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Abstract 

An electronic tongue (ET) consisting of two voltammetric sensors, namely a poly-

ethylendioxythiophene modified Pt electrode and a sonogel carbon electrode, has been developed 

aiming at monitoring grape ripening. To test the effectiveness of device and measurement procedures 

developed, samples of three varieties of grapes have been collected from veraison to harvest of the 

mature grape bunches. The derived musts have been then submitted to electrochemical investigation 

using Differential Pulse Voltammetry technique. At the same time, quantitative determination of 

specific analytical parameters for the evaluation of technological and phenolic maturity of each sample 
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has been performed by means of conventional analytical techniques. After a preliminary inspection by 

principal component analysis, calibration models were calculated both by partial least squares (PLS) on 

the whole signals and by the interval partial least squares (iPLS) variable selection algorithm, in order 

to estimate physico-chemical parameters. Calibration models have been obtained both considering 

separately the signals of each sensor of the ET, and by proper fusion of the voltammetric data selected 

from the two sensors by iPLS. The latter procedure allowed us to check the possible complementarity 

of the information brought by the different electrodes. Good predictive models have been obtained for 

estimation of pH, total acidity, sugar content, and anthocyanins content. The application of the ET for 

fast evaluation of grape ripening and of most suitable harvesting time is proposed. 
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1. Introduction 

The development of analytical procedures for the assessment of fruit quality, requiring simple 

instrumentation and allowing rapid execution of reliable measurements, is of basic importance in 

several steps of the production chain. The whole path ranges from the selection of the best harvest time 

to the definition of the storage conditions [1,2]. In this frame, monitoring the ripening of grapes (Vitis 

vinifera) constitutes the essential tool for planning most proper harvest time; in fact, the final 

oenological result depends primarily on the assessment of grape ripeness. For the evaluation of the 

different indicators defining what is conventionally called technological, phenolic, and aromatic 

maturity, the quantitative determination of specific analytical data, including the content of sugars and 

acids, as well of polyphenols and aroma compounds, is necessary.  

In this context, the application of sensing systems to the in situ study of real matrices, requiring 

minimal or no manipulation of the sample at all, is a very urgent task. The final goal consists in the 

quantitative determination of one or more analytes, or in the estimation of overall quality parameters, 

also related to the sensory characteristics, such as ‘smell’, ‘taste’ and ‘colour’. To such an aim, the 
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development of devices known as electronic noses (ENs) [3,4], electronic tongues (ETs) [5,6] and 

electronic eyes (EEs) [7,8] is of chief importance to obtain fast and objective indications. 

When using ENs, ETs and EEs, the approach followed for the determination of the parameters of 

interest is based on ‘blind analysis’ techniques. In blind analysis no assumption about the species 

responsible for the measured signals is necessary: the information sought is extracted from the pattern 

of responses of the set of used sensors, through suitable chemometric treatments. In this context also 

the matrix effect on the responses, which is usually a drawback, may constitute an additional source of 

useful information, once reproducible. Matrix effects, in fact, affect differently the signals due to 

characteristic of the matrix itself, although the component of the matrix are not directly monitored. 

Moreover, the combination of data acquired by ETs, ENs and EEs, through proper data fusion 

techniques, can furnish more accurate information than any one of the individual sensing devices [9]. 

In this frame, our activity is devoted to collect and elaborate the data coming from a sensing system 

consisting of an EE and an ET in order to estimate the ripening of three purple grape varieties. The idea 

behind these studies is to investigate the possibility to develop a device able to easily quantify the 

parameters that are generally used to estimate both the technological and the phenolic maturity. The 

former one is typically related to the content of acids and sugars, while the latter one is associated to 

the amount of polyphenols. Among these last species, anthocyanins are most interesting in the case of 

grapes used for the production of red wines.  

In particular, the present paper reports the results concerning the use of an ET in the analysis of grape 

samples at different maturation levels. It must be mentioned that a further research work is in progress 

on the same samples, devoted to evaluate the effectiveness of an EE to the same purpose. With respect 

to reported applications of ETs to similar issues [10], our approach differs as to the used sensing 

elements, as to the electrochemical technique adopted for the acquisition of the signals, as to the data 

elaboration strategies and as to the number of distinctive parameters. In particular, let’s cite those 

connected to the polyphenolic content considered for the construction of the multivariate calibration 

models. 

Sensors based on electrochemical transduction have been used as sensing elements in ET for the 

analysis of food matrices, thanks to the notable advantages due to the use of low-cost electrochemical 

instrumentation, which can be easily embedded in miniaturized systems [11-15]. The ET used in this 

study consists of two different voltammetric sensors, namely a Pt electrode modified by a conducting 

polymer and a sonogel carbon electrode. The different nature of the electrode materials supposedly 

leads to responses bringing different, partially complementary information. Some of us have previously 
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evidenced the advantages offered by the use of conducting polymers as modifying materials of the 

electrode surfaces in ETs employed in recognition of different kinds of fruit juices [16], and in 

discrimination of different white and red wines with respect to variety, geographical origin and other 

characteristics of interest [17-19]. In these studies, we verified the effectiveness of a particular sensor, 

namely a Pt substrate coated by a poly-ethylendioxythiophene (PEDOT) film [16], which allowed 

faster and simpler measurements with respect to both bare and differently modified electrodes, also 

providing for an improved degree of cross-selectivity. The reproducibility of different PEDOT 

electrodes, realised under the same experimental conditions, was testified by the coincidence of 

responses recorded on the same solutions. 

In the present study, together with the PEDOT modified electrode (PEDOT-electrode), an electrode 

consisting of sonogel-carbon (SNGC-electrode) [20-22] has been also tested as a sensing element of the 

ET. As it is well known, carbon-based materials are most commonly used for detection of polyphenolic 

compounds [23-26], whose content varies notably during ripening of grapes. SNGC electrodes, 

prepared as described in ref. 22, are characterized by robustness, coupled to reduced dimensions and 

good electrochemical efficiency, particularly as to sensitivity, reproducibility and possible activation of 

electrocatalysis. 

