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Abstract.

An analytic solution for the steady-state temperature distribution in an infinite conductive medium,
containing non-conductive fiber with the cross-section.of irregular shape formed by two circles, and
subjected to remotely applied uniform heat flux is ebtained. The temperature flux on the surface of
the inhomogeneity is then determined as a function of ‘the geometrical parameters. This result is
used to calculate resistivity contribution tensor ‘for'the fiber and to evaluate effective conductive

properties of a material containing multiple inhomogeneities of this shape.

Keywords
Fiber reinforced composite; irregular cross-section; bipolar coordinates; temperature field; effective

conductivity.

1. Introduction.

In this paper, we discuss materials containing a non-conductive cylindrical inhomogeneity with a
cross-section formed by two circles. We distinguish between four different shapes of the cross-
section presented in Figure 1: (a) two separate circles (auxiliary problem), (b) cross-section formed
by union of two overlapping circles of generally different radii, (c) lenticular cross-section (that is
mathematically a particular case of two overlapping circles), and (d) lunar cross-section (including
arc crack as a limiting case). Such inhomogeneities occur in both natural and man-made materials.
Figure 2 provides several examples: (a) electrospinned polystyrene fiber (from Liu et al, 2015) (b)
oxidized polyacrylonitrile fiber (from Marcuzzo et al, 2013) (c) natural sisal fiber (Monteiro et al,



2011).

It is well known (see, for example, Torquato, 2002) that the overall conductivity in the direction
along the fibers is given by the arithmetic averages of the phases since the electric field in the
longitudinal direction is the same constant in each phase. The overall conductivity in the plane
normal to the fibers depends on the shape of the cross-sections and fibers arrangement. Analytical
modeling of materials with fibers of non-elliptical cross-section is not well developed though many
two-dimensional problems have been solved for inhomogeneities of irregular shape (especially in
the context of elastic properties). The main approaches to this problem are:

e Complex variables technique involving conformal mapping of the considered-shape onto a unit

circle. For many non-elliptical shapes, the transformation
1 S
2(¢)=R =+ a (L.1)

that maps conformally the exterior of the hole in the complex z-plane into the interior of a unit

circle in the £ -plane, is used, with different parameters'R, N=and a,, corresponding to holes of

various shapes; for the elliptical hole, for example, N =1, R=(a+b)/2 and a, =(a—b)/(a+b).

For “irregular” shapes, a numerical mapping technique can be used; note that Tsukrov and Novak

(2004) proposed a modification that improves.its efficiency;

¢ Finite element method, that is more universal, applies to inhomogeneities of arbitrary elastic
properties, including anisotrepic._ones, but has lower accuracy than the numerical conformal

mapping technique. Comparison,of the two methods was given by Tsukrov and Novak (2002).

As far as compressibility of non-elliptical holes is concerned, it was first analyzed by
Zimmerman (1986).0n the example of square-type holes (convex and concave), by Givoli and
Elishakoff (1992) and Ekneligoda and Zimmerman (2008a) who considered holes with
“corrugated” boundaries and by Ekneligoda and Zimmerman (2006, 2008b) who considered shapes
having_n-fold.symmetry axes. Results for the entire compliance contribution tensor of a non-
elliptical-hole have been obtained by Kachanov et al (1994) and Jasiuk (1995) for various polygons

(convex and concave) and Tsukrov and Novak (2002, 2004) for several “irregular” shapes.

In the present paper, we focus on the shapes that may be obtained by union or intersection of
two circles of generally different diameters (Figure 1). The shapes may be non-convex and even not
simply connected. Application of the conformal mapping technique in this case seems to be a
problem. Instead we develop an analytic approach based on Fourier series representation or Fourier

transform (dependent on the specific geometry) in bipolar cylindrical coordinates. We consider
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thermally conductive plane containing two non-conductive circular inhomogeneities of radii r; and
r, (that may overlap). Following Jeffery (1921), we use bipolar coordinate system (a, ﬂ) (Figure

3) related to the Cartesian coordinates (xy, X, ) by

a = Re |nw . ﬂ—_|m |nw (12)
(% +ix,)-a |’ (% +ix,)-a '

= asinha . — asin g (1.3)

' cosha—cos B’ 2" cosha —cos 8 '

As shown in Figure 3, the two poles of the bipolar coordinates are located on thex; axis at distance
+a, with a>0 (the circles in Figure 1 a refers to «; >0 and a, <0 whereas'Fig. 1b shows two
overlapping circles with g, >0 and S, <0). Note, that g -coordinateis multi-valued with a
discontinuity of 2z across the segment connecting the foci. Hereinafter,we assume —z < <.
To be specific, we focus on the thermal conductivity, problem. Solutions for electric
conductivity, diffusion, etc. problems can be obtained by proper renaming of the fields. First, we
consider a single inhomogeneity and solve Neumann:boundary value problem in two-steps: (1)
assessment of the fundamental temperature field related to & remotely applied uniform heat flux in a
homogeneous body and (2) fulfilment of the boundary conditions by adding an extra-term to the
fundamental field. This solution is used to construct the resistivity contribution tensor of a fiber of
interest by calculating proper contour-integrals. The resistivity contribution tensor, in turn, is used
to calculate overall thermal conductivity of a material containing parallel fibers with the cross-

sections shown in Figure 1.

