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Abstract

Let G be a connected graph with an even number of edges. We show
that if the subgraph of G induced by the vertices of odd degree has a
perfect matching, then the line graph of G has a 2-factor whose con-
nected components are cycles of even length (an even 2-factor). For
a cubic graph G, we also give a necessary and sufficient condition so
that the corresponding line graph L(G) has an even cycle decompo-
sition of index 3, i.e., the edge-set of L(G) can be partitioned into
three 2-regular subgraphs whose connected components are cycles of
even length. The more general problem of the existence of even cycle
decompositions of index m in 2d-regular graphs is also addressed.

Keywords: cycle decomposition, 2-factor, oriented graphs, line graph.
MSC(2010): 05B40, 05C20, 05C38.

1 Introduction

The graphs considered in this paper are simple and finite. We refer to
[3] for graph theory notation and terminology which are not introduced
explicitly here. In particular, we shall use the following terminology: a
cycle is a connected 2-regular graph; the number of edges in a cycle is
called its length; a cycle is even if it has even length. The vertex-disjoint
union of cycles, that are contained in a graph G, is a 2-regular subgraph
of G. A spanning 2-regular subgraph of G is a 2-factor of G. A 2-regular
subgraph (in particular, a 2-factor) is even if its connected components
are even cycles. A cycle decomposition of a graph G is a partition of the
edge-set of G into cycles. It is known that a graph G possesses a cycle
decomposition if and only if every vertex of G has even degree (see [20]).
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Cycle decompositions satisfying additional conditions are widely studied (see
for instance the survey paper [12]). In this paper we consider even cycle
decompostions, i.e., cycle decompositions whose elements are even cycles.
A necessary condition for the existence of an even cycle decomposition of
a graph G is that every vertex has even degree and every block of G has
an even number of edges. The existence of even cycle decompositions in
planar graphs is completely settled. It is known that for planar graphs the
necessary condition is also sufficient (see [17]). For a non-planar graph G
a result by Zhang [24] holds, namely, if G satisfies the necessary condition
and has no K5-minor, then G possesses an even cycle decomposition.

Given a graph G with a cycle decomposition, we can color the cycles of
the decomposition in such a way that cycles sharing a vertex receive distinct
colors. Each colored class is then a 2-regular subgraph of G. If m is the
minimum number of colors that are required in such a coloring, then we
say that the decomposition is a cycle decomposition of index m. Since each
colored class is a 2-regular subgraph of G, a cycle decomposition of index
m provides a partition of the edge-set of G into m 2-regular subgraphs, i.e.,
a 2-regular subgraph decomposition of G of cardinality m. If each colored
class is a 2-factor of G, then a 2-regular subgraph decomposition of G is
known as a 2-factorization of G. There might be more than one way to
color the cycles of a decomposition by m colors, i.e., a cycle decomposition
of index m might provide more than one 2-regular subgraph decomposition
of cardinality m. Obviously, a cycle decomposition of index m consisting
of c cycles provides a 2-regular subgraph decomposition of cardinality m′,
for every m ≤ m′ ≤ c. By Petersen’s Theorem [16], a 2d-regular graph
possesses a 2-factorization. Therefore, every 2d-regular graph has at least
one cycle decomposition of index d. An arbitrary cycle decomposition of
a 2d-regular graph has index m ≥ d. If a cycle decomposition of index m
satisfies additional properties, then these properties may well be inherited
by the corresponding 2-regular subgraph decomposition of cardinality m.
In particular, an even cycle decomposition of index m provides an even
2-regular subgraph decomposition of cardinality m. We are interested in
determining the minimum number m of even 2-regular subgraphs which
partition the edge-set of a graph or, equivalently, the minimum value of
m taken over all even cycle decompositions of index m. Our motivation
for formulating this problem is explained in Section 1.1. By the previous
remarks, the index of an even cycle decomposition of a 2d-regular graph
satisfies the inequality m ≥ d. A class 1 regular graph of degree 2d possesses
an even cycle decomposition of index d (since the edge-set of a class 1 regular
graph of degree 2d can be partitioned into 2d perfect matchings, we can pair
the matchings and find d even 2-factors). It is easy to show that the converse
is also true. Hence, a 2d-regular graph has an even cycle decomposition of
index d if and only if it is class 1. If the graph is class 2, then every even
cycle decomposition has index m ≥ d+1 (see [7] for the definition of graphs
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of class 1 and 2 according to Vizing’s Theorem).
We restrict our attention to 4-regular graphs and in particular to 4-

regular line graphs. We study the existence/non-existence of even 2-factors
and even cycle decompositions in these graphs. We recall that the vertices
of the line graph L(G) of a graph G correspond to the edges of G. Two
vertices of L(G) are adjacent if and only if the corresponding edges of G
share a vertex. Hence, if G is 3-regular, then L(G) is 4-regular. The reason
of our interest in 4-regular graphs arises from the study of a chromatic
parameter (the palette index) and will be explained in Section 1.1. We
consider line graphs because these graphs are completely characterized by a
list of nine forbidden subgraphs (see [1]) which reduces to seven forbidden
subgraphs if the graphs are regular of degree 4. We shall see that some
properties holding for line graphs can be used to determine the structure of
the original graphs and conversely (see for instance Proposition 2, 3, 5). Our
results involve other decompositions, namely, even star decompositions and
P2-decompositions. An even star decomposition D of a simple graph G is a
partition of the edge-set of G into stars K1,2h whose centre has even degree
2h ≥ 2 (even stars). We do not require that the stars in D are pairwise
isomorphic. If each star in D is a path P2 (a path with two edges), then we
say that D is a P2-decomposition of G.

