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Abstract—As autonomous cars are entering mainstream, new
research directions are opening involving several domains, from
hardware design to control systems, from energy efficiency to
computer vision. An exciting direction of research is represented
by the coordination of the different vehicles, moving the focus
from the single one to a collective system.

In this paper we propose some challenging examples that
show the motivations for a coordination approach in autonomous
driving. Moreover, we present some techniques borrowed from
distributed artificial intelligence that can be exploited to tackle
the previously mentioned challenges.

Index Terms—adaptation, autonomous driving, socio-technical
systems.

I. INTRODUCTION

The next generation of cars will be composed of fully-
and partly-automated vehicles that drive in our streets with
little or no human intervention. Despite fully fledged Self-
Driving Cars will be commercialized only in 10-15 years,
vehicles with limited autonomous capabilities (the so-called
Advanced Driving Assistant Systems, or ADAS) are already
part of our lives, and prototypes such as Google Car [1] and
the Tesla ADAS [2] already performed thousands of kilometers
of testing/validation. Interestingly, as of today, researchers
mainly focus on the problem for each of the three main
ADAS sub-systems (perception-planning-actuation), but only
at the level of the single vehicle. We believe that is extremely
interesting, and to some extent crucial, to enlarge our per-
spective, and taking into the picture multiple vehicles that
interact and coordinate among themselves while driving in the
street. Algorithms from artificial vision, real-time scheduling
and energy/power reduction might benefit from the additional
information coming from other vehicles, and decisions i.e., on
path planning can be taken accordingly to other cars’ needs.

Until now, prototype of autonomous cars have been tested
in a sort of protected environment, always alone: the only
interaction with other vehicles has been recognizing them by
cameras and avoiding to collide with them. The next step is
to enable a proactive interaction among autonomous vehicles,
in order to better exploit resources and to facilitate goal
achievement.

We must consider two kinds of interaction: collaborative
and competitive; in the former, the considered vehicles have
the same goal and collaborate to achieve it; in the latter, each
vehicle is self-interested and must compete with other vehicles
to achieve its goal.

Several researches have addressed the Vehicle-to-Vehicle
(V2V) or Vehicle-to-Infrastructure (V2I) collaboration [3],
mainly supported by Vehicular Ad hoc NETworks (VANETs)
[4], and they can be considered at the base of vehicles
coordination. However, they focus more on the communication
between vehicles, not on higher-level collaboration algorithms,
and they do not take into consideration autonomous vehicles.

II. MOTIVATIONS

In this section we present some challenging examples and
situations that can benefit from applying adaptive coordination
in autonomous driving.

A. Crossings

Being deployed on a 2D plane, our streets must intersect
with each other forming crossings. Having vehicles coming
from at least three ways, they have to coordinate to exploit
the “crossing resource” in such a way to avoid collisions.
The traditional way to coordinate vehicles in a crossing is
to use traffic lights, which however do not enable the best
exploitation of the “crossing resource”, because they stop
vehicles even when no other vehicles are crossing.

Another approach is to exploit roundabouts, which are
circular street intersections where vehicles must yield to the
vehicles coming from left. This is more adaptive than traffic
lights, and the “crossing resource” is not wasted. However,
roundabouts can be built where enough space is available,
typically not in the city centers; moreover, starvation is
possible when one of crossing street has a high flow of traffic.

In this example, an approach to manage the crossing access
in an adaptive and decentralized way is deserved. Adaptive
because it must adapt the management to different conditions,
priorities and constraints; decentralized to avoid bottlenecks
and single point of failures

B. Turning Left

Connected to the previous example, turning left (or right
in some countries) represents another interesting case for
autonomous driving, where, differently from the previous case,
the crossing could be not regulated by a traffic light. Turning
left requires the coordination with the vehicles coming from
the opposite direction, which have the right of way and the
turning vehicle must yield. This example exhibit issues similar
to the previous one.



C. Parking

As known by people living in big cities, parking can be
a nightmare in given periods and/or given areas. One first
aspect is the valet parking, which means that the car parks
autonomously once a free slot is found. Even if solutions have
been proposed at the end of the last century [5], only now some
cars are equipped with appropriate devices to enact automatic
valet parking. We can foresee a near future when drivers can
leave their cars at the entrance of a parking area and the cars
autonomously find a free slot where to wait for their owners.
The second aspect is more complex but useful as well. We
envision a world where vehicles can “book” parking slots in
advance. Of course, to avoid resource waste, a coordination
with the vehicle(s) that will leave the slot at the right time
is needed. In addition, in smart cities, it will be possible
to automatically detect free parking spots in the whole city
area, thanks to IoT-capable monitoring cameras. In this case,
both V2V and V2I are involved. We remark that a centralized
infrastructure can be exploited to provide vehicles with needed
information, but it is not feasible to take decision, due to
scalability and dynamism requirements.

D. Behavior Learning

We can imagine that autonomous vehicles will learn from
the environment where they drive how to behave. With “en-
vironment” we aim at being very general, from the street
conditions to the typical weather, from the traffic load to the
user herself, who can specify some preferences. Of course, the
learned behavior is related to the environment where typically
the user moves by the vehicle. However, when the user drives
in a new environment (e.g., during holidays), the environment
can change and the vehicle is likely to need to learn a new
behavior. To this purpose, the vehicle can interact with other
vehicles in the new environment, which are used to that
environment and can provide information about the roads, the
weather, the traffic, and so on. We remark that this learning
is not trivial, because the vehicle can be flood by information
from other vehicles, and a careful coordination is needed to
avoid “garbage” pieces of information.