2. Two separate circulariholes
We start with the simplest case of two separate holes since it allows the reader to follow the
procedure of the solution. Note that a pair of red circles is completely determined by three
geometric parameters, for example the radii r; and r, of two circles and the ligament & between
them (Figure 4):

Xgq =1 +Ol—(q +055)/(r, +1, +5)]; oy =arccosh(xy/n);  a=rsinh(a);

a, =—arcsinh (a/r,);  Xgp =—T, COsha,. (2.1)

2.1. Temperature distribution for heat flux in x; direction
Let the body be first subjected to a remotely applied steady-state uniform heat flux q in x;

direction, i.e., in bipolar coordinates,



q(a,ﬁ):qw(l—coshacosﬂ __sinhasing } 2.2)

cosha—cos 8 cosha —cos
The temperature field T is related to the heat flux g by Fourier law
q=-kVT, (2.3)
where k is the thermal conductivity of the body measured in W/(m K). Since we are interested in the

steady-state solution only, the temperature field T must be harmonic function: V2T =0. At the

boundary of the inhomogeneity, the Neumann boundary conditions must be satisfied:
q,=0ata=a, a=a, (2.4)

The fundamental temperature field T” related to a remotely applied uniform{heat flux in a

homogeneous body can be written

o o o “  sinha
T (Xl,Xz):—qTxl;l.e. T (a,ﬂ):—a%m (25)

This field does not satisfy the boundary conditions (2.4). Toximprove it, we introduce auxiliary

harmonic temperature T(, 8):

TYa, B)= A+Ba+ Z¢n cos(ng) (2.6)
n=1
where
#(a)=Cne"* +De ", n=12,.. (2.7)

that produces a corrective heat flux q* ‘with components

qi _ Bcoasha Lk BCZS,B K coz;ha Zn(Cne”“

- Dne‘”“)cos ng
n=1

+ k%in(cne““ — Dne‘”“)cos ng
n=1

i [cosha ( e _ Dne‘”“)— cos 3 (Cne”“ —~ Dne‘”“)sin ng (2.8)
1

EI—\
I
SRy

In particular,"component qi can be expand in Fourier series as

ql — Kk Bcosha Lk BCOSﬂ - (C e Dle—a )+ _Z[ n e ( o e(n+1)a n+le—(n+1)a)

a a 2 (2.9)

— 2ncosh a(Cne”“ -De” ”“)+(n—l)(Cn_le( L S G )]cos ng

Constants A, B, C,, and D,, can be obtained from the boundary condition (2.4). For this goal, we

use identities (A1) and (A2) given in Appendix that allows one to express component g, of the



remote fluid flow in Fourier series as follows:
0 _ o] [ —nla| ( ~(n+1)a| —(n—l)a):|
= e My —— 2e cosh +e cosn 2.10
Oy =9 { Smh|a| >, B (2.10)

Since qX+q. =0 for =, a=a, (With >0, anda, <0), it yields two independent

conditions for C;and Dy in the leading terms
q e K Bcosh o + L(Cle"‘i _De ) =0, with i=1,2 (2.11)
a 2a
Note, that constant B must be equal to zero to avoid violation of the boundary conditions at infinity
and constant A does not enter the expression for the heat flus and, therefore, can be taken as zero

without loss of generality. When the constants C; and D; are determinedyconstants C, and D,

(with n =2, 3, ...) can be evaluated by imposing g, + qi =0 at the/(n—1)-order terms for ¢ =
and o =a,. So that

o0 2na, © ~2Nay (42N
2aq” e 1 D _2aq” e (e 1)

Cn - k eZnal _62na2 ! n— k e2nal 2na2

,forn=1,2,.... (2.12)

—€

2.2. Temperature distribution for heat flux.in X, direction

We consider now the heat flow g in x, direction. In bipolar coordinates,

q(a,,B):q"o(— sinhasin 8 __1—coshacos,[3j (2.13)

cosha —cos B '4.coshe — cos 8

that corresponds to the following fuhdamental temperature field T® in a homogeneous body
* . * sing

T xg) =~ xg e T (w p)= e S

- (2.14)