We briefly summerize the contents of this paper. Section 2.2 is devoted
to the existence of an even 2-factor in the line graph of an arbitrary graph
G. We note that the line graph of a connected graph G with an even number
of edges has an even 2-factor if and only if the graph G has a pair of disjoint
P2-decompositions (“disjoint” here is understood in a set-theoretical sense,
i.e., the disjoint decompositions have no common member). We prove the
following sufficient condition: if the subgraph K induced by the vertices
of odd degree has a perfect matching, then G has a pair of disjoint P2-
decompositions. In Section 2.1 we always assume that G is cubic and prove
that the existence of an even cycle decomposition in L(G) is equivalent
to the existence of three subgraphs of G satisfying certain conditions (see
Proposition 5). Every class 1 cubic graph possesses such subgraphs. An
almost straighforward argument shows that the line graph of a class 1 cubic
graph has an even cycle decomposition of index 3 (see Corollary 2). By the
results in [13], the line graph of a class 1 cubic graph with an even number
of edges is a 4-regular graph of class 1. Hence, in this case, we can find
an even cycle decomposition of smallest index, namely, of index 2 (see the
previous remarks on graphs of class 1).

The existence of the three subgraphs for a class 2 cubic graph does not
seem to be an immediate consequence of the definition: we namely give a
sufficient condition for the existence of such subgraphs (see Proposition 6
and 7). We use these conditions to show that the line graphs of some class
2 cubic graphs (flower snarks, Blanuša snarks, Goldberg snarks and others)
admit even cycle decompositions of index 3. The numerous examples of
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4-regular line graphs with an even cycle decomposition of index 3 seem to
confirm a conjecture by Markström [15] stating that a 4-regular graph on
2n + 1 vertices asymptotically almost surely decomposes into one cycle of
length 2n and two further even cycles, i.e., it has an even cycle decomposition
of index 3. We note that our results hold for graphs on an even number of
vertices, as well.

Our constructions are described in terms of “even orientations” (more
details in Section 2). In particular, in Proposition 1, we obtain a refinement
of a classical result of Kotzig [14] stating that a connected graph has an even
orientation if and only if it has an even number of edges.

1.1 A related question.

A (proper) edge-coloring of a graph G defines at each vertex v the set of
colors of its incident edges, the so called palette of the vertex v. The mini-
mum number of distinct palettes taken over all proper edge-colorings of G
is the palette index of G and is denoted by š(G) (see [9]). As remarked in
[9], the palette index of a regular graph is different from 2 and satisfies the
inequalities 1 ≤ š(G) ≤ χ′(G) where χ′(G) denotes the chromatic index.
Moreover, š(G) = 1 if and only if the graph G is class 1. Consequently, the
possible values for the palette index of a class 2 cubic graph are 3 and 4. By
the results in [9], a class 2 cubic graph has palette index 3 if and only if it
has a perfect matching, otherwise the palette index is 4. Hence, for every
admissible value it is possible to find an example of a class 2 cubic graph
with the required palette index.

What is the behavior of d-regular graphs with d > 3 in this respect?
In other words, given an integer r, 3 ≤ r ≤ d + 1, is it possible to find a
d-regular graph with palette index r? The case d = 4 is studied in [4] and it
is shown that for every integer r, 3 ≤ r ≤ 5, it is possible to find a 4-regular
graph with palette index r.

While studying the palette index of 4-regular graphs we observed the
following phenomenon: a 4-regular graph of class 2 has palette index 3 if
and only if it has an even 2-factor or an even cycle decomposition of index 3.
We can exhibit instances of 4-regular graphs with an even 2-factor and/or
an even cycle decomposition of index 3 (see [4]). We can also give examples
of 4-regular graphs with palette index 4 and 5, but none of them admits an
even cycle decomposition. We do not know examples of graphs, with palette
index larger than 3, possessing an even cycle decomposition. If such a graph
exists, then it has no even 2-factor and every even cycle decomposition has
index m > 3 (otherwise the palette index should not exceed 3). The problem
of finding a 4-regular graph all of whose even cycle decompositions have
index larger than 3 was another motivation for this paper, as we found no
result concerning the index of an even cycle decomposition in the literature.
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2 Even orientations.

An orientation of a simple graph G = (V (G), E(G)) is a directed graph
−→
G = (V (G),D(G)) obtained from G by specifying, for each edge [u, v] of G,

an order on its end-vertices. If a = (u, v) is an arc of
−→
G , then the vertex u

is the tail of a and v is the head of a. The indegree of a vertex v in V (
−→
G)

is the number of arcs with head v (incoming arcs in v); the outdegree of a

vertex v in V (
−→
G) is the number of arcs with tail v (outgoing arcs in v). We

say that
−→
G is an even orientation of G if for every vertex v ∈ V (

−→
G) the

number of incoming arcs (u, v) ∈
−→
G in v is even. In [14] Kotzig proved the

following theorems.

Theorem 1. [14, Theorem 1] Let
−→
G be an arbitrary orientation of a graph

G and let n denote the number of vertices of
−→
G with odd indegree. Then

n ≡ |E(G)| (mod 2).

Theorem 2. [14, Theorem 3] If G is a connected graph with an even number
of edges, then G has an even orientation.

Combining Theorem 1 and Theorem 2, one can see that a connected
graph has an even orientation if and only if it has an even number of
edges. This result is also known as follows: “a connected graph has a
P2-decomposition if and only if it has an even number of edges”. In the
next section we analyse the relationship between even orientations and P2-
decompositions in greater detail. We give some remarks that will be used
to prove our results.

2.1 Even orientations and even decompositions.

Let
−→
G be an even orientation of a graph G. If v is a vertex of

−→
G with

indegree 2h > 0, then the underlying edges of the incoming arcs in v form
a subgraph of G isomorphic to the star K1,2h (a path P2 for h = 1). If we

consider all the vertices of
−→
G with positive even indegree, then we obtain an

even star decomposition of G. Obviously, also the converse is true: an even

star decomposition of G gives rise to an even orientation of
−→
G (for every star

K1,2h with centre v and vertices ui, 1 ≤ i ≤ 2h, we declare the arcs (ui, v)

to be in
−→
G). Therefore there exists a one-to-one correspondence between

even orientations and even star decompositions. If G is a graph with an even
number of edges and maximum degree 3, then the one-to-one correspondence
is between even orientations and P2-decompositions of G (for graphs with
maximum degree 3 a star K1,2h is a path P2). For an arbitrary graph G,
with an even number of edges, if the star decomposition D corresponding to

the even orientation of
−→
G contains at least one star D ∼= K1,2h with 2h > 2,
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then we can pair in an arbitrary way the edges of D and find more than one
P2-decomposition of G arising from the same even orientation.

