were retrieved for 
complexometric analysis. All data were obtained in triplicate for each NPs sample analyzed. 

Evaluation of PVA residual
As residual PVA associated with NPs could affect their physical properties and cellular 
uptake, the amount of PVA was determined by a colorimetric method based on the formation 
of a colored complex between two adjacent hydroxyl groups of PVA and an iodine molecule. 
Briefly, freeze-dried samples (5 mg) were solubilized in DCM (1 ml). Then, distilled water (2 
ml) was added and the organic solvent was evaporated at RT under stirring (for 2 h). The 
suspension was filtered (cellulose nitrate filter, porosity 0.45 μm, Sartorius, Florence, Italy) to 
remove the polymeric residue, and the aqueous solution (1 ml) was treated with 0.5 M NaOH 
(2 ml) for 15 min at 60°C. The solution was neutralized with 1 N HCl (900 μl) and the 
volume adjusted to 5 ml with distilled water. Then, a solution of 0.65 M boric acid (3 ml), 
I2/KI (0.05 M/0.15 M, 0.5 ml), and distilled water (1.5 ml) was added. PVA concentration 
was determined by measuring the absorbance at 690 nm after 15 min of incubation at RT and 
compared to a standard plot of PVA prepared under the same experimental conditions.

Animals
18 month-old mice, Mus musculus, strain C57BL/6 and APP23 (maintained on the same 
background) of both genders were used. The animals were housed in plastic cages with 
stainless steel mesh lids under the standard laboratory condition with temperature 22-24°C, 
food and water available ad libitum, humidity 55% +/- 10% and 12/12 h light/dark cycle 
(lights on at 7 AM). The weight of the animals was 25 - 30g. APP23+/-  and wild type received 
two daily i.p. injection of exact amounts of NPs or saline, one during the morning and the 
second during the evening, for 14 consecutive days. All animal experiments were performed 
in compliance with the guidelines for the welfare of experimental animals issued by the 
Federal Government and approved by the local ethics committee of the University of Modena 
and Reggio Emilia. Mice were divided into groups (n=7 for WTSaline, APPSaline, WTg7-NPs, n=6 
for APPg7-NPs, n=18 for WTg7-NPs-Zn, WTg7-NPs-Zn) and males and females analysed. As no 
gender specific effects were detected, data for both genders was pooled.

Behavioral analysis
In this study, three behavioral tests were performed in the following order: Open field (OF), 7 
d after first treatment, elevated plus maze (EPM) on day 10, fear conditioning (FC) on days 
13-14. All tests were performed 3 hours after the first daily injection of NPs or saline. 
OF test: the OF test was performed in an arena of 50 x 50 cm with dark walls and floor and 
virtually divided by software in a peripheral area located 10 cm from the wall and a 30x30 cm 
central area and further subdivided into virtual squares. The animal was placed at the center of 
the arena. Behavior was recorded for 10 min using a camera positioned above the OF and 
connected to an ANY-MAZE video tracking system. For behavioral analysis, the entries from 
peripheral to central area and the transitions between virtual squares were evaluated. After 
each test, the arena was cleaned with 70% ethanol to avoid the presence of olfactory stimuli 
related to the previous animal.
EPM test: the EPM was performed in an apparatus with two open arms and two closed arms, 
lifted 70 cm from the floor. The test started by placing the animal in the center of the maze 
with the head turned towards the closed arm. The animal was allowed to freely explore the 
apparatus for 5 min and the performance was recorded by the ANY-MAZE video tracking 
system. The number of entries and the time spent in the open and closed arms were 
considered. After each test, the apparatus was cleaned with 70% ethanol to avoid the presence 
of olfactory stimuli related to the previous tested animal. 
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FC test: in this study, FC was performed as previously described [25,26]. Briefly, mice were 
transferred into an acoustically isolated (23 x 22 x 24 cm) conditioning chamber with walls 
and ceiling in grey Plexiglas and a floor consisting of stainless steel bars connected with a 
device able to produce an electrical shock. After a period of initial acclimatization of 2 min, 
the animal was subjected to 3 foot shocks (0.5 mA, 2 s) separated by 2 min of rest and the 
mice were removed from the chamber 30 s after the last shock. Approximately 24 h after 
conditioning, mice were tested for contextual conditioning. Mice were placed in the 
conditioning chamber for 5 min and freezing behavior was scored. Freezing was scored using 
a time sampling procedure in which every 10 s a determination was made whether or not mice 
showed the freezing behavior. Freezing was defined as the absence of all movement except 
for respiration for a minimum of 1 s. After each test, the chambers were cleaned with 70% 
ethanol to avoid the presence of olfactory stimuli related to the previous animal. 