E. Traffic

In general, the traffic jam situations represents an interesting
case study for our aims. Currently, each vehicle is equipped
with a personal navigator device that provides information
about the routing. Connected vehicles can retrieve information
about the traffic and their navigators can suggest alternative
paths to avoid traffic jams. However, this can lead to an odd
situation where a lot of vehicles “choose” an alternative path,
causing its congestion as well. In this case, a coordination of
several vehicles is required. However, a centralized coordi-
nation is very hard to be enacted, because the situation can
change dynamically in a very fast way; vehicles can enter
and exit the interested area, drivers can change their target,
accident can happen, and so on.

III. PERSPECTIVES

In our work we have evaluated some possible techniques
to apply to autonomous driving, taken from multi-agent sys-
tems [6], autonomic computing [7] and self-organizing sys-
tems [8]. We discuss how traditional auction based approach
might be implemented to serve ADAS scenarios as well as
alternative paradigms of coordination that takes inspiration
from swarm intelligence [9], such as bio-inspired approaches
and other environment mediated coordination strategies. Sev-
eral approaches have been proposed that take inspiration from
nature, biology and similar disciplines [10]. In fact, living
beings enact coordination mechanisms and policies that are
likely to be the result of the evolution in several hundreds or
thousands of years, so they are effective for their purposes.
Even is their purposes are often simple, the advantage is
twofold: from the one hand, we can take inspiration from sim-
ple living beings, so their mechanism are easier to understand
and to replicate on artificial beings; on the other hand, there
are no centralized control, avoiding bottlenecks and single
points of failure, and improving scalability and robustness [11]
in highly distributed complex systems. The next subsections
will provide more details regarding these approaches, while
TABLE I summarizes their applicability to the case studies.

A. Auctions

A first, well-know and wide-adopted technique is repre-
sented by the auctions [12]. They have been applied to the
management of intersections [13], but in our opinion can
be exploited for a broader range of situations. In fact, this
is quite simple yet flexible and effective, and requires a
little centralization. The entities that aim at using a resource
“bid” for that resource and an authority collects the bids and
define the winner (usually the highest bid, but variations are
possible); auctions can be held in a given period of time,
during which bidders can change their bid. In our case, a
vehicle can bid for a “slot” in an intersection or in a parking
area; of course, the bid amount depends on different aspects
(availability of slots, available time, agreement with friends,
hurry, and so on).

B. Ant Colony Optimization

Another deep-studied technique to coordinate software com-
ponents is the one inspired by ant behavior [14]. This tech-
nique is quite simple but can be very effective; it is based
on the fact that ants leave signals (called “pheromones”)
on their path, and those signals fan be enforced (if more
ants leave the signal in the same place) or decreased (they
“evaporate” after a given time) depending on the interest on the
path. An interesting aspect of this approach is that it exploits
the environment to enable communication among coordinated
entities. In our scenario, it can be applied to autonomous
vehicles even if they do not know each other and do not have
the capability of communicate directly. For instance, a traffic
jam can be faced (and avoided) by “putting” specific signal
information in the environment.



C. Distributed Learning

Deep learning [15] is now the most widely adopted
machine-learning model for enabling vehicles to detect pedes-
trians, street lanes and many other features needed to perform
safe autonomous driving [16]. As of now, car manufacturers
are collecting huge amount of data in (mostly) centralized
servers to perform the off-line learning phase; elaborated data
(such as weights and topology of the resulting deep neural
networks) are then offloaded to the autonomous vehicles. We
argue that in the future such model might be further enhanced
with continuous learning networks, in which the experience of
different cars can serve for improving previously stored neural
networks, so to have online distributed refinement of weights
and topologies for continuously evolving networks. Simulated
scenarios already discussed some possible algorithms for these
approaches [17].

D. Field-based Approaches

The metaphor of the physic field has been exploited in
distributed coordination because of its simplicity and ex-
pressiveness [18]. In this kind of approach, the environment
provides one or more location-dependent values that represent
information for the components living in the environment. This
approach has been enforced by distributed tuple spaces in the
SAPERE project [19]. These mechanisms have been success-
fully tested in urban scale crowd steering scenarios [20], which
might be easily adopted for avoiding traffic congestions.

TABLE I
CASE STUDIES AND POSSIBLE APPROACHES

Case study Techniques
Crossings and Turning left Auctions
Parking Auctions
Behavior learning ACO, Distributed learning
Traffic Jam ACO, field-based

E. What Is Missing

From the previous sections, it seems that several tech-
nologies and techniques are available to manage a set of
autonomous vehicles. However, we point out that the real
scenario of autonomous vehicles has not been explored yet,
and can exhibits peculiar issues that have not been faced in
the previous research. In particular, we point out two issues:
(i) there is no comprehensive approach to apply coordination
approaches to the autonomous driving scenario; (ii) there are
no real experiments on applying the mentioned techniques to
physical vehicles. Therefore, to pursue our research objective,
we aim at defining a global approach and at testing the
previously mentioned technology with real vehicles.

Testing on real-vehicles, will then be carried out by two
ways: (i) A first bunch of experiments will be performed by
using scale cars; (ii) next experiments will be performed in a
real area of the city of Modena, called “Smart-area”, which is
going to be equipped by the local administration with sensors,
actuators, and, above all, a connection infrastructure that will
enable the communication among vehicles.

IV. CONCLUSIONS

In this paper we have presented some examples as
motivations to introduce adaptive coordination in autonomous
driving, along with the challenges they introduce. We have
also presented some techniques that can be exploited to enact
adaptive coordination in the considered scenario. From our
consideration, a lack of a comprehensive approach and of
real experiments emerges.
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