Let D1, D2 be a pair of disjoint even star decompositions of a graph G.

Let
−→
G1,

−→
G2 be the corresponding even orientations. Since D1 and D2 are

disjoint, i.e., E(D) 6= E(D′) for every D ∈ D1, D
′ ∈ D2, the corresponding

even orientations
−→
G1 and

−→
G2 satisfy the following property: for every vertex

v ∈ V (G) the set of arcs (u, v) ∈ D(
−→
G1) incoming in v is distinct from the set

of arcs (u, v) ∈ D(
−→
G2) incoming in v. We say that a pair of even orientations

of the same graph G are disjoint if they satisfy the aforementioned property.
A pair of disjoint even star decompositions gives rise to a pair of disjoint
even orientations and conversely. We can now prove the following result.

Proposition 1. Let G be a connected graph with an even number of edges.
Let K be the subgraph of G induced by the vertices of odd degree. If K has a
perfect matching M , then there exists a pair of disjoint even orientations of

G, say
−→
G1,

−→
G2, whose arc-sets D(

−→
G1), D(

−→
G2) share only the arcs whose

underlying edge belongs to M .

Proof. By Theorem 2, the graph G has an even orientation
−→
G1. We change

the orientation of all arcs whose underlying edges are not in M . Parity is
preserved.

Corollary 1. Let G be a connected graph with an even number of edges.
Let K be the subgraph of G induced by the vertices of odd degree. If K has a
perfect matching, then there exists a pair of disjoint even star decompositions
of G and also a pair of disjoint P2-decompositions of G.

Proof. The existence of a pair of disjoint even star decompositions, say D1,
D2, follows from Proposition 1, since a pair of disjoint even orientations of
G corresponds to a pair of disjoint even star decompositions of G. If G
is a graph with maximum degree ≤ 3, then an even-star decomposition is
nothing but a P2-decomposition, hence the assertion follows in this case.

We consider G with maximum degree larger than 3 and prove that G

has a pair of disjoint P2-decompositions. Let
−→
G1,

−→
G2 be the disjoint even

orientations ofG arising from Proposition 1 and corresponding to the disjoint
even star decompositions D1, D2, respectively. By Proposition 1, the arc-

sets D(
−→
G1), D(

−→
G2) share only the arcs whose underlying edges belong to

M . Hence, for every D ∈ D1 and D′ ∈ D2, the cardinality of E(D) ∩E(D′)
is at most 1 (E(D) ∩ E(D′) is either empty or consists of a single edge in
M). Consequently, if D ∈ D1 and D′ ∈ D2 are stars with the same centre
v, then by pairing the edges in D and in D′ we obtain a set A and a set A′

containing exactly |E(D)|/2 and |E(D′)|/2 paths P2, respectively. The sets
A and A′ share no path P2, since the cardinality of E(D)∩E(D′) is at most
1. Hence, D1 and D2 provide a pair of disjoint P2-decompositions of G.
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2.2 Even 2-factors.

A P2-decomposition of a graph G corresponds to a perfect matching in
the line graph L(G). More generally, a set of k paths P2 in G, which are
pairwise edge-disjoint, corresponds to a matching of cardinality k in L(G).
Conversely: since an edge of L(G) corresponds to a pair of adjacent edges
in G, a matching of cardinality k in L(G) (respectively, a perfect match-
ing in L(G)) corresponds to a set of k paths P2 in G which are pairwise
edge-disjoint (respectively, to a P2-decomposition in G). We can prove the
following results.

Proposition 2. The line graph L(G) of a graph G has an even 2-factor if
and only if the graph G has a pair of disjoint P2-decompositions.

Proof. Assume that L(G) has an even 2-factor F , then we can alternately
color the edges of F and obtain two edge-disjoint perfect matchings, say
M1 and M2, of L(G). Each perfect matching Mi, i = 1, 2, corresponds
to a P2-decomposition of G, say Di. Since M1 and M2 are edge-disjoint,
the corresponding P2-decompositions share no path P2, i.e., D1 and D2 are
disjoint. It is easy to see that the converse is true as well.

Proposition 3. Let G be a connected graph with an even number of edges.
Let K be the subgraph of G induced by the vertices of odd degree. If K has
a perfect matching, then the line graph L(G) has an even 2-factor.

Proof. It follows from Corollary 1 and Proposition 2.

The following property is a straightforward consequence of Proposition
3.

Proposition 4. Let G be a connected cubic graph with an even number of
edges. If G has a perfect matching, then the line graph L(G) has an even
2-factor.

The existence of a perfect matching, in a connected graph with an even
number of edges and no vertex of even degree, is a sufficient condition for the
existence of an even 2-factor in the corresponding line graph. The condition
is not necessary: for instance, the graph G in Figure 1(a) is a cubic graph
with 24 edges and no perfect matching whose line graph has an even 2-
factor. More specifically, the graph G in Figure 1(a) has 3 subgraphs, say
N1, N2 and N3, that contain the vertex u and are isomorphic to the graph
N in Figure 1(b); the graph N has 8 edges and a perfect matching M =
{[u, v1], [v2, v3], [v4, v5]}; by Proposition 1, the graph N has a pair of disjoint
P2-decompositions; therefore, each subgraph Ni has a pair of disjoint P2-
decompositions, say Di,1 and Di,2 with i = 1, 2, 3; the sets D1 = ∪3

i=1
Di,1

and D2 = ∪3
i=1

Di,2 are disjoint P2-decompositions of G; by Proposition 2,
the line graph L(G) has an even 2-factor.
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We can also give some examples of graphs with no perfect matching
whose line graph has no even 2-factor. For instance, the graph G in Figure
2 is a cubic graph with 42 edges and no perfect matching whose line graph
has no even 2-factor. More specifically, every even orientation of G contains
the arcs (u, v), (w, v), i.e., every P2-decomposition of G contains the P2-
path (u, v, w); hence G cannot have a pair of disjoint P2-decompositions; by
Proposition 2, the line graph L(G) cannot have an even 2-factor.

u u

v1

v2

v3 v4

(a) (b)

v5

Figure 1: (a) A cubic graph with no perfect matching whose line graph has
an even 2-factor; (b) the graph N .

u

v

w

Figure 2: A cubic graph with no perfect matching whose line graph has no
even 2-factor.
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3 Even cycle decompositions for the line graph of

a cubic graph.

