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Abstract.  

An analytic solution for the steady-state temperature distribution in an infinite conductive medium, 

containing non-conductive fiber with the cross-section of irregular shape formed by two circles, and 

subjected to remotely applied uniform heat flux is obtained. The temperature flux on the surface of 

the inhomogeneity is then determined as a function of the geometrical parameters. This result is 

used to calculate resistivity contribution tensor for the fiber and to evaluate effective conductive 

properties of a material containing multiple inhomogeneities of this shape. 

 

Keywords 

Fiber reinforced composite; irregular cross-section; bipolar coordinates; temperature field; effective 

conductivity. 

 

1. Introduction. 

In this paper, we discuss materials containing a non-conductive cylindrical inhomogeneity with a 

cross-section formed by two circles. We distinguish between four different shapes of the cross-

section presented in Figure 1: (a) two separate circles (auxiliary problem), (b) cross-section formed 

by union of two overlapping circles of generally different radii, (c) lenticular cross-section (that is 

mathematically a particular case of two overlapping circles), and (d) lunar cross-section (including 

arc crack as a limiting case). Such inhomogeneities occur in both natural and man-made materials. 

Figure 2 provides several examples: (a) electrospinned polystyrene fiber (from Liu et al, 2015) (b) 

oxidized polyacrylonitrile fiber (from Marcuzzo et al, 2013) (c) natural sisal fiber (Monteiro et al, 
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2011).  

It is well known (see, for example, Torquato, 2002) that the overall conductivity in the direction 

along the fibers is given by the arithmetic averages of the phases since the electric field in the 

longitudinal direction is the same constant in each phase. The overall conductivity in the plane 

normal to the fibers depends on the shape of the cross-sections and fibers arrangement. Analytical 

modeling of materials with fibers of non-elliptical cross-section is not well developed though many 

two-dimensional problems have been solved for inhomogeneities of irregular shape (especially in 

the context of elastic properties). The main approaches to this problem are:  

 Complex variables technique involving conformal mapping of the considered shape onto a unit 

circle. For many non-elliptical shapes, the transformation  

  













 



N

n

n
naRz

1

1



                   (1.1) 

that maps conformally the exterior of the hole in the complex z-plane into the interior of a unit 

circle in the  -plane, is used, with different parameters R, N and na  corresponding to holes of 

various shapes; for the elliptical hole, for example, 1N ,   2baR   and    babaa 1 . 

For “irregular” shapes, a numerical mapping technique can be used; note that Tsukrov and Novak 

(2004) proposed a modification that improves its efficiency; 

 Finite element method, that is more universal, applies to inhomogeneities of arbitrary elastic 

properties, including anisotropic ones, but has lower accuracy than the numerical conformal 

mapping technique. Comparison of the two methods was given by Tsukrov and Novak (2002). 

 As far as compressibility of non-elliptical holes is concerned, it was first analyzed by 

Zimmerman (1986) on the example of square-type holes (convex and concave), by Givoli and 

Elishakoff (1992) and Ekneligoda and Zimmerman (2008a) who considered holes with 

“corrugated” boundaries and by Ekneligoda and Zimmerman (2006, 2008b) who considered shapes 

having n-fold symmetry axes. Results for the entire compliance contribution tensor of a non-

elliptical hole have been obtained by Kachanov et al (1994) and Jasiuk (1995) for various polygons 

(convex and concave) and Tsukrov and Novak (2002, 2004) for several “irregular” shapes.  

