
12/05/2024 20:27

Anomaly detection of CAN bus messages through analysis of ID sequences / Marchetti, Mirco; Stabili,
Dario. - (2017), pp. 1577-1583. (Intervento presentato al convegno 28th IEEE Intelligent Vehicles
Symposium, IV 2017 tenutosi a usa nel 2017) [10.1109/IVS.2017.7995934].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Institute of Electrical and Electronics Engineers Inc.

This is the peer reviewd version of the followng article:

Anomaly detection of CAN bus messages through analysis of ID
sequences

Mirco Marchetti1 and Dario Stabili2

Abstract— This paper proposes a novel intrusion detection al-
gorithm that aims to identify malicious CAN messages injected
by attackers in the CAN bus of modern vehicles. The proposed
algorithm identifies anomalies in the sequence of messages that
flow in the CAN bus and is characterized by small memory and
computational footprints, that make it applicable to current
ECUs. Its detection performance are demonstrated through
experiments carried out on real CAN traffic gathered from
an unmodified licensed vehicle.

I. INTRODUCTION

As the automotive industry pushes toward the adoption
of more advanced infotainment systems and self-driving
capabilities, modern vehicles become mobile networks of
computing devices, possibly connected to the Internet. This
paradigm shift paves the way for groundbreaking innova-
tions, but also opens new avenues for cyber-attackers that
are now able to approach the automotive domain and exploit
software vulnerabilities in cars, ultimately leading to security
and safety hazards for drivers and nearby people.

Several proof-of-concepts of attacks to modern unmodified
and licensed vehicles have already been demonstrated by
security researchers [1], [2], [3], [4]. In all cases, attack-
ers were able to take limited control over safety relevant
functions, such as throttle, brake and steering. These results
spawned novel efforts from both the industry and research
institutions towards novel approaches for securing modern
vehicles against cyber-attacks. In particular, since all the
known attacks that pose relevant safety risks involve the
injection of malicious messages within the CAN bus of the
attacked vehicles, an interesting and still wide open research
field is the identification of methods and algorithms for
analyzing messages transmitted over the CAN bus, with the
aim of identifying possible evidences of illicit activities.

Within this field of research, this paper proposes a novel
anomaly detection algorithm for the CAN bus of modern
vehicles. To the best of our knowledge, this is the first
algorithm based on the analysis of the sequences of messages
that flow on the CAN bus. This feature can be extracted
even without knowing the message specifications, hence our
algorithm does not require knowledge of syntax and semantic
of the CAN messages, that are kept highly confidential by
car makers and by their suppliers. Moreover, computational
requirements of the proposed algorithm are low enough to

1Mirco Marchetti is with the Department of Engineering “Enzo Fer-
rari”, University of Modena and Reggio Emilia, 41125 Modena, Italy
mirco.marchetti@unimore.it

2Dario Stabili is with the Department of Engineering “Enzo Fer-
rari”, University of Modena and Reggio Emilia, 41125 Modena, Italy
dario.stabili@unimore.it

be compatible with the very limited hardware constraints
of microcontrollers used to develop the ECUs (Electronic
Control Units) embedded in modern vehicles.

Through an experimental evaluation carried out over real
CAN traffic traces gathered from a licensed vehicle we
demonstrate that the proposed algorithm is able to reach
very high detection rates for several different attack classes
involving the injection of very few CAN messages. We also
highlight that our detector did not generate any false positive
during our experimental evaluation.

The rest of the paper is organized as follows. Section II
describes the proposed approach for intrusion detection.
Section III discusses different attack scenarios that are used
to evaluate the effectiveness of the proposed approach. Ex-
perimental results are then presented in Section IV. Section V
compares the proposed algorithm with respect to related
works, and outlines its main contributions and novelties.
Finally, Section VI concludes the paper and proposes future
works.

II. DETECTING ANOMALIES IN SEQUENCES OF CAN IDS

This section presents the intrusion detection algorithm
proposed in this paper. To better describe its internals, we
first present the structure of a generic CAN Data Frame
in Section II-A. An overview of the proposed algorithm is
presented in Section II-B, while details about training and
detection phases are provided in Sections II-C and II-D,
respectively.

