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Abstract—Analysis of in-vehicle networks is an open research
area that gained relevance after recent reports of cyber at-
tacks against connected vehicles. After those attacks gained
international media attention, many security researchers started
to propose different algorithms that are capable to model the
normal behaviour of the CAN bus to detect the injection of
malicious messages. However, despite the automotive area has
different constraint than classical IT security, many security
research have been conducted by applying sophisticated algo-
rithm used in IT anomaly detection, thus proposing solutions that
are not applicable on current Electronic Control Units (ECUs).
This paper proposes a novel intrusion detection algorithm that
aims to identify malicious CAN messages injected by attackers
in the CAN bus of modern vehicles. Moreover, the proposed
algorithm has been designed and implemented with the very
strict constraint of low-end ECUs, having low computational
complexity and small memory footprints. The proposed algorithm
identifies anomalies in the sequence of the payloads of different
classes of IDs by computing the Hamming distance between
consecutive payloads. Its detection performance are evaluated
through experiments carried out using real CAN traffic gathered
from an unmodified licensed vehicle.

I. INTRODUCTION

The increasing adoption of advanced infotainment systems
and self-driving capabilities makes modern vehicles similar
to mobile networks of computing devices, often connected
to the public Internet. This trend opens different scenarios
of groundbreaking innovation, but also exposes novel attack
surfaces that cyber-attackers can exploit. Recent works shows
that it is possible to remotely control a vehicle [1], [2], [3],
with implicit safety hazards for drivers and nearby people.

In all cases, attacks were made possible by the lack of
proper security countermeasures in current vehicle networks.
Systems and algorithms for the detection of attacks injected
over the CAN bus of modern vehicles is still an open research
area, whose importance is motivated by the relevant safety
risks for drivers, passengers and people nearby a vehicle under
cyber-attack.

This paper proposes a novel anomaly detection algorithm
for the CAN bus of modern vehicles that is based on the
evaluation of the Hamming distance [4] between the payloads
of consecutive CAN messages having the same ID [5]. We
remark that both message ID and payload can be easily
gathered and extracted from the CAN bus. The proposed
analysis does not require full specifications of the payload
syntax and semantic, that car makers and OEM consider as
strictly confidential information. Hence the proposed approach
is immediately applicable to any licensed vehicle.

Performance of the proposed algorithm have been tested
against the injection of malicious messages on real CAN
traffic traces gathered from the test vehicle at our disposal.
Moreover, computational and memory requirements of the
proposed algorithm have been evaluated to be low enough
to be compatible with the hardware constraints of ECUs
(Electronic Control Units) embedded in current vehicles.

To the best of our knowledge, this is the first algorithm
that inspects the sequences of the payload values for different
classes of IDs of the vehicle.

II. RELATED WORK

Attacks to modern vehicle executed by injecting malicious
CAN messages in the CAN bus [1], [3], [2] motivated novel
research efforts aimed at improving the security of the CAN
bus. Many solutions for Anomaly Detection in classical IT
networks have already been proposed [6], [7], [8], based
on several different approaches: they can analyze network
packets (Network IDS), activities executed within computers
(Host IDS) or a combination of these kind of events (Hybrid
IDS). Independently on the monitored resources, IDSes can
identify signatures or anomalies. A signature approach require
a database of known attacks in order to detect anomalies.
It is possible to detect only anomalies that are included in
such database, meaning that unknown vulnerabilities can be
exploited in order to successfully perform attacks. In the
automotive domain this approach is not applicable, because
attacks are emerging and novel.

Related work in the automotive field focus on detecting
attacks by analyzing the data available on the CAN bus, as
mandated by the CAN specifications [5]. Many research efforts
apply algorithms typical of anomaly-based [9] Network IDS
to those data.

The simplest approach is to detect CAN bus messages
having an invalid ID [10]. In this case, the normal model
is just a set of valid message IDs, either gathered from the
formal specification of a given vehicle, or learned by sniffing
correct messages from the can bus. This approach allows easy
and precise identification of attacks that inject CAN messages
with an invalid ID, but can be easily foiled by attackers clever
enough to inject arbitrary messages with valid IDs. Hence this
approach can be useful against basic fuzzing [11] techniques,
but becomes useless against more sophisticated or determined
attacks.