In the present paper, we focus on the shapes that may be obtained by union or intersection of 

two circles of generally different diameters (Figure 1). The shapes may be non-convex and even not 

simply connected. Application of the conformal mapping technique in this case seems to be a 

problem. Instead we develop an analytic approach based on Fourier series representation or Fourier 

transform (dependent on the specific geometry) in bipolar cylindrical coordinates. We consider 
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thermally conductive plane containing two non-conductive circular inhomogeneities of radii 1r  and 

2r  (that may overlap). Following Jeffery (1921), we use bipolar coordinate system   ,  (Figure 

3) related to the Cartesian coordinates  21, xx  by  

 
 
  














aixx

aixx

21

21lnRe ; 
 
  














aixx

aixx

21

21lnIm      (1.2) 

 




coscosh

sinh
1




a
x ,





coscosh

sin
2




a
x .        (1.3)  

As shown in Figure 3, the two poles of the bipolar coordinates are located on the x1 axis at distance 

a , with 0a  (the circles in Figure 1 a refers to 01   and 02   whereas Fig. 1b shows two 

overlapping circles with 01   and 02  ). Note, that  -coordinate is multi-valued with a 

discontinuity of 2 across the segment connecting the foci. Hereinafter, we assume   . 

To be specific, we focus on the thermal conductivity problem. Solutions for electric 

conductivity, diffusion, etc. problems can be obtained by proper renaming of the fields. First, we 

consider a single inhomogeneity and solve Neumann boundary value problem in two-steps: (1) 

assessment of the fundamental temperature field related to a remotely applied uniform heat flux in a 

homogeneous body and (2) fulfilment of the boundary conditions by adding an extra-term to the 

fundamental field. This solution is used to construct the resistivity contribution tensor of a fiber of 

interest by calculating proper contour integrals. The resistivity contribution tensor, in turn, is used 

to calculate overall thermal conductivity of a material containing parallel fibers with the cross-

sections shown in Figure 1. 

 

2. Two separate circular holes 

We start with the simplest case of two separate holes since it allows the reader to follow the 

procedure of the solution. Note that a pair of red circles is completely determined by three 

geometric parameters, for example the radii 1r  and 2r  of two circles and the ligament  between 

them (Figure 4): 

       21111 5.01 rrrrxc ;   111 arccosh rxc ;   11 sinh ra  ;  

  22 arcsinh ra ;  222 coshrxc  .              (2.1)  

 

 2.1. Temperature distribution for heat flux in x1 direction 

Let the body be first subjected to a remotely applied steady-state uniform heat flux q  in 1x  

direction, i.e., in bipolar coordinates,  
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













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






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coscosh

sinsinh
,

coscosh

coscosh1
, qq             (2.2) 

The temperature field T  is related to the heat flux q  by Fourier law 

 Tkq ,                        (2.3) 

where k is the thermal conductivity of the body measured in W/(m K). Since we are interested in the 

steady-state solution only, the temperature field T  must be harmonic function: 02  T . At the 

boundary of the inhomogeneity, the Neumann boundary conditions must be satisfied: 

 0q  at 1  , 2                     (2.4) 

The fundamental temperature field T  related to a remotely applied uniform heat flux in a 

homogeneous body can be written  

   121, x
k

q
xxT


  ; i.e.   






coscosh

sinh
,







k

q
aT          (2.5) 

This field does not satisfy the boundary conditions (2.4). To improve it, we introduce auxiliary 

harmonic temperature   ,1T :  

      





1̀

1 cos,
n

n nBAT                  (2.6) 

where 

    n
n

n
nn eDeC  , ,...2,1n                  (2.7) 

that produces a corrective heat flux 1
q  with components 
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In particular, component 1
q  can be expand in Fourier series as 

        
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   (2.9)  

Constants A , B , nC  and nD  can be obtained from the boundary condition (2.4). For this goal, we 

use identities (A1) and (A2) given in Appendix that allows one to express component 
q  of the 
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remote fluid flow in Fourier series as follows: 
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Since 01 
 qq  for 1  , 2   (with 01  , and 02  ), it yields two independent 

conditions for 1C and 1D  in the leading terms 

 0
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cosh 11 
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 ,  with  i        (2.11)  

Note, that constant B  must be equal to zero to avoid violation of the boundary conditions at infinity 

and constant A  does not enter the expression for the heat flus and, therefore, can be taken as zero 

without loss of generality. When the constants 1C  and 1D  are determined, constants nC  and nD  

(with n = 2, 3, …) can be evaluated by imposing 01 
 qq at the (n1)-order terms for 1   

and 2  . So that 
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,  for n = 1, 2, ….     (2.12)  

 

 2.2. Temperature distribution for heat flux in x2 direction 

We consider now the heat flow q  in 2x  direction. In bipolar coordinates,  

   





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
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


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;
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sinsinh
, qq              (2.13) 

that corresponds to the following fundamental temperature field T  in a homogeneous body  

   221, x
k

q
xxT


  ;  i.e.   