A. Structure of CAN data frames

There are two different formats of CAN Data Frame:
the base frame format and the extended frame format. The
main difference between the two formats is the number of
bits reserved for the message identifier, with an 11-bit ID
in the base frame format and a maximum of 29-bit ID
in the extended frame format. Apart from this distinction,
the structure of any CAN message can be modelled as a
tuple composed by ID, payload and checksum, as shown in
Figure 1.

The Message ID is a unique identifier of the message that
is used by every ECU of the in-vehicle network in order to
identify if a message has to be processed or can be ignored.
Every identifier is produced by only one ECU and can be
of interest for one or more ECUs. The message payload
contains different values produced by different sensors man-
aged by a specific ECU and are encoded according to the
specifications contained in the DBC file, a database-like file
in a proprietary format that contains all the specifications

Fig. 1. Base vs Extended format

of every ECU of a specific vehicle configuration. This file
is extremely precious for car manufacturers, and it is kept
strictly confidential. In particular, the DBC file lists all the
IDs that should be generated by all ECUs, and prescribes the
message format associated to each ID. Format specification
includes the number of fields within the message body, their
length and boundaries, and syntactical rules for their correct
interpretation. Moreover, the DBC specifies whether an ID
is event-driven or periodic, and its cycle-time for periodic
messages. The message checksum is a field containing the
result of a CRC function computed over the Data Frame.
This field is used by the receiving ECUs in order to identify
possible message modification due to transmission errors. It
should be noted that this field can only provide some form of
protection against random modification of a CAN data frame.
Since it is not built upon strong crypto and authentication
primitives, attackers willing to inject data over the CAN bus
or introduce arbitrary modifications in legit CAN data frames
can easily compute a new valid CRC.

B. Overview of the proposed algorithm

The main idea behind the proposed algorithm is to build
a model of the normal behavior of a CAN network based on
a particular feature: recurring patterns within the sequence
of message IDs observed in the CAN Bus. While other
proposals evaluate different features (as described in Sec-
tion V) our design choice derives from two main real-world
constraints. The former is the lack of a DBC file containing
formal message specifications and correct information about
the message payload. The latter is the need for intrusion
detection algorithms that can analyze all CAN messages in
real time and execute over micro controllers characterized by
very low computational and memory capabilities. Hence all
detection algorithms based on complex statistical modeling
are not applicable to the current automotive landscape.

An overview of the proposed algorithm is shown in
Figure 2.

From the analyses of different traces recorded from our
test car, we identified some recurring patterns on the ID
sequences. Every IDs of our test model is followed only by
a subset of all the available IDs, thus limiting the admissible
transitions between all IDs. From this result, we developed
an algorithm that is able to detect anomalies in the ID
sequences. In order to create the model and the detection
algorithm, we divided the work flow in two different phases.
In the Training Phase (described in Section II-C) we used
CAN bus logs to create a data structure that contains all
the possible transitions between consecutive IDs observed

Fig. 2. Algorithm Overview

in legit CAN traffic traces that did not contain any attack.
The end of this phase outputs the transition matrix. The
Detection Phase (described in Section II-D) takes as inputs
the transition matrix and the traffic traces to analyze in order
to identify possible attacks.

C. Training Phase

In the training phase we analyze traces of real CAN
bus traffic gathered from an unmodified licensed vehicle in
normal conditions, without any attack. The aim of this phase
is to model the normal behavior of the CAN bus in the form
of its transition matrix, a data structure that identifies all the
legit transitions between the message IDs of two consecutive
CAN messages. This model will then be used as a reference
to identify anomalies in the CAN traffic.

The transition matrix is a square matrix of order n, where
n is the number of unique IDs available in the trace. At the
beginning of the training phase, all values of the transition
matrix are initialized to false.

The first step for the creation of the transition matrix
is to inspect the sequence of the IDs on a legit trace and
marking as true all the observed transitions between IDs. As
an example, if a message having ID equal to i is followed
by a message with ID j, than a value of true is stored in
row i and column j of the transition matrix. The algorithm
for the population of the transition matrix is represented in
Figure 3.

The resulting data structure is a matrix composed by
either true or false values. Such data structure allows the
final algorithm to have very low latency in accessing the
transition value. After the creation of the transition matrix,
we used other legit traffic traces in order to validate our
model. Starting from all the traces at our disposal (collected
over 10 hours of driving in different traffic conditions, for

Fig. 3. Transition Matrix Population

a total of about 120 millions CAN messages) we isolated
approximately 50 millions messages (corresponding to about
4 hours of driving) and used 20% of them for the training
phase, while keeping the other 80% for validation purposes.

