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Abstract

In the field of condition monitoring the availability of a real test-bench is not

so common. Furthermore, the early validation of a new diagnostic technique

on a proper simulated signal is crucial and a fundamental step in order to

provide a feedback to the researcher and to increase the chances of getting

a positive result in the real case. In this context, the aim of this paper is

to detail a step-by-step analytical model of faulted bearing that the reader

could freely and immediately use to simulate different faults and different

operating conditions. The vision of the project is a set of tools accepted by

the community of researchers on condition monitoring, for the preliminary

validation of new diagnostics techniques. The tool proposed in this paper is

focused on ball bearing, and it is based on the well-known model published

by Antoni in 2007. The features available are the following: selection of

the location of the fault, stage of the fault, cyclostationarity of the signal,

random contributions, deterministic contributions, effects of resonances in

the machine and working conditions (stationary and non-stationary). The

script is provided for the open-source Octave environment. The output signal

is finally analysed to prove the expected features.
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1. Nomenclature2

B(t) function which takes into account the purely cyclostationary con-

tent;

COV {·} covariance;

D pitch circle diameter;

E{·} expectation operator;

F amplitude of the force exciting the SDOF system;

L vector length;

SNR signal-to-noise ratio;

Pnoise noise poser;

Psignal signal power without noise;

T inter-arrival time between two consecutive impacts;

d bearing roller diameter;

fc carrier component of the rotation frequency;

fd frequency deviation of the rotation frequency;

fm frequency modulation of the rotation frequency;

fr(θ) angular dependent rotation frequency;

fs sample frequency;

h(t) impulse response to a single impact measured by the sensor;

k SDOF system stiffness;

l vector index;

m SDOF system mass;
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p(t) function which takes into account periodic component;

prot(θ) deterministic part related to the rotation speed in the angular do-

main;

pstiff (θ) deterministic part related to the stiffness variation in the angular

domain;

q(t) function which takes into account load distribution, bearing unbal-

ance and periodic changes in the impulse response;

qrot positive number which weight the amplitude of prot(θ);

qstiff positive number which weights the amplitude of pstiff (θ);

qFault positive number governing the amplitude of the modulating func-

tion related to distributed fault;

n(t) background noise;

nr number of rolling elements;

x(t) simulated vibration signal;

xSDOF (t) time response of a SDOF system to unit impulse;

β contact angle;

δ Kronecker’s symbol;

∆θimp angular position of a series of equispaced impulses;

∆Ti ith inter-arrival time;

∆θi ith angle between two consecutive impulses;

ε error term;

ωn natural frequency of the SDOF system;

ωd damped natural frequency of the SDOF system;

σ2 standard deviation;

τi inter-arrival time jitters of the ith impact;
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τstiff geometrical bearing parameter related to the stiffness variation;

τFault geometrical bearing parameter related to the fault;

θ angular variable;

ζ damping coefficient of the SDOF system;

2. Introduction3

Rolling bearings, together with gears, are one of the most studied com-4

ponents. They are common components in mechanical design and they allow5

the relative motion between two or more elements of the machine. Unfor-6

tunately, the continuous movement between the parts of the bearing leads7

to wear phenomena and subsequent failure. The degradation of the bearing8

conditions can be revealed and monitored analysing the vibration signal pro-9

duced by the contact among the bearing elements. There are other types of10

techniques to determine the state of health of the bearings, such as moni-11

toring the temperature or analysing the chemical content of the lubricant;12

however, the vibration analysis is, de facto, the main technique used in con-13

dition monitoring, despite the ease the noise and disturbances may enter into14

the measurement. So far, thousand of algorithms have been published in the15

literature trying to reject disturbances and to obtain a clear and telltale signal16

to assess the health status of the bearing [1]. All these publications usually17

provide results on both simulated signals and real measurements, more rarely18

on only one of those. It is a matter of fact that the availability of a real test-19

bench is not so common, and this is proven by the number of scientific papers20

validated on few on-line available data centers (e.g. the Case Western Uni-21

versity) providing real measurement data. On the contrary, simulated signals22
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are always available, since they are created on the same software for scientific23

computing used in the post processing. The main advantage of a simulated24

signal is to avoid the complexity of a real environment, focusing only on the25

main contributions the developer decided to include. The main drawback is26

that a too simple model may be too far from reality, making the proposed27

algorithm not useful. The foundation of a faulted bearing simulation signal28

is the model proposed by McFadden and Smith [2, 3, 4]. The bearing is29

modelled as an epicyclic gear, where the inner ring is the sun gear, rolling30

elements are the planet gears, the outer ring is the annular gear and the cage31

is the planet carrier. This simple but powerful model allows the computation32

of characteristics fault frequencies which are the fingerprints of a damage on33

the bearing. Moreover, the model takes into account also the modulation ef-34

fects due cyclic passage of the rolling elements on the load zone. Su and Lin35

[5] studied the models under variable load due to shaft and roller errors. The36

”gearbox” model for the bearings has a main limitation: the contact among37

the bearing components is supposed to be a pure rolling contact, while some38

slippery effect is always present due to the presence of the cage. Ho and Ran-39

dall [8] proposed to model the bearing fault vibrations as a series of impulse40

responses of a single-degree-of-freedom system, where the timing between the41

impulses has a random component simulating the slippery effect. The next42

fundamental contribution to the modelling of bearings came from the works43

of Antoni and Randall [9, 11]. Starting from the work of Gardner [10], An-44

toni and Randall proposed to model the vibration signal from a ball bearing45

as a cyclostationary signal, i.e. a random process with a periodic autocorre-46

lation function. Cyclostationarity better describes the effect of slippery and47
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has paved the way for later development. Most recent developments regard48