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,







k

q
aT         (2.14) 

Again this temperature field does not satisfy the boundary condition (2.4) and we introduce the 

auxiliary harmonic temperature field   ,1T :  

      





1̀

1 sin,
n

n nBAT                (2.15) 

where 

    n
n

n
nn eDeC  , ,...2,1n                 (2.16) 

The auxiliary field (2.15) produces a corrective heat flux 1
q  with components 
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This flux does not affect the remote one since    0,1 q  as 0,  . Both the remote and 

corrective heat fluxes can be expanded in Fourier series using expressions (A.3-A.5) in the 

Appendix. In particular, the -component of the heat fluxes   ,q  and   ,1
q  have the 

following forms:  
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From the boundary condition (2.4) we can write  
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with  iand  
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The first equation provides 2 independent conditions for constants 1C , 1D , 2C , and 2D . Two other 

conditions can be obtained by multiplying equation (2.19) by in
e


 and summing from n = 2 to 

infinity:  
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When constants C1, D1, C2, D2 have been determined, the remaining constants Cn, Dn can be 

calculated by imposing condition (2.19) for 1   and 2   at n-order Constants A  and B  are 

taken as zeros for the same reason as in the previous Section. Finally, after some algebra, we obtain 

the following expression for constants nC  and nD : 

 
21

2

22

2
12





nn

n

n
ee

e

k

aq
C








, 
 

21

12

22

22
12





nn

nn

n
ee

ee

k

aq
D








,  for n = 1, 2, ….   (2.21)  
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Figure 5 shows distribution of the dimensionless temperature   qrkT 1  and normalized heat flux 

qq  in a plate subjected to a remote heat flux in 1x  and 2x  directions for 5312  rr , 

11  r . Figure 6 illustrates the influence of the parameter    on the temperature distribution 

along the ring of the inhomogeneities keeping fixed the dimensionless ligament . As shown in this 

figure, as   increases, temperature decreases in the region between the cavities whereas it increases 

in the external part of the rings of the holes, i.e. approximately for 20   . Near highest points 

of each hole, namely at   /2, temperature is almost independent of  . However, temperature 

variation along the circle 1   is smaller than those at  = . The effect of the ligament variation 

(at fixed 2 ) is completely different, as shown in Figure 7. In particular, as   increases, the 

temperature at 1   decreases at each point of the contour of the inhomogeneity.  

 

3. Cross-section shape formed by two overlapped circles 

The modeling of two overlapping circles differs considerably from the case discussed in Section 2: 

the circular contours represent two curves of constant  , for   ,  (Figure 7) In this case, 

Fourier transforms have to be applied instead of the Fourier series (see, for example, Ling, 1948 and 

Dutt, 1960). The Neumann boundary conditions at the matrix-inhomogeneity interface have the 

following form: 

 0q  at 01    and  02                   (3.1) 

while the temperature field T  in the body without inhomogeneity has the form (2.5) that does not 

satisfy (3.1) and we need to introduce auxiliary (harmonic) temperature fields for heat fluxes in x1 

and x1 directions. 