The definition of disjoint even orientations of a cubic graph G can be read

as follows: two even orientations of G, say
−→
G1,

−→
G2, are disjoint if for every

v ∈ V (G) with positive indegree in
−→
G1 or in

−→
G2, the pair of arcs in D(

−→
G1)

incoming in v is distinct from the pair of arcs in D(
−→
G2) incoming in v. For

our purposes, we extend the definition of disjoint even orientations to the
subgraphs of a cubic graph G. More specifically, if H and K are subgraphs

of a cubic graph G possessing an even orientation
−→
H and

−→
K , respectively,

we will say that
−→
H and

−→
K are disjoint on the vertex v ∈ V (H) ∩ V (K) if v

has indegree 0 in at least one of the orientations
−→
H ,

−→
K , or the pair of arcs

in D(
−→
H ) incoming in v is distinct from the pair of arcs in D(

−→
K) incoming

in v.
By the one-to-one correspondence between even orientations and P2-

decompositions we can write the following statement in terms of even ori-
entations or P2-decompositions.

Proposition 5. Let G be a cubic graph. The corresponding line graph L(G)
has an even cycle decomposition of index 3 if and only if the graph G has
three subgraphs, say H1, H2, H3, such that:

(a) each edge of G is contained in exactly two of the subgraphs Hi, i = 1,2,
3;

(b) each subgraph Hi has a pair of disjoint even orientations, say
−→
H i,1,

−→
H i,2(or, equivalently, a pair of disjoint P2-decompositions);

(c) for every vertex v ∈ V (Hi)∩V (Hj) the even orientations
−→
H i,r and

−→
H j,s,

with i, j = 1, 2, 3, i 6= j, r, s = 1, 2, are disjoint on v.

Proof. Assume that G has three subgraphs Hi, i = 1, 2, 3, verifying (a), (b)

and (c). The pair of disjoint even orientations
−→
H i,1,

−→
H i,2 of Hi gives rise

to a pair of edge-disjoint matchings Mi,1, Mi,2 of L(G) whose cardinality
is |E(Hi)|/2 and whose union is an even 2-regular subgraph Di of L(G)
(Di is an even 2-factor of L(Hi)). Since an edge in Mi,r, i = 1, 2, 3, r =

1, 2, corresponds to a pair of arcs of
−→
H i,r incoming in a vertex v of G,

assumption (c) ensures that the matchings Mi,r are pairwise edge-disjoint.
Therefore, the graph D1 ∪ D2 ∪ D3 contains exactly |E(D1)| + |E(D2)| +
|E(D3)| =|E(H1)| + |E(H2)| + |E(H3)| edges of L(G). Assumption (a)
implies |E(H1)|+ |E(H2)|+ |E(H3)| = 2|E(G)|, i.e., D1 ∪D2 ∪D3 contains
the edge-set of L(G). Hence D1 ∪D2 ∪D3 = L(G), i.e., L(G) has an even
cycle decomposition of index 3.

Conversely: assume that L(G) has an even cycle decomposition D =
{D1,D2,D3} of index 3. In each even 2-regular subgraph Di, i = 1, 2, 3,
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we alternately color the edges of each even cycle and obtain a pair of edge-
disjoint matchings, say Mi,1, Mi,2, whose cardinality is |V (Di)|/2. The edges
in Mi,j, with j = 1, 2, yield a set Di,j containing exactly |V (Di)|/2 paths P2

of G that are pairwise edge-disjoint. The paths in Di,j form a subgraph Hi,j

of G admitting Di,j as a P2-decomposition. Since the matchings Mi,1, Mi,2

have the same vertex-set, the subgraphs Hi,1 and Hi,2 of G coincide and we
set Hi = Hi,1 = Hi,2. Since Mi,1, Mi,2 are edge-disjoint, the sets Di,1 and
Di,2 are disjoint P2-decompositions of Hi, i.e., Hi has a pair of disjoint even

orientations
−→
H i,1,

−→
H i,2. Hence condition (b) is verified. Since D is an even

cycle decomposition of L(G) and L(G) is regular of degree 4, each vertex of
L(G) belongs to exactly two of the even 2-regular subgraphs D1, D2, D3,

hence condition (a) is verified. Moreover, the even orientations
−→
H i,r, with

i = 1, 2, 3, r = 1, 2, verify condition (c).

Corollary 2. Let G be a class 1 cubic graph. The corresponding line graph
L(G) has an even cycle decomposition of index 3.

Proof. Since G is class 1, the edge-set of G can be partitioned into three
perfect matchings M1, M2, M3. We set H1 = M1 ∪M2, H2 = M1 ∪M3 and
H3 = M2∪M3. The subgraphs Hi, i = 1, 2, 3, are even 2-regular subgraphs
of G. They satisfy Proposition 5, hence the assertion follows.

Lemma 1. Let G be a connected cubic graph possessing a subgraph consist-
ing of a cycle C =(u0,u1,. . ., un, u0) of length n+1 ≡ |E(G)| (mod 2) with
a pendant edge [u0, v0]. Let H be the subgraph of G obtained by deleting the
edges [ui, ui+1], with 1 ≤ i ≤ n− 1, and let K be the subgraph of H induced
by the vertices of degree 3 and 2 in H. If every connected component of H
has an even number of edges and the connected component of K containing

the vertex un is 2-connected, then H admits an even orientation
−→
H 0 such

that the vertices u1 and un have the same indegree in
−→
H 0.