Popular approaches are based on the analysis of the cycle
time of periodic CAN messages [12], [13], [14]. However,
cycle time variability caused by contention or by events
happening while driving leads to the generation of many false
positives. Moreover, this approach is inapplicable to all non-
periodic messages.

Other works model the normal behavior of the CAN bus
using several statistical features [15], [16]. Similar proposals
can only detect massive attacks injecting hundreds or thou-
sands of messages in a very short time frame, but fail against
targeted attacks involving just a few messages.

A different approach has been proposed in [17], in which the
normal behaviour of legit CAN traffic is created by inspecting
the possible transitions between consecutive message IDs.
Despite achieving good detection results, this approach is
limited to the inspection of message IDs and behaves poorly
against targeted injection of highly frequent messages.

The algorithm proposed in this paper models the normal
behaviour of CAN traffic by evaluating the difference between
consecutive payloads of the same ID by means of the Ham-
ming distance. This design choice has several advantages with
respect to the state of the art. First, it does not require full
knowledge of the syntax and semantics of CAN messages.
Normal features can be learned just by analyzing traffic
traces sniffed from a licensed vehicle. Moreover, experimental
evaluations demonstrate that the proposed algorithm is able to
detect even stealth attacks that involve the injection of very
few CAN messages.

We also remark that proposed solution for improving CAN
bus security complies with the hardware constraints of a
typical automotive ECUs, having very low memory and com-
putational requirements. As an example, while the detection
approach based on deep neural networks proposed in [18]
is very interesting from a theoretical point of view, its high
computational cost makes it inapplicable to modern vehicles.
On the other hand, the detection approach proposed in this
paper can be applied to modern ECUs.

III. BACKGROUND

A. Controller Area Network

The Controller Area Network (CAN) is a vehicle bus
standard designed to allow data exchange among microcon-
trollers without requiring a host computer. The CAN bus was
developed at Robert Bosch GmbH and officially released in
1986. The last specification of the CAN Bus is the CAN
2.0, published in 1991 [5]. The CAN bus is a multi master
serial bus with at least two different nodes, connected through
a two-wire bus. Data are sent through the network using a
particular type of frame, the Data frame. Data frames can
have different structures depending on the formats, as shown
in Figure 1. The main fields are the Identifier and Data Field.
The identifier is used to distinguish among different types
of CAN data frame. Data frame characterized by a given
identifier are usually produced by a specific ECU, while every
ECU reads the identifier field of every message in order to
determine which messages are of interest for its processing

logic. The identifier is also used for arbitration of the CAN
messages: lower values of this field denote messages with
higher priority. The identifier is the only field whose size
varies depending on the type of CAN message. In particular,
as shown in Figure 1a, the identifier field for the basic format
has a fixed length of 11 bits, while for the extended format,
shown in Figure 1b, the identifier has a maximum length of 29
bits. Despite the different number of bits used in the identifier,
basic and extended format are compatible with each other The
Data field is a sequence with a maximum length of 8 bytes
(64 bits), used to represent the values transmitted over the
CAN bus. A generic data frame usually packs several different
signals within the same Data field, and the CAN standard
leaves complete freedom to the car makers about the structure,
number and meaning of signals. Hence, without having access
to the formal specification of a CAN message, its Data field
looks like a binary blob.

B. Hamming Distance

The Hamming distance is used to measures the minimum
number of substitutions required to change one string into
the other. The Hamming distance has been proposed by
Richard Hamming in 1950 [4] and it is widely used in
several disciplines including information theory, coding theory
and cryptography. The generic formula for evaluating the
Hamming distance between two words of equal length k can
be found in equation 1:

Hd(x, y) =

k∑
i=1

|xi − yi| (1)

In the equation 1, the evaluated xi− yi is equals to 0 when
xi is equals to yi, 1 otherwise. In particular, in this paper
the Hamming distance is evaluated on two binary strings.
This implementation of the Hamming distance is known as
Hamming cube, a variation of the classic Hamming distance
applied on strings that are comparable to vertices of an
hypercube graph. A generic binary string of length n can
be evaluated as vector in IRn by treating each symbol in
the string as a real coordinate. This means that each string
can be evaluated as a particular vertex of the n-dimensional
hypercube, thus, the Hamming distance of two binary strings
is equivalent to the Manhattan distance between the vertices
of the generated hyperline. This paper evaluates the Hamming
distance between two binary string, reducing the hypercube
to a single hypervector. Having payloads composed by 64 bits
of data, the hyperspace containing all the different possible
vertices have a maximum size of 264. For the data frame
payloads, composed by 64 bits, the Hamming distance is
evaluated as shown in Equation 2, where pk is a generic
payload at time k and pik is the ith bit of that payload.