 

 3.1. Temperature distribution for heat flux in x1 direction 

In this case, we introduce the following auxiliary temperature field  

         




0

21
1 sinsinhcosh, dssssCssCT              (3.2) 

that produces corrective heat flux 1
q  with components: 

         




0

21
1 cossinhcoshcoscosh dssssCssCs

a

k
q   

         




0

21
1 sincoshsinhcoscosh dssssCssCs

a

k
q          (3.3) 
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Substituting   qq1  into (3.1) yields  

 

    

 
 









0
2

21

sin
coscosh

sinh
sin

2

coshsinh











ds
k

a
q

ssCssCs

i

i

ii

 , i = 1, 2.        (3.4) 

Expression (3.4) can be evaluated in closed form using identity (A.6) given in the Appendix ( 01 

, 02  ): 

  
  










 

21

21
1

sinh

coshcosh
2coth2






s

ss
s

k

a
qsC ,  

 
 21

21
2

sinh

sinh
2








 

s

s

k

a
qsC      (3.5) 

Expressions (3.5) lead to explicit expression for the auxiliary temperature field   ,1T  and, as a 

result, the total temperature field TT1  and the total heat flux field  qq
1 . Note that the 

corrective heat flux 1
q  vanishes at 0,  , thus preserving the prescribed remote heat flux q


.  

Note that corrective temperature field (3.2) can be evaluated in closed form using identity (B3). 

In particular, at 01    and 02    

 

 
 























































21212121

21

21

1

coshcos

3

coshcos

1
sinh

coscosh

sinh2

2
,




























ii

ik

aq
T

      (3.5) 

with i, j  = 1, 2 (i ≠ j). The first term in expression (3.5) annihilates the remote field (2.5), so that the 

total temperature coincides with the second term of expression (3.5). 

 

 3.2. Temperature distribution for heat flux in x2 direction 

For heat flux in x2 direction, the auxiliary temperature field has the following form 

         




0

21
1 cossinhcosh, dssssCssCT              (3.6) 

It produces corrective heat flux 1
q  with components: 

         




0

21
1 sinsinhcoshcoscosh dssssCssCs

a

k
q   

         




0

21
1 coscoshsinhcoscosh dssssCssCs

a

k
q          (3.7) 

Then, the boundary condition (3.1) for   qq1  takes the form 
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    

 
 











0
2

21

cos
coscosh

coscosh12

coshsinh










ds
k

a
q

ssCssCs

i

i

ii

 , i = 1, 2.         (3.8) 

The right hand side of (3.8) can be explicitly evaluated using identities (A.7), (A.8) in the 

Appendix: 

  
 
 21

21
1

sinh

sinh
2








 

s

s

k

a
qsC ;  

  









 

21

21
2

sinh

sinhsinh
2coth2






s

ss
s

k

a
qsC      (3.9) 

Using expression (3.9), we can now write explicit expression for the auxiliary temperature field 

  ,1T  the total temperature field TT1  and the total heat flux field  qq
1 . Note that the 

corrective heat flux 1
q  vanishes at 0,  , similarly to the case considered in section 3.1.  

Also in this case, the auxiliary temperature field (25) can be expressed in closed form based on 

identity (B3) as follows 

 

 

 

 

 




























































2121

21

21

21

2121

21

21

1

coshcos

sin

coshcos

sin

coscosh

sin
,


































i

k

aq
T

     (3.10) 

with i, j  = 1, 2 (i ≠ j). Similarly to the case considered in Section 3.1, the total temperature field 

TT1 coincides with the second term of expression (3.10). 

 In contrast with the case considered in Section 2, the system of two overlapping circles can be 

described through different parameters: ayc11   and ayc22  , where a is the focal distance 

and 1cy  and 2cy  are vertical coordinates of the centers of the two circles. Figure 9 illustrates the 

temperature and heat flux distribution around a non-conductive inhomogeneity with the cross-

section in the shape of two overlapped circles subjected to a remotely applied heat flow in the x1 and 

x2 directions, for 211  and 12  . Note that, as demanded by boundary conditions, in both 

cases the heat flux is tangent to the inhomogeneity contour.  

 The particular case of a lenticular inclusion is illustrated in Figure 10 for and.  