Proof. By Theorem 2, the graphH has an even orientation
−→
H . If the vertices

u1 and un have the same indegree in
−→
H , then the assertion follows. Consider

u1 and un with different indegree in
−→
H , i.e., u1 has indegree 2 whereas un

has indegree 0 (or vice versa). Let S be the connected component of K
containing the vertex un (it may well happen that S = K). The vertices u0
and u1 belong to S. Since S is 2-connected, the edge [u1, un] does not belong
to E(G). Moreover, there exist two internally disjoint paths of S connecting
the vertices un and v0, i.e., the vertices un and v0 belong to a cycle C1 of
S. We can always assume that C1 does not contain the vertex u1, i.e., C1

does not contain the edge [u0, u1] (if C1 contains the edge [u0, u1] we can
take the chord [u0, v0] and find a cycle of S containing the vertices un, v0,

but not the vertex u1). We use C1 to construct a new even orientation
−→
H 0

of H: starting from
−→
H , we leave unchanged the direction on the arcs in

−→
H

10



whose underlying edges do not belong to C1; we reverse the direction on the

arcs in
−→
H with underlying edge belonging to C1. The new orientation

−→
H 0

is even: the vertices not in C1 do not change their set of incoming arcs; the
vertices in C1 change the direction on exactly two of their arcs, hence the
number of incoming arcs is always even. Moreover, un and u1 have the same

indegree in
−→
H 0 and the assertion follows.

Proposition 6. Let G be a cubic graph with an odd number of edges possess-
ing a subgraph consisting of a cycle C = (u0, u1,. . . , un, u0) of odd length
with a pendant edge [u0, v0]. Denote by H the subgraph of G obtained by
deleting the edges [ui, ui+1], with 1 ≤ i ≤ n− 1. Denote by Ki the subgraph
of H induced by the vertices of degree 3 and i, with i = 1, 2. If the connected
components of H have an even number of edges, the connected component
of K2 containing un is 2-connected and the subgraphs K1, K2 have edge-
disjoint perfect matchings M1, M2, respectively, then the line graph L(G)
has an even cycle decomposition of index 3.

Proof. We prove that Proposition 5 is verified. We set H1 = H and denote
by H2 the graph obtained from G by deleting the vertex u0. We denote by
H3 the graph given by the cycle C = (u0,u1, . . . ,un, u0) with the pendant
edge [u0, v0]. The graphs H1, H2, H3 verify condition (i) of Proposition 5.
We show that they also verify condition (ii). The graph H3 has a pair of

disjoint even orientations
−→
H 3,1 and

−→
H 3,2 that can be defined as in Figure 3.

By the assumptions, every connected component of H1 has an even number
of edges. Therefore, by Theorem 2, the graph H1 has an even orientation
−→
H 1,1. By Proposition 1, there exists an even orientation

−→
H 1,2 which is

disjoint from
−→
H 1,1. Moreover, the arc-sets D(

−→
H 1,1), D(

−→
H 1,2) share only the

arcs whose underlying edges belong to M1. By Lemma 1, the vertices u1, un
have the same indegree in

−→
H 1,1. The vertices u1, u2 have indegree 2 in

−→
H 1,1

and indegree 0 in
−→
H 1,2 (or vice versa), as D(

−→
H 1,1), D(

−→
H 1,2) share only the

arcs whose underlying edges belong to M1 and u1, un are unmatched in M1.

Without loss of generality, we can assume that u1, un have indegree 2 in
−→
H 1,1

and indegree 0 in
−→
H 1,2. Figure 4 shows the arcs in D(

−→
H 1,1) and D(

−→
H 1,2)

with at least one vertex belonging to V (C). Note that (u0, v0) is in D(
−→
H 1,1)

and D(
−→
H 1,2). These properties will be used to define a pair of disjoint even

orientations in H2. The edge-disjoint matchings M1 and M2 in K1 and K2,
respectively give rise to two edge-disjoint matchings M ′

1 = M1− [u0, v0] and
M ′

2 = M2− [u0, u1], respectively, in H2. The vertices v0, u1, un ∈ V (H2) are
unmatched inM ′

1, whereas all other vertices ofH2 have a mate inM ′
1 (see the

bold and dashed edges in Figure 4 and 5). Hence M ′
1 is a perfect matching in

the subgraph of H2 induced by the vertices of degree 3 and 1. The vertices
of H2 in V (C) − {un} are unmatched in M ′

2, whereas all other vertices of

H2 have a mate in M ′
2. We use M ′

2 and the even orientation
−→
H 1,1 of H1 to

11



construct an even orientation
−→
H 2,1 of H2 as follows: we leave unchanged the

direction on the arcs in D(
−→
H 1,1) whose underlying edges belong to M ′

2; we

reverse the direction on the arcs in D(
−→
H 1,1) whose underlying edges belong

to (H1∩H2)−M ′
2. Since we are assuming that u1 and un have indegree 2 in

−→
H 1,1, we add the arcs (ui, ui+1), with 1 ≤ i ≤ n− 1 (see Figure 5). One can

easily verify that
−→
H2,1 is an even orientation of H2. Since M ′

1 is a perfect
matching on the subgraph of H2 induced by the vertices of degree 3 and 1,

we can apply Proposition 1 and find an even orientation
−→
H 2,2 of H2 which

is disjoint from
−→
H 2,1 (see Figure 5). By the same proposition, the arc-sets

D(
−→
H 2,1), D(

−→
H 2,2) share only the arcs whose underlying edges belong to M ′

1.
We show that condition (iii) of Proposition 5 is verified. The orientations

−→
H 1,r and

−→
H 3,s, with r, s = 1, 2 are disjoint on every v ∈ V (H1) ∩ V (H3),

since E(H1), E(H3) share only the edges that are incident to u0 (see Figure

3 and 4). From Figure 3 and 5, one can see that also the orientations
−→
H 2,r

and
−→
H 3,s, with r, s = 1, 2 are disjoint on every v ∈ V (H2)∩V (H3). Consider

a vertex v ∈ V (H1) ∩ V (H2) of degree 3 in H1 and H2. The matching M1

contains exactly one edge, say [u, v], incident to v. The edge [u, v] also
belongs to M ′

1, since M
′
1 = M1− [u0, v0] and v 6= u0, v0. By the construction

of
−→
H 2,1 from

−→
H 1,1, the arcs incident to v in

−→
H 1,r and

−→
H 2,s, with r, s = 1, 2,

are oriented as in Figure 6. Hence the orientations
−→
H 1,r and

−→
H 2,s are disjoint

on v. Analogously, if v is a vertex of degree different from 3 in H1 or H2,
i.e., if v = v0 or v ∈ V (C)−{u0}. It is thus proved that Proposition 5 holds,
hence the assertion follows.

v0 u0

u1 u2 u2i−1 u2i

un un−1

un/2

u1+n/2un−2iun−2i+1

v0 u0

u1 u2 u2i−1 u2i

un un−1

un/2

u1+n/2un−2iun−2i+1

Figure 3: A pair of disjoint even orientations of the graph H3.