Hd(pt, pt+1) =

64∑
i=1

pit ⊗ pit+1 (2)



Fig. 1: Dataframe types comparison
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IV. ATTACK SCENARIO

To prove the effectiveness of the algorithm proposed in
this paper, attacker activities have been simulated by injecting
forged CAN messages within the legit CAN traffic generated
by a licensed, unmodified vehicle. This process has been
widely used for the evaluation of several intrusion detec-
tion algorithm [11], [12], [13], [15], [17], allowing security
researchers to simulate effects over the CAN bus of real
attack strategies [1], [3] without safety hazards. For the testing
purposes of the proposed algorithm, two different datasets
have been created. The former simulates Fuzzing attack, a
reverse engineering techniques executed by injecting randomly
forged values and studying the reaction of the whole system,
as described in Section IV-A. The latter simulates a Replay
attack, where legit payloads are injected into the CAN bus, as
described in Section IV-B.

A. Fuzzing Attack

Fuzzing attack simulation traces have been created in order
to test the proposed algorithm against the preliminary attack
phases normally executed by attackers targeting an unknown
vehicle. These activities are required [19], [20], [1], [11] for
reverse engineering of the encoded signals transmitted over
the CAN bus. This dataset has been created starting from
different traffic traces gathered from the test vehicle under
different driving and traffic conditions. For each ID found
in the collected traces, a random payload is generated and
injected, simulating a classical fuzzing approach.

B. Replay Attack

In order to prove the effectiveness of the proposed algo-
rithm against a replay attack, a dataset have been created
by injecting already seen message payloads in a randomly
chosen position within the trace of normal traffic. This dataset
has been created starting from different valid traffic traces
recorded from a licensed unaltered vehicle in different driving
and traffic conditions. For each ID of the test vehicle, one
payload has been randomly chosen from the ones seen on the
collected traces and injected in random positions. Different
traces present different injected payloads, while in the same
trace the injected payload is always the same.

The injection position of the payload for both fuzzing and
replay attack is randomly chosen in a window of size N for
each message ID. Different sizes of the injection windows have

been tested in order to determine how that size could impact
the detection of the injected messages. For the final generation
of malicious datasets, the size N of the windows changes
between 10, 25 and 50, generating a total of 30 different traffic
traces containing different anomalies.

V. ALGORITHM DESCRIPTION

The algorithm proposed in this paper evaluates the Ham-
ming distance between two consecutive payloads of the same
ID in order to detect variations from the previously created and
validated normal model. The Hamming distance is evaluated
using the formula expressed in Equation 2.

The normal model has been created and validated on all
the different IDs, gathered from the main CAN bus of a 2011
Ford Fiesta R©. For the purposes of this paper, five different
traces have been collected, each one recorded under different
traffic situations, aiming to maximize the variability of the
message payloads. The proposed algorithms is composed by
two different phases: an initial model creation and validation,
that generates all the references for each ID of the car model
and validates the preliminary results against other traces; and
the live detection phase, designed and implemented in order
to test the created model against real attack scenarios and to
demonstrate that the proposed solution is applicable to ECUs
with limited hardware resources.

A. Model Creation and Validation

In the Model Creation and Validation phase the algorithm
inspects the previously collected CAN log traces in order
to compute the metrics used by the proposed algorithm. In
particular, the minimum and maximum Hamming distance
evaluated between sequences of payloads are extracted for
each different message ID.

For model creation we selected 20% of the gathered CAN
bus data. Can traffic has been split into subtraces, one for each
different ID. For each subtrace, we computed the Hamming
distance between the payloads of consecutive messages. We
then selected the minimum and the maximum among these
distances and associated these two value to the related ID.
These values represent the Hamming range that characterize
consecutive messages of the given ID. Our model is based
on the assumption that the Hamming distance between two
consecutive normal payloads will fall in the Hamming range
learnt during training. On the other hand, messages injected by



an attacker will contain values that are in conflict with those
generated by licit ECUs. If the Hamming distance between an
injected message and the adjacent messages having the same
ID are out of the Hamming range, our approach is able to
detect the attack.