The electrochemical signals have been acquired using Differential Pulse Voltammetry (DPV) technique 

with the ET on grape samples collected at different ripening times. Then, the signals have been 

elaborated by means of proper chemometric techniques using a blind analysis approach that was 

already successfully applied for the analysis of fruit juices [16] and wines [17-19]. Calibration models 

for the prediction of the physicochemical parameters were developed by means of Partial Least Squares 

(PLS) and of interval-Partial Least Squares (iPLS) [27], both considering separately the 

electrochemical signals of the two voltammetric sensors, and by mid-level data fusion [28-30] of the 

features selected by iPLS on the two sensors. 

 

 

2. Experimental 

2.1 Samples 

Three Italian purple grape varieties, namely Ancellotta (A), Lambrusco Marani (L) and Malbo Gentile 

(M) were considered. 
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Samples were collected during vintage 2015, at 5 intervals of about 10 days (T0, T1, T2, T3, T4) from 

veraison to harvest of the mature grape bunches. For each grape variety three plants belonging to inner 

rows were marked. One hundred berries per plant were randomly picked at the base of pedicel for each 

harvest time. Samples were transferred at 4 °C to the laboratory and quickly brought in a form suitable 

to physico-chemical characterization and analysis by ET. The berries were crushed and macerated 

under nitrogen atmosphere, for one hour at 4°C in an enclosed container in the dark, to avoid air 

contact. The macerate was centrifuged under refrigerated conditions (4°C) at 4000 rpm for 15 min. The 

supernatant, called “must” from here onwards, was recovered and divided into different aliquots, in 

order to perform replicates for each determination. Finally, it was stored at -20 °C and each aliquot was 

unfrozen just before analysis.  

Electrochemical and physico-chemical analyses were performed in parallel. Each must sample was 

analysed twice in two different acquisition sessions: the first time the acquisition order was 

randomized, then the order was shuffled and all the samples were analysed a second time. Thus, the 

overall number of analysed samples was equal to 45, requiring 90 analyses as a whole (3 grape 

varieties × 5 harvest times × 3 field replicates × 2 analytical replicates). 

 

2.2 Physico-chemical characterization 

In order to estimate the grape ripeness, 18 physico-chemical parameters were determined on the must 

samples: 

- total flavonoids content (TF) was determined by UV-Vis spectrophotometry (absorbance 

measured at λ = 280 nm) and the result was expressed as mg of (+) catechin/L [31]. In this 

work, all the UV-Vis measurements were carried out using a Perkin Elmer Lambda 650 

spectrophotometer equipped with a 10 mm quartz cuvette, and diluting the sample 50 times in 

hydrochloric acid-ethanol solution (ethanol:H2O:HCl 70:30:1 v/v/v); 

- total anthocyanins content (TAnt) was determined by UV-Vis spectrophotometry (absorbance 

measured at λ = 540 nm) and the result was expressed as mg of oenin chloride/L [31]; 

- tonality (Ton) was calculated as the ratio between the absorbances at 420 nm (corresponding 

to a yellow-orange sample colour) and at 520 nm (corresponding to a red-purple sample 

colour). This parameter is commonly used in oenology to evaluate the oxidation of wine during 

aging [32]. In the present case, Ton was considered as a parameter suitable to describe the 

colour variation that occurs during grape ripening; 
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- colour index (CI) was calculated as the sum of the absorbance at 420 nm, 520 nm and 620 nm 

(the last one corresponding to a blue sample colour) [33]. In oenology, CI is used to assess the 

colour of red wines and to perform colour correction by addition of a blending wine up to the 

desired CI value; 

- optical density (OD420%, OD520%, OD620%), defined as the percentage contribution of 

each absorbance, at 420, 520 and 620 nm, to CI [32]; 

- total polyphenols content (TP) was determined by following the Folin-Ciocalteu procedure 

reported in the OIV-MA-AS2-10 method [34]; the result has been expressed as mg of (+) 

catechin/L; 

- the content of the five most abundant anthocyanins, i.e., 3-O-monoglucoside of delphinidin 

(Df-3-glc), cyanidin (Cn-3-glc), petunidin (Pt-3-glc), peonidin (Pn-3-glc), and malvidin (Mv-3-

glc), was determined by reverse phase-high performance liquid chromatography, using a diode 

array detector (RP-HPLC-DAD). The method was described by Chinnici et al. [35] and 

adjusted as reported by Vasile Simone et al. [36]. Quantification was performed at fixed 

wavelength of 520 nm by Total-Chrom Workstation version 6.2.1 chromatographic system 

software (PerkinElmer, Inc.). The concentration of each compound was expressed as malvidin-

3-O-glucoside equivalents; 

- glucose (Glu) and fructose (Fru) were determined with the same chromatographic equipment 

used to determine anthocyanins. In this case, sugars were revealed by a refractive index detector 

(Series 200 refractive index detector, Perkin Elmer Inc.). As to the preparation of the sample, 

the musts (1 mL) were basified to pH 9–10 by NaOH 1 mol/L and then loaded into a 0.5 g-SAX 

cartridge (Isolute® SAX; Biotage), conditioned with 3 mL methanol and, subsequently, with 3 

mL H2O. Total sugars were eluted with 3 mL deionized H2O made up to final volume of 5 mL 

and filtered through 0.45 μm nylon filters before HPLC analysis. Samples were directly injected 

with a 5-μL loop using the above cited injection valve into a thermostated Phenomenex 

(Torrance) BIO-RAD Organic Acid Analysis Column (30 cm × 7.8 mm), at a column 

temperature of 50 °C. The elution solvent was 10% CH3CN in water at pH 2.0. The elution was 

carried out in linear gradient mode with a flow rate of 0.5 mL/min. The content of the two 

sugars was expressed as weight percentage; 

- sugar content (°Bx), expressed in Brix degrees, was determined with a manual refractometer 

(HI 96814, Hanna Instruments); pH was determined by a pH-meter (pH510, XS instruments); 

titratable acidity (TA), expressed as g/L of tartaric acid, was calculated by titration with 1 M 
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NaOH solution. Details of the used procedures are reported in the OIV-MA-AS313-01 method 

[37] and the European official methods [38]. 