 

4. Lunar cross-section. 

In this Section we consider a special case of the overlapped circles when 1 and 2  have the same 

sign. In such a case a cylindrical inclusion has lunar cross-section, as shown in Figure 11. Hereafter, 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 10 

we assume 012     

 

 4.1. Temperature distribution for heat flux in x1 direction 

Using the axillary temperature field (3.2) and boundary conditions (3.1) for 012    yields the 

following expressions for  sC1  and  sC2  

  
 

 
 













 

21
21

21
1 cosh

sinh

sinh2cosh

2sinh

1
2 






s

s

ss

sk

a
qsC ,  

  
  











  1

2sinh

sinhcosh2
2

21

21
2





s

ss

k

a
qsC                (4.1) 

To avoid indefiniteness, the boundary condition (3.1) must be imposed at 12    instead of 1 ,  as 

suggested by Liu et al. (1995). Formula (4.1) allows evaluation of the auxiliary temperature field, 

and after that, the total temperature field and the heat flux.  

 In some particular cases, a closed form solution can be obtained for the temperature. For 

example, in the limiting case of arc crack 12   ,  

  
 















2

1

2cos2cosh

2sinh

2cos2cosh

2sinh

2
,










k

aq
T          (4.2) 

 

 4.2. Temperature distribution for heat flux in x2 direction 

In the case 012   , instead of (3.9), we receive the following expressions for  sC1  and  sC2  

  
 








 

21

12
1

2sinh

sinhcosh2
12





s

ss

k

a
qsC  

  
     

  











 

21

2121
1

2sinhsinh

cosh2sinhsinhcosh
2





ss

ssss

k

a
qsC ,        (4.3) 

In the limiting case of arc crack,   

  
 

 

















2

21

2cos2cosh

2sinh

2cos2cosh

2sin

2
,










k

aq
T          (4.4) 

Figure 12 illustrates the distribution of the dimensionless temperature and normalized heat flux 

around a non-conductive inhomogeneity of lunar shape subjected to a remotely applied heat flow in 

the x1 and x2 directions, for 11  and 5.02  .  

 

5.  Evaluation of the resistivity contribution tensor 

Resistivity contribution tensor introduced by Sevostianov and Kachanov (2002) gives the extra 

temperature gradient produced by introduction of the inhomogeneity into a material subjected to 
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otherwise uniform heat flux. Following this work, we assume that the isotropic background material 

of volume V with the thermal conductivity 0k  contains an isolated inhomogeneity of volume 1V  of 

the isotropic thermal conductivity 1k . The limiting cases 01 k  and 1k  correspond to a non-

conductive and a superconducting inhomogeneities; the present work focuses on a non-conductive 

inhomogeneity. Assuming linear relation between temperature gradient T  and the heat flux vector 

q  per reference volume (Fourier law) for both the constituents, the change in T  required to 

maintain the same heat flux after the inhomogeneity is introduced is given by  

   qR 
V

V
T 1 ,                     (5.1)  

where the symmetric second-rank tensor R is called the resistivity contribution tensor of the 

inhomogeneity. 

For a non-conductive inhomogeneity, the additional temperature gradient due to its presence can 

be represented as integral over the inhomogeneity boundary   

   dST
V

T 


 n
1

,                   (5.2)  

where T and n are temperature and outward unit vector normal to the boundary, respectively. Thus, 

Neumann boundary value problem for Laplace equation has to be solved in order to find the 

resistivity contribution tensor of a non-conductive inhomogeneity. In the case of an infinite fiber, 

the component along the fiber axis (let it be 3x  axis) is independent of the shape of the cross-

section (see, for example, Torquato, 2002) and can be calculated separately as  

    01
1

3

3

33
1 1

kk
A

A
T

q
R

A

A



e                 (5.3)  

where 1A  is the area of the cross-section occupied by the inhomogeneity, A  is the area of the cross-

section of the reference volume normal to the axis of the fiber, and 
3q  is the magnitude of the 

remote heat flus along 3x  axis. For non-conductive inhomogeneity, 01 k , and 033 kR  . If the 

principal axes of the inhomogeneity are not known, the other components of the resistivity 

contribution tensor are (see Radi and Sevostianov, 2016) 

   ds
n

n
T

AqR

R



 




