Histochemistry
Brain sections (14 μm thickness) were prepared from frozen using a cryostat (Leica CM 
3050S) with the knife set at -23°C. Three sections of the brain of the same animal were 
collected on one microscope slide. For staining, the slices were fixed with PFA/4% Sucrose 
for 20 min at RT. After washing 3x 5 min with 1x PBS, incubation with Triton 0.2% in 1x 
PBS for 1 h at RT was followed by incubation with Triton 0.05% for 10 min at RT. 
Subsequently, the slides were covered with Blocking Solution (BS: 10% FCS in PBS) for 2 h 
at RT. The primary antibody was diluted in BS and applied over-night at 4°C. The next day, 
incubation for 10 min with Triton 0.05% at RT was followed by incubation with the 
secondary antibody coupled to Alexa488, diluted 1:500 in BS, at 37°C for 2 h. After a 3x 15 
min washing-step with Triton 0.05% and 1x 5 min with 1x PBS, cell nuclei were 
counterstained with DAPI and after the last washing step with 1x PBS for 5 min, cover slips 
were mounted using Vecta Mount (Vector Laboratories).
Zinpyr-1 staining was performed at a final concentration of 10 �M and incubation time of 1 h 
at RT. Sections were counterstained with DAPI and mounted with Vecta Mount (Vector 
Laboratories).
For Thioflavin S staining, sections were thawed for 20 minutes at RT. After fixation with 4% 
PFA for 20 minutes sections were washed with 80%, 70% and 50% EtOH for 1 min each and 
stained with Thioflavin S (0.1% dissolved in 50% EtOH) for 25 min. Afterwards, they were 
washed with 50%, 70% and 80 % EtOH for 1 minute each. After counterstaining with DAPI, 
sections were washed with ddH2O and mounted with Vectamount.

Protein biochemistry
Dot blot analysis was performed using a PVDF membrane wetted with 100% methanol. The 
membrane was incubated with transfer buffer for 2-3 min and protein lysate spotted on and 
incubated overnight. Subsequently, the membrane was washed 2x with TBST buffer 0.05% 
and blocked with TBS containing 5% non-fat dry milk for 30 min at RT on a shaker, followed 
by application of the primary antibody for 2 h at RT on a shaker. After washing 4 times for 5 
min each with TBST buffer 5%, incubation with secondary HRP antibodies was performed 
for 1 h at RT. Immunoreactivity was visualized using the SuperSignal detection system 
(Pierce, Upland, USA) and blots imaged using a MicroChemi Imaging System from Biostep. 
3 µg protein were loaded onto membranes and loading was controlled using Ponceau S 
staining. Immunoreactive signals were normalized to Ponceau S signals performing 
quantification of signals with ImageJ.

Quantitative Real-time PCR
Isolation of total RNA from mouse brains per group was performed using the AllPrep 
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RNA/Protein kit (Qiagen) as described by the manufacturer. The  protocol was followed until 
step 6. Then, the APL buffer (Qiagen) was added and the Sonicator SonoPlus used 3x for 10 s 
each. The homogenate was loaded on a QIAshredder spin column (Quiagen) and centrifuged 
at 10000 rpm for 3 min. The flow-through was collected and the RNA/Protein isolation 
continued at step 10 of the protocol. mRNA was obtained and the concentration and purity 
measured with a NanoDrop 2000 UV-Vis Spectrophotometer. 
Quantitative RT-PCR amplification was carried out in a one-step, single-tube format using the 
QuantiFast SYBR Green RT-PCR kit and a Rotor-Gene-Q real-time PCR machine (model 2-
Plex HRM) (Qiagen). The qRT-PCR was assayed in 0.1 ml strip tubes with a total volume of 
20 μl reaction mixture containing 1 μl of undiluted (normalization: Dilution to the lowest 
concentration 758.6 ng/µl) RNA, 2 μl of QuantiTect Primer Assay oligonucleotides, 10 μl of 
2x QuantiFast SYBR Green RT-PCR Master Mix supplemented with ROX (5- carboxy-X-
rhodamine) dye, 6.8 μl of RNase-free water and 0.2 μl of QuantiFast RT Mix. The following 
primer were used: Il-6 (Mm_Il6_1_SG; #QT00098875), Il-10 (Mm_Il10_1_SG; 
#QT00106169), Il-18 (Mm_Il18_1_SG; #QT00171129), Tnf (Mm_Tnf_1_SG; 
#QT00104006), Hmbs (Mm_Hmbs_1_SG; #QT00494130). Amplification conditions were as 
follows: 10 min at 55°C, 5 min at 95°C, followed by 40 cycles of PCR for 5 s at 95°C for 
denaturation, 10 s at 60°C for annealing and elongation (one-step). The SYBR Green I 
reporter dye signal was measured against the internal passive reference dye (ROX) to 
normalize non-PCR-related fluctuations. Resulting data were analyzed utilizing the 
hydroxymethylbilane synthase (Hmbs) gene as an internal standard. Cycle threshold (ct) 
values were calculated by the Rotor-Gene-Q Software (version 2.0.2). All qRT-PCR reactions 
were run in triplicates and mean ct values for each reaction were taken into account for data 
analysis. A melting curve was obtained for the amplicon products to determine their melting 
temperatures. 

Measurement of Zn2+ concentrations
The zinc-concentration of brain tissue was measured by atomic absorption spectrometry 
(AAS) at the Department of Clinical Chemistry (ZE klinische Chemie) of the University 
Hospital Ulm. Samples for ASS were prepared by homogenizing tissue in Buffer A (320 mM 
sucrose, 5 mM HEPES pH 7.4). Proteinase K was added to the crude homogenate and 
incubated at 37°C for 1 h. The cell debris and blood cells were removed by centrifugation at 
3,200 rpm for 10 min at RT. The supernatant was collected and analyzed by AAS.