 

2.3 Chemicals 

All solutions were prepared using ultra pure deionised Milli-Q water (18 MW/cm resistivity). All 

chemicals were reagent grade. 3,4-ethylendioxythiophene (EDOT), LiClO4, and anhydrous CH3CN, 

packaged under nitrogen, were from Sigma-Aldrich. Oenin chloride and (+)-catechin, both of analytical 

grade, were from Sigma-Aldrich.  

 

2.4 Electroanalytical Apparatus and Procedures  

All voltammetric tests were carried out with an Autolab PGSTAT 12 electrochemical instrument 

(Ecochemie), exploiting computerised control of potential waveform generation and of data 

acquisition, through GPES dedicated software. The experiments were performed in a single-

compartment three-electrode cell, at room temperature, under Ar atmosphere, in order to minimise the 

presence of interfering oxygen in the solution. A glassy carbon rod served as auxiliary electrode and an 

aqueous Ag/AgCl, KCl 3M electrode (Metrohm) was the reference electrode. All the potential values 

given are referred to such an electrode.  

The PEDOT-electrode was prepared by direct electrochemical polymerization–deposition onto a 3 mm 

diameter Pt disk electrode (Metrohm), carried out in a solution containing 10 mM EDOT and 0.1 M 

LiClO4 supporting electrolyte, CH3CN de-aerated solvent. Electropolymerisation was performed by the 

potentiostatic method. A potential of +1.20 V was applied until a charge of 3 mC was spent; the 

procedure was then terminated by fixing the potential at −0.80 V for 30 s, inducing partial de-doping of 

the coating. The polymer film was renewed before analysing each sample. Before each electrochemical 

deposition of PEDOT, the surface of the working electrode was polished with 0.05 μm alumina powder 

to a mirror finish, dipped in an ultrasonic bath for 10 min, and then rinsed with doubly distilled water.  

The SNGC-electrode was prepared as reported in ref. 22. After performing measurements in each 

sample, the electrode was polished with emery paper (1200 mesh), gently wiped with filtering paper 

and thoroughly washed with deionized water. 
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The electrochemical area of the electrodes, determined performing cyclic voltammetry at different scan 

rates in a 0.5 mM ferrocenedimethanol, 0.1 M KCl aqueous solutions, resulted equal to 0.0753 cm
2
 (s= 

0.004 cm
2
; n=3) for PEDOT-electrode and to 0.009  cm

2
 (s= 0.001 cm

2
; n=4)  for SNGC-electrode. 

The measurements in the musts samples have been performed without any sample pretreatment, by 

DPV technique. The DPV waveform consisted of 10 mV potential impulse, 4 mV potential step, 0.15 s 

impulse time, and 0.6 s time interval between two subsequent potential pulses. Ten subsequent DPV 

scans were performed in the potential range -0.30 ÷ +0.70 V when using PEDOT-electrode and in the 

potential range −0.10 ÷ +1.00 V when using SNGC-electrode. Before each scan, the electrode was kept 

at -0.30 V for 30 seconds (PEDOT-electrode) and at -0.5 V for 120 s (SNGC-electrode). Since 

polyphenolic substances give rise to pre-concentration phenomena on the electrode surfaces, to an 

extent resulting a function of the contact time between the electrode and the solution [39], the DPV 

measurements were started as soon as the electrodes were immersed in the must samples. 

For each measured sample, the corresponding voltammetric signal that was further elaborated by 

multivariate techniques was obtained by merging in sequence the vectors of the current values recorded 

in the ten subsequent DPV scans, as described in ref. [16]. Each resulting electrochemical signal is 

considered as a sort of fingerprint of the analysed sample, supposed to bring the chemical information 

useful for the quantification of the physicochemical parameters related to technological and phenolic 

maturity. 

The rationale for this approach is based on the observation that, although repeatability is not achieved 

within the set of 10 scans of a single DPV measurement, the reproducibility exhibited by two sets of 

DPV measurements, each one consisting of ten scans, in the same must with nominally the same 

electrode, was quite satisfactory, once proper experimental conditions were adopted. The evolution of 

the electrochemical response within subsequent DPV scans may be reasonably ascribed to two different 

factors: i) modifications of the electrode surface due to the electroactive species; ii) any other chemical 

and physical effects on the charge transfer, due to the food matrix. Based on preliminary analyses, ten 

scans were enough to give exhaustive account of the evolution of the signal due to these effects. As 

some of us observed in previous articles [16 -19], both the shape and the scan-by-scan evolution of the 

voltammetric traces are actually informative with respect to discrimination and calibration purposes 

and, in some cases, not all the ten successive DPV scans contribute to an equal extent. This latter 

consideration justified the use of iPLS as a feature selection method to improve the performance of the 

calibration models. 
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2.5 Multivariate data analysis 

2.5.1 Exploratory data analysis 

Before calculating the calibration models, the three datasets, corresponding to the physico-chemical 

parameters, to the PEDOT-electrode signals, and to the SNGC-electrode signals, were explored by 

Principal Component Analysis (PCA) in order to analyse their structure and to detect possible outliers. 

The matrix of the physico-chemical data, with size equal to {90 samples × 18 parameters}, was 

preprocessed by autoscaling. The DPV data matrices with size equal to {90 signals × 2430 potential 

values} and to {90 signals × 2680 potential values} for PEDOT-electrode and SNGC-electrode, 

respectively, were preprocessed by first order derivative (Savitzky–Golay filtering algorithm with a 15 

points filter width, 2
nd

 order polynomial) followed by meancentering. This signal preprocessing method 

was chosen based on the good results obtained in previous researches on similar food matrices [18,19], 

and was also used in the following calibration steps. 

 

2.5.2 PLS and iPLS calibration models on the two separate sensors 

Firstly, the multivariate calibration models were calculated for each physico-chemical parameter by 

considering separately from each other the two DPV data matrices corresponding to the PEDOT-

electrode and to the SNGC-electrode signals. After a preliminary assessment by PLS of the predictive 

performance of the models calculated considering the whole DPV data matrix, a selection of the scans 

leading to the optimal predictive performance was performed by means of iPLS [27]. 