the modelling of the vibration signal in non-stationary conditions [13], i.e.49

taking into account the speed or load variations in the working conditions50

of the machine. Unfortunately, as the proposed models have become more51

detailed, the implementation of the algorithms has become more complex.52

If the model of McFadden could be easily taught in an introductory course53

at an engineering school, concepts like cyclostationarity and non-stationary54

conditions are hardly present in advanced courses at engineering faculties.55

As a consequence, it could be a gap between the theoretical description of a56

vibration signal and the algorithm implemented to generate that vibration57

signal on a computer. A wrong implementation leads to wrong simulated58

signals used to test diagnostics procedures. In this scenario, the aim of this59

paper is to provide a detailed step-by-step algorithm for the simulation of60

the vibration signal provided by a faulted ball bearing. The script is devel-61

oped in Octave environment, an open source high-level interpreted language,62

primarily intended for numerical computations and quite similar to Matlab.63

The base of this model is the one proposed by Antoni [6] with some im-64

provements. In particular, the model of incipient faults at constant speed65

has been extended to variable speed applications. In the distributed fault66

model, the mathematical formulation is completely original and developed67

by the authors of this paper. Details on the characteristics that the model68

takes into account will be explained in the next sections. The final goal is69

to start a discussion with the readers to define a bearing model that can be70

used as a benchmark, recognized by the scientific community.71

The paper is structured as follows: Section 3 covers the theoretical back-72
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ground of the bearing model and the numerical implementation. Section73

4 focuses a numerical example, showing the output results of the proposed74

algorithm. In Section 5 experimental end simulated data are compared to75

validate the signal model. After the conclusions in Section 6, Appendix A76

lists the script of the algorithm as Octave code.77

3. Vibration signal model78

3.1. Theoretical background79

At first glance, the vibration signal model of a localized fault in a rolling80

element bearing could be considered as the repetition of impact forces when81

a defect in one bearing surface strikes a mating surface, which may excite82

resonances in the bearing and in the machine. The repetition frequency of83

these impacts uniquely depends on the defect location, being the defect on84

the inner race, outer race, or in one of the rolling elements. Even if several85

resonances can be present in the actual response, for simplicity, it will be86

assumed in the remaining discussion that only one resonance occurs.87

The vibration signal of a localized fault in a rolling element bearing can88

be reasonably modelled as [6, 11]:89

x(t) =
+∞∑
i=−∞

h(t− iT − τi)q(iT ) + n(t) (1)

where h(t) is the impulse response to a single impact as measured by the90

sensor; q(t) takes into account the periodic modulation due to the load dis-91

tribution, possible bearing unbalance or misalignment, as well as the periodic92

changes in the impulse response due to the movement of the faults towards93

and backwards with respect to the sensor; T is the inter-arrival time between94
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two consecutive impacts; τi accounts for the uncertainties on the inter-arrival95

time (jitters) of the ith impact due to the necessary random slip of the rolling96

elements; n(t) gathers the background noise.97

Since this work focus the attention on the numerical implementation of98

Equation (1), instead of taking into account uncorrelated (white) jitters τi99

[6], an uncorrelated (white) inter-arrival time difference τi+1− τi is used [11]:100

E{(τi+1 − τi)(τj+1 − τj)} = δijσ
2
τ (2)

where στ is the standard deviation and δij is the Kronecker’s symbol. Even if101

Equation (1) embodies a well defined harmonic structure, the presence of very102

slight random fluctuations of the inter-arrival time of consecutive impulses103

causes the rapidly turns of the signal into a random one. Therefore, weak104

harmonic components can be located in the lower-frequency range, and a105

dominating random cyclostationary component can be located in the higher-106

frequency range (pseudo-cyclostationary). A detailed theoretical explanation107

of the frequency content of Equation (1) can be found in [6, 11].108

When a localized fault propagates on the surface where it was initiated, a109

larger area of the bearing becomes involved in the genesis of the vibration sig-110

nature. In this scenario, no sharp impulses are generated, but the fault signa-111

ture becomes purely cyclostationary (as opposed to pseudo-cyclostationary)112

[14, 9]. This pure cyclostationary content is the result of a randomly dis-113

tributed phase, caused by the different position on the rough surface of the114

rolling elements for every revolution. However, strong periodic components115

are generated at the shaft periodicity, when the fault only extends over a116

limited sector of the race. Moreover, if the bearing is highly loaded, a pe-117

riodic component can be initiated by the bearing stiffness variation due to118
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the changing numbers and positions of the rolling elements in the load zone.119

The distributed fault vibration signature may be written [9]:120

xd(t) = p(t) +B(t) (3)

where p(t) accounts for the periodic component such as shaft and stiffness121

variation periodicities and B(t) for the purely cyclostationary content with122

E{B(t)} = 0.123

3.2. Numerical implementation124

This work focuses the attention on the numerical implementation of the125

vibration signal models of Equations (1) and (3). In particular, these models126

are extended to cover generic speed profile of the bearing shaft. In order to127

include a speed variation, the vibration signal is firstly defined in the angle128

domain and then transformed back to the time domain according with the129

chosen speed profile.130

Let θ(t) be the rotation angle of a bearing moving race (inner and/or131

outer). Without loss of generality, in the following the bearing outer race is132

considered fixed whilst the inner race is rotating. A generic speed profile in133

the angle domain can be constructed as:134

fr(θ) = fc + 2πfd

∫
cos(fmθ)dθ (4)

where fc is the carrier component of the rotation frequency, fd is the fre-135

quency deviation and fm is the frequency modulation. The main terms (fc,136

fd and fm) of Equation (4) can or cannot be angle dependent. Figure 1137

depicts an example of Equation (4) for a case of sinusoidally speed varying138

profile. Without loss of generality, hereafter it is assumed that at time t = 0139
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Figure 1: Example of sinusoidally speed varying profile.