Again this temperature field does not satisfy the boundary condition (2.4) and we introduce the

auxiliary harmonic temperature field T*(c, 8):

THa, B)=AB+Baf + Z(/ﬁn sin(ng) (2.15)
n=1
where
d(a)=Cne"* +De ", n=1,2,.. (2.16)

The auxiliary field (2.15) produces a corrective heat flux q* with components

qt =—k Bpcosha | BEcosf k(COSha cos Z¢n )sinng

a a a n—1



by :—g(cosha—cosﬂ)[A+ Ba+§:n¢n(a)cosnﬁ} (2.17)

n=1
This flux does not affect the remote one since q'(a,8)—0 as a,8 — 0. Both the remote and
corrective heat fluxes can be expanded in Fourier series using expressions (A.3-A.5) in the

Appendix. In particular, the a-component of the heat fluxes q(e, ) and ql(a,ﬂ) have the

following forms:

qr =-2q”sinh aZe_”‘“‘ sinng
n-1

o = _E[ZBcosha + % + ¢l'(a)cosha —%%'(a)}'inﬂ

k & 4B(-1) n? ' ' , (@17)
+—— Y | ——| cosha ——— |- 2¢, (a)cosha + ¢ 1 () + # 4 () [sinnB
2a 5 n n--1
From the boundary condition (2.4) we can write
4a q7e “ilsinha; + k[4Bcosh o + B+ 24 (o )cosh o g (& )] =0, (2.18)

with i=1, 2; and

—n[a]

0=4aq”e sinh¢;

n

n 2 ) , , , h=23,.. (2.19)
+ k|:4B(_1) ( 2 —cosh aiJ"' 24, (ai )COSh Qi — a1 (ai )_ Pn1 (ai ):|
n

The first equation provides 2‘independent conditions for constants C,, D;, C,, and D,. Two other

el and summing from n = 2 to

conditions can be obtained'by multiplying equation (2.19) by e
infinity:
2a qwe_zl“i‘(coth|ai|—1)sinh Q;
K (2.20)

+ B[Z +cosh e (4e_0’i ~-1-8 In(l+ e_“‘D +sinh|g; |} 4 () 2 + 8, ()67 =0

When constants C;, D1, C;, D, have been determined, the remaining constants C,, D, can be
calculated by imposing condition (2.19) for & =4 and a =, at n-order. Constants A and B are
taken as zeros for the same reason as in the previous Section. Finally, after some algebra, we obtain

the following expression for constants C,, and D,,:

0 2na2 0 2na2 2nal
C, :_Zaq € +1 , Dp :_Zaq € (e +1), forn=1,2,.... (2.21)
k e2na1 _82na2 k eZnal _eznaz




Figure 5 shows distribution of the dimensionless temperature T - k/(rlq“’) and normalized heat flux

o]

q/q in a plate subjected to a remote heat flux in x; and x, directions for p=r,/r, =3/5,
y =6/, =1. Figure 6 illustrates the influence of the parameter o on the temperature distribution

along the ring of the inhomogeneities keeping fixed the dimensionless ligament y. As shown in this

figure, as p increases, temperature decreases in the region between the cavities whereas it increases
in the external part of the rings of the holes, i.e. approximately for 0 <& < /2. Near highest points
of each hole, namely at 6 = =/2, temperature is almost independent of o . However, temperature
variation along the circle a = ¢ is smaller than those at o = . The effect of thedligament variation
(at fixed p=2) is completely different, as shown in Figure 7. In particular, as y increases, the

temperature at o =« decreases at each point of the contour of the inhomogeneity.

3. Cross-section shape formed by two overlapped circles
The modeling of two overlapping circles differs considerably. from the case discussed in Section 2:

the circular contours represent two curves of constant«ffor. o (— o0, oo) (Figure 7). In this case,
Fourier transforms have to be applied instead of the'Foeurier series (see, for example, Ling, 1948 and
Dutt, 1960). The Neumann boundary conditions at'the matrix-inhomogeneity interface have the

following form:
gp=0at f=p>0and B=p,<0 (3.1)

while the temperature field T* in the bady without inhomogeneity has the form (2.5) that does not
satisfy (3.1) and we need to-introduce auxiliary (harmonic) temperature fields for heat fluxes in x;

and x; directions.