The performance of the obtained calibration models was expressed in terms of the coefficient of 

determination, R
2
 [40-42], calculated in calibration (R

2
Cal), in cross-validation (R

2
CV), and in prediction 

(R
2

Pred). R
2
 is particularly useful to compare directly models calculated on different response variables, 

since it does not depend on the scale of the dependent variable, y, and is defined by the following 

equation: 

R
2
 = 1-PRESS/SSy  (eq. 1) 

where PRESS is the Prediction Error Sum of Squares, defined as the sum of the squared differences 

between the experimental and the predicted y values, while SSy is the sum of squares of the 

experimental y values (of the training set for R
2

Cal and for R
2

CV, and of the test set for R
2

Pred). 

Essentially, this parameter represents the portion of the variance in the response variable that is 
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predictable from the calibration model. While R
2

Cal corresponds to the squared value of the Pearson 

correlation coefficient (r) between the experimentally measured y values and the corresponding values 

calculated by the calibration model, resulting necessarily higher than 0, this does not hold for the R
2

CV 

and R
2

Pred parameters, which can also assume negative values in case of very bad model performance. 

Furthermore, also the values of the Root Mean Square Error (RMSE) [43], calculated in calibration 

(RMSEC), in cross-validation (RMSECV), and in prediction (RMSEP), were considered. RMSE 

represents the sample standard deviation of the differences between measured and predicted values, 

expressed in the same measurement units of the considered dependent variable, and is defined by the 

following equation: 

RMSE=�PRESS
n   (eq. 2) 

where n is the number of samples of the training set (for RMSEC and RMSECV) or of the test set (for 

RMSEP). 

For validation purposes, both the datasets of the signals relative to the two electrode systems were split 

into a training set, corresponding to the 60 signals recorded on the samples belonging to two field 

replicates, and into a test set, corresponding to the 30 signals measured on the samples belonging to the 

remaining field replicates. 

The model dimensionality was chosen by minimizing the value of the Root Mean Square Error in 

Cross-Validation (RMSECV). A venetian blinds cross-validation scheme with 2 deletion groups was 

considered, where each deletion group contained all the signals acquired on the same field replicate. 

Since for each sample 10 DPV scans were acquired in sequence, making the whole signal redundant, 

iPLS variable selection method was applied to each DPV data matrix in the forward mode [44]. 

Briefly, the forward iPLS algorithm divides the signal into a user-defined number of intervals of equal 

width, then it selects the intervals most useful for calibration by iteratively adding one interval at a time 

until a significant decrease of RMSECV is no longer observed. An interval width equal to a single DPV 

scan was chosen, corresponding to 243 points for the PEDOT-electrode dataset and to 268 points for 

the SNGC-electrode dataset. The same validation scheme used to calculate the PLS models was also 

applied to the iPLS models. 

 

2.5.3 Data fusion 
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For each physico-chemical parameter, a final calibration model was calculated by data fusion of the 

PEDOT-electrode and SNGC-electrode voltammetric data that were previously selected by iPLS. Since 

the two voltammetric sensors consist of different materials, operate in different potential ranges, and 

give different responses both in terms of the measured current values and as to the shape of the relevant 

signals, they could bring different information. For this reason, we have merged the complementary 

information obtained from these different sensors to produce more consistent, accurate, and useful 

information than that provided by the two separate data sources, thanks to possible complementarity of 

the responses of the two electrode systems. 

In particular, mid-level data fusion strategy was adopted [28-30], which consisted in combining the 

features that were previously extracted from each block separately. In general, the extracted features 

can consist either in the original variables selected from the dataset or in the latent variables obtained 

by using, for instance, PCA or PLS. In this particular case, the mid-level data fusion was performed by 

merging together the DPVs selected on the two sets of signals (PEDOT and SNGC) by iPLS for each 

dependent variable [45], i.e., for each physico-chemical parameter. 

Before performing data fusion, the two sets of signals were preprocessed by first order derivative, as 

for the previous models. Furthermore, given that the measured current values and the number of 

selected variables was different for the two sensors, to obtain better compatibility before data fusion the 

data were further preprocessed considering two different methods: block-scaling, which consists in 

meancentering and then scaling to unit variance each one of the two PEDOT and SNGC blocks, and 

autoscaling. Conversely to autoscaling, where the same weight is given to each variable, the purpose of 

block-scaling is to ascribe equal weight to each one of the two PEDOT and SNGC blocks, regardless of 

the measured current values and of the number of variables contained within each single block. 

External validation and cross-validation were performed using the same criteria adopted for the PLS 

and iPLS models described in the previous paragraph. 

All the models presented in this work were calculated using the PLS_Toolbox (ver. 7.8.2, Eigenvector 

Research Inc.) running in the Matlab environment (ver. 7.12, The Mathworks Inc.). 

 

 

3. Results and discussion 

3.1 Exploratory analysis of physico-chemical data 
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In order to obtain a preliminary overview of the analysed must samples, a PCA model was calculated 

on the dataset of the physico-chemical parameters listed in section 2.2. Two principal components were 

selected, accounting for more than 77% of the total data variance. Figure 1 reports the PC1-PC2 biplot, 

which essentially consists in the superimposition of the corresponding score plot and loading plot. 

From this figure, it is clear that the three grape varieties (Ancellotta, A, Lambrusco Marani, L, and 

Malbo Gentile, M) follow a common trend during ripening, mainly from negative to positive values of 

PC1. The analysis of the variables suggests that, in general, grapes become progressively richer in 

sugars and anthocyanins, while the acidity decreases with time, as expected. Focusing the attention on 

the different grape varieties, interestingly they show some peculiar features. In particular, a relatively 

limited increase of the content of polyphenols, flavonoids and anthocyanins is observed during ripening 

of M, while for A and L these compounds show a sharp increase starting from T2. 

 

Figure 1 near here 

 

 

3.2 Exploratory analysis of PEDOT-electrode responses 

Figure 2 reports the voltammetric responses of PEDOT-electrode in musts of the three varieties of 

grapes at two different ripening levels. For the sake of simplicity, only the 1
st
 scans are shown. It is 

worth noticing that responses quite different from one another are recorded on the same must at 

different ripening stages. This suggests that the DPV responses bring useful information with respect to 

the progress of such a process. Considering that in the voltammetric range investigated PEDOT film 

undergoes p-doping, it is not surprising that the “background” density current is of ca. 30 mA x cm
-2

. 