the defect is located at the position θ = 0 and it is in contact with a rolling140

element.141

Concerning localized fault in ball bearing, the angle between two consec-142

utive impulses can be easily obtained from the ”gearbox” model of the rolling143

element bearing (see Table 1 for the usual bearing fault frequencies), for a144

inner-race fault:145

∆θimp =
2π

nr

2
(1 + d

D
cosβ)

(5)

Equation (5) can be used to obtain the angular position of a series of146

equispaced impulses, i.e. a purely deterministic signal. As stated before, in147

order to take into account the necessary random slip of the rolling elements a148

random contribution must be added to Equation (5). The angle between two149

consecutive impulses is strictly positive, and so the gamma law is the best150

candidate; nonetheless when the variance is low with respect to the mean151

value, the gamma distribution is well approximated by a normal distribution152

with the same mean and variance. In this work, the random contribution153

is taken into account by generating normally distributed random numbers154

with mean ∆θimp and variance σ2
∆θ. As the speed profile is defined in terms155

10



of rotation angle θ (Equation (4)), the inter-arrival time among the impulses156

can be obtained by the generated random numbers as:157

∆Ti =
∆θi

2πfr(θ)
(6)

where ∆Ti is the ith inter-arrival time, ∆θi is the ith angle between two158

consecutive impulses randomly generated with mean ∆θimp and variance σ2
∆θ159

and fr(θ) is the angular dependent rotation frequency.160

The results of Equation (6) are the inter-arrival times of each impulse with161

the speed profile defined in Equation (4). These times define the beginning162

of each impulse response h(t− iT − τi) in the time signal itself; such a signal163

can be obtained in a Matlab/Octave environment as follows:164

1. generate a L point vector filled with zeros, corresponding at times t =165

l/fs, where fs is the sample frequency in Hz and l is a index ranging166

from 0 to L− 1,167

2. place 1 at index values obtained by dividing each inter-arrival time ∆Ti168

by the chosen sample frequency fs,169

3. weight the so generated vector with the weighting function q(iT ),170

4. filter the weighted vector with the FFT-based method of overlap-add by171

choosing as filter coefficients the impulse response function of a SDOF172

system in terms of acceleration.173

Several methods can be found in the literature in order to obtain the im-174

pulse response of a SDOF system [8, 15]; they deal with the implementation175

of such a response in the frequency domain and then transform it back in176

the time domain via the Inverse Fourier Transform. However, this procedure177

involves the generation of a low pass filter as well as a phase correction [8]. In178
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this work the authors decided to generate the response of the SDOF system179

to unit impulse in the time domain as:180

xSDOF (t) =
F/m

ωd
e−ζωntsin(ωdt) (7)

where F is the amplitude of the force exciting the SDOF system, m the181

system mass, ζ the damping coefficient, ωn the natural frequency in [rad/s]182

and ωd = ωn
√

1− ζ2. The response in terms of acceleration can be simply183

obtained by a double derivative with respect to time. In this scenario, the184

numerical derivative does not add high frequency noise inside the signal,185

because no noise is present in the generated xSDOF (t).186

From the procedure heretofore described, the key point is to find inside187

the time signal, the index l corresponding to the beginning of the impulse. De188

facto, l must be an integer number. However by dividing ∆Ti by the selected189

sample frequency fs, a rational number is usually obtained. Instead of using190

an interpolation procedure on the time signal itself, the authors decide to191

rounding the rational numbers to the nearest integers. With this operation,192

an error is introduced that depends on the selected sample frequency fs (the193

greater fs, the lower is the error), which affects both mean and variance of194

the theoretical ∆Ti. Let ∆Ti the value of ∆Ti obtained via the rounding195

procedure, the error term is:196

ε = ∆Ti −∆Ti (8)

with mean and variance:197

E{ε} = E{∆Ti} − E{∆Ti} (9)

σ2
ε = σ2

∆Ti
+ σ2

∆Ti
− 2COV {∆Ti,∆Ti}
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Finally, the last term of Equation (1) which deals with the noise compo-198

nent, can be added to the signal by generating randomly distributed number199

with a given power. The power of the noise can be set with a desired Signal-200

to-Noise Ratio (SNR), which is a measure that compares the level of a desired201

signal to the level of background noise. The SNR is defined as:202

SNR = 10log10

(
Psignal
Pnoise

)
(10)

where Psignal is the power of the signal without noise and Pnoise is the noise203

power. Figure 2 depicts the schema of the proposed procedure. Moreover,204

in Appendix A an Octave function called bearingSignalModelLocal has been205

inserted in order to easily implement Equation (1).206

The same procedure can be efficiently extended for the case of distributed207

faults in rolling element bearing. This vibration signal model is a mixture of208

two terms, one deterministic and one purely cyclostationary. Once the speed209

profile has been defined with respect to rotation angle θ, the deterministic210

part can be described in the angular domain as:211

prot(θ) = qrotcos

(
fc
fc
θ + fd

fc

∫
cos

(
fm
fc
θ

)
dθ

)
(11)

pstiff (θ) = qstiffcos

(
fc
fc
τstiffθ + fd

fc
τstiff

∫
cos

(
fm
fc
τstiffθ

)
dθ

)
where qrot and qstiff are two positive numbers which weigh the amplitude of212

the deterministic components, whilst τstiff is a geometrical bearing parameter213

which can be obtained by the ”gearbox” bearing model as:214

τstiff =
nr
2

(
1− d

D
cosβ

)
(12)