3.1. Temperature distribution for heat flux in x; direction

In this case, we introduce the following auxiliary temperature field

THe8) = [Cyi(s)cosh s + Cy(s)sinh sg]sin(sar) ds (3.2)

o — 8

that produces corrective heat flux q1 with components:

1

qs, = —(cosha —cos ,B)g s[Cy(s)cosh s + C,(s)sinhsg]cos(ser) ds

o — 8

a3 = —(cosha —cos B)= [ s[Cy(s)sinhsB + Cy(s)cosh sBlsin(ser) ds (3.3)

Q| x
O — 8



Substituting g +q5 into (3.1) yields

s[Cy(s)sinh s + C,(s)cosh s ]
=12 (3.4)

aj( sinha sin(sa) da

——gq“’sinﬁ- —
2 "k (cosha —cos 3,

Expression (3.4) can be evaluated in closed form using identity (A.6) given in the Appendix (4, >0
,182 <0 ):

P | __cosh sp, cosh s, » asinh s(8 + B,)
Ci(s)=2q k(coth 78 —2 Sh s34, J C,(s)=2 K sinh (3 5,) (3.5)

Expressions (3.5) lead to explicit expression for the auxiliary temperature field Tl(a,ﬁ) and, as a

result, the total temperature field T2 +T> and the total heat flux fieldvq*¥q™. Note that the

corrective heat flux q1 vanishes at «, # — 0, thus preserving the prescribed remote heat flux q”.

Note that corrective temperature field (3.2) can be evaluated.in closed form using identity (B3).
In particular, at f=,>0 and =/, <0

2sinh«
T(ap)=" 2k [(cosha)—cosﬂi
sinh— "% (3.5)
BL=Po 1 3

*r 70; Ty 3
b= P cos—1 — —cosh CoS L_ 4+ cosh

o
b= P2 Bi— P BL— P BL— P
withi,j =1, 2 (i #]). The first.term'in expression (3.5) annihilates the remote field (2.5), so that the

total temperature coincides4wvith the second term of expression (3.5).

3.2. Temperature distribution for heat flux in x; direction

For heat flux in/x; direction, the auxiliary temperature field has the following form

TYa, B) = [[Cy(s)cosh s +C,(s)sinh sg]cos(sex) ds (3.6)

O'—.S

It produces corrective heat flux ql with components:

q. =(cosha —cos B gjs s)coshsf3 + C,(s)sinhsg]sin(sar) ds
0

0

a3 =—(cosha - cos 3 gjs s)sinhsf3 + C,(s)cosh s8]cos(sex ) ds (3.7)
0

Then, the boundary condition (3.1) for qlﬂ + q}f takes the form

8



s[Cy(s)sinhs 3, + C,(s)cosh s3]

11— : =1, 2. 3.8
_ _gqoo_J- 1-cosha cosﬁ,2 cos(scr) da i (3.8)
m kg (cosha —cos 3 )

The right hand side of (3.8) can be explicitly evaluated using identities (A.7), (A.8) in the
Appendix:

_.»asinhs(B +5,) . _ o xd sinh s, sinh s,
Cy(s)=2q S s(B4)° C,(s)=—2q k[cothyzs+2 prn S(,Bl_,BZ)] (3.9)

Using expression (3.9), we can now write explicit expression for the auxiliary temperature field

T(a, B) the total temperature field T*+T> and the total heat flux field q'4'q’?. Note that the

corrective heat flux q1 vanishes at «, f — 0, similarly to the case considered in seetion 3.1.

Also in this case, the auxiliary temperature field (25) can be expressed in‘elosed form based on
identity (B3) as follows

e, p) = a(Iq( { sin 8

cosha —cos S
sin ”’B Sinw (310)
LT B—Po N BL—Po
Bi=P2| cos i _cosh "* cos”(ﬂ_ﬂl_ﬂZ)JrcoshL
BB BB BB B— 5o

with i, J =1, 2 (i #]). Similarly to‘the case considered in Section 3.1, the total temperature field

T+ T*coincides with the second.termof expression (3.10).
In contrast with the case considered in Section 2, the system of two overlapping circles can be

described through different/parameters: x; =y /a and x, =y.,/a, where a is the focal distance
and y., and y,,.arewertical coordinates of the centers of the two circles. Figure 9 illustrates the

temperature and. heat flux distribution around a non-conductive inhomogeneity with the cross-
section in the shape of two overlapped circles subjected to a remotely applied heat flow in the x; and
Xo directions, for x; =1/2and x, =—1. Note that, as demanded by boundary conditions, in both
cases the'heat flux is tangent to the inhomogeneity contour.

The particular case of a lenticular inclusion is illustrated in Figure 10 for k; =—1/2 and k; = 1.

4. Lunar cross-section.
In this Section we consider a special case of the overlapped circles when g, and S, have the same

sign. In such a case a cylindrical inclusion has lunar cross-section, as shown in Figure 11. Hereafter,



we assume S, > 3 >0.