The validation process takes as input the Transition Ma-
trix, created in the previous step, and the sequences of
IDs extracted from the set of messages used for validation
purposes. The steps of the algorithm are explained below:

1) Two consecutive IDs are read from the validation trace.
If one or both IDs are missing in the transition matrix
(meaning that these IDs have never been observed
before in the training traces), validation fails. If both
IDs are already present in the transition matrix, the
validation process continues to the next step.

2) The transition condition from the first ID to the second
is checked. If the transition value is true in the transi-
tion matrix, the algorithm continues to the next step.
On the other hand, if the transition value is false, the
validation process raises a false positive error, updates
the transition matrix by setting the transition value to
true and continues to the next step.

3) The algorithm extracts the next ID from the sequence
and repeats the previous steps.

The algorithm for the validation process follows the flow
chart represented in Figure 4.

The validation process is extremely important for evalu-
ating the effectiveness of the proposed detection algorithm.
In particular, it is important to minimize the number of false
positives, since even a very low false positive rate may lead
to the generation on unacceptable false alarms during normal
driving conditions.

At the end of the validation process, the algorithm raised 0
false positives and the resulting transition matrix was equal to
the one obtained at the end of the first phase of the training
process, meaning that the transition patterns between IDs
were strongly consistent between different traces collected
in different driving conditions and that all the different
transitions between IDs have already been observed in the
message sequence used for training.

D. Detection phase

The last phase of the detection algorithm uses the pre-
viously created and validated transition matrix to detect
anomalies on other traffic traces. The transition matrix is
used to test the possible transitions between two different
IDs: if the transition is marked as false in the matrix,

Fig. 4. Model Validation

such transition is considered as an anomaly, otherwise the
transition is legit.

A thorough experimental evaluation that assesses the ef-
fectiveness of the proposed algorithm in identifying different
classes of attacks (described in Section III) is proposed in
Section IV).

E. Memory and computational requirements

We now discuss the memory and computational require-
ments of the proposed detection algorithm.

Memory Requirements: The memory requirement for the
algorithm are strongly dependent on the vehicle model and
configuration, being tied to the number of different IDs that
flow on the analyzed CAN bus. In order to minimize the
memory requirement, we introduce a data structure that ties
each CAN ID to an index that ranges from 1 to the number
of IDs, and that is used to identify the row and the column
of the transition matrix that correspond to a given ID. This
data structure is the ID-position array.

The detection algorithm then requires only n2 bits of
memory for storing the transition matrix, plus n∗11 to n∗29
bits for the ID-position array (depending on the length of the
IDs), where n represents the number of different IDs. The
memory requirements of the transition matrix in our test case

(with 45 different IDs of 11 bits each) are 2025 bits (254
bytes) for the transition matrix and 495 bits (62 bytes) for
the ID-position array, for a total memory requirement of 316
bytes.

Computational Costs: The detection phase of the proposed
algorithm based on simple lookup and comparison opera-
tions. The extraction of the ID from all CAN messages is
a basic operation that is already performed by all ECUs
connected to the CAN bus, hence this activity does not
impose any additional computational burden. The lookup
of the true or false value within the transition matrix is
an extremely fast operation, thanks to the direct access
through indexes retrieved from the ID-position array. The
computational cost of this operation is O(1), and does not
depend on the number of distinct IDs. The lookup of an index
corresponding to a given ID within the ID-position array
is the only operation that could increase the computational
cost of the proposed solution. Its computational complexity
is O(n), where n is the number of unique IDs in the
vehicle. This operation can be optimized by ordering the
IDs according to the ID frequency: IDs that appear more
frequently on the CAN bus can be placed in the first places
of the ID-position array, so that they will be encountered
earlier in a sequential scan of the array. This optimization
allows us to further reduce the average computational cost
of the lookup phase.

Centralized vs distributed solution: In the CAN networks
there are a particular set of ECUs known as Gateways that
are placed on the edge of different sub networks and that
allow CAN data frames to flow among different branches
of the CAN bus. These ECUs have full visibility of all the
traffic that flows in different branches of the CAN bus, hence
by placing the detection algorithm in one of these ECUs it
is possible implement a centralized detection system.