In the validation phase, the algorithm checks the remaining
80% of the gathered data, evaluating the Hamming distance
between every pair of consecutive payloads belonging to the
same message ID and comparing it with the Hamming range
learnt during training. A false positive alert is raised if the
distance evaluated for a particular message ID is out of the
reference range, since these traffic traces contain no attack.
During the validation process the algorithm raised 0 false
positives, meaning that the minimum and maximum Hamming
distance learnt in the training phase represent a stable feature
that can be used to identify message injections.

B. Live Detection

The live detection phase is the part of the algorithm designed
for the real time detection of anomalies on the CAN bus.
This phase has been designed to adapt to the very limited
resources of common ECUs that can be found on today’s
vehicles, characterized by only a few kilobytes of RAM and
requirements and very low computational power. Using the
previously created model, the algorithm in this phase is able
to determine anomalies by evaluating the Hamming distance of
two consecutive payloads of the same message ID. When the
evaluated distance is outside the Hamming range associated
to that particular ID, an anomaly is detected.

VI. EXPERIMENTAL EVALUATION

The proposed algorithm has been tested against the two
different types of attacks commonly used to subvert vehicle
security and reverse engineer the behaviour of ECU previously
described in Section IV.

Preliminary analyses on the detection results highlighted
that many IDs had similar detection rates for both Fuzzing
and Replay attacks. After a more detailed investigation, we
found out that IDs having very close detection results also
have very similar Hamming ranges.

Statistical analysis of the Hamming ranges is shown in
Figure 2, where the y-axis represent the Hamming range and
the x-axis is an identifier of the 43 different IDs that have
been found in the CAN traffic traces. IDs have been ordered
with respect to the associated Hamming range. It is possible
to observe that IDs can be naturally classified in three main
categories:

• NoRange: IDs for which the Hamming distance between
consecutive messages is always constant, hence the min-
imum and maximum Hamming distances are equal and
the Hamming range is 0

• SmallRange: IDs for which the distance between the
maximum and minimum Hamming distances (Hamming
range) is always lower than a σ reference value

Fig. 2: Hamming range distribution
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• MidRange: IDs for which the distance between the
maximum and minimum Hamming distances (Hamming
range) is always higher than σ

The value of σ has been empirically determined to be equal to
6. This choice allows to group together IDs with very similar
detection rates, and is motivated by the relatively high gap
that exists between IDs 28th and 29th, as shown in Figure 2.
According to this classification the NoRange, SmallRange
and MidRange classes comprise 15, 13 and 15 message IDs,
respectively.

A. Fuzzing Attack Detection

Figure 3 represents the detection results of the proposed
algorithm against a fuzzing attack as described in Section IV.

For each class we show three different detection results,
represented as sets of three vertical bars. The leftmost set of
bars refers to a fuzzing message injected every 10 normal
messages, the middle bars to an injection every 25 messages,
and the rightmost bar refers to an injection every 50 messages.
Within each set of bars, the first refer to the NoRange class, the
second to the SmallRange class, and the third to the MidRange
class. The x-axis represent the attack frequency, while the y-
axis represents the detection rate.

Results in Figure 3 show that the proposed algorithm is
able to detect the injected attack with percentages close to
100% injection of fuzzing messages in cases of both NoRange
and SmallRange classes. In particular, the detection rate for
the NoRange class is always higher than 98% and for the
SmallRange class is always higher than 97%.

On the other hand, the detection rate is lower for attacks
involving the IDs classified as MidRange. In this class the
detection rate varies from 20% to 30% depending on the
intensity of the attack. Attacks with a shorter period and a
higher injection frequency present better detection results with
respect to those characterized by a longer period and a lower
injection frequency.

Poor detection results in case of the MidRange class are a
direct consequence of the relatively high Hamming range that



Fig. 3: Fuzzing Results Overall Performance
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characterize IDs belonging to this class. MidRange class is
composed by IDs with Hamming range above the selected
σ, meaning that the Hamming distance between payloads
of IDs belonging to this class are more prone to change
significantly during the vehicle dynamic. Thus, by injecting
randomly generated payloads, there are higher probabilities
that the injected payload is close enough in terms of Hamming
distance to it neighbours, generating higher false negatives and
keeping the detection rates smaller than the other cases.

We remark that the proposed detection algorithms never
raised a false alert, hence the false positive rate is 0.

1) Replay Attack Detection: Figure 4 represents the detec-
tion results of the proposed algorithm against a fuzzing attack
as described in Section IV.