Statistics
Fluorescence images were obtained using an upright Axioscope microscope equipped with a 
Zeiss CCD camera (16 bits; 1280x1024 ppi) using Axiovision software (Zeiss) (Zinpyr1 
staining) and a LSM 710 confocal microscope from Zeiss with ZEN 2011 software. Analyses 
were performed with ImageJ 1.51a. For the analysis of plaque load, three images of the cortex 
for each sample were obtained in a five-fold magnification. The number and the area of the 
plaques were measured and the number of plaques per square pixel was calculated. 
Statistical analysis was performed with SPSS version 20. Data are shown as mean ± SEM. 
Groups were compared using two-way ANOVA and post-hoc Bonferroni analysis was 
performed. The level of significance was set at 0.05 (<0.05*; <0.01**; <0.001***).
qRT PCR quantification – Relative quantification is based on internal reference genes to 
determine virtual mRNA levels of target genes. Cycle threshold (ct) values were calculated by 
the Rotor-Gene Q Software (version 2.0.2). Ct values were transformed into virtual mRNA 
levels according to the formula: virtual mRNA level = 10 * ((ct(target) – ct(standart)) / slope of 
standard curve).
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Results and Discussion

Currently, there is no cure for AD. However, since the formation of plaques made of Aβ 
peptide is at the center of AD pathology, one interesting strategy of treatment could be the 
reduction of the number of these aggregates and with this the normalization of processes 
affected by plaque formation. One of these processes is zinc homeostasis. The sequestration 
of zinc within Aβ plaques decreases the availability of zinc affecting its physiological 
functions in the brain. For this reason, models predict that an increase of bioavailable zinc in 
the brain could overcome the losses caused by zinc binding to Aβ. However, as the 
sequestration of zinc in plaques might not induce a systemic zinc deficiency and zinc is rather 
mislocalized than decreased in general, an important obstacle to zinc enrichment is 
represented by the BBB and its tight selectivity. However, new nanotechnological drug 
delivery systems are available to allow zinc passage through the BBB [19]. 

Here, we studied PLGA-based NPs loaded with zinc and labeled with a glycopeptide, 
consisting of 7 amino acids for BBB crossing. Polymer-based NPs are the most widely used 
nanotechnology for drug delivery because these compounds are normally biodegradable, they 
do not accumulate in the body, and they are relatively risk-free [27]. Currently, some few 
polymers guarantee the safety of nanocarriers, among them PLGA, which is therefore one of 
the most promising polymers for the preparation of NPs [28].

Nanoparticle characterization and mouse model
NPs (g7-NPs and g7-NPs-Zn) were characterized in their chemical–physical properties 
(Figure 1A-C). All samples, independent of loading, were featured by the hydrodynamic 
diameters (Z-Average) around 200-220 nm and relatively narrow size distributions 
(polydispersivity, PDI<0.15), favorable for a systemic administration. Surface charge 
expressed as Z-pot was negative accordingly to the exposure of carboxylic group of the 
polymer. 
The loading capacity (L.C.) was approximately 7% corresponding to 72 μg of Zn/mg of g7-
NPs-Zn. As expected, Zn release from NPs, tested over time in different pH solutions, 
resulted always in extremely rapid release completed over 2 hours (Fig. 1C) due to the 
chemical MW and properties of Zn, which is very difficult to keep entrapped into the 
polymeric matrix. However, previous studies show that NPs rapidly enter the brain [17,21] 
even within 5-20 min, with peak accumulation in the CNS around 60-120 min after 
application. As we have also shown that g7-NPs-Zn significantly increase brain Zn levels 3 
hours after injection in contrast to injection of Zn solution [19], we conclude that within this 
timeframe, g7-NPs are able to transfer Zn across the BBB and produce a very quick release 
within the CNS compartment. 

The animals used in this work were 18 month-old heterozygous APP23+/- transgenic mice 
(APP23) and wild-type (WT) APP23-/-. The APP23 mouse model is a well-described model 
for AD [29] that develops amyloid plaques and amyloid pathology as seen in human AD with 
neurodegeneration [30]. After injections, animals treated with g7-NPs-Zn received a total of 
392 µg Zn. Injection of Zn solution and NPs-Zn in comparision to g7-NPs was performed 
before [19]. Zn solution did not significantly increase brain Zn levels, and NPs-Zn lead to 
slightly lesser increase compared to g7-NPs-Zn. Therefore g7-NPs-Zn were chosen here. As 
reported previously [19], we observed sleepiness directly after injection of Zn-g7-NPs lasting 
not more than 1 hour. 3 hours after administration of NPs-Zn, we found a significant increase 
of Zn levels in brain (assessed by ICP-MS) of about 20% with respect to injection of saline 
solution [19].
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A second measurement of the lysate of the right hemisphere of mice after chronic 
administration and behavioral experiments using AAS did not show a significant increase in 
zinc concentration after treatment with g7-NP-Zn (Fig. S1A). It is likely that after 
administration, zinc is rapidly released from NPs but compensatory mechanism in the brain 
might reduce zinc levels back to normal some time after the last administration. Given that the 
analysis was performed after the last dose of g7-NP-Zn, brain zinc levels were already 
normalized. Thus, in the following experiments, we investigated whether lasting changes 
related to the AD pathology occurred. WT and APP23 mice were treated with saline solution 
as control condition, with g7-NPs to observe any effects of the NPs, and with g7-NP-Zn to 
study the action of zinc. After behavioral experiments, we evaluated inflammation, synapse 
density and the effects of zinc on Aβ plaques. 