As an application of Proposition 6, consider the following example.

Example 1. The Petersen graph, denoted by GP (5, 2), is a class 2 cubic
graph with 15 edges. We denote by V = {ui, vi : 0 ≤ i ≤ 4} the vertex-
set and by E = {[ui, ui+1], [ui, vi], [vi, vi+2] : 0 ≤ i ≤ 4} the edge-set of
GP (5, 2) (the subscripts are taken modulo 5). We denote by H the subgraph
of GP (5, 2) obtained by deleting the edges [ui, ui+1], with 1 ≤ i ≤ 3, of
the cycle C = (u0, u1, . . . , u4, u0). The subgraph K1 of H has a perfect
matching M1 = {[ui, vi] : i = 0, 2, 3} ∪ {[v1, v4]} (see the bold edges in
Figure 7); the subgraph K2 of H is 2-connected and has a perfect matching

12



M1

M2

v0 u0

u1 u2 u2i−1 u2i un/2

u1+n/2un un−1 un−2iun−2i+1

v0 u0

u1 u2 u2i−1 u2i un/2

u1+n/2un un−1 un−2iun−2i+1

−→
H 1,1

−→
H 1,2

Figure 4: The arcs in the even orientations of H1 possessing at least one
vertex in V (C). Note that the edge [u1, un] does not belong to the graph
G, since the connected component of H1 containing un is 2-connected. The
vertex v0 is adjacent to at most one of the vertices u1, un, since each con-
nected component of H1 has an even number of edges. For the same reason,
the cycle C contains no chord. The arcs whose underlying edges belong to
M1 (respectively, to M2) are depicted with a bold line (respectively, with a
dashed line).

v0 u0

u1 u2 u2i−1 u2i un/2

u1+n/2un un−1 un−2iun−2i+1

M
′

1

M
′

2

v0 u0

u1 u2 u2i−1 u2i un/2

u1+n/2un un−1 un−2iun−2i+1

−→
H 2,1

−→
H 2,2

Figure 5: The pair of disjoint even orientations of H2 defined in the proof
of Proposition 6.
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v

v

v

v

M1 and M
′
1

−→
H i,1

−→
H i,2

−→
H j,1

−→
H j,2

{i, j} = {1, 2}

u

u

u

u

Figure 6: The incoming arcs in a vertex v of degree 3 in the subgraphs H1

and H2 of Proposition 6.

M2 = {[u0, u1], [u4, v4], [v0, v2], [v1, v3]} (see the dashed edges in Figure 7).
Following the proof of Proposition 6, we can construct the even orientations
−→
H i,r with i = 1, 2, 3 and r = 1, 2 in Figure 7. Hence the line graph of
GP (5, 2) has an even cycle decomposition of index 3.

Proposition 7. Let G be a cubic graph with an even number of edges pos-
sessing a subgraph consisting of a cycle C = (u0, u1, . . . , un, u0) of odd length
with a pendant edge [u0, v0]. Let H be the subgraph of G obtained by delet-
ing the edges [u0, v0] and [ui, ui+1] with 1 ≤ i ≤ n − 1. Denote by Ki the
subgraph of H induced by the vertices of degree 3 and i, with i = 1, 2.
If every connected component of H has an even number of edges and K1,
K2 have edge-disjoint perfect matchings M1, M2, respectively, then the line
graph L(G) has an even cycle decomposition of index 3.

Proof. We set H1 = H and denote by H2 the subgraph of G obtained by
deleting the edges [u0, u1], [u0, un], by H3 the subgraph of G consisting of
the cycle C with the pendant edge [u0, v0]. The proof is similar to the proof
of Proposition 6 (see also Example 2).

As an application of Proposition 7, consider the flower snark J5.

Example 2. The flower snark J5 is a class 2 cubic graph with 30 edges. We
denote by V = {xi, yi, vi, ui : 0 ≤ i ≤ 4} the vertex-set of J5. The edge-set
of J5 can be defined as follows: the vertices xi, yi, vi, ui induce a star K1,3

with centre vi; the vertices u0, u2, . . . , u4 induce a cycle (u0, u1, . . . , u4, u0)
of length 5; the vertices xi, yi, with 0 ≤ i ≤ 4, induce a cycle (x0,x1,. . . , x4,
y0, y1,. . . , y4, x0) of length 10.

We consider the subgraph of J5 consisting of the cycle C = (u0, u1, . . .,
u4, u0) with the pendant edge [u0, v0]. Following the proof of Proposition 7,
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u0

u1

u2u3

u4 v0

v1

v2v3

v4

u0

u1

u2u3

u4 v0

v1

v2v3

v4

u1

u2u3

u4 v0

v1

v2v3

v4

u1

u2u3

u4 v0

v1

v2v3

v4

u0

u1

u2u3

u4 v0

u0

u1

u2u3

u4 v0

−→
H 1,1

−→
H 1,2

−→
H 2,1

−→
H 2,2

−→
H 3,1

−→
H 3,2

M1 and M
′

1
M2 and M

′

2

Figure 7: An application of Proposition 6 to the Petersen graph GP (5, 2).
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we denote by H1 the subgraph of J5 obtained by deleting the edges [u0, v0],
[ui, ui+1] with 1 ≤ i ≤ 3. By Theorem 2, the graph H1 has an even ori-

entation
−→
H 1,1. Since the subgraph K1 of H1 has a perfect matching M1

(see the bold edges in Figure 8), we can apply Proposition 1 and find an

even orientation
−→
H 1,2 which is disjoint from

−→
H 1,1. Moreover, the arc-sets

D(
−→
H 1,1) and D(

−→
H 1,2) share only the arcs whose underlying edges belong to

M1 (see for instance Figure 8). The subgraph K2 of H1 has a perfect match-
ing M2 which is edge-disjoint from M1 (see the dashed edges in Figure 8).
The matchings M1 and M2 give rise to the matchings M ′