2

1
1

1121

11
,

1
;   ds

n

n
T

AqR

R



 




















2

1
2

1222

12
,

1
        (5.4)  

where, 
1q  and 

2q  are the magnitudes of the remotely applied heat fluxes along x1 and x2 axes, 

respectively, and   ,1T  and   ,2T  are the related total temperature fields (calculated in 

Sections 2-5). The contour integral is performed around the boundary of the inhomogeneity cross-

section   of the inhomogeneity, 2211 een nn   is the outward unit vector normal to the contour 
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of the inhomogeneity, and ds  is the infinitesimal arc length. 

 

5.1. Two separate circular inhomogeneities (symmetric with respect to x1 axis) 

The components of the unit vector and the infinitesimal arc length on the contour of the two circles 

with const  are: 

  11
coscosh

1coscosh





signn

i

i




 , 





coscosh

sinsinh
2




i

in  

 
 





 d

signa
drds

i

i
i

coscosh 
 ,   2,1i               (5.5) 

where   isthe polar angle measured from 1x  axis as reported in Figure 3. Then, using results of the 

Section 2 and formulas (A.16)-(A.17) in the Appendix, expression (5.4) with 2
ii rA   ( 2,1i ) 

yields the components  of the resistivity contribution tensor ijR  (i, j = 1, 2) in the following form (

0,0 21   ): 

 
 

    















 







1

21

2
2

1
211

21

cschcsch

2
1

1

n

n
n

n
n

een
aq

k

k
R 




 

 
 

    















 







1

21

2
2

1
222

21

cschcsch

2
1

1

n

n
n

n
n

een
aq

k

k
R 




      (5.6) 

and 02112  RR . Note that terms k1  in eqns (5.6) represent the contribution of the remote 

temperature fields T . The remaining terms are due to the auxiliary solution 1T . Figure 13 

illustrates dependence of the normalized components of the resistivity contribution tensor (5.6) on 

12 rr  at different values of 1r  . 

 

5.2. Overlapped circles symmetric with respect to x2 axis. 

The component of the unit vector and the infinitesimal arc length on the contour at const  are 

  11
coscosh

sinsinh





signn

i

i


 ,  i

i

signn 




coscosh

coscosh1
2




  

 
 





 d

signa
drds

i

i
i

coscosh 
 ,   2,1i              (5.7) 

Taking into account that   22sin 1
2   iii rA , 2,1i  and using (5.4) and results of 

Section3, one can write  
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 

      

      




























1

212
2

1

121
121

2

11

ˆsin1
ˆsin

ˆ

ˆsin1
ˆsin

ˆ2

m

m
m

m

m

m
m

m

mkLL
k

ik

mkLL
k

ik

Ak

a
R









 

 
 

      

      































1

212

2

1

121
21

2

22

ˆsin1
ˆsin

ˆ

ˆsin1
4

m

m
m

m

m

m
m

m

mkSS
k

ik

mkSS
Ak

a
R









  

 02112  RR                        (5.8) 

where  

21 AAA  ,  21
ˆ  k  

                   1ˆ,1,1ˆ,1,11ˆ,1,1ˆ,1,1   mkemkemmkemkemL iiii
m

   

      mkeemkeemkS iiii
m

ˆ,1,ˆ,1,ˆ1      

and  
 




 


0

,,
k

s

k

ka

z
asz  is Lerch function. 