 

Figure 2 near here 

 

In all the DPV scans two peaks, located at ca. +0.15 V and at ca. +0.45 V (see Figure 2A), are well 

evident. In some musts or ripening time a third peak at higher potential is also recorded (see Figure 

2B). More positive potentials were not investigated, in order to avoid possible overoxidation of the 

polymer film. In accordance to the literature regarding wines and other beverages rich of polyphenolic 

substances [46], the presence of two or three anodic peaks in the voltammograms are reasonably 
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attributable to the oxidation of the cathecol, gallate, phenolic, and methoxy groups of tannins and 

anthocyanins.  

The variations of the features of the DPV curves  reported in Figure 2A and 2B, should be principally 

ascribed to the variation of the concentration and nature of the redox-active species during maturation. 

Nevertheless, other phenomena, such as the variation of viscosity of the solution, due to the increase of 

the content of sugars, can be invoked to partly explain the modifications of the electrochemical 

response (think at the previously discussed matrix effects). Unluckily, sugars are not directly 

electrochemically detectable in the conditions adopted in this study. Preliminary experiments have been 

performed in our laboratory in order to explain the effect of sugars content on the voltammetric 

response. Increasing amounts of sugars were added to a synthetic must solution (300 ppm of 

oenocyanin in tartrate buffer, pH=3.0) up to final concentrations equal to 10, 15 and 20% w/v. The 

peak current due to oxidation of the polyphenolic substances progressively decreased in intensity at 

increasing sugars content. Similar trends arose from an inspection of the voltammetric curves collected 

for each grape variety at different ripening stages. Nevertheless, the overall modification of the 

chemical composition of the grapes during ripeness, i.e. variation of sugars and polyphenolic contents, 

does not allow a simple interpretation of the voltammetric changes of the signals with time. 

Figure 3 reports an example of the evolution of the voltammetric signal, changing in intensity and 

shape, detectable over 10 subsequent potential scans recorded by following the described procedure.  

 

Figure 3 near here 

 

As we observed in previous articles [17-19], the scan-after-scan evolution of the voltammetric traces 

can bring useful information. A most important source of changes in the shapes of voltammograms 

over subsequent scans lies in adsorption on the electrode surface either of the polyphenolic substances 

present in the must samples or of their oxidation products: the evolution of the DPV traces does depend 

upon the nature of the must itself. Repeatable trends are found in the cases of all the analysed samples, 

testifying a reproducible effect of the matrix on the electrode processes. 

For exploratory data analysis purposes, PCA was performed on the electrochemical signals recorded at 

the PEDOT-electrode, with the aim of evidencing meaningful patterns within the dataset, without 

making any a priori assumption. Interestingly, the distribution of the samples in the PC1-PC3 score 

plot (Figure 4) partly resembles the structure observed in Figure 1: a common trend for the different 

varieties of grapes is evidenced, well accounting for the sampling time. The PC1 score values decrease 
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from T0 to T4, while the PC3 values increase from T0 to T1, and then decrease from T2 to T4. At 

veraison (T0), in Figure 1, and even more markedly in Figure 4, the M samples show extreme values of 

PC1. 

 

Figure 4 near here 

 

3.3 Exploratory data analysis on SNGC-electrode responses 

The DPV signals measured with the SNGC-electrode on musts (Figure 5A and 5B) present more peaks 

and more complex features with respect to the signals recorded using the PEDOT-electrode, also 

thanks to the possibility to investigate a wider potential region. Interestingly, the DPV traces recorded 

with the SNGC-electrode at time 4 of maturation (Figure 5B) show an intense peak located at ca. +0.60 

V, while in the DPV signals collected with PEDOT-electrode and reported in Figure 2 B the peak at ca. 

+0.45 V is still the highest one. This could suggest a discriminant behaviour of the two electrodes with 

respect the different phenolic species present in solution, which are reported in literature to be oxidised 

at different potentials. 

 

Figure 5 near here 

 

In accordance with refs. 47 and 48, all hydroxyl groups of the anthocyanins present in Vitis vinifera can 

be electrochemically oxidized at a carbon electrode, giving rise to several peaks in the DPV signals, as 

a function of the substituents on the B ring of the flavylium cation.  

The evolution of the DPV traces over 10 subsequent DPV scans is similar to that observed using the 

PEDOT-electrode (Figure 6).  

 

Figure 6 near here 

 

PCA performed on the DPV curves acquired with the SNGC-electrode evidences evolution of the 

signals with ripening, as reported in Figure 7, where the score plot of the first two PCs is represented. 

PC1 and PC2 account together for ca. 75% of the total variance. Although in this plot the samples are 

arranged differently than in Figure 1, the three grape varieties follow a common trend, according to the 

sampling time, highlighted by the blue arrow. This indicates that the electrochemical signals bring 
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information related to chemical changes occurring during grape ripening, which is better investigated 

through the development of calibration models that include all the considered varieties, as reported 

hereafter. 

 

Figure 7 near here 

 

3.4 Calibration of physico-chemical parameters 

Based on the encouraging results obtained from the exploratory data analysis of the three datasets, the 

electrochemical signals recorded with both the electrodes have been used to build multivariate 

calibration models, in order to evaluate the capability to predict the values of the considered physico-

chemical parameters. 

As described in the previous sections, the first step consisted in the definition, for each voltammetric 

sensor, of PLS models based on the whole sequences of the voltammetric curves. The prediction results 

of each physico-chemical parameter are reported in Table 1, together with the indication of the model 

dimensionality, i.e. of the number of latent variables (#LVs) used. 

