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ABSTRACT   

Recently, 1-(1,4-dioxaspiro[4,5]dec-2-ylmethyl)-4-(2-methoxyphenyl)piperazine (1) was 

reported as a potent 5-HT1AR agonist with a moderate 5-HT1AR selectivity. In an extension of 

this work a series of derivatives of 1, obtained by combining different heterocyclic rings with a 

more flexible amine chain, was synthesized and tested for binding affinity and activity at 5-

HT1AR and α1 adrenoceptors. The results led to the identification of 14 and 15 as novel 5-HT1AR 

partial agonists, the first being outstanding for selectivity (5-HT1A/ α1d = 80), the latter for 

potency (pD2 = 9.58) and efficacy ( Emax = 74%,). Theoretical studies of ADME properties shows 

a good profile for the entire series and MDCKII-MDR1 cells permeability data predict a good 

BBB permeability of compound 15, which possess a promising neuroprotective activity. 

Furthermore, in mouse formalin test, compound 15 shows a potent antinociceptive activity 

suggesting a new strategy for pain control. 
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Introduction 

Serotonin (5-hydroxytryptamine, 5-HT) is a relevant neurotransmitter both in the central 

nervous system and in periphery. It mediates several physiological effects through at least 14 

receptor subtypes (5-HT1-7: 5-HT1A-F, 5-HT2A-C, 5-HT3, 5-HT4, 5-HT5A, 5-HT6, 5-HT7). With the 

exception of 5-HT3, they belong to the seven-transmembrane-spanning receptor or the G-protein-

coupled receptor (GPCR) family [1,2]. The 5-HT1A receptor (5-HT1AR) was the first subtype to 

be isolated and completely sequenced [3], its pharmacology has been extensively studied and a 

number of selective ligands have been discovered (Figure 1). Nowadays this receptor still 

represents a new attractive target for drug discovery [4]. 5-HT1AR agonists and partial agonists 

have been initially employed for the treatment of anxiety, depression, and psychosis [5-9]. 

Moreover, 5-HT1AR agonists have shown neuroprotective properties indicating their utility for 

the treatment of many neurodegenerative disorders, including Parkinson's disease (PD) and 

ischemic stroke [10-32]. More recently, it has been shown that 5-HT1AR is involved at multiple 

level in the regulation of nociception and 5-HT1AR agonists may represent a new approach in 

pain relief therapy [33-36].  

 

Figure 1. 5-HT1AR selective ligands 

Among the 5-HT1AR ligands, N-1-substituted N-4-arylpiperazines (so-called “long-chain 

arylpiperazines”) have been extensively studied and a generally accepted pharmacophoric model 

for the recognition of the agonist has been drawn (Figure 2, panel a) [4,37]. Recently, our 
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research group reported 1-(1,4-dioxaspiro[4,5]dec-2-ylmethyl)-4-(2-methoxyphenyl)piperazine 

(1) as a potent 5-HT1AR partial agonist (pD2 = 8.61) with a moderate selectivity with respect to 

α1 adrenoceptors (5-HT1A/ α1a = 18) (Figure 2, panel b) [38]. In a more recent paper, docking of 

1 on the newly published 5-HT1AR model was performed and a set of structural analogues, 

substituted at C8 position of the 1,4-dioxa-spiro[4.5]decane moiety was explored [39]. All 

compounds displayed low affinity and activity at 5-HT1AR, indicating that only small 

substituents are allowed, while a higher affinity was observed at α1-adrenoceptors, resulting in a 

significant reversal of selectivity. 

With the aim of improving 5-HT1AR/α1 selectivity as well as potency and efficacy, in this work 

we designed a new set of structural analogues of 1 focusing the attention on both the 1,4-dioxa-

spiro[4.5]decane and arylpiperazine moieties (Figure 2, panel c). As regard the first portion, on 

the basis of previously published data showing that the replacement of one or two ring oxygen 

atoms with sulfur leads to a progressive decrease of alpha1 affinity, the 1-oxa-4-thiaspiro- and 

1,4-dithia-spiro[4.5]decane-analogues were synthetized and tested [38]. In addition, the 

replacement of the piperazine ring with a more flexible basic chain was investigated. By merging 

these two structural modifications, compound 15 emerged as a potent and selective 5-HT1AR 

agonist endowed with neuroprotective activity in-vitro and a potent antinociceptive activity in in-

vivo model. Finally, molecular modelling on the two GPCRs was performed to better understand 

the basis of activity and selectivity.  
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Figure 2. a) Pharmacophoric model of 5-HT1A agonist; b) Chemical structure of compound 1 
(pD2 5-HT1A.= 8.61, 5-HT1A/ α1 = 18); c) Working hypothesis 

 

Results and Discussion 

Synthesis 

The compounds 7-15 were obtained by alkylation of the commercially available 1-(2-

methoxyphenyl)piperazine or substituted 2-phenoxyethanamines with the proper chloro- or 
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tosyl- derivative, under microwave irradiation (Scheme 1). 

 

Scheme 1. Reagents and conditions: a) 3-Chloro-1,2-propanediol, pTsOH, Dean-Stark, 48 h, 
quantitative for 4; b) 3-mercaptopropane-1,2-diol or 2,3-dimercaptopropan-1-ol, HClO4/SiO2, 
r.t., 6 h, 81% for 2, 71% for 3; c) TsCl, Et3N, DCM, 0°C to r.t., 12 h, 82% for 5 or SOCl2, 
toluene, 0 °C to 80 °C, 12 h, 30% for 6; d) 2-phenoxyethanamine or (2-
methoxyphenoxy)ethanamine or (2,6-dimethoxyphenoxy)ethanamine, KI, 2-metoxyethanol, 
MW, 160 °C, 30 min., 51% for 7, 54% for 8, 54% for 9, 25% for 11, 19% for 12, 15% for 14, 
47% for 15; e) 1-(2-methoxyphenyl)piperazine, KI, 2-metoxyethanol, MW, 160 °C, 30 min, 67% 
for 10, 53% for 13. 