1 = M1 ∪ {[u0, v0]}
and M ′

2 = M2 − [u0, u1] of the subgraph H2 obtained from J5 by deleting

the edges [u0, u1], [u0, u4]. The even orientation
−→
H 1,1 and M ′

2 can be used

to construct an even orientation
−→
H 2,1 of H2 as follows: we leave unchanged

the direction on the arcs of
−→
H 1,1 whose underlying edges belong to M ′

2; we

reverse the direction on the arcs of
−→
H 1,1 whose underlying edges belong to

H2 −M ′
2; we add the arcs (u0, v0), (u4, u3), (u3, u2), (u2, u1). Since M ′

1 is a
perfect matching of the subgraph of H2 induced by the vertices of degree 3

and 1 in H2, we can apply Proposition 1 and find an even orientation
−→
H 2,2 of

H2 which is disjoint form
−→
H 2,1; moreover, the arc-sets D(

−→
H 2,1) and D(

−→
H 2,2)

share only the arcs whose underlying edges belong to M ′
1 (see Figure 9). Fi-

nally, we denote by H3 the subgraph of J5 consisting of the cycle C = (u0,
u1, . . .,u4, u0) with the pendant edge [u0, v0]; H3 has a pair of disjoint even
orientations (see for instance Figure 7). The subgraphs H1, H2, H3 verify
Proposition 5. Hence the line graph of J5 has an even cycle decomposition
of index 3.

There exist graphs with an even number of edges that do not satisfy the
condition in Proposition 7.

Example 3. The Zamfirescu snark [23] is a class 2 cubic graph with 36
vertices and 54 edges. The reader can verify that this snark has no cycle C
satisfying Proposition 7. Nevertheless, it has an even cycle decomposition
of index 3, since it satisfies Proposition 5. More specifically, from Figure 10
one can see that each edge of the Zamfirescu snark is contained in exactly
two of the three subgraphs H1, H2, H3. Each subgraph Hi, i = 1, 2, 3, has a

pair of disjoint even orientations
−→
H i,1,

−→
H i,2, since it satisfies Proposition 1.

A direct inspection of Figure 10 shows that for every v ∈ V (Hi) ∩ V (Hj),

with i, j = 1, 2, 3, i 6= j, the even orientations
−→
H i,r,

−→
H i,s, with r, s = 1, 2,

are disjoint on v.

4 The line graph of a snark.

Does a class 2 cubic graph always satisfy Proposition 5? A direct answer
to this question seems far from obvious, so it is rather natural to test the
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v0

u0

x0y0

u1

u2u3

u4

v1

v2v3

v4

x4

y4

x3

y3 x2

y2

x1

y1

v0

u0

x0y0

u1

u2u3

u4

v1

v2v3

v4

x4

y4

x3

y3 x2

y2

x1

y1

−→
H 1,1

−→
H 1,2

M1 M2

Figure 8: A pair of disjoint even orientations of the subgraph H1 in J5.

v0

u0

x0y0

u1

u2u3

u4

v1

v2v3

v4

x4

y4

x3

y3 x2

y2

x1

y1

v0

u0

x0y0

u1

u2u3

u4

v1

v2v3

v4

x4

y4

x3

y3 x2

y2

x1

y1

−→
H 2,1

−→
H 2,2

M ′

1
M ′

2

Figure 9: A pair of disjoint even orientations of the subgraph H2 in J5.
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M1

H1 H2

M1

H3

Figure 10: The subgraphs H1, H2, H3 of the Zamfirescu snark; in each Hi,
i = 1, 2, 3, the subgraph K induced by the vertices of odd degree has a
perfect matching M1 (bold edges), hence each Hi satisfies Proposition 1.
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situation in some known classes of such graphs. In the previous section we
have already seen three examples for which the answer is affirmative.

To our knowledge, the earliest class 2 cubic graphs that have been dis-
covered are: the Petersen graph [16], the first and second Blanuša snark [2],
the Descartes snark [6] and the Szekeres snark [18]. In [10] Isaacs found
new class 2 cubic graphs: the BDS class, the flower snarks and the double
star. The snarks of Blanuša, Descartes and Szekeres inspired the construc-
tion of the BDS class and are contained in it. The BDS class also contains
other snarks that were constructed by other authors. See for instance the
Celmins-Swart snarks [5] and the Watkins snark [21]. Watkins also generl-
ized the construction of the two Blanuša snarks [22]. Further known families
of class 2 cubic graphs are the two families of snarks found by Loupekine
and described by Isaacs in [11] and the Goldberg snarks [8].

The sufficient conditions in Proposition 6 and 7 are satisfied for the fol-
lowing graphs: the double star, the generalized Blanuša snarks, the flower
snarks, the Goldberg snarks and for the snarks of Szekeres, Descartes,
Celmins-Swart, Watkins, Loupekine LP0 [19]. Hence, the line graphs of
these snarks have an even cycle decomposition of index 3. We checked the
same sufficient conditions on some class 2 cubic graphs on 12, 14, 28 and
30, respectively (they are usually considered to be “trivial” snarks since
their girth is < 5). Some of them do not verify these sufficient conditions,
but verify the necessary and sufficient condition in Proposition 5. There-
fore, also in this case we can find an even cycle decomposition of index 3 in
the corresponding line graph. We give a detailed proof of the existence of
an even cycle decomposition of index 3 for the generalized Blanuša snarks
and for the Goldberg snarks. For the flower snarks, one can generalize the
construction in Example 2. For the remaining cases we prefer to omit the
proof.