The proposed detection algorithm can also be distributed
across the different branches of the CAN bus. This strategy
requires the deployment of the detection software in at least
one ECU for each branch, but has the benefit of reducing
both the computational costs and memory requirements,
because only a subset of IDs flow in each branch. In this
scenario we need to create different transition matrices and
ID-position arrays for each monitored branch.

III. ATTACK SCENARIOS

To assess the effectiveness of the proposed detection
algorithm we simulated attacker activities by injecting forged
CAN messages within traffic traces gathered from an unmod-
ified licensed vehicle. This process has already been adopted
for the evaluation of several intrusion detection algorithms
based on the CAN bus [1], [5], and allows us to simulate the
effects over the CAN bus of real attack strategies [2], [6],
[3].

In particular, starting from real CAN traffic traces, we
create two different datasets. The former contains injections
of single CAN messages, as described in Section III-A.
The latter includes more complex attacks characterized by
the injection of sets of CAN bus messages that mimic real

attacks, discussed in Section III-B. The legit CAN traces that
served as a basis for message injection were gathered from
the OBD-II port of an unmodified 2011 Ford Fiesta during
several hours of driving in real traffic conditions. This trace
includes a total of 45 different message IDs.

A. Basic Injection

This dataset has been designed to test the ability of the
proposed algorithm to detect an attack comprising one or
more injections of the same legit CAN message.

The probability distribution of each message ID is a
peculiar characteristic of every car, and can even change from
model to model based on the optional functions implemented
and activated. Figure 5 shows the distribution of message IDs
within the legit can traces. the x-axis represents the different
message IDs, labeled from 1 to 45. The y-axis represents the
number of messages having a given ID within a legit trace
of 48 million messages (about 4 hours of driving). From this
figure it is clear that some IDs have a much higher probability
of appearing on the CAN bus with respect to other IDs.

This aspect is interesting to study how the performance
of the proposed anomaly detection algorithm are influenced
by the popularity of the injected messages. To carry out a
comprehensive evaluation for CAN messages characterized
by different probabilities, we select four IDs representing
messages at the 20th, 40th, 60th and 80th percentiles in
the message distribution shown in Figure 5. We then use
these representative IDs to create four different set of traces.
Each set comprise ten different malicious traces obtained
by injecting simulated attack sequences including from one
to ten occurrences of the representative ID. Each attack se-
quence lasts one second, and injected messages are uniformly
distributed within that second. Attacks sequences are injected
in random parts of the legit traces, and are always separated
by at least one second of attack-free CAN traffic. At the end
of this process we obtain 40 different attack traces, including
from 1900 to 19000 attacks depending on the number of
injected messages.

B. Realistic attacks

For the second dataset we selected three different types of
attacks, called Replay, Bad Injection and Mixed Injection.

A Replay happens when an attacker injects in the CAN
bus a sequence of messages that have previously been read
from the same CAN bus. To better simulate a real-world
attack scenario, we extract sequences of normal messages
from the training traces, and build the malicious traces by
injecting these normal sequences within legit traces that have
not been used for training. This scenario represents a worst-
case for our algorithm, since all transitions between injected
messages have already been observed during training and
thus cannot be detected through the transition matrix. Hence
the only chance of detection is related to the transitions at
the beginning and at the end of the injected sequence.

In a Bad Injection attack, the attacker injects a sequence
of messages that never appeared before over the same CAN
bus. To simulate this attack, we leverage the transition matrix

0 10 20 30 40 50
Message ID

0

100000

200000

300000

400000

500000

600000

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

Fig. 5. Message ID distribution

to build message sequences that were not observed during
training. Finally, we build the malicious traces by injecting
these sequences within legit traces that have not been used
for training. This is a best-case scenario, since injected
sequences include at least one transition that has not been
included in the transition matrix.

Finally, Mixed Injection attacks are generated by injecting
sequences that comprise a random mix of CAN messages.
This scenario simulates a realistic attacker that builds an
attack payload only by focusing on its goals, without tak-
ing into account normal message transitions and message
probability distributions.

For each of these attacks we generate multiple malicious
traces, changing the length of injected message sequence
(from 1 to 10 messages) and with different sequences for
each length, for a total of 375 different malicious traces (125
in each of the three attack scenarios).

IV. EXPERIMENTAL EVALUATION

To verify the ability of the proposed algorithm to detect
different types of attacks that involve injection of CAN
messages, we test it against traces containing malicious
traffic that were described in Section III.