 The geometry of the cross-section is completely determined by two dimensionless parameters : 

ayc11   and ayc22  . Particular case of 01   and 02   describes a lenticular 

inhomogeneity, and the limit 1 , 2  (i. e.  1 ,  2 ) corresponds to a 

rectilinear crack of length a2  along 1x  axis with opening 0 . In this case (5.8) is reduced to  

  011 R ;     
k

R


1
22                   (5.9)  

The contribution of the rectilinear crack into the overall resistivity, however, is finite: 

 
k

a

A
R

A

A 2

22
1 1 

                      (5.10) 

( A  is the area of the cross-section of the reference volume normal to the axis of the fiber). This 

result coincides with one given by Zimmerman (1996) 

 The case 021   corresponds to an isolated circular inhomogeneity. In this case, the well 

known result is covered 

 kRR 22211                       (5.11) 

 A semicircular inhomogeneity is described by 01  , 2 . Expressions (5.8) are also 

valid for an inhomogeneity of lunar shape when 21    and 21* AAA  . Figures 14 and 15 

illustrate dependence of the normalized components of the resistivity contribution tensor (5.8) on 
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12 rr  at different values of 1r  . In the limiting case of a circular arc crack ( 21   ) 

results coincide with ones of Sevostianov (2006):  

 

  

 22
22

1

2
11

1

cos1
2

1

cos3cos1
2

1











R
kA

R
A

A

R
kA

R
A

A

               (5.12) 

 In the case of multiple fibers, one can start with the non-interaction approximation when each 

inhomogeneity is subject to the same far-field heat flux, unperturbed by the presence of the 

surrounding fibers. In this case, the contribution of each fiber into the effective resistivity of the 

material can be treated separately and the effective conductivity tensor effK  is expressed in terms 

of a sum 
 

i

i
iV

V
R

1
 over individual inhomogeneities: 

  
1

0
0














 

i

i
ieff V

V

k
k RIK                  (5.13)  

The non-interaction approximation is of fundamental importance: besides being reasonably accurate 

at small concentrations of inhomogeneities (up to 15-20% for fiber reinforced composites, 

Sevostianov and Sabina, 2008), it constitutes the basic building block for various homogenization 

schemes that place non-interacting inhomogeneities into a certain effective matrix or effective field. 

Detailed description of the connection between various homogenization schemes and non-

interaction approximation is given, for example, in the review of Sevostianov and Kachanov (2013). 

 

6. Concluding remarks. 

We solved analytically the problem on distribution of temperature field and heat flux around 

a non-conductive cylindrical inhomogeneity, having a cross-section formed by two separate or 

overlapping circles, embedded in an isotropic material subjected to a steady heat flux at infinity. 

The solution is obtained in the form of infinite series which rapidly converge. Four types of cross-

sections are considered (Figure 1): (a) two separate circles (auxiliary problem), (b) cross-section 

formed by union of two overlapping circles of generally different radii, (c) lenticular cross-section 

(that is mathematically a particular case of two overlapping circles), and (d) lunar cross-section 

(including arc crack as a limiting case). The obtained solution is used to construct resistivity 

contribution tensor for non-conductive inhomogeneities of the considered shape – the quantity that 

describes extra temperature gradient due to the presence of the inhomogeneity. The limiting cases 

of a fiber of circular cross-section, rectilinear crack, and arc crack are recovered.  

The resistivity contribution tensor is the key quantity for calculation of the effective 

properties of the material. The obtained results can be reformulated for the electric conductivity and 
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diffusion process (in the electric conductivity problem, temperature and heat flux should be 

replaced by electric potential and electric current; in the diffusion problem they should be replaced 

by concentration and diffusion flux). 

Note, the reciprocity theorem of Keller (1964) as and Schulgasser (1992) can be used to 

obtain the effective conductivity of an isotropic material containing superconductive 

inhomogeneities from the solution for a material with the same microstructure and non-conductive 

inhomogeneities. Indeed, as follows from formula (1) in Schulgasser (1992) paper 

    2
00000 ,, kkkkkkk effeff         (6.1) 

where the first argument in effk  represents conductivity of the matrix 0k  and the second – 

conductivity of the inhomogeneities. As 0 , one can get the connection between effective 

properties of the materials containing non-conductive and superconductve inhomogeneities. 