Reduced plaque size in animals treated with zinc-loaded nanoparticles
Amyloid-related degenerative diseases are associated with the accumulation of misfolded 
proteins as amyloid fibrils in tissue. To visualize the plaques in the cortex of APP23 mice, 
brain sections of the right hemisphere were stained using an anti-Aβ antibody. The mean 
plaque area and the number of plaques per square pixel in frontal cortex were measured and 
quantified (Fig. 2A-C). As expected, none of the WT animals showed plaques. In the APP23 
animals, between the groups treated with saline and g7-NP-Zn, and g7-NP and g7-NP-Zn, a 
significant difference was detected. The mean plaque area was significantly decreased after 
treatment with g7-NP-Zn (Fig. 2A). The number of plaques per area, however, was unaffected 
(Fig. 2C). We repeated the experiments using Thioflavin as alternative method to visualize 
plaques (Fig. 2D,E). We could confirm a significant reduction in plaque area in APP23 mice 
treated with g7-NP-Zn compared to saline and g7-NP-treated mice. The number of plaques 
per area in the same group was not significantly (p = 0.13) reduced (Fig. 2D).

Aβ accumulates in different types of insoluble plaque deposits, intracellular Aβ and soluble 
oligomers. Conformation-dependent antibodies specifically recognize distinct assembly states 
of amyloids, including prefibrillar oligomers and fibrils. The OC antibody is able to recognize 
fibrillary oligomers that are immunologically distinct from prefibrillar oligomers recognized 
by the anti- Aβ antibody used before [31]. To verify the results obtained, we performed 
protein biochemistry using protein lysate from cortex of APP23 and WT mice. Dot Blot 
analysis using the OC antibody did not shows any significant change in fibrillary oligomers in 
APP23 mice injected with g7-NP-Zn (Fig. 2F) compared to Saline and g7-NP injected mice. 
The zinc content of plaques was not significantly altered. Amyloid plaques were visualized 
with Zinpyr-1 [9] and no change in Zinpyr-1 signal intensity was detected. Measuring plaque 
area and number, we obtained similar results as those seen using anti- Aβ antibody staining 
showing a significant decrease in plaque area, but not number of plaques, between saline 
injected APP23 controls and APP23 mice treated with g7-NP-Zn (Fig. 3A-B).
The detected alterations in plaque size were less pronounced in the hippocampus (Fig. S1B). 
Using Thioflavin to visualize plaques we could not detect any significant reduction in plaque 
area or number per area in APP23 mice treated with g7-NP-Zn in the hippocampus (Fig. 
S1B).

A reduction of plaque area may be caused by both disassembly / degradation of Aβ 
aggregates and slowed down aggregation. The duration of treatment however favours a model 
of degradation. The absence of significant changes in the number of plaques per square pixel 
may be due to the fact that the treatment started at an age when plaques had already formed in 
APP23 mice [32]. Therefore, it might be worth investigating the effect of g7-NP-Zn on the 
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prevention of plaque formation in future studies. Additionally, it might be possible that 
treatment for a longer period of time or with different concentrations of NPs will also affect 
the number of plaques present in the brain. Further, we did not detect a decrease in plaque 
size in the hippocampus. As zinc levels reached a high concentration in the hippocampus 
under physiological conditions, additional delivery of zinc using NP may have a less 
pronounced effect there. In addition, NP distribution and alternative expression of zinc 
dependent proteins such as matrix metalloproteinases may account for differences across 
brain regions.

Zinc levels correlate with levels of IL-6 and IL-18 and zinc loaded nanoparticles alter 
inflammatory markers in APP23 animals 
Biochemical and neuropathological studies of brains from individuals with AD provide 
evidence for an activation of inflammatory pathways [33]. Genetic studies using mice 
confirmed that inflammatory cytokines have potent effects on amyloidosis, 
neurodegeneration, and cognition. These proteins can strongly activate glial cells and induce 
neuroinflammation. Therefore, we evaluated the action of increased levels of zinc in the 
brains of APP23 mice on inflammation. For this reason, the expression levels of IL-6 and IL-
18, pro-inflammatory cytokines, IL-10, an anti-inflammatory cytokine, and TNF1, an 
inflammatory cytokine that mediates local and systemic inflammation, were quantified in 
mouse brain tissue (Fig. 4).

As expected, APP23 mice treated with saline solution or empty g7-NPs showed higher levels 
of pro-inflammatory cytokines compared with the corresponding group of WT mice. Despite 
large individual differences, our results show increased levels of IL-6 in APP23 mice 
compared to WT mice (Fig. 4A). The levels of IL-6 significantly decreased in APP23 animals 
treated with NPs loaded with zinc compared to the mice injected with empty NPs (Fig. 3A). 
However, the absence of a clear inflammatory phenotype in APP23 mice interfered with the 
subsequent assessment of beneficial effects of zinc delivery regarding neuro-inflammation. 
Treatment with g7-NPs-Zn had no significant effect on WT animals. 