Before testing, we trained and validated an instance of
the proposed anomaly detector by using approximately 40
million messages, extracted from about 4 hours of driving in
different conditions. The training phase was made on about 8
million messages and the validation on the other 32 millions.

After training, we applied our detector to traces including
both basic injections and realistic attacks. Experimental
results are described in Sections IV-A and IV-B, respectively.

A. Detection of basic injections

We first test our detector against the 40 attack traces
described in Section III-A. Detection results are shown in
Figure 6.

The x-axis represents the number of packets included in
each injected message sequence, while the y-axis represents

1 2 3 4 5 6 7 8 9 10
Number of Injected messages / second [mx/s]

0

20

40

60

80

100

D
e
te

ct
io

n
 p

e
rc

e
n
ta

g
e
 [

%
]

20th perc
40th perc
60th perc
80th perc

Fig. 6. Statistical Injection detection percentage

Percentile Detection Rate
20th 32%
40th 45%
60th 66%
80th 95%

TABLE I
PERCENTILE SINGLE INJECTION DETECTION RATE

the number of attacks identified by our detector, expressed
as a percentage over the total number of attacks. The four
different lines refer to traces including messages at the 20th,
40th, 60th and 80th percentile of the probability distribution,
as described in Section III-A.

Results show that if the attacker injects only a single
message, detection performance heavily depends on the
probability distribution. In particular, messages that appear
on the CAN bus with higher probability are less likely to
be detected, while messages with a lower probability have
higher detection rates.

The detection performance in case of single message
injection for every percentile are shown in Table I.

Detection performance also improve for longer attacks,
comprising more than one message. In particular, we high-
light that sequences composed by at least two messages
are always detected (detection probability equal to 100%),
independently by the probability distribution of the injected
messages.

We also highlight that the detector did not generate any
false positive during these tests, thus demonstrating that
transitions of message IDs represent a stable feature, that
is preserved in attack-free conditions.

B. Detection of realistic attacks

We then test the detector against the three different attack
classes described in Section III-B. Detection results are
shown in Figure 7.

The x-axis represents the number of packets included in
each injected message sequence, while the y-axis represents

1 2 3 4 5 6 7 8 9 10
Sequence size [# of messages]

0

20

40

60

80

100
D

e
te

ct
io

n
 p

e
rc

e
n
ta

g
e
 [

%
]

Replay Injection
Bad Injection
Random Injection

Fig. 7. Sequence Attack Detection

the number of attacks identified by our detector, expressed
as a percentage over the total number of attacks. The three
different lines refer to traces including replay, bad injection
and random injection attacks, as defined in Section III-B.

In the case of a Replay attack, we can clearly see that,
despite the length of the sequence of injected messages, the
detection percentage does not follow any particular trend,
and varies within a range of 20% to 40%.

We remark that this represents a worst case scenario for the
proposed anomaly detection algorithm, because attacks are
a replay of message sequences already seen during training.
Hence, the algorithm can only detect anomalies in the transi-
tions at the beginning and at the end of the injected sequence.
This means that the length of the sequence does not influence
the capacity of our algorithm to detect anomalies, and thus
the detection percentage. A possible solution for increasing
the detection rates in this attack scenario is to use a our
algorithm alongside with different approaches. In [1] we
proposed an algorithm that uses statistical inspection on
the messages for anomaly detection that performs extremely
good detecting injection of massive replay messages.

On the other hand, Bad Injection attacks represent the best
case for our algorithm. Since injected sequences have never
been observed during training, all of them contain at least one
transition that is not included in the transition matrix. Hence
our detection rate in this case is always 100%, independently
on the sequence length.

The more realistic scenario is represented by Mixed
Injection attacks, that simulates generic attack sequences.
For this scenario, our algorithm is able to detect attacks
that comprise only one message about 40% of the times.
However, detection rates improve considerably as the length
of the injected sequence increases. For sequences composed
by only two messages, the detection rates goes up to 99.9%,
and we achieve 100% detection rate for all sequences of three
or more messages.

Finally, we highlight that the proposed algorithm generated

0 false positives for all the 375 attack traces belonging to this
scenario. These results demonstrate that the sequences of the
messages on the CAN bus is a useful feature for detecting
possible intrusions. Our approach is able to detect efficiently
an high percentage of attacks without generating any false
positives.