4.1. Temperature distribution for heat flux in x; direction

Using the axillary temperature field (3.2) and boundary conditions (3.1) for £, > A, >0 yields the

following expressions for Cy(s) and C,(s)

oowd 1 cosh 2zssinhs(z + B, — )
Cils)=29 k sinhs(27 + B, — ﬁz)( sinh 7s cosh (s + 'BZ))
_ 50| 2cosh spysinhsp,
Cals)=2 k [sinh sz + - ) 1} 4.0

To avoid indefiniteness, the boundary condition (3.1) must be imposed at 27+ £, instead of g, as
suggested by Liu et al. (1995). Formula (4.1) allows evaluation of the auxiliary temperature field,
and after that, the total temperature field and the heat flux.

In some particular cases, a closed form solution can be.obtained for the temperature. For

example, in the limiting case of arc crack £, — £,

. ag” sinh /2 ~ sinhe/2
e f)= 2k [Cosha/Z—COSﬂ/z coshar/2:=00s(8/2 - ) o

4.2. Temperature distribution for heat flux in x, direction

In the case f3, > /3, >0, instead of (3(9), we receive the following expressions for C,(s) and C,(s)

wal N 2cosh sp sinhisp;

Cils)=29 k| sinhs@z+ B~ B,)
_ = a[ coshis(x — B)sinhsB, —sinhs(2z + B )cosh s(z — ;)
Cils)=2a k sinh 75 sinhs(27 + 3, — 3,) ’ 43

In the limiting case of arc crack, B, — By,

1 _ag” sin3/2 ~ sinh(8/2-43,)
T @ h)= 2k Losha/Z—cosﬂ/Z cosha/Z—cos(ﬁ/Z—,Bz)} 44

Figure 12 illustrates the distribution of the dimensionless temperature and normalized heat flux
around a non-conductive inhomogeneity of lunar shape subjected to a remotely applied heat flow in

the x; and x, directions, for x; =1and x, =0.5.

5. Evaluation of the resistivity contribution tensor
Resistivity contribution tensor introduced by Sevostianov and Kachanov (2002) gives the extra

temperature gradient produced by introduction of the inhomogeneity into a material subjected to

10



otherwise uniform heat flux. Following this work, we assume that the isotropic background material
of volume V with the thermal conductivity k, contains an isolated inhomogeneity of volume V; of
the isotropic thermal conductivity k;. The limiting cases k; =0 and k; =oo correspond to a non-

conductive and a superconducting inhomogeneities; the present work focuses on a non-conductive
inhomogeneity. Assuming linear relation between temperature gradient VT and the heat flux vector

q per reference volume (Fourier law) for both the constituents, the change in VT required to

maintain the same heat flux after the inhomogeneity is introduced is given by
A(VT):%R-q, (5.1)
where the symmetric second-rank tensor R is called the resistivity contributiontensor of the
inhomogeneity.
For a non-conductive inhomogeneity, the additional temperature gradient due to its presence can
be represented as integral over the inhomogeneity boundary

AVT)= \% jmT nds, (5.2)

where T and n are temperature and outward unit vector-normal to the boundary, respectively. Thus,
Neumann boundary value problem for Laplace equation has to be solved in order to find the
resistivity contribution tensor of a non-conductive inhomogeneity. In the case of an infinite fiber,

the component along the fiber axis (let it be_x3 axis) is independent of the shape of the cross-

section (see, for example, Torquato,.2002) and can be calculated separately as

Ap 1 L T
AR33_q§° AVT)-e5 A(kl kp) (5.3)

where A is the area of the cross-Section occupied by the inhomogeneity, A is the area of the cross-
section of the reference volume normal to the axis of the fiber, and g3  is the magnitude of the
remote heat flus along X3 axis. For non-conductive inhomogeneity, k; =0, and Rz3=-K,. If the

principal axes of the inhomogeneity are not known, the other components of the resistivity

contribution tensor are (see Radi and Sevostianov, 2016)

Ri1 1 Ri2
T T 54
(RZJ V' Aftaig e ﬁ{”zj (Rzzj %A 5o § 2 ﬂ){ } G4

where, ¢;° and g, are the magnitudes of the remotely applied heat fluxes along x; and x, axes,
respectively, and Ty(a, ) and T,(a, ) are the related total temperature fields (calculated in

Sections 2-5). The contour integral is performed around the boundary of the inhomogeneity cross-

section 02 of the inhomogeneity, n=ne; +n,e, is the outward unit vector normal to the contour

11



of the inhomogeneity, and ds is the infinitesimal arc length.