 

PEDOT-electrode 
Y variable #LVs RMSEC RMSECV RMSEP R

2
Cal R

2
CV R

2
Pred 

TF (mg/L) 4 27.22 33.80 29.85 0.70 0.54 0.54 

TAnt (mg/L) 4 41.35 48.34 40.64 0.78 0.69 0.78 

Ton 3 0.18 0.19 0.21 0.81 0.78 0.66 

CI 4 1.64 2.03 1.61 0.77 0.64 0.78 

OD420% 4 4.19 5.27 6.13 0.88 0.81 0.73 

OD520% 3 5.78 6.57 7.36 0.82 0.77 0.66 

OD620% 1 1.92 2.07 1.90 0.25 0.13 -1.09 

TP (mg/L) 1 1500.90 1687.30 1629.20 0.09 -0.15 -0.12 

Df-3-glc (mg/L) 5 4.13 4.97 10.55 0.69 0.55 0.37 

Cn-3-glc (mg/L) 2 2.54 2.69 7.97 0.45 0.38 -0.22 

Pt-3-glc (mg/L) 5 6.42 7.99 9.34 0.72 0.57 0.59 

Pn-3-glc (mg/L) 2 7.90 8.31 14.75 0.54 0.49 0.17 

Mv-3-glc (mg/L) 4 33.72 40.60 36.76 0.85 0.78 0.76 

°Bx 3 2.08 2.27 2.88 0.73 0.69 0.57 

Glu (%) 3 1.44 1.57 2.22 0.77 0.73 0.65 

Fru (%) 3 1.20 1.31 1.90 0.81 0.78 0.68 

pH 5 0.21 0.26 0.19 0.75 0.60 0.83 

TA (meq/L) 2 17.42 17.31 19.70 0.93 0.93 0.93 

SNGC-electrode 
Y variable #LVs RMSEC RMSECV RMSEP R

2
Cal R

2
CV R

2
Pred 

TF (mg/L) 5 23.99 32.30 26.75 0.77 0.58 0.63 

TAnt (mg/L) 5 39.58 55.79 42.83 0.79 0.59 0.76 
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Ton 5 0.16 0.22 0.16 0.83 0.69 0.81 

CI 5 1.66 2.42 1.75 0.76 0.49 0.74 

OD420% 5 4.54 6.21 4.45 0.86 0.73 0.86 

OD520% 5 5.70 7.64 5.64 0.83 0.69 0.80 

OD620% 1 1.97 2.22 1.95 0.21 0.00 -1.20 

TP (mg/L) 3 1168.20 1453.00 1225.30 0.45 0.14 0.36 

Df-3-glc (mg/L) 4 4.47 5.31 10.21 0.63 0.49 0.41 

Cn-3-glc (mg/L) 4 2.13 2.43 6.70 0.61 0.49 0.13 

Pt-3-glc (mg/L) 5 5.98 7.79 8.18 0.76 0.60 0.69 

Pn-3-glc (mg/L) 5 6.47 10.08 9.76 0.69 0.25 0.64 

Mv-3-glc (mg/L) 5 30.06 39.26 28.26 0.88 0.80 0.86 

°Bx 2 2.68 2.94 2.78 0.56 0.47 0.60 

Glu (%) 2 2.01 2.13 2.52 0.56 0.51 0.55 

Fru (%) 3 1.56 1.86 2.00 0.68 0.55 0.64 

pH 5 0.18 0.25 0.34 0.80 0.62 0.47 

TA (meq/L) 5 21.01 26.79 36.86 0.90 0.84 0.77 

 

Table 1: Calibration results from PLS models for the investigated properties, using the two different 

electrodes. 

 

Considering the results in prediction, the PEDOT-electrode shows the most satisfactory performance 

for the prediction of CI, pH, TA and TAnt. Among the single anthocyanins, a satisfactory performance 

has been obtained for the prediction of malvidine-3-O-glucoside (R
2

Pred = 0.76). Quite unexpectedly, 

the PEDOT-electrode shows acceptable results also in the prediction of the parameters related to the 

sugar content (°Bx, Glu and Fru). In fact, sugars are not oxidisable in the experimental conditions 

adopted in this study. Therefore, an indirect effect of the variation of the sugars content during ripening 

of grapes on the electrochemical response should be invoked: the matrix effect does contribute to the 

total content of useful information.  

As far as the SNGC-electrode is concerned, the relevant PLS model leads to satisfactory prediction 

models for TAnt, Ton, CI, OD420% and OD520%, Mv-3-glc and TA. Compared to PEDOT-electrode, 

SNGC-electrode leads in general to better results in the prediction of the five most abundant 

anthocyanins and of the parameters derived by the UV-Vis measurements. It must be highlighted that 

with both the voltammetric sensors it was not possible to obtain an estimate of OD620%. This fact is 

reasonably ascribable to the very low values of absorbance at 620 nm, scarcely distinguishable from 

those of the baseline. 

Variable selection through iPLS was then applied separately to the two datasets of electrochemical 

signals, with the aim of selecting the combinations of DPV scans leading to the best calibration models 
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for each physico-chemical parameter. The results of the iPLS models are reported in Table 2, where the 

second column reports the numbers corresponding to the selected DPV scans.  

With respect to the PLS results reported in Table 1, the variable selection generally leads to slight 

improvements of the models performance, as reported in Table 2. The improvement is more 

pronounced for the PEDOT-electrode, in particular as to the variables accounting for the sugar content, 

which in this case are predicted quite satisfactorily. With regard to the number of selected variables, the 

models built up with the responses of the PEDOT-electrode are often more parsimonious than in the 

case of the SNGC-electrode. Scans n. 1, 2, and 7 were the most frequently selected ones for the SNGC-

electrode, while for the PEDOT-electrode the major part of the models included scans n. 10 and 3. 

These results confirm the advantage of considering the variation of the response of the voltammetric 

sensors between the different scans, which is due to interactions between electrode and grape must.  

 