V. RELATED WORK

Recent reports of attacks carried out by injecting mali-
cious CAN data frames within the CAN bus of modern
vehicles [3], [6] motivated several research efforts aiming
at improving the security of in-vehicle networks. Since the
CAN bus is an insecure communication channel that lacks
authentication, confidentiality, integrity and availability guar-
antees [7] several research efforts focused on securing com-
munications among ECUs by leveraging cryptographic algo-
rithms [8], [9]. While this approach is theoretically sound,
economic competition among car makers pushes towards
the adoption of very simple ECUs whose computational
limitations are not compatible with modern cryptography,
thus limiting the applicability of similar proposals.

On the other hand, another research field focuses on
detecting attacks carried out by injecting malicious messages
over the CAN bus, rather than preventing them. Intrusion
detection systems represent a popular technology for realiz-
ing and improving attack detection capabilities in modern
information systems [10], [11], [12]. They can analyze
network packets (Network IDS), activities executed within
computers (Host IDS) or a combination of these kind of
events (Hybrid IDS).

Many research efforts strive to apply the well known
concept of Network IDS to the network architectures and
protocols that connect ECUs in modern cars. In particular,
several works aimed at developing robust anomaly detec-
tion approaches for the CAN bus. Anomaly detection is a
promising approach, since in principle it allows to identify
novel and unknown attacks. The main assumption that lies
beneath anomaly detection is that it is possible to build a
model that describes the normal behavior of the CAN bus,
and that attacks can be detected because they introduce a
measurable deviation from the normal profile [13]. Works
within this field propose different models for the definition
of the normal behavior of the CAN bus.

The simplest approach is to detect CAN bus messages
having an invalid ID. In this case, the normal model is just
a set of valid message IDs, either gathered from the formal
specification of a given vehicle, or learned by sniffing correct
messages from the can bus. This approach allows easy and
precise identification of attacks that inject CAN messages
with an invalid ID, but can be easily foiled by attackers clever
enough to inject arbitrary messages with valid IDs. Hence
this approach can be useful against basic fuzzing [14], [15]
techniques, but becomes useless against more sophisticated
or determined attacks.

Another popular approach is based on the analysis of
the cycle time that characterizes many periodic CAN mes-
sages [4]. Unfortunately, this approach cannot be applied to

non-periodic messages. Moreover, even periodic messages
may be characterized by a variable cycle time, influenced by
events (i.e. ECUs that change their behavior based on vehicle
conditions) or load on the bus. This variability leads to the
generation of many false positives.

Other works propose the creation of a model based on
aggregated statistical features, such as the average bus load
and message entropy [1]. Similar proposals are effective
in the identification of massive attacks (such as message
flooding), but cannot detect attacks based on the injection
of just few malicious CAN messages, that are not enough to
generate a measurable deviation in the aggregate statistical
features of the whole CAN bus.

Besides detection performance, it is also imperative to
design detection algorithms that are compatible with the tight
computational constraints of automotive ECUs. As an exam-
ple, while the work proposed in [5] represents an interesting
detection approach based on Deep Neural Network, its high
computational cost render it clearly unsuitable for modern
vehicles.

In this paper we propose a novel intrusion detection
algorithms that is based on the identification of recurrent
patterns of IDs.

The proposed algorithm has several advantages with re-
spect to the state of the art. First of all, it does not require
the formal DBC specification, and can be trained over traces
captured from licensed vehicles. Moreover, experimental
evaluations demonstrate that the proposed algorithm is able
to detect with high probability even stealth attacks, in which
attackers only inject a very limited number of packets having
legitimate ID and correct format. Moreover, it achieves a
very low false positive rate (no false positives have been
observed in our experimental evaluation based on real traffic
traces that were not used for training). Finally, the proposed
algorithm has been specifically designed to fit the very hard
computational constraints that are typical of micro controllers
used to implement vehicular ECUs. We also highlight that
our proposal can be easily integrated with other complemen-
tary detection algorithms based on different features, thus
contributing to improve the effectiveness of future vehicular
intrusion detection systems based on heterogeneous data and
analysis approaches.

VI. CONCLUSION

This paper presents a novel anomaly detection algorithm
designed to identify attacks based on the injection of ma-
licious messages over the CAN bus of modern vehicles.
The proposed algorithm is based on the analysis of the
sequence of CAN bus messages generated by a vehicle
under normal conditions, and fits the tight memory and
computational constraints of ECUs embedded in current
vehicles. Experimental evaluations based on real CAN traces
gathered from a licensed and unmodified vehicle demonstrate
its high performance in terms of high detection and low false
positive rates.