5.1. Two separate circular inhomogeneities (symmetric with respect to x; axis)
The components of the unit vector and the infinitesimal arc length on the contour of the two circles

with o =const are:

. _ inhla | si
_ cosha; cos 1sign(a1), n, = sinh|e;| sin B
coshe; —cos cosha; —cos
ds=rdg = asign(c) 4z, i=12 (5.5)

coshe; —cos
where @ is the polar angle measured from x; axis as reported in Figure 3. Then; using results of the
Section 2 and formulas (A.16)-(A.17) in the Appendix, expression (5.4) with=A =7zri2 (i=12)
yields the components of the resistivity contribution tensor Rj; (i,.j =,1, 2)'in the following form (
g >0, a,<0):

1

Ri1= E{‘“ 0| 2k )fn[e‘”%n(al)—e‘““%n (052)]}

csch?ay +csch?a, )5

R _1 -1+ 2 3
2k aq”(csch?ay + csch?ar, )<

n[e‘“"‘1¢n(a1)+e‘““2¢n(az)]} (5.6)
1

and R, =R,;=0. Note that terms —1/k inegns (5.6) represent the contribution of the remote

temperature fields T*. The remaining terms are due to the auxiliary solution T, Figure 13
illustrates dependence of the normalized components of the resistivity contribution tensor (5.6) on

p=r,/n atdifferent values of .= 6/r; .

5.2. Overlapped circles symmetric with respect to x, axis.

The component of the/unit vector and the infinitesimal arc length on the contour at £ =const are

sinhasin g . 1-cosha cosf .
n = sign(,), n, = sign(
".coshe — cos 3 (). n, cosh e —cos 3, gn(4)
ds=rdo=— asign(4) 4, i=12 (5.7)

cosh o —cos f;
Taking into account that A :riz(ﬂ—‘ﬁi +(sin|2,81|)/2‘), i=12 and using (5.4) and results of

Section3, one can write
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2ar

Rll:Ak(ﬂl—ﬂ {smkﬁ1
YBIAR (m)]sin kmﬁz}

Z[ (ﬂz)]sm km/,

sm kﬁz
4
Ry, = v ﬂal ﬂﬂz {Z [S (ﬂz)]sm kmp,
e k,Bz mzl[ Sm(,Bl)]sin kmﬂz}
Ri2 =Ry =0 (5.8)
where

A=A+, k=7/(f~ )
Ln(8)=(m-1) [cb(e—‘f” Lk(m —1))— cb(e‘ﬂ Lk(m —1))]— (m+ 1)[@(e—‘ﬂ L k(m + 1))— cb(e‘f” Lk(m —1))]
Sy(B)=1+km [e‘iﬁ cD(e‘iﬂ A, IZm)+ eiﬂ@(eiﬂ 1, km)]

and @(z,s,a)= kg')(a+ "

is Lerch function.

The geometry of the cross-section is completely determined by two dimensionless parameters :

K1 =Yq/a and x, =Y., /a. Particular ease.of x3 <0 and x, >0 describes a lenticular
inhomogeneity, and the limit x; -0, x, >0 (i. . g —>x, f, >—x) corresponds to a

rectilinear crack of length 2a aleng,x; axis with opening & — 0. In this case (5.8) is reduced to

1
R11=O; R22 =— > ® (59)
oK
The contribution of the rectilinear crack into the overall resistivity, however, is finite:
A Y ra?
=Ry, =—F—— 5.10
A Rz S (5.10)

(A is the area of the cross-section of the reference volume normal to the axis of the fiber). This
result coincides with one given by Zimmerman (1996)
The case x; =k, =0 corresponds to an isolated circular inhomogeneity. In this case, the well
known result is covered
Ri1 =Ry =2/k (5.11)
A semicircular inhomogeneity is described by x; -0, x, — . Expressions (5.8) are also
valid for an inhomogeneity of lunar shape when x; >x, and A.=A —A,. Figures 14 and 15

illustrate dependence of the normalized components of the resistivity contribution tensor (5.8) on
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p=r,/n at different values of y=4/r;. In the limiting case of a circular arc crack (x; — x5)

results coincide with ones of Sevostianov (2006):

ﬁRllzliR (1—cosa )3+ cosa)

A A 2k 512
. 2 (5.12)
KRZszﬁR (l—COSa)

In the case of multiple fibers, one can start with the non-interaction approximation when each
inhomogeneity is subject to the same far-field heat flux, unperturbed by the presence of the
surrounding fibers. In this case, the contribution of each fiber into the effective resistivity of the

material can be treated separately and the effective conductivity tensor K, is expressed in terms

of a sum \%ZviR(i) over individual inhomogeneities:
i

koK eﬁ_{n ZVR } (5.13)

The non-interaction approximation is of fundamental importance:-besides being reasonably accurate
at small concentrations of inhomogeneities (up to 15-20% for fiber reinforced composites,
Sevostianov and Sabina, 2008), it constitutes the basicbuilding block for various homogenization
schemes that place non-interacting inhomogeneities into a certain effective matrix or effective field.
Detailed description of the connection between various homogenization schemes and non-

interaction approximation is given, far example, in the review of Sevostianov and Kachanov (2013).