IL-18 is a pro-inflammatory cytokine, able to induce the amyloidogenic processing of APP 
[34]. Furthermore, an increased level of total- RNA and protein of IL-18 was reported in AD 
patients [35]. For IL-18, similar levels of IL-18 were found in APP23 mice compared to WT 
mice (Fig. 4B), but a significant decrease of this cytokine was detected in APP23 mice 
injected with g7-NP-Zn compared to APP saline injected animals and APP23 mice injected 
with empty NPs (Fig. 4B). Again, the treatment with g7-NP-Zn had no effect on WT mice.

TNF is another important pro-inflammatory cytokine upregulated in AD patients [36]. Here, 
we measured the mRNA level of TNF-1, but could not observe significant differences 
between APP and WT mice treated with loaded and unloaded NPs, and no correlation with 
brain-zinc levels (Fig. 4C). None of the differences in TNF-1 measured between groups and 
treatment conditions was significant possibly due to high inter-individual differences of 
APP23 mice.

IL-10 is an anti-inflammatory cytokine able to limit inflammation through different 
mechanisms: reducing the synthesis of pro-inflammatory cytokines, such as IL- 1 and TNF-α, 
suppressing cytokine receptor expression, and inhibiting receptor activation in the brain. The 
level of IL-10 was found similar in saline-injected APP23 mice compared to WT mice and 
higher in g7-NP injected APP23 mice compared to WT g7-NP-injected mice (p = 0.015). The 
groups treated with g7-NP-Zn, both in WT (p = 0.0074) and APP23 (p = 0.55) mice showed 
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an increase in anti-inflammatory IL-10 (Fig. 4D). Thus, an increase in brain zinc seems to 
alter IL-10 levels independent from the presence of an AD pathology. Taken together, these 
results might suggest that g7-NP-Zn are able to decrease pro-inflammatory responses and 
increase anti-inflammatory cytokines, counteracting inflammatory processes. However, more 
research is needed in future.

Given the variability of individuals within the analyzed groups, we performed a correlation 
analysis of the measured parameters based on measured values for each individual. We could 
not detect a significant correlation between brain zinc concentration and plaque load in 
APP23 mice or a significant correlation between plaque load and levels of IL-6, IL-18, TNF-
1, and IL-10. However, we detected a significant correlation between brain zinc levels and the 
expression of IL-6 and IL-18, both cytokines that showed significant response to g7-NP-Zn 
treatment (Fig. 4E,F). This correlation was particularly pronounced in the group treated with 
g7-NP-Zn. This correlation was absent in WT mice, and no correlation between zinc levels 
and IL-10 or TNF-1 was detected. Our data suggest that the higher the zinc level in the brain 
of a mouse, the lower may be the expression of the pro-inflammatory cytokines. In particular, 
the correlation is visible in APP23 mice, possibly due to the presence of neuro-inflammation 
which, however, was hard to detect on population level. However, we have analysed total zinc 
levels rather than chelatable zinc, which may mask some correlations.

Zinc levels correlate with synapse density in APP23 mice
Synaptic plasticity is important for memory and learning, and persistent disruption of 
plasticity or loss of synapses may explain the cognitive decline in later phases of AD. A loss 
of synaptic contacts in AD appears to be an early event in AD pathogenesis [37]. 
Quantification using electron microscopy or immunohistochemical staining for synaptic 
markers has documented significant decreases of synaptic density in AD patients [38,39]. 
Also, it has been shown that APP23 mice display dendrite degeneration and synapse loss [40].  

Thus, in a further set of experiments, we measured and quantified the number of synapses 
after treatment, especially since zinc plays an important role in synaptic plasticity [41], and it 
was shown that zinc sequestration by Aβ causes a SHANK3-dependent loss of synapses that 
could be rescued by zinc supplementation in vitro [9]. Thus, brain sections were stained for 
Bassoon, a protein localized at the pre-synaptic nerve terminal and involved in the structural 
and functional organization of the pre-synaptic active zone of inhibitory and excitatory 
synapses (Fig. 5A,B). No significant change in synapse density was detected between the 
different treatment groups (Fig. 5A). We again performed a correlation analysis of the 
measured parameters based on measured values for each individual. The concentration of zinc 
showed a significant correlation with the number of synapses per area selectively in APP23 
mice across all groups (Fig. 5C). However, these results are hard to interpret as there is an 
absence of a clear phenotype in the APP23 mice when treated with g7-NP-Zn.