De facto, in rolling element bearings, the frequency of the stiffness variation215

is equal to the frequency of an outer-race fault. As done before, by the216
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Figure 2: Schema for the numerical implementation of Equation (1).

knowledge of the speed profile, the angle signals can be transformed by a217

simple interpolation in the time domain.218

The purely cyclostationary component (B(t)) is a random modulated219

noise, where the modulation frequency is the fault frequency. Once the speed220

profile is selected, the modulating function for an inner-race fault (see Table221

1 for other types of fault), can be expressed in the angle domain as:222

q(θ) = 1 + qFaultsin

(
fc
fc
τFaultθ +

fd
fcnr

τFault

∫
cos

(
fm
fcnr

τFaultθ

)
dθ

)
(13)
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where qFault is a number governing the amplitude of the modulating function223

and τFault is a geometrical parameter which can be obtained by the ”gearbox”224

model of the rolling element bearing as:225

τFault =
nr
2

(1 +
d

D
cosβ) (14)

Equation (13) can be transformed in the time domain by a simple interpo-226

lation and the purely cyclostationary component can be obtained by modu-227

lating normally distributed random number with the time domain qFault(t).228

Finally, stationary noise can be added to the signal with a given SNR via the229

use of Equation (10). Figure 3 depicts the schema of the proposed procedure.

Figure 3: Schema for the numerical implementation of Equation (3).

230

Moreover, in Appendix A an Octave function called bearingSignalModelDist231

has been inserted in order to easily implement Equation (3).232

15



4. Numerical Example233

Table 1 depicts the typical equation for the evaluation of bearing fault234

frequencies as well as the bearing dimensions used in the numerical examples,235

whilst Table 2 shows the vibration signal model parameters.236

Fault frequencies [Hz] Geometrical parameters

Inner-race fault nr

2
fr(1 + d

D
cosβ) Bearing roller diameter (d) [mm] 21.4

Outer-race fault nr

2
fr(1− d

D
cosβ) Pitch circle diameter (D) [mm] 203

Rolling-element fault frd
D

(1− ( d
D
cosβ)2) Number of rolling elements (nr) 23

Cage fault fr
2

(1− d
D
cosβ) Contact angle (β) [deg] 9.0

Table 1: Typical fault frequencies and bearing dimensions

As stated beforehand, a speed profile has to be generated. The selected237

speed profile used hereafter in the numerical examples is depicted in Figure238

4, and it deals with a constant rotation frequency of 10Hz modulated at 1Hz239

with an amplitude of 0.8Hz (see Table 2). From now on both localized and240

distributed faults in the inner-race of a rolling element bearing are taken into241

account (see Appendix A for Octave scripts). The mean and variance of the242

random contribution related to the rolling element slips are set in the angle243

domain as ∆θimp and 0.04∆θimp respectively, that lead to 7.8981E − 3 (the244

inverse of the fault frequency) and 3.0224E − 07 due to the selected speed245

profile. As stated in the previous section, the impulse locations in the time246

domain signal are approximated by a neighbour interpolation that introduces247

an error term in both the selected mean and variance, which is related to the248

sample frequency of the time signal itself. In particular, the final mean and249

variance are 7.8980E−3 and 3.0245E−07 showing that the error is negligible250
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Vibration Signal Model Parameters Localized fault Ex. Distributed fault Ex.

Number of shaft revolutions 1E4 1E4

Number of points per revolution 2048 2048

Sample frequency fs [Hz] 20E3 20E3

Carrier component of the shaft speed fc [Hz] 10 10

Frequency deviation fd [Hz] 0.08fc 0.08fc

Modulation frequency fm [Hz] 0.1fc 0.1fc

SDOF spring stiffness k [N/m] 2E13 /

SDOF damping coefficient ζ 5% /

SDOF natural frequency fn [Hz] 6E3 /

Amplitude modulation for localized fault 0.3 /

Amplitude value of the deterministic component related

to the stiffness variation qstiff

/ 0.1

Amplitude value of the deterministic component related

to the bearing rotation qrot

/ 0.1

Amplitude value of the amplitude modulation at the

fault frequency qFault

/ 1

Signal to Noise Ratio [dB] 0 0

Expected fault frequencies

Inner-race fault frequency [Hz] ≈ 126.97 ≈ 126.97

Inner-race fault order [O] 12.69 12.69

Table 2: Vibration signal model data for localized and distributed faults in rolling elements

bearing.

in the generation of the vibration signal for the usual sample frequencies.251

Figure 5 depicts the simulated time signal in case of inner-race local-252

ized fault following the data of Table 2. At a first glance, the signal seems253

strictly deterministic, showing a series of impulse responses (Figure 5(a,b)).254

However, the random slips of the rolling elements turn the signal to strictly255

random. This effect can be easily seen from the PSD signal. Figure 5(c)256

plots the PSD computed with the Welch’s method, by using an Hanning257

window with a 75% of overlap. It is clearly visible from the PSD signal that258

the noise signal is purely random in nature, in particular the harmonic series259
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Figure 4: Speed profile used in the numerical examples for a complete revolution of the

inner race.