PEDOT-electrode 

Y variable 
sel. DPV 

scan # 
#LVs RMSEC RMSECV RMSEP R

2
Cal R

2
CV R

2
Pred 

TF (mg/L) 3, 10 4 27.24 32.41 27.80 0.70 0.57 0.60 

TAnt (mg/L) 3 4 41.57 46.38 37.20 0.77 0.72 0.82 

Ton 9 3 0.17 0.18 0.21 0.82 0.80 0.67 

CI 2, 3 4 1.74 1.93 1.40 0.74 0.68 0.83 

OD420% 10 5 3.92 4.72 5.72 0.89 0.85 0.77 

OD520% 10 5 5.08 5.91 7.40 0.86 0.81 0.66 

OD620% 2 1 1.92 2.04 1.93 0.25 0.15 -1.15 

TP (mg/L) 4 1 1498.60 1681.40 1635.50 0.09 -0.15 -0.13 

Df-3-glc (mg/L) 1, 3, 6, 9 5 4.09 4.63 10.30 0.69 0.61 0.40 

Cn-3-glc (mg/L) 10 4 2.19 2.60 7.62 0.59 0.42 -0.12 

Pt-3-glc (mg/L) 1, 3 5 6.16 6.89 8.65 0.75 0.68 0.65 

Pn-3-glc (mg/L) 3 2 7.80 8.19 14.66 0.55 0.50 0.18 

Mv-3-glc (mg/L) 3, 4, 6, 10 5 27.80 37.40 29.90 0.90 0.81 0.84 

°Bx 10 5 1.83 2.12 1.99 0.80 0.72 0.79 

Glu (%) 10 5 1.33 1.55 1.74 0.81 0.74 0.79 

Fru (%) 10 5 1.09 1.26 1.47 0.85 0.79 0.81 

pH 1, 10 3 0.23 0.25 0.20 0.68 0.63 0.82 

TA (meq/L) 8, 10 2 16.73 17.23 18.63 0.94 0.94 0.94 

SNGC-electrode 

Y variable 
sel. DPV 

scan # 
#LVs RMSEC RMSECV RMSEP R

2
Cal R

2
CV R

2
Pred 

TF (mg/L) 1, 6, 7 5 23.16 30.84 25.69 0.78 0.61 0.66 

TAnt (mg/L) 6 5 40.71 55.80 48.51 0.78 0.59 0.69 

Ton 1, 4, 5 5 0.16 0.21 0.16 0.84 0.73 0.81 

CI 1, 2, 10 4 1.87 2.29 2.02 0.70 0.55 0.65 

OD420% 8 4 5.75 6.42 5.68 0.77 0.72 0.77 

OD520% 1, 4, 5, 8 5 5.62 7.26 5.48 0.83 0.72 0.81 

OD620% 1, 2 1 1.94 2.19 1.90 0.24 0.03 -1.07 
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TP (mg/L) 1 3 1153.50 1362.70 1228.80 0.46 0.25 0.36 

Df-3-glc (mg/L) 2, 7, 8, 10 5 3.95 5.27 9.52 0.71 0.49 0.49 

Cn-3-glc (mg/L) 2, 6 5 1.97 2.39 6.54 0.67 0.51 0.18 

Pt-3-glc (mg/L) 2, 8, 10 5 5.74 7.69 7.84 0.78 0.61 0.71 

Pn-3-glc (mg/L) 1, 2, 3 4 6.90 9.48 10.93 0.65 0.33 0.54 

Mv-3-glc (mg/L) 2, 7, 10 5 30.57 39.59 30.61 0.88 0.79 0.83 

°Bx 7, 9 3 2.59 2.93 2.67 0.59 0.48 0.63 

Glu (%) 7, 10 3 1.86 2.07 2.29 0.62 0.54 0.63 

Fru (%) 7, 10 3 1.62 1.78 1.93 0.66 0.59 0.67 

pH 1, 6, 7, 8, 9 5 0.18 0.24 0.34 0.81 0.66 0.46 

TA (meq/L) 2, 9 5 22.73 27.46 38.91 0.89 0.84 0.74 

 

Table 2: Calibration results after iPLS variable selection obtained for both the PEDOT-electrode 

signals (above) and the SNGC-electrode signals (below). 

 

The comparison of the calibration models reported in Table 1 and in Table 2 shows that the two 

voltammetric sensors bear different information from each other. For example, the results reported in 

Table 2 show that PEDOT-electrode leads to much better results than SNGC-electrode for the 

prediction of TA, while the opposite is observed, e.g., for OD520%. These results confirmed that the 

two voltammetric sensors actually bear different pieces of information about the investigated food 

matrix. It follows that data fusion could allow to acquire more information content, thanks to the 

possible complementarity of the PEDOT and SNGC responses. 

For each physico-chemical property, data fusion was therefore accomplished by merging in sequence 

the DPV scans selected by iPLS for both the electrodes, and calculating PLS models on the resulting 

signals. As it was described in the experimental section, two different preprocessing methods were 

applied on the fused data, i.e. autoscaling and block-scaling. The results of the calibration models 

obtained after data fusion of the selected variables are reported in Table 3, together with the total 

number of variables used to build the corresponding model (# sel vars). 

The comparison of the data in Table 3 with those in Tables 1 and 2 evidences that the adoption of the 

fused models leads to the achievement of a general improvement of the predictive performance, even if 

for some parameters the single-electrode models work actually better. In general, considering the 15 

parameters for which acceptable performance in prediction (R
2

Pred >0.5) is obtained at least for one of 

the calculated models, in eight cases the best performance is obtained considering the fused data, while 

in one case data fusion leads to the same performance obtained by considering a single electrode. 

More in detail, for TF, TAnt and CI, data fusion and autoscaling pretreatment leads to intermediate 

R
2

Pred values, compared to those obtained from the iPLS models of the individual electrodes. For 
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instance, for CI, R
2

Pred values equal to 0.83, 0.65, and 0.74 have been obtained with the PEDOT-

electrode model, with the SNGC-electrode model and with the fused data model, respectively. 

Concerning the models on fused data preprocessed by block-scaling, significant improvements are 

achieved for the prediction of Ton, OD520% and Mv-3-glc. Satisfactory results are obtained for the 

parameters referred to the sugar content (Glu, Fru and °Bx) and for pH; for these parameters the 

models built on the fused data perform better than the corresponding models built on the single-

electrode signals. Among all the considered parameters, the best performance in prediction is gained 

for TA, for which a value of R
2

Pred equal to 0.94 was obtained both with iPLS on PEDOT-electrode 

signals and with the two models on fused data. 

Finally, it must be highlighted that data fusion generally leads to a decrease of the number of latent 

variables, with respect to the corresponding models calculated for the individual electrodes. 

Summarizing, in most cases data fusion allows to enhance the information individually carried by the 

two single electrodes for the quantitative determination of a significant number of parameters of 

interest. These results lay the foundations for the development of an electronic tongue for actual in field 

applications. 