Several mechanisms might be responsible for beneficial effects of increased zinc levels 
regarding synapse density. For example, it was shown in vitro that the presence of Aβ acts as 
a sink for zinc ions, depleting zinc-dependent synaptic scaffold proteins of the SHANK 
family of zinc that is needed for PSD platform formation [42,9,43]. In addition, increased 
levels of zinc may lead to increased levels of brain-derived neurotrophic factor (BDNF) [44], 
which in turn promotes synapse formation [45,46]. Further, a reduction of oxidative stress by 
rescuing local zinc deficiency may have beneficial effects on cell survival and ultimately 
synapse density [47]. Interestingly, in APP23 mice but not in WT mice, we found a clear 
correlation between the brain-zinc levels of an individual and the number of synapses in 
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cortex brain tissue. This was found across all treatment groups. Therefore, while the limited 
number of animals studied possibly prevented the demonstration of the expected loss of 
synapses in saline-treated APP23 mice in present experiments, our data indicate that, 
irrespective of zinc delivered by zinc-loaded NPs, differences in brain zinc concentration may 
have influence on synapse density in aged APP23 mice, and point to the therapeutic 
importance of pursuing brain zinc supplementation in AD.

Reduced hyperlocomotion in APP23 mice treated with g7-NP-Zn 
Cognitive impairment is the main clinical feature of AD. Other common behavioral 
symptoms include increased anxiety, depression, a decrease of initiative and interest, and 
disinhibition [48]. In addition, locomotor deficits may occur. Hyperlocomotion associated 
with behavioral disinhibition has been reported in tg2576 mice, a mouse model for AD [49]. 
To evaluate possible effects of treatment with g7-NP-Zn at behavioral level, we performed 
behavioral tests using WT and APP23 mice after chronic treatment with saline, g7-NP and 
g7-NP-Zn. 
First, to evaluate whether alterations in locomotor activity are present, an OF test was 
performed. As a measure of locomotor activity we considered the total number of transitions 
between the virtual squares of the OF (Fig. 6A). Two-way ANOVA showed a significant 
increase in locomotion in APP23 mice compared to WT mice. Post-hoc comparisons showed 
that a significant difference between genotypes was present in saline and g7-NP treated mice, 
but treatment with g7-NP-Zn normalized the observed hyperlocomotion of APP23 mice (Fig. 
6A). We also considered a second parameter of OF test, i.e., the number of entries from 
external to internal area (Fig. 6B). Two-way ANOVA showed a significant increase in entries 
towards internal area in APP23 mice with respect to WT mice that was independent from 
treatments.

Secondly, in the EPM test, a test performed in an apparatus consisting of two open and two 
closed arms, no significant genotype-related change in anxiety like behavior (open arm 
entries/total entries) was found in APP23 mice compared to WT mice (Fig. 6C). Treatment 
with g7-NP or g7-NP-Zn showed no significant effect on anxiety like behavior (Fig. 6C).
Additionally, no significant genotype-related changes in contextual FC test, one of the most 
used models for studying associative memory depending upon hippocampal function [50] 
were observed (Fig. 6D). Treatment with g7-NP or g7-NP-Zn showed no significant effect on 
associative memory (Fig. 6D).

The limited effects of g7-NP-Zn treatment in present behavioral tests was mostly due to the 
absence of significant differences between WT and APP23 mice in general. To ensure that 
APP23 mice had a full pathology (inflammation and plaques), we used relatively old mice (18 
month-old). However, on behavioral level, WT mice may also suffer from impairments at this 
age, and/or plaque-related memory deficits derived from hippocampal dysfunctions may not 
be very pronounced at this age in APP23 mice. In addition, plaques were more concentrated 
in neocortical regions and the tests performed in this study are not well suited to assess 
cortical deficits. Thus, behavioral effects of treatment may have been poorly visible due to the 
absence of a clear phenotypic difference in APP23 mice in the tests performed. However, we 
can conclude that the treatment with g7-Zn-NP did not result in severe side effects, and did 
not negatively affect parameters such as locomotion or anxiety, irrespective of the genotype 
of mice. Future studies with long-term treatment and treatment starting before plaque 
formation begins might reveal more dramatic effects. 
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Conclusions
WT and APP23 mice were treated with g7-NP-Zn to study the action of increased brain zinc-
levels on AD pathology. Taken together, application of g7-Zn-NPs, a non-invasive way to 
increase brain zinc levels in a matter of hours, in a mouse model for AD showed promising 
effects regarding a potential to decrease Aβ aggregation, stabilize synapses and decrease 
inflammation. A significant decrease in the mean plaque area was detected after treatment 
with g7-NP-Zn in APP23 mice. However, more research is necessary regarding time-point of 
application, duration, and concentration of NPs to find the most beneficial treatment strategy. 
Nevertheless, the study shows that increased zinc levels in the brain do not increase AD 
pathology in APP23 mice and mice did not show obvious side effects of chronic application 
of g7-Zn-NPs.
The finding that increasing zinc levels in the brain may be beneficial for AD might seem 
counterintuitive on first sight given the reported positive effects of zinc chelators such as 
Clioquinol and PBT2 on AD pathology. Clioquinol was reported to decrease plaque load as 
well [51]. However, our findings are in line with these results as Clioquinol has an affinity 
that allows it to bind to free zinc or weakly bound zinc [52], but it was shown to re-distribute 
this zinc for example to proteins in neurons [53] with higher affinity for the ion, or 
metalloproteases [54] that may participate in the degradation of Aβ aggregates. In our 
approach, we do not provide zinc to effector proteins by chelation of zinc from endogenous 
sources. Instead we delivered this zinc by NPs. This may have the advantage that the pool of 
endogenous chelatable zinc such as zinc in synaptic vesicles and zinc bound to proteins other 
than Aβ may not be affected. However, the downstream effectors mediating Aβ degradation 
after re-distribution or addition of zinc may be similar, underlining that targeting biometal 
homeostasis is a promising approach in AD.
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Figure Legends