6. Concluding remarks.

We solved analytically the'problem on distribution of temperature field and heat flux around
a non-conductive cylindrical inhomogeneity, having a cross-section formed by two separate or
overlapping circles, embedded in an isotropic material subjected to a steady heat flux at infinity.
The solution-is ‘obtained in the form of infinite series which rapidly converge. Four types of cross-
sections are considered (Figure 1): (a) two separate circles (auxiliary problem), (b) cross-section
formed\byrupion of two overlapping circles of generally different radii, (c) lenticular cross-section
(that is mathematically a particular case of two overlapping circles), and (d) lunar cross-section
(including arc crack as a limiting case). The obtained solution is used to construct resistivity
contribution tensor for non-conductive inhomogeneities of the considered shape — the quantity that
describes extra temperature gradient due to the presence of the inhomogeneity. The limiting cases
of a fiber of circular cross-section, rectilinear crack, and arc crack are recovered.

The resistivity contribution tensor is the key quantity for calculation of the effective
properties of the material. The obtained results can be reformulated for the electric conductivity and
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diffusion process (in the electric conductivity problem, temperature and heat flux should be
replaced by electric potential and electric current; in the diffusion problem they should be replaced
by concentration and diffusion flux).

Note, the reciprocity theorem of Keller (1964) as and Schulgasser (1992) can be used to
obtain the effective conductivity of an isotropic material containing superconductive
inhomogeneities from the solution for a material with the same microstructure and non-conductive

inhomogeneities. Indeed, as follows from formula (1) in Schulgasser (1992) paper

Keff (Ko, &Ko JKeff (Ko, Ko /2) = k& (6.1)
where the first argument in kg represents conductivity of the matrix ky~<and the second —

conductivity of the inhomogeneities. As ¢ — 0, one can get the connection between effective
properties of the materials containing non-conductive and superconductve inhomogeneities.
Unfortunately, this approach cannot be used directly to construct resistivity contribution
tensor for an inhomogeneity of finite conductivity: it is possible for elliptical shapes only
(Zimmerman, 1989, 1996; Chen et al, 2017). In this case,the boundary value problem with non-
zero boundary conditions at the matrix/inhomogeneity_interface has to be solved. This problem is

much more difficult than the one discussed in the present paper.
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Appendix A. Auxiliary formulas.
1. Ildentities involving trigonometric and hyperbolic functions.

1 1
cosha —cos 3 smh|a| smh|a

|Ze “leosng,  —z<p<x (A1)

& - _ n+1)\a\ n—l)\a\ B

cosha —cos 3 cothle| 1+ o smh|a| Z( jcos ng, —r<p<n (A.2)
_ Sinf ol

cosha —cos S 2nZ=1e sinnfg (A.3)
B= —2i (_i)n sinng (Ad)

n=1
ﬂCOSﬂ=—15inﬂ+2in (—1)n sin nﬂ (A.5)
2 = (n2 -1

2. Fourier transforms used in Section 3

I sinha sin sa dor = Sﬂsmh s;rcos_h sp— c_osh 37zsm|sﬁ| (A.6)
0 (coshar — Cosﬂ) sinh szsin|B|

J- cos(sa) dor— cosh s3(s coth s 7+ ¢ot|5])— sinh s 3(s + cot|g|coth s;:); A7)
o (cosha —cos BY sin® B

o0 — 2 1 —_

i cosha cos(ser) , _ scosh sz |,B|)(_30t|,5|+f33‘23 psinhs(z |:3|); (A.8)
o (cosha —cos Y sinhsz sin‘(f]

f cos(sar) =ﬂcosh sﬂsmh s;z—5|_nh|s,8|cosh 57 (A.9)
o cosha — cosﬂ sinhszsin||

J-coshacos sa) _ ﬂSlnh_S(ﬂ—|,5_’|)COSﬂ : (A.10)
 cosher cosﬁ sinhszsin|f|

[ — A, (A11)
o cosha —cos 3 sin|3|

f 1 Sda:ﬂ300t|ﬁ|+ |ﬁ3|)(3CSC B- 2), (A12)
o (cosha —cos ) 2sin°|f|

0 2 _ i

J- sinh“« dat = n |ﬂ|+.s|2|ﬂ|cosﬂ ; (A.13)
o (cosha — cos B) 2sin”| 4
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. a
oo . sinh —
J-coshbs sinsa. , @ C
0

sinhcs

2 |C| cos n—b +cosh a
c c

3. Definite integrals used for evaluation of resistivity contribution tensors

T COSNB o 27T fnal.
7 cosha —cos sinh|a| ’

T cosng 27 _ndf
dg= e n+ coth
'[[(coshoz—cosﬂ)2 p sinh? (n+ cothir)

j( cosng dp = 2r n0’(2+n +3ncothla|+

3
' (cosha —cos g)° sinh3|a| smhzaj

]E Mdﬂ = 47rln(1+ e_“] :

~ _cosha —cosfg

T BSnB o Arr

° (cosha —cos B (1+ e“jsinh|a|
sin? B _ oz

~_(cosha —cos ) sinh®|q]

4. ldentities involving Lerch function.

o0

zsasz

For k >0and k¢ﬂ

da

]‘-’ sina sinka
o (coshka —cos /3, J(cosh o — cos 3, )?