Unfortunately, this approach cannot be used directly to construct resistivity contribution 

tensor for an inhomogeneity of finite conductivity: it is possible for elliptical shapes only 

(Zimmerman, 1989, 1996; Chen et al, 2017). In this case, the boundary value problem with non-

zero boundary conditions at the matrix/inhomogeneity interface has to be solved. This problem is 

much more difficult than the one discussed in the present paper.  
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Appendix A. Auxiliary formulas. 

1. Identities involving trigonometric and hyperbolic functions. 
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2. Fourier transforms used in Section 3  
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3. Definite integrals used for evaluation of resistivity contribution tensors  
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4. Identities involving Lerch function. 
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For 0k and k  
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Figure captions 

 

 

 

 
Figure 1. (a) two separate circles (auxiliary problem), (b) cross-section formed by union of two 

overlapping circles of generally different radii, (c) lenticular cross-section (that is 

mathematically a particular case of two overlapping circles), and (d) lunar cross-section 

(including arc crack as a limiting case). 
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Figure 2. Examples of the fibers with cross-sections formed by two circles occurring in natural and 

man-made materials: (a) electrospinned polystyrene fiber (from Liu et al, 2015) (b) oxidized 

polyacrylonitrile fiber (from Marcuzzo et al, 2013) (c) natural sisal fiber (Monteiro et al, 2011).  

 

 

Figure 3. Sketch of the bipolar coordinate system. 

 

 

 

Figure 4. Sketch of an infinite plate with two separate circular inhomogeneities. 
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Figure 5. Distribution of the dimensionless temperature ((a) and (c)) and dimensionless heat flow 

((b) and (d)) in a plate subjected to a remote heat flux in the x1  ((a) and (b)) and x2 ((c) and (d)) 

directions for  = 3/5,  = 1. 

 

 

Figure 6. Dimensionless temperature T(,) k/(r1 q

) along the contour of the hole (a) with  = 1 

and (b) with  = 2 for some values of  and  = 1. 
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Figure 7. Dimensionless temperature T(,) k/(r1 q

) along the contour of the hole (a) with  = 1 

and (b) with  = 2 for some values of  and  = 2. 

 

 

Figure 8. Sketch of an infinite plate with two merging holes subjected to a remote heat flow along 

the principal directions x1, x2. 
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Figure 9. Distribution of the dimensionless temperature ((a) and (c)) and heat flow ((b) and (d)) in a 

plate subjected to a remote heat flux in the x1  ((a) and (b)) and x2 ((c) and (d)) directions for 

= 1/2 and = 1. 

 

Figure 10. Distribution of the dimensionless temperature ((a) and (c)) and heat flow ((b) and (d)) in 

a plate subjected to a remote heat flux in the x1  ((a) and (b)) and x2 ((c) and (d)) directions for 

=  1/2 and = 1. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 26 

 

Figure 11. Lunar shaped inclusion. Note that the domain is described starting from the internal 

circle ( = 2), so that quantities on the outer circle ( = 1) must be evaluated at  = 2 + 1. 

 

 

Figure 12. Distribution of the dimensionless temperature ((a) and (c)) and heat flow ((b) and (d)) in 

a plate subjected to a remote heat flux in the x1  ((a) and (b)) and x2 ((c) and (d)) directions for 

= 1 and = 1/2. 
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Figure 13.  Dimensionless components of the resistivity contribution tensor: (a) R11 k and (b) R22 k 

for  = 1, 2, 5, 10 varying 





Figure 14. Dimensionless components of the resistivity contribution tensor for overlapping 

inclusions: a) R11 k and b) R22 k for  = 1/2,  1,  2, varying . Dashed lines concern 

lenticular inclusions. 
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Figure 15. Dimensionless components of the resistivity contribution tensor for lunar inclusions: a) 

R11 k and b) R22 k for  = 1/2,  1,  2, varying .. 