Similarly to the previous attack scenario,for each class we
show three different detection results, represented as sets of
three vertical bars. The leftmost set of bars refers to a replay
message injected every 10 normal messages, the middle bars to
an injection every 25 messages, and the rightmost bars refers
to an injection every 50 messages. Within each set of bars, the
first refer to the NoRange class, the second to the SmallRange
class, and the third to the MidRange class. The x-axis represent
the attack frequency, while the y-axis represents the detection
rate.

It is possible to observe that the proposed method is not
suitable for the detection of replay attacks, especially for the
NoRange and SmallRange classes. In particular, our method is
never able to raise an alert for replay attacks on IDs belonging
to the NoRange class, while detection rates for the SmallRange
class are always below 2%. This result is caused by the very
low Hamming range that characterize legit messages, that
are very similar among themselves. Since a replay attack is
executed by injecting a legit message out-of-place within the
CAN traffic, the injected message will be very similar to the
adjacent licit traffic.

Better results can be achieved for IDs belonging to the
MidRange class, and characterized by higher Hamming ranges
(and higher message variability). Detection rate for this class
varies between 20% and 10%, depending on the attack

Fig. 4: Replay Results Overall Performance
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frequency. While these detection rates are small, we remark
that the proposed detection method raised no false alerts, hence
the false positive rate is always 0.

B. Computational cost

An accurate inspection of computational complexity and
memory requirements for the proposed algorithm is given in
this section to prove its low computational requirements that
make it applicable to common ECUs found in modern licensed
vehicles.

Computational Complexity: The algorithm for live detec-
tion discussed in Section V-B requires to compare the current
payload value of a specific ID with the previous recorded
payload from the same ID. The evaluation of the Hamming
distance of the two payloads takes place in a single loop, that
compares all the N bits composing the payload and sums the
result of a bit-wise XOR operation among the bits at the same
index of the two different payloads, adding one in case the two
bits are different from each other, 0 otherwise. At the end of
this loop, the evaluated distance is compared to the reference
values for the same ID, raising an anomaly when the value
is outside the valid range. Computational complexity of the
final implementation of the live detection has been evaluated
as O(N), where N is equal to the number of bits forming the
payloads, with a maximum value of 64.

Memory Requirements: The proposed detector uses one
indexed data structure to store the previous payload for each
ID. The size of this structure is evaluated as Nid ∗Lid, where
Nid represents the number of unique IDs flowing on the
internal network and Lid denotes the number of bits com-
posing the payload for that particular ID. Maximum memory
requirements could be evaluated as Nid ∗ 64, where 64 is the
maximum allowed value for Lid.

For our vehicle requirements, the final implementation
requires a maximum of 344 Bytes to store the previous
messages, having 43 unique message IDs flowing on the CAN
bus.

Common low-end ECUs are generally composed by mi-
crocontrollers with 1 computational core, having a working
frequency in the orders of hundreds of Mega Hertz, and with



few hundreds of Kilo Bytes of RAM. For the tested vehicle
the live detector only requires up to 344 Bytes of memory,
and its operations can be carried out by a common micro-
controller equipped with a single core. Hence, the proposed
live-detection algorithm can be implemented on common low-
end ECUs.

VII. CONCLUSION

This paper proposes a novel algorithm that aims to detect
cyber-attacks that involve the injection of malicious forged
CAN messages into modern vehicles networks. In particular,
the proposed detection algorithm analyzes the sequences of
payloads of all messages that are transmitted, and compares
the Hamming distance between consecutive payloads of the
same ID with respect to a reference range of valid Hamming
distances that is built during an off-line training phase. The
use of the Hamming distance is motivated by its very low
computational complexity. As a result, the proposed live-
detection algorithm have very small memory footprint (in the
order of a few hundreds of bytes) and can be executed even on
low-end microcontrollers that characterize the ECUs deployed
within modern vehicles.

Experimental evaluation carried out over CAN traffic traces
gathered from an unmodified 2011 Ford Fiesta show that the
proposed model is able to detect almost 100% of fuzzing
attacks characterized by an injection frequency higher than
one injection over 25 messages.

Future work involve the design of other detectors char-
acterized by low computational complexity that are able to
achieve better detection performance for replay attacks, as well
as the integration of the proposed detection algorithm with
other approaches already proposed in the automotive security
literature.
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