related to the repetition of the impulses are strongly masked by the back-260

ground noise and die quickly. De facto, Antoni and Randall [6, 11] proved261

that the decay of the harmonic structure strictly depends on the selected262

variance due to the low-pass filter nature of Equation 1. In order to high-263

light the fault frequency cyclostationary analysis has to be carried out. The264

main signal processing technique in the cyclostationary field is Spectral Cor-265

relation Density function (SCD), which depicts the cyclostationary content266

with respect to the frequency content of the signal. This technique has to267

be used in case of constant speed, however when the speed is changing a268

cyclo-non-stationary signal is generated. G. D’Elia et al. [14] were the firsts269

to explore the order-frequency approach extending the SCD to speed varying270

signals. D. Abboud et al. [17] proposed a more rigorous approach to the anal-271

ysis of cyclo-non-stationary signals. Figure 7(a) depicts the Order-Frequency272

Spectral Correlation function (OFSC) for the synthesized signal in case of273

localized fault. It is possible to see how the order related to the inner-race274

fault (see Table 2) is highlighted around a frequency region of 6kHz, which275
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Figure 5: Simulated vibration signal in case of inner-race localized fault: (a) without noise,

(b) with noise, (c) Power Spectral Density (PSD).

is the resonance frequency excited by the bearing impulses. Moreover, the276

OFSC also highlights the amplitude modulation due to the periodic variation277

of the load distribution.278

Figures 6(a,b) depict the time signal for a inner-race distributed fault with279

and without noise addiction. It is possible to see how the signal seems strictly280

random. In particular, even without noise the deterministic component re-281

lated to the stiffness variation as well as shaft rotation are hidden. Figure282

6(c) highlights the PSD of such a signal, where the random contribution is283

clearly visible in the medium/high frequency range, whilst the determinis-284

tic components are depicted in the low frequency region. Moreover, due to285

the speed variation, modulation around the bearing stiffness variation fre-286

quency can be easily detected. As done before, in order to highlight the fault287

frequency the OFSC function is evaluated on the simulated signal. Figure288
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7(b) plots the result of these operations. The cyclic order frequency con-289

cerning the inner-race fault (12.65O) is clearly visible in the entire frequency290

range, focusing the broad band phenomenon involved in the distributed fault291

signature.

Figure 6: Simulated vibration signal in case of inner-race distributed fault: (a) without

noise, (b) with noise, (c) Power Spectral Density (PSD).

292
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Figure 7: Order-Frequency Spectral Correlation Function (OFSC): (a) localized fault, (b)

distributed fault.

5. Experimental validation293

In this section, the proposed algorithm is validated on experimental data294

of faulted bearing. The data are provided by Prof. Gareth Forbes at Cur-295

tain University, by Creative Commons Attribution 4.0 International License,296

through the Data-acoustics.com Database [18]. The provided Matlab files297

contain radial vibration measurements on the bearing housing of the Spec-298

traQuest Machinery Fault Simulator test rig. The set of measurements con-299

tain two files: a known inner and outer race bearing fault, respectively. The300

validation of the algorithm focuses on the outer race bearing fault case. The301

measured parameters are:302

• Radial Bearing Housing Acceleration (m/s2)303

• Tacho - once per revolution pulse (Volts)304

Bearing dimensions and setup characteristics are listed in Table 3. Figure 8305

shows the raw data loaded from file and the corresponding spectrum.306
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Bearing and setup information

Bearing No. MB ER-16K Sampling frequency 51200 [Hz]

Number of balls 9 Length of record 10 [s]

Ball Diameter 7.9375 [mm] Rotational speed 29 [Hz]

Pitch Diameter 38.50 [mm] BPFO 103.588 [Hz]

Table 3: Bearing and setup information of the experimental test on a outer race fault.

Figure 8: Raw data in time and frequency domains.
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Figure 9: Cyclic modulation spectrum of raw data.

First, the raw data is analyzed to characterize the frequency content.307

Since the bearing data is a cyclostationary signal [6], the cyclic modulation308

spectrum of the raw data is shown in Figure 9.309

The spectrum is characterized by three main components at Ball Pass310

Frequency of Outer ring (BPFO) and harmonics (α-axis). Moreover, there is311

a relevant component at rotational frequency of the shaft (29 Hz) and suc-312

cessive harmonics. Probably there is an imbalance on the shaft, although not313

reported on the test description. The signal has a resonance band around314

2800 Hz (f -axis) and a secondary one around 10400 Hz. It must be noted315

that the fault components are present at the first resonance only, while the316

imbalance of the shaft is present on both resonances. The simulation of317

the faulted bearing will focus on the outer race fault components only, not318

covering the imbalance effects. From the tacho signal the instantaneous ro-319

tational speed in angle is computed (Figure 10), verifying that the test was320
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done at constant speed with a small fluctuation of the rotational speed. The321

speed profile is given as input to the signal model, providing also the bear-322

ing information of Table 3 and resonance frequency highlighted in the cyclic323

modulation spectrum (Figure 9). In addition to the parameters listed in Ta-324

ble 3, the used model variables are collected in Table 4. It is worth noting325

that the carrier component of the shaft speed (fc), the frequency deviation326

(fd) and the modulation frequency (fm) are not necessary, since the instan-327

taneous rotational frequency is directly computed from the tacho signal. The328

output data are compared with experimental raw data in Figure 11.The time329

domain comparison highlights that the signal periodicity is captured by the330

simulated signal, albeit differences in terms of signal amplitude occurs. How-331

ever, it has to be underlined that the primary goal of a signal model is to332

correctly represent the frequency content of the experimental signal, less its333

amplitude. Finally, Figure 12 shows the cyclic modulation spectrum of the334

faulted bearing simulated signal. The characteristic fault frequency and its335

harmonics are evident, like in the experimental cyclic modulation spectrum336

in Figure 9. The spectrum components at the rotational frequency and har-337

monics are not present since the model focuses on the fault component only,338

but may be added. Moreover, the simulated signal exhibits the resonance339

frequency at 2800 Hz as given in Table 4.340
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Vibration Signal Model Parameters