Figure 1: Characteriztion of Nanoparticles. A) Chemico-physical and technological 
parameters of samples. Z-Average, PDI (polidispersivity index) and Z-pot (Zeta Potential) of 
NPs in distilled water after the purification process. The percentage of encapsulation 
efficiency (EE) was determined as the ratio of the encapsulated out of the total (encapsulated 
+ free) drug per cent (%). The percentage of loading capacity (LC) was expressed as the ratio 
of the encapsulated drug out of the total mass (encapsulated drug + polymer) per cent. For 
both EE and LC, values refer to the content of Zn2+ considering that 1 mg of ZnSO4 contains 
0.40 mg of Zn2+.The percentage of yield was expressed as the ratio of the recovered freeze-
dried sample (excluding residual PVA) out of the total mass weighted (polymer and drug) per 
cent. B) SEM analyses of g7-NPs and g7-NP-Zn. C) The profile for Zn2+ diffusion and the 
release from g7-NP-Zn was measured in distilled water and phosphate buffer pH 7.4. Zn2+ 
rapidly diffused (within 60 min) from the dialyses membrane independently from the medium 
(water of phosphate buffer, C1). The release profile of Zn2+ from g7-NP-Zn in water showed 
an initial “burst release” (about 20%) during the first 5 min, followed by an intermediate slow 
release phase (5-50 min) and a second burst release. Total Zn2+ release was detected in water 
over 120 min. The same experiment performed using phosphate buffer (higher ionic strength) 
showed a faster and more linear release of Zn2+  which was completed within 110 min (C2).

Figure 2: Reduced plaque size in animals treated with zinc-loaded nanoparticles. Brain 
sections from WT and APP23 mice were obtained after treatments and plaques were 
visualized using anti- Aβ antibodies staining. A) The mean area of plaques in cortex was 
measured from at least three optic fields of three sections per mouse. Exemplary images are 
shown in (B). Additionally, DAPI staining is shown visualizing cell nuclei. A significant 
reduction in mean plaque area compared to saline treated controls can be seen after treatment 
with g7-NPs-Zn in APP23 mice (one-way ANOVA, F = 7.549, p = 0.012; Post test shows a 
significant difference between APP23saline and APP23g7-NPs-Zn p = 0.0044, and APP23 g7-NPs 
and APP23g7-NPs-Zn p = 0.0294). No plaques were detected in WT animals. C) The mean 
number of plaques per area was not significantly altered by the treatments. (n = 7 mice: 
WTsaline, APP23saline, WTg7-NPs; n = 6: APP23g7-NPs; n = 18: WTg7-NPs-Zn, APP23g7-NPs-Zn). D) 
Brain sections from APP23 mice were obtained after treatments and plaques were visualized 
using Thioflavin. The mean area and the number of plaques in cortex was measured. A 
significant difference was detected for the parameter plaque area (one-way ANOVA, F = 
4.656, p = 0.032). Post hoc analysis shows a significant difference in plaque area in mice 
treated with g7-NPs-Zn compared to saline (p = 0.0443) and empty g7-NPs (p = 0.0297). No 
significant differences were observed regarding the number of plaques (one-way ANOVA, F 
= 2.4, p = 0.133) (n = 5 mice (APP23saline), n = 4 mice (APP23 g7-NPs), n = 6 mice (APP23g7-

NPs-Zn)). E) Exemplary images using Thioflavin (green) showslightly less plaques with less 
area in APP23 mice treated with g7-NPs-Zn. F) Dot Blot analysis using the OC antibody. 
Left: Exemplary signals. WT mice show only background signals. A reduction of OC 
immunoreactive signals is seen in APP23 mice injected with g7-NP-Zn as a trend (one-way 
ANOVA, F = 3.662, p = 0.091).

Figure 3: Reduced plaque size in animals treated with zinc-loaded nanoparticles 
detected by zinc-staining. A) The mean area of plaques in cortex was measured from at least 
three optic fields of three sections per mouse. Exemplary images are shown. Additionally, 
DAPI staining is shown visualizing cell nuclei. B) A significant reduction in mean plaque 
area compared to saline treated controls can be seen after treatment with g7-NPs-Zn in APP23 
mice (ANOVA on ranks, H = 55.676, p < 0.001; Post test shows a significant difference 
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between APP23saline and APP23g7-NPs-Zn p = 0.032). No plaques were detected in WT animals. 
C) The mean number of plaques per area was not significantly altered by the treatments (n = 7 
mice: WTsaline, APP23saline, WTg7-NPs; n = 6: APP23g7-NPs; n = 18: WTg7-NPs-Zn, APP23g7-NPs-Zn).