KIS m-1fele 1k(m-1)- e 1k(m-1)]

" sin pisinkp, =
~(m +1)[cb(e‘iﬂ1 Lk(m +1))+ cb(ewl Lk(m +1))]}sin kmg,

da

T sinh azsinh ke
o (coshka +cos 3, J(cosh & — cos 3, )?

KIS o {m-fole 1.k(m-1))- o 1.k(m-1)

smﬂ sinkf, ~—
~(m+1 [@(e"ﬂl 1k(m +1))+ @(eiﬁl 1k(m +1))Bsin kmg,
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o0

I 1—coshacos g
o (cosha —cos 3, )2

e dg =1+ ke Pl 11+ K)+ePple” 11+ ) (A.24)

20



ACCEPTED MANUSCRIPT

Figure captions

n
Figurel
Figure 1. (a) two separate circles (auxiliary proble ross-section formed by union of two
overlapping circles of generally different radii, (c) lenticular cross-section (that is
mathematically a particular case of tw ng circles), and (d) lunar cross-section

(including arc crack as a limiting case).
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Figure 2. Examples of the fibers with cross-sections formed by two circles occurring in natural and
man-made materials: (a) electrospinned polystyrene fiber (from Liu et al, 2015) (b) oxidized
polyacrylonitrile fiber (from Marcuzzo et al, 2013) (c) natural sisal fiber (Monteiro et al, 2011).

Figure3

Figure 3. Sketch of the bipolar coordinate system:
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Figure 4. Sketch of an infinite plate with two separate circular inhomogeneities.
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Figure 5. Distribution of the dimensionless temperature ((a).and )*a%d dimensionless heat flow
((b) and (d)) in a plate subjected to a remote heat flux-in t ((a) and (b)) and x, ((c) and (d))
directions for p =3/5,y=1.

T :6'2 =3 mE 1

Figureb

Figure 6. Dimensionless temperature T(a.,B) k/(r1 ™) along the contour of the hole (a) with o = oy
and (b) with o = o, for some values of p and y = 1.
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Figure 7. Dimensionless temperature T(a.,) k/(r1 g*) along@t r of the hole (a) with o = oy
and (b) with o = a, for some values of y and p = 2.

|

q
HPHHH:HHHHH

B=B‘>0

x4

=
R R R R R R R R R R R R RRRRRY)
R R R R R R R R R R R R R AR R )
=

B=ﬁ:<0
AAARSARARRNARARARE
q.”

-

Figure8

Figure 8. Sketch of an infinite plate with two merging holes subjected to a remote heat flow along
the principal directions xi, x,.
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Figure 9. Distribution of the dimensionless temperature ((a)and )*a%d heat flow ((b) and (d)) in a
plate subjected to a remote heat flux in the x; ((a) an 2 ((c) and (d)) directions for
k1 =1/2 and x, = -1.
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Figure 10. Distribution of the dimensionless temperature ((a) and (c)) and heat flow ((b) and (d)) in
a plate subjected to a remote heat flux in the x; ((a) and (b)) and x; ((c) and (d)) directions for
kKi=-1/2and x, = 1.
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Figure 11. Lunar shaped inclusion. Note that the domain is @fﬂ"&aﬂing from the internal
circle (B = B2), so that quantities on the outer circle ( 1 t be evaluated at B = 27 + B1.
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Figure 12. Distribution of the dimensionless temperature ((a) and (c)) and heat flow ((b) and (d)) in
a plate subjected to a remote heat flux in the x; ((a) and (b)) and x; ((c) and (d)) directions for
k1 =1and x, =1/2.
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Figure 13. Dimensionless components of the resistivity contributiontensor: (a) Ri1 k and (b) Ra; k
fory=1,2,5,10 varying p.
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Figure 14. Dimensionless components of the resistivity contribution tensor for overlapping
inclusions: @) Ry; k and b) Ry, k for xy = +1/2, +£ 1, + 2, varying «k,. Dashed lines concern
lenticular inclusions.
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Figure 15. Dimensionless components of the resistivity coq@n‘%sor for lunar inclusions: a)
Ri1 kand b) Ry, k for k; =£1/2, £ 1, + 2, varying «,..
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