Future works include the integration of this algorithm
with complementary intrusion detection approaches based on

different features.

REFERENCES

[1] M. Marchetti, D. Stabili, A. Guido, and M. Colajanni, “Evaluation
of anomaly detection for in-vehicle networks through information-
theoretic algorithms,” in 2016 IEEE 2nd International Forum on
Research and Technologies for Society and Industry Leveraging a
better tomorrow (RTSI), Sept 2016, pp. 1–6.

[2] C. Miller and C. Valasek. (2015) Remote exploitation of
an unaltered passenger vehicle. Appeared in Blackhat US
conference. [Online]. Available: https://www.blackhat.com/us-15/
briefings.html#remote-exploitation-of-an-unaltered-passenger-vehicle

[3] Keen Security Lab of Tencent. (2016) Car hacking
research: Remote attack tesla motors. [Online]. Avail-
able: http://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-
of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/

[4] A. Taylor, N. Japkowicz, and S. Leblanc, “Frequency-based anomaly
detection for the automotive can bus,” in 2015 World Congress on
Industrial Control Systems Security (WCICSS), Dec 2015, pp. 45–49.

[5] M. J. Kang and J. W. Kang, “A novel intrusion detection method using
deep neural network for in-vehicle network security,” in 2016 IEEE
83rd Vehicular Technology Conference (VTC Spring), May 2016, pp.
1–5.

[6] C. Miller and C. Valasek. (2015) Remote exploitation of an unaltered
passenger vehicle. White paper of Blackhat US conference. [Online].
Available: http://illmatics.com/Remote%20Car%20Hacking.pdf

[7] B. GmbH. (1995) Can specification version 2.0. [Online]. Available:
http://esd.cs.ucr.edu/webres/can20.pdf

[8] M. Wolf and T. Gendrullis, Design, Implementation, and Evaluation
of a Vehicular Hardware Security Module. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 302–318. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-31912-9 20

[9] B. Carnevale, F. Falaschi, L. Crocetti, H. Hunjan, S. Bisase, and
L. Fanucci, “An implementation of the 802.1ae mac security standard
for in-car networks,” in 2015 IEEE 2nd World Forum on Internet of
Things (WF-IoT), Dec 2015, pp. 24–28.

[10] M. Andreolini, M. Colajanni, and M. Marchetti, “A collaborative
framework for intrusion detection in mobile networks,” Information
Sciences, vol. 321, pp. 179–192, 2015.

[11] M. Marchetti, M. Colajanni, and F. Manganiello, “Framework and
models for multistep attack detection,” International Journal of Secu-
rity and Its Applications, vol. 5, no. 4, pp. 73–90, 2011.

[12] M. Colajanni, D. Gozzi, and M. Marchetti, “Enhancing interoperabil-
ity and stateful analysis of cooperative network intrusion detection
systems,” in Proceedings of the 3rd ACM/IEEE Symposium on Archi-
tecture for networking and communications systems. ACM, 2007,
pp. 165–174.

[13] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[14] S. Bayer and A. Ptok, “Dont fuss about fuzzing: Fuzzing controllers
in vehicular networks.”

[15] H. Lee, K. Choi, K. Chung, J. Kim, and K. Yim, “Fuzzing can packets
into automobiles,” in 2015 IEEE 29th International Conference on
Advanced Information Networking and Applications, March 2015, pp.
817–821.

https://www.blackhat.com/us-15/briefings.html#remote-exploitation-of-an-unaltered-passenger-vehicle
https://www.blackhat.com/us-15/briefings.html#remote-exploitation-of-an-unaltered-passenger-vehicle
http://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/
http://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://esd.cs.ucr.edu/webres/can20.pdf
http://dx.doi.org/10.1007/978-3-642-31912-9_20

	Introduction
	Detecting anomalies in sequences of CAN IDs
	Structure of CAN data frames
	Overview of the proposed algorithm
	Training Phase
	Detection phase
	Memory and computational requirements

	Attack scenarios
	Basic Injection
	Realistic attacks

	Experimental evaluation
	Detection of basic injections
	Detection of realistic attacks

	Related work
	Conclusion
	References