Figure 4: Altered inflammatory markers in animals treated with zinc-loaded 
nanoparticles. Zinc levels of individuals correlate with levels of IL-6 and IL-18 in APP23 
mice. Inflammatory markers were measured in brain tissue of each mouse using qRT-PCR 
approaches. Virtual mRNA expression levels were calculated and are shown normalized 
against HMBS. For each animal, technical triplicates were performed. A) APP23 mice show 
increased levels of IL-6 (ANOVA on ranks, H = 11.428, p = 0.0435; Dunn’s post test: 
WTsaline vs APP23saline p = 0.1775, and WTg7-NP vs APP23g7-NP p = 0.0043). Post hoc analysis 
shows a significant reduction in IL-6 levels after treatment with g7-NPs-Zn in APP23 mice 
compared to APP23g7-NP p = 0.0275, but not compared to APP23saline p = 0.0754. The 
treatment did not affect WT animals. B) APP23 mice show slightly different levels of IL-18 
(ANOVA on ranks, H = 15.188, p = 0.0096). Post hoc analysis shows a significant reduction 
in IL-18 levels after treatment with g7-NPs-Zn in APP23 mice compared to APP23saline p = 
0.0094, and APP23g7-NP p = 0.0245. The treatment did not affect WT animals despite a 
reduction in IL-18 levels seen in WTg7-NP compared to WTSaline. C) APP23 mice show 
increased levels of TNF-1. However, none of the groups and treatment conditions reveal 
significant alterations (ANOVA on ranks, H = 6.058, p = 0.3006). D) APP23 mice show 
increased levels of IL-10 (WTsaline vs. APPsaline p = 0.4206; WT g7-NP vs. APP g7-NP p = 0.0152, 
U-test). Upon treatment with g7-NPs-Zn, IL-10 levels are significantly increased in both WT 
(WTsaline vs WTg7-NPs-Zn p = 0.0074, U-test) and not significantly in APP23 (APPsaline vs 
APPg7-NPs-Zn p = 0.55, U-test) mice. E,F) Brain-zinc concentrations of each mouse were 
measured by AAS and plotted against the expression levels of IL-6 (E) and IL-18 (F) of the 
same individual. A significant correlation between brain-zinc levels and the detected 
expression of IL-6 and IL-18 can be observed in APP23 but not WT mice (large panels) 
(Linear Regression analysis: APP23 p < 0.001). With increasing zinc levels, the expression of 
the pro-inflammatory cytokines decreases. Small inserts: The correlation is found significant 
in the groups treated with g7-NP and g7-NP-Zn for IL-6, and g7-NP-Zn for IL-18.

Figure 5: Unaltered synapse density in APP23 animals treated with zinc-loaded 
nanoparticles compared to WT mice. Zinc levels of individuals correlate with synapse 
density in APP23 mice. Brain sections from WT and APP23 mice were obtained after 
treatments and synapses labeled with anti-Bassoon staining. A) The mean number of 
immunoreactive signals per area (33,750 pixel2) in cortex was measured from at least three 
optic fields of three sections per mouse. Exemplary images are shown in (B). The results 
show no significant differences (one-way ANOVA, F = 0.3785, p = 0.8614). However, a not 
significant difference in the number of Bassoon signals in APP23 mice compared to WT 
under control conditions is visible (n.s. = not significant; p = 0.14). In APP23 mice treated 
with g7-NPs-Zn, no reduction in synapse density is detected compared to WT mice. C) Brain-
zinc concentrations of each mouse were measured by AAS and plotted against the number of 
synapses per area of the same individual. Large panels: Combining all animals from each 
treatment group, a significant correlation between zinc levels and synapse density can be 
observed in APP23 mice but not WT mice (Linear Regression analysis: APP23 r = 0.677, p < 
0.001; WT r = 0.206, p = 0.249). Small inserts: The correlation is present in APP23 mice 
within each treatment group.

Figure 6: Reduced hyperlocomotion in APP23 mice treated with g7-NP-Zn. A-B) 
Locomotion in an open field. Total number of transitions and entries into the center zone are 
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shown. Two-way ANOVA showed a significant genotype effect for both total entries (F1,57 = 
13.02, p < 0.001, panel A) and entries from border to center zone (F1,57 = 15.56, p < 0.001, 
panel B). Post-hoc comparisons using unpaired t-test, * = p < 0.05. C) Elevated plus maze. 
The number of entries into the open arms per total entries (entries in closed = entries in open 
arm) are shown. Two way ANOVA showed no significant genotype or treatment effect (F2,44 
= 0.463, p = 0.632). D) Contextual fear conditioning. Percent freezing time is shown. Two 
way ANOVA showed no significant genotype or treatment effect (F1,57 = 1.21, p = 0.276).

Figure S1: A) Brain lysate from WT and APP23 mice was obtained after behavioral 
experiments and zinc levels measured by AAS. The mean levels per group are shown. No 
significant differences were seen between the groups (one-way ANOVA, F = 0.465, p = 
0.801). B) Brain sections from APP23 mice were obtained after treatments and plaques were 
visualized using Thioflavin. The mean area and the number of plaques in the hippocampus 
was measured. No significant difference was detected for the parameter plaque area (one-way 
ANOVA, F = 0.585, p = 0.575). No significant differences were observed regarding the 
number of plaques (one-way ANOVA, F = 0.425, p = 0.665) (n = 5 mice (APP23saline), n = 4 
mice (APP23 g7-NPs), n = 4 mice (APP23g7-NPs-Zn)).
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