Number of shaft revolutions 284

Number of points per revolution 2048

Sample frequency fs [Hz] 51200

SDOF spring stiffness k [N/m] 2E13

SDOF damping coefficient ζ 4%

SDOF natural frequency fn [Hz] 2800

Amplitude modulation for localized fault 1

Signal to Noise Ratio [dB] 3

Table 4: Vibration signal model data use for experimental validation.

Figure 10: Instantaneous angular speed.
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Figure 11: Comparison between experimental and simulated vibration signals.

Figure 12: Cyclic modulation spectrum of simulated data.
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6. Conclusion341

This paper details an algorithm to simulate the expected vibration signal342

of a faulted bearing. The model is based on the work of Antoni [6], with some343

improvements. In particular, the model of incipient faults at constant speed344

has been extended to variable speed applications. In the distributed fault345

model, the mathematical formulation is completely original and developed346

by the authors of this paper. The basic features that the user could set are:347

• selection of the location of the fault (e.g. outer ring, inner ring, etc...),348

• selection of the stage of the fault (e.g. punctual fault, distributed fault,349

etc...),350

• cyclostationarity of the signal,351

• random contributions,352

• deterministic contributions,353

• effects of resonances in the machine,354

• working conditions (stationary and non-stationary).355

This project has been developed under a Creative Commons license and356

the vision of the project is a set of tools accepted by the community of re-357

searchers on condition monitoring, for the preliminary validation of new di-358

agnostics techniques. The reader could freely and immediately use the script359

in Appendix A to simulate different faults and different operating conditions.360

The script is provided for the open-source Octave environment. The paper361
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fully details the theoretical background and the numeric implementation of362

the vibration model. Examples of the output signals for simulated faulty363

bearings (localized and generalized faults) have been shown and commented.364

Finally, the model is validated on experimental data of a faulted bearing,365

provided by data-acoustics.com database under the Creative Common Attri-366

bution license. The simulated signal has the same resonance frequency and367

fault-related components of the experimental data.368

This work is licensed under the Creative Commons Attribution-ShareAlike369

4.0 International License.370

To view a copy of the license, visit http://creativecommons.org/licenses/by-371

sa/4.0/372
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Appendix A. Octave Code436

1 %% Simulated localized and distributed fault in rolling437

2 % element bearing438

3 %439

4 % G. D’Elia and M. Cocconcelli440

5441

6 clear442

7 clc443

8444

9 %% Bearing geometry445

10 d = 21.4; % bearing roller diameter [mm]446

11 D = 203; % pitch circle diameter [mm]447

12 n = 23; % number of rolling elements448

13 contactAngle = 9*pi/180; % contact angle449

31



14 faultType = ’inner ’;450

15451

16 %% Speed profile452

17 N = 2048; % number of points per revolution453

18 Ltheta = 10000*N; % signal length454

19 theta = (0:Ltheta -1)*2*pi/N;455

20 fc = 10;456

21 fd = 0.08* fc;457

22 fm = 0.1*fc;458

23 fr = fc + 2*pi*fd.*( cumsum(cos(fm.*theta)/N));459

24460

25 %% Localized fault461

26 varianceFactor = 0.04;462

27 fs = 20000; % sample frequency [Hz]463

28 k = 2e13;464

29 zita = 5/100;465

30 fn = 6e3; % natural frequency [Hz]466

31 Lsdof = 2^8;467

32 SNR_dB = 0;468

33 qAmpMod = 0.3;469

34 [tLocal ,xLocal ,xNoiseLocal ,frTimeLocal ,meanDeltaTLocal ,varDeltaTLocal ,470

meanDeltaTimpOverLocal ,varDeltaTimpOverLocal ,errorDeltaTimpLocal] =471

bearingSignalModelLocal(d,D,contactAngle ,n,faultType ,fr,fc ,fd,fm,N,472

varianceFactor ,fs ,k,zita ,fn,Lsdof ,SNR_dB ,qAmpMod);473

35474

36 %% Distributed fault475

37 fs = 20000; % sample frequency [Hz]476

38 SNR_dB = 0;477

39 qFault = 1;478

40 qStiffness = 0.1;479

41 qRotation = 0.1;480

42 [tDist ,xDist ,xNoiseDist ,frTimeDist] = bearingSignalModelDist(d,D,481

contactAngle ,n,faultType ,fc ,fd,fm,fr ,N,fs ,SNR_dB ,qFault ,qStiffness ,482

qRotation);483

1 function [t,x,xNoise ,frTime ,meanDeltaT ,varDeltaT ,meanDeltaTimpOver ,484

varDeltaTimpOver ,errorDeltaTimp] = bearingSignalModelLocal(d,D,485

contactAngle ,n,faultType ,fr ,fc,fd,fm ,N,varianceFactor ,fs,k,zita ,fn,Lsdof486