The generalized Blanuša snarks are divided into two families: the gener-
alized Blanuša snarks of type 1 and those of type 2. A generalized Blanuša
snark of type 1, denoted by B1

n, is constructed as follows: consider n − 1
copies B1, B2, . . . , Bn−1 of the block B in Figure 11 and exactly one copy of
the graph A1; label the vertices a, a′, b, b′ of each copy Bi by ai, a

′
i, bi, b

′
i,

respectively; construct the edges [a′1, a], [b
′
1, b], [a

′, an−1], [b
′, bn−1], [ai, a

′
i+1

],
[bi, b

′
i+1

] with 1 ≤ i ≤ n− 2. In the construction of a Blanuša snark of type
2, denoted by B2

n, the block A1 is replaced by the block A2. The generalized
Blanuša snarks B1

2 and B2
2 are known as the first Blanuša snark and the sec-

ond Blanuša snark, respectively. A generalized Blanuša snark has 3(4n+1)
edges.

Proposition 8. The line graph of a generalized Blanuša snark has an even
cycle decomposition of index 3.

Proof. The proof is based on Proposition 6. The block B in Figure 11 has
a cycle C = (a, y, x, b, z, a) of length 5 with a pendant edge. We delete the
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edges [a, y], [x, y], [x, b] in the block B1 of each generalized Blanuša snark
and obtain a subgraph H of Bj

n, j = 1, 2. The subgraphs K1 and K2 of H
have a perfect matching M1 and M2, respectively, that can be defined as in
Figure 12 (bold edges belong to M1, dashed edges belong to M2) and are
edge-disjoint. The graph H is connected, the subgraph K2 is 2-connected.
We can apply Proposition 6 and find an even cycle decomposition of index
3 in the corresponding line graph.

a′

b′

b

a

a

b

b′

a′

a

b

b′

a′

B A1 A2

x

y

z

Figure 11: The basic blocks in the construction of the Blanuša snarks.

a

b

b
′

a
′

a

b

b
′

a
′

A1 A2 B1

a
′
1

b
′
1

a1

b1

b
′
i

a
′
i

ai

bi

Bi

M1 M2

2 ≤ i ≤ n− 1

Figure 12: The matchings M1 and M2 in the subgraph H of a generalized
Blanuša snark.

A Goldberg snark Gn is a cubic graph with 12n edges and can be defined
as follows: consider and odd integer n ≥ 5 and n copies B1, B2, . . . , Bn, of
the block B in Figure 13(a); label the vertices a, b, c, d, x, y, z, t of each
copy Bi by ai, bi, ci, di, xi, yi, zi, ti, respectively; add the edges [ai, ai+1],
[ci, bi+1], [yi, xi+1] with 1 ≤ i ≤ n (the subscripts are taken modulo n). We
have the following property.

Proposition 9. The line graph of the Goldberg snark Gn has an even cycle
decomposition of index 3.

Proof. We show that Proposition 7 holds. The block B in Figure 13(a) has
a subgraph given by a cycle C = (x, y, z, d, t, x) of length 5 and the pendant
edge [a, d]. We denote by H the subgraph of Gn obtained by deleting the
edges [a, d], [z, y], [y, x], [x, t] of the block B1. The subgraphs K1 and K2
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of H have a perfect matching M1 and M2, respectively, that are defined as
follows: for n ≥ 5, color the edges of the blocks B1, B2, Bn−2, Bn−1, Bn as
in Figure 13(c); for n > 5 and for every odd index i, 3 ≤ i ≤ n − 4, color
the edges of the blocks Bi, Bi+1 as in Figure 13(b). The matchings M1 and
M2 are edge-disjoint, hence the result follows from Proposition 7.

a
b c

d

x y

z t

B Bi Bi+1

ai ai+1

B2B1 Bn−2 Bn−1 Bn

(a) (b)

(c)

Figure 13: The definition of the matchings M1 and M2 in the subgraph H
of a Goldberg snark.

5 Final remarks.

The existence of a 2-connected 4-regular graph possessing only even cycle
decompositions of index larger than 3 remains an open problem. Futher-
more, in view of the results obtained for 4-regular line graphs, we can add
another related problem, namely, the existence of a 2-connected cubic graph
that does not verify the necessary and sufficient condition in Proposition 5.
The line graph of such a graph would admit only even cycle decompositions
of index larger than 3 or no even cycle decomposition at all. As remarked
in Section 1, our results seem to confirm a conjecture in [15] stating that a
4-regular graph on an odd number of vertices asymptotically almost surely
has an even cycle decomposition of index 3. Moreover, our results hold for
graphs on an even number of vertices as well. In [15], it is also conjectured
that the edge-set of the line graph of a 2-connected cubic graph decomposes
into cycles of even length. Finding a 2-connected cubic graph not fulfilling
Proposition 5 appears thus to be a hard problem.
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As remarked in Section 1, the existence of an even cycle decomposition
of index 3 in a 4-regular graph of class 2 is a particular case of the more gen-
eral problem about the existence of an even cycle decomposition of minimum
index m in a 2d-regular graph of class 2 for which the inequality m ≥ d+ 1
holds. We note that the necessary and sufficient condition in Proposition 5
can be generalized to (2d+1)-regular graphs by taking 3d ≥ 3 subgraphsHi,
1 ≤ i ≤ 3d, verifying the three conditions in Proposition 5. This generaliza-
tion provides an even cycle decomposition of index 3d for the corresponding
4d-regular line graph. Therefore, the minimum value m for the index of an
even cycle decomposition of a 4d-regular line graph satisfies the inequalities
2d+ 1 ≤ m ≤ 3d. For 4-regular graphs of class 2, the minimum value m for
the index of an even cycle decomposition is 3 and Proposition 5 describes
how to find 4-regular graphs possessing an even cycle decomposition whose
index is as small as possible. For 2d-regular graphs of class 2, d > 2, a gener-
alization of Proposition 5 (which would be quite straightforward) would not
yield a description of how to find 2d-regular graphs possessing an even cycle
decomposition whose index is as small as possible. It would only give an
upper bound for the minimum value m in the case of 4d-regular line graphs.
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four, Časopis Pěst. Mat. 82 (1957), 76–92 (in Czech).

[15] K. Markström, Even cycle decompositions of 4-regular graphs and line
graphs, Discrete Math. 312 (2012), 2676–2681.

[16] J. Petersen, Die Theorie der regulären Graphen, Acta Math., Stockholm
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