 

Selected variables fusion (autoscaling) 
Y variable # sel vars #LVs RMSEC RMSECV RMSEP R

2
Cal R

2
CV R

2
Pred 

TF (mg/L) 1290 3 24.55 30.79 31.84 0.76 0.64 0.63 

TAnt (mg/L) 511 2 43.58 49.97 46.60 0.75 0.67 0.74 

Ton 1047 2 0.17 0.19 0.18 0.81 0.77 0.78 

CI 1290 2 1.77 2.06 1.79 0.73 0.64 0.74 

OD420% 511 2 4.05 4.45 6.38 0.89 0.86 0.79 

OD520% 1315 2 5.72 6.68 6.49 0.83 0.77 0.77 

OD620% 779 1 1.77 2.05 2.00 0.36 0.20 0.08 

TP (mg/L) 511 1 1341.71 1591.32 1397.44 0.27 0.08 0.35 

Df-3-glc (mg/L) 511 5 3.57 4.87 10.57 0.77 0.60 0.45 

Cn-3-glc (mg/L) 779 3 2.02 2.42 6.95 0.65 0.51 0.39 

Pt-3-glc (mg/L) 1290 3 5.92 7.20 9.14 0.77 0.66 0.63 

Pn-3-glc (mg/L) 1047 1 8.37 9.15 12.10 0.48 0.39 0.52 

Mv-3-glc (mg/L) 1776 5 22.12 33.46 30.94 0.94 0.86 0.88 

°Bx 779 2 2.08 2.30 2.19 0.74 0.68 0.85 

Glu (%) 779 4 1.19 1.52 1.68 0.85 0.76 0.84 

Fru (%) 779 4 1.00 1.26 1.52 0.87 0.80 0.85 

pH 1826 4 0.18 0.21 0.22 0.81 0.74 0.86 

TA (meq/L) 1022 2 16.51 20.60 23.50 0.94 0.91 0.94 

Selected variables fusion (block-scaling) 

Y variable # sel vars #LVs RMSEC RMSECV RMSEP R
2

Cal R
2

CV R
2

Pred 

TF (mg/L) 1290 4 24.23 28.23 35.09 0.76 0.68 0.56 

TAnt (mg/L) 511 2 52.30 54.35 62.07 0.64 0.61 0.56 

Ton 1047 5 0.12 0.17 0.16 0.91 0.84 0.88 
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CI 1290 3 1.71 2.05 2.09 0.75 0.64 0.67 

OD420% 511 3 4.58 4.96 6.20 0.86 0.83 0.83 

OD520% 1315 5 4.00 6.26 5.15 0.91 0.81 0.87 

OD620% 779 1 1.90 2.06 1.84 0.27 0.16 0.10 

TP (mg/L) 511 3 1127.56 1541.27 1234.54 0.48 0.13 0.53 

Df-3-glc (mg/L) 511 4 4.46 5.34 10.59 0.64 0.49 0.41 

Cn-3-glc (mg/L) 779 4 1.92 2.28 6.82 0.68 0.56 0.40 

Pt-3-glc (mg/L) 1290 4 6.55 8.08 9.48 0.71 0.57 0.60 

Pn-3-glc (mg/L) 1047 4 5.68 8.14 10.85 0.76 0.56 0.61 

Mv-3-glc (mg/L) 1776 5 26.45 38.38 29.20 0.91 0.81 0.89 

°Bx 779 3 1.90 2.12 2.34 0.78 0.73 0.85 

Glu (%) 779 3 1.31 1.49 1.83 0.82 0.76 0.81 

Fru (%) 779 3 1.08 1.27 1.62 0.85 0.79 0.83 

pH 1826 5 0.17 0.21 0.22 0.82 0.74 0.85 

TA (meq/L) 1022 2 16.59 18.25 22.51 0.94 0.93 0.94 

 

Table 3: PLS results obtained after data fusion of the selected variables preprocessed using autoscaling 

(above) and block-scaling (below). 

 

Conclusions 

The potential usefulness of an ET consisting of PEDOT- and SNGC-electrodes in monitoring the grape 

ripening process has been investigated. The adopted procedure consisted in analysing responses from 

DPV measurements, performed directly in the must, without the necessity to add any reagents. Data 

fusion allowed to condense the information brought by the two electrodes for the quantitative 

determination of a number of parameters of interest in the estimation of the ripening of the grapes, such 

as pH, total acidity, sugar contents and tonality.  

These results allowed to develop an effective two-sensor voltammetric ET sensing system for direct 

application in grape must. On the whole, the ET sensing system allows to obtain very satisfactory 

results (R
2

Pred values from 0.82 to 0.94) for 11 out of the 18 physicochemical parameters that were 

considered in this work, and at least an acceptable estimate was reached (R
2

Pred values from 0.53 to 

0.71) for further 4 parameters.  

Additional tests are in progress in our laboratory using commercially available, disposable PEDOT-

electrodes. The definition of an effective methodology for similar electrode systems would allow the 

polymerisation step to be avoided, making the measurements faster and more practical. 

Finally, further work is in progress on the same samples in our labs, devoted to the development of an 

EE sensing system for the prediction of colour-related parameters suitable to monitor the ripening of 

grape.  
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Captions to Figures 

Figure 1: Biplot of the first two PCs obtained from PCA on physicochemical data of must samples. 

 

Figure 2: 1
st
  DPV scans recorded by PEDOT-electrode on the three varieties of grapes considered, 

collected at A) T0 and B) T4.  

 

Figure 3: 10 subsequent DPV traces recorded at PEDOT-electrode in an L must, collected at T3. 

 

Figure 4: PC1 vs. PC3 score plot for the signals obtained by PEDOT-electrode. 

 

Figure 5: 1
st
  DPV scans recorded by SNGC-electrode on the three varieties of grapes collected at A) 

T0 and B) T4.  

 

Figure 6: 10 subsequent DPV scans recorded with SNGC-electrode in an L must, collected at T3. 

 

Figure 7: PC1 vs. PC2 score plot for the signals obtained by the SNGC-electrode. 
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Highlights 

· An electronic tongue has been developed aiming at monitoring grape ripening. 

 

· Electrochemical signals on grapes at different ripening stages have been collected. 

 

· Calibration models have been built for estimation of physicochemical parameters. 

 

· Good predictive models have been obtained for pH, acidity, sugars and anthocyanins. 
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