,SNR_dB ,qAmpMod)487
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2 %% Generation of a simulated signal for localized fault in rolling488

element bearing489

3 %490

4 % Input:491

5 % d = bearing roller diameter [mm]492

6 % D = pitch circle diameter [mm]493

7 % contactAngle = contact angle [rad]494

8 % n = number of rolling elements495

9 % faultType = fault type selection: inner , outer , ball [string]496

10 % fr = row vector containing the rotation frequency profile497

11 % fc = row vector containing the carrier component of the speed498

12 % fm = row vector containing the modulation frequency499

13 % fd = row vector containing the frequency deviation500

14 % N = number of points per revolution501

15 % varianceFactor = variance for the generation of the random502

contribution (ex. 0.04)503

16 % fs = sample frequency of the time vector504

17 % k = SDOF spring stiffness [N/m]505

18 % zita = SDOF damping coefficient506

19 % fn = SDOF natural frequency [Hz]507

20 % Lsdof = length of the in number of points of the SDOF response508

21 % SNR_dB = signal to noise ratio [dB]509

22 % qAmpMod = amplitude modulation due to the load (ex. 0.3)510

23 %511

24 % Output:512

25 % t = time signal [s]513

26 % x = simulated bearing signal without noise514

27 % xNoise = simulated bearing signal with noise515

28 % frTime = speed profile in the time domain [Hz]516

29 % meanDeltaT = theoretical mean of the inter -arrival times517

30 % varDeltaT = theoretical variance of the inter -arrival times518

31 % menDeltaTimpOver = real mean of the inter -arrival times519

32 % varDeltaTimpOver = real variance of the inter -arrival times520

33 % errorDeltaTimp = generated error in the inter -arrival times521

34 %522

35 % G. D’Elia and M. Cocconcelli523

36524

37 if nargin < 14,525
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38 qAmpMod = 1;526

39 end527

40528

41 switch faultType529

42 case ’inner ’530

43 geometryParameter = 1 / 2 * (1 + d/D*cos(contactAngle)); % inner531

race fault532

44 case ’outer ’533

45 geometryParameter = 1 / 2 * (1 - d/D*cos(contactAngle)); % outer534

race fault535

46 case ’ball’536

47 geometryParameter = 1 / (2*n) * (1 - (d/D*cos(contactAngle))^2)537

/(d/D); % outer race fault538

48 end539

49540

50 Ltheta = length(fr);541

51 theta = (0:Ltheta -1)*2*pi/N;542

52543

53 deltaThetaFault = 2*pi/(n*geometryParameter);544

54 numberOfImpulses = floor(theta(end)/deltaThetaFault);545

55 meanDeltaTheta = deltaThetaFault;546

56 varDeltaTheta = (varianceFactor*meanDeltaTheta)^2;547

57 deltaThetaFault = sqrt(varDeltaTheta)*randn ([1 numberOfImpulses -1]) +548

meanDeltaTheta;549

58 thetaFault = [0 cumsum(deltaThetaFault)];550

59 frThetaFault = interp1(theta ,fr,thetaFault ,’spline ’);551

60 deltaTimp = deltaThetaFault ./ (2*pi*frThetaFault (2:end));552

61 tTimp = [0 cumsum(deltaTimp)];553

62554

63 L = floor(tTimp(end)*fs); % signal length555

64 t = (0:L-1)/fs;556

65 frTime = interp1(tTimp ,frThetaFault ,t,’spline ’);557

66558

67 deltaTimpIndex = round(deltaTimp*fs);559

68 errorDeltaTimp = deltaTimpIndex/fs - deltaTimp;560

69561

70 indexImpulses = [1 cumsum(deltaTimpIndex)];562

71 index = length(indexImpulses);563
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72 while indexImpulses(index)/fs > t(end)564

73 index = index - 1;565

74 end566

75 indexImpulses = indexImpulses (1: index);567

76568

77 meanDeltaT = mean(deltaTimp);569

78 varDeltaT = var(deltaTimp);570

79 meanDeltaTimpOver = mean(deltaTimpIndex/fs);571

80 varDeltaTimpOver = var(deltaTimpIndex/fs);572

81573

82 x = zeros(1,L);574

83 x(indexImpulses) = 1;575

84576

85 % amplitude modulation577

86 if strcmp(faultType ,’inner’)578

87579

88 if length(fc) > 1,580

89 thetaTime = zeros(1,length(fr));581

90 for index = 2: length(fr),582

91 thetaTime(index) = thetaTime(index - 1) + (2*pi/N)/(2*pi*583

fr(index));584

92 end585

93 fcTime = interp1(thetaTime ,fc,t,’spline ’);586

94 fdTime = interp1(thetaTime ,fd,t,’spline ’);587

95 fmTime = interp1(thetaTime ,fm,t,’spline ’);588

96589

97 q = 1 + qAmpMod * cos (2*pi*fcTime .*t + 2*pi*fdTime .*( cumsum(cos590

(2*pi*fmTime .*t)/fs)));591

98 else592

99 q = 1 + qAmpMod * cos (2*pi*fc*t + 2*pi*fd*( cumsum(cos(2*pi*fm*t)593

/fs)));594

100 end595

101 x = q .* x;596

102 end597

103598

104 [sdofRespTime] = sdofResponse(fs,k,zita ,fn ,Lsdof);599

105 x = fftfilt(sdofRespTime ,x);600

106601
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107 L = length(x);602

108 rng(’default ’); %set the random generator seed to default (for603

comparison only)604

109 SNR = 10^( SNR_dB /10); %SNR to linear scale605

110 Esym=sum(abs(x).^2)/(L); %Calculate actual symbol energy606

111 N0 = Esym/SNR; %Find the noise spectral density607

112 noiseSigma = sqrt(N0); %Standard deviation for AWGN Noise when x is real608

113 nt = noiseSigma*randn(1,L);%computed noise609

114 xNoise = x + nt; %received signal610

1 function [t,x,xNoise ,frTime] = bearingSignalModelDist(d,D,contactAngle ,n,611

faultType ,fc ,fd,fm,fr ,N,fs ,SNR_dB ,qFault ,qStiffness ,qRotation)612

2 %% Generation of a simulated signal for distributed fault in rolling613

element bearing614

3 %615

4 % Input:616

5 % d = bearing roller diameter [mm]617

6 % D = pitch circle diameter [mm]618

7 % contactAngle = contact angle [rad]619

8 % n = number of rolling elements620

9 % faultType = fault type selection: inner , outer , ball [string]621

10 % fr = row vector containing the rotation frequency profile622

11 % fc = row vector containing the carrier component of the speed623

12 % fm = row vector containing the modulation frequency624

13 % fd = row vector containing the frequency deviation625

14 % N = number of points per revolution626

15 % SNR_dB = signal to noise ratio [dB]627

16 % qFault = amplitude modulation at the fault frequency628

17 % qStiffness = amplitude value of the deterministic component related to629

the stiffness variation630

18 % qRotation = amplitude value of the deterministic component related to631

the bearing rotation632

19 %633

20 % Output:634

21 % t = time signal [s]635

22 % x = simulated bearing signal without noise636

23 % xNoise = simulated bearing signal with noise637

24 % frTime = speed profile in the time domain [Hz]638

25 %639
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26 % G. D’Elia and M. Cocconcelli640

27641

28 switch faultType642

29 case ’inner ’643

30 geometryParameter = 1 / 2 * (1 + d/D*cos(contactAngle)); % inner644

race fault645

31 case ’outer ’646

32 geometryParameter = 1 / 2 * (1 - d/D*cos(contactAngle)); % outer647

race fault648

33 case ’ball’649

34 geometryParameter = 1 / (2*n) * (1 - (d/D*cos(contactAngle))^2)650

/(d/D); % outer race fault651

35 end652

36653

37 Ltheta = length(fr);654

38 theta = (0:Ltheta -1)*2*pi/N;655

39 thetaTime = zeros(1,length(fr));656

40 for index = 2: length(fr),657

41 thetaTime(index) = thetaTime(index - 1) + (2*pi/N)/(2*pi*fr(index));658

42 end659

43660

44 L = floor(thetaTime(end)*fs); % signal length661

45 t = (0:L-1)/fs;662

46 frTime = interp1(thetaTime ,fr ,t,’spline ’);663

47664

48 % generating rotation frequency component665

49 xRotation = qRotation * cos(fc/fc.* theta + fd./fc.*( cumsum(cos(fm./fc.*666

theta)/N)));667

50 xRotationTime = interp1(thetaTime ,xRotation ,t,’spline ’);668

51669

52 % generating stiffness variation670

53 tauStiffness = n / 2 * (1 - d/D*cos(contactAngle));671

54 xStiffness = qStiffness * cos(fc./fc*tauStiffness .*theta + fd./fc*672

tauStiffness .*( cumsum(cos(fm./fc*tauStiffness .*theta)/N)));673

55 xStiffnessTime = interp1(thetaTime ,xStiffness ,t,’spline ’);674

56675

57 % amplitude modulation676

58 tauFautl = n*geometryParameter;677
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59 q = 1 + qFault * sin(fc./fc*tauFautl .*theta + fd./fc*geometryParameter678

.*( cumsum(cos(fm./fc*geometryParameter .*theta)/N)));679

60 qTime = interp1(thetaTime ,q,t,’spline ’);680

61 xFaultTime = randn(1,L);681

62 xFaultTime = xFaultTime .* qTime;682

63683

64 % adding therms684

65 x = xFaultTime + xStiffnessTime + xRotationTime;685

66686

67 % Adding noise with given SNR687

68 rng(’default ’); %set the random generator seed to default (for688

comparison only)689

69 SNR = 10^( SNR_dB /10); %SNR to linear scale690

70 Esym=sum(abs(x).^2)/(L); %Calculate actual symbol energy691

71 N0 = Esym/SNR; %Find the noise spectral density692

72 noiseSigma = sqrt(N0); %Standard deviation for AWGN Noise when x is real693

73 nt = noiseSigma*randn(1,L);%computed noise694

74 xNoise = x + nt; %received signal695

1 function [sdofRespTime] = sdofResponse(fs,k,zita ,fn ,Lsdof)696

2 %% Acceleration of a SDOF system697

3 % [sdofRespTime] = sdofResponse(fs,k,zita ,fn,Lsdof)698

4 %699

5 % Input:700

6 % fs = sample frequency [Hz]701

7 % k = spring stiffness [N/m]702

8 % zita = damping coefficient703

9 % fn = Natural frequency [Hz]704

10 % Lsdof = desired signal length [points]705

11 %706

12 % Output:707

13 % sdofRespTime = acceleration (row vector)708

14 %709

15 % G. D’Elia and M. Cocconcelli710

16711

17 m = k/(2*pi*fn)^2;712

18 F = 1;713

19 A = F/m;714

20 omegan = 2*pi*fn;715
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21 omegad = omegan*sqrt(1-zita ^2);716

22717

23 t = (0:Lsdof -1)/fs;718

24 % system responce719

25 xt = A/omegad * exp(-zita*omegan*t).*sin(omegad*t); % displacement720

26 xd = [0 diff(xt)*fs]; % velocity721

27 sdofRespTime = [0 diff(xd)*fs]; % acceleration722
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