. 

 

The phenoxyethanamines were easily prepared by reacting the chloroacetamide with the 

appropriate phenates, followed by reduction of the amides, as previously reported [40]. The 1,3-

dioxolane-, oxathiolane- and dithiolane-scaffolds were readily prepared by acetalization of the 

cyclohexanone with the proper glycerol derivatives. In the case of 3-mercaptopropane-1,2-diol or 
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2,3-dimercaptopropan-1-ol, perchloric acid adsorbed on silica-gel (HClO4-SiO2) was employed 

as a new, highly efficient, inexpensive and reusable catalyst for acetal formation, under solvent-

free conditions. The hydroxylic group was then converted into a better leaving group (tosylate or 

chloride) for the subsequent coupling reaction.  

 

Pharmacology 

The pharmacological profile of the synthetized compounds 7-15, the lead compound 1 and 

BMY-3748, as reference compounds, was evaluated by radioligand binding assays using 

[3H]prazosin to label cloned human α1 adrenoceptors expressed in CHO cells [41], and [3H]8-

OH-DPAT to label cloned human 5-HT1A receptors expressed in HeLa cells [42]. 

Functional characterization of the most active and selective compounds (1, 13-15, and BMY-

7378) at the 5-HT1AR was performed according to methods of Stanton and Beer [43] using 

[35S]GTPγS binding, in cell membranes from HeLa cells transfected with the human cloned 5-

HT1AR. Stimulation of [35S]GTPγS binding was expressed as the percent increase in binding 

above basal value; maximal stimulation observed with serotonin was established as 100%. 

Cytotoxicity assays were carried out against human neuroblastoma cell line SH-SY5Y. Cells 

were cultured at 37 °C in a humidified incubator containing 5% CO2 and feed with DMEM 

(Lonza) nutrient supplemented with 10% heat inactivated FBS, 2 mM L-glutamine, 100 U/mL 

penicillin and 100 µg/mL streptomycin. Cytotoxicity of compounds is expressed as IC50 values, 

the concentrations that cause 50% growth inhibition. The results were determined using the 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide [44]. 

The neuroprotective capacity of the compounds was tested, as reported by Benchekroun et al. 

[45] Briefly, the ability of the compounds to prevent the human neuroblastoma cell line SH-
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SY5Y from death was evaluated by using three toxicity models: 1) H2O2, as a producer of 

exogenous free radicals, 2) oligomycin A, a mitochondrial respiratory chain blocker which 

produces mitochondrial ROS by inhibiting the mitochondrial electron-transport chain complex 

V, and 3) rotenone, showing the same effect of oligomycin A by inhibiting the mitochondrial 

electron-transport chain complex. 

For the assessment of inflammatory pain, mice were subjected to the formalin test. Intraplantar 

administration of formalin (5%, 10 µl) produces a biphasic nocifensive behavioral response (i.e., 

licking or biting the injected hind paw). The acute nociceptive phase lasts for the  first 10 min, 

whereas the second inflammatory phase occurs between 15 and 50 min and reflects the 

development of nociceptive sensitization in the dorsal horns of the spinal cord [46]. 

 

Structure–affinity and structure-activity relations hips 

All synthetized compounds were tested for binding affinity/activity at 5-HT1A and α1 receptors. 

Lead compound 1 and BMY-7378 were used as reference compounds on the basis of structure 

similarities and high affinity/activity for 5-HT1AR and α1 receptors.  

 

Table 1. Affinity constants (pKi)a and selectivitiesb of test and reference compounds for the 
human recombinant α1 adrenoceptor subtypes and the 5-HT1AR. 

 

Compound α1a
 

α1b α1d 5-HT1A α1d/α1a α1d/α1b α1b/α1a 5-HT1A/αααα1 

 

7.04 6.90 <6 8.29 <0.1 <0.1 0.7 18 

 
<6 6.01 6.26 7.43 1.8 1.7 1 15 

 

6.64 6.41 7.02 8.52 2.4 4 0.6 31 
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<6 <6 5.75 <6 0.5 0.5 1 1 

 

7.24 6.72 7.41 8.30 1.5 4.9 0.3 7.8 

 

<6 6.36 6.67 7.64 4.7 2 2.3 9.3 

 

6.57 6.66 7.49 8.65 8.3 6.8 1.2 14.4 

 

6.70 6.39 7.00 8.52 2 4 0.5 33 

 
<6 6.26 6.91 8.81 8 4.5 1.8 79 

 

6.73 6.71 7.46 9.03 5.4 5.6 1 37 

BMY-7378 6.41 6.15 8.89 8.90 295 550 2 1 

a Ki values were derived from the Cheng–Prusoff equation [47] at one or two concentrations and 
agreed within 10%. b Antilog of the difference between the pKi values for α1a, α1b and α1d 

adrenoceptors. c Antilog of the difference between the pKi values for α1 adrenoceptors (higher 
value) and the 5-HT1AR. 

 

As shown in Table 1, the substitution of the 2-metoxy-phenylpiperazine moiety of 1 with the 

more flexible phenoxyethylamine chains, as for compounds 7-9, caused substantial changes in 

binding affinity. In particular, the phenoxy derivative 7 showed a significant decrease in affinity, 

of about one order of magnitude, for both 5-HT1A and α1 receptors, with the exception for the α1D 

subtype, leaving almost unchanged the 5-HT1A/α1 selectivity. The 2-methoxy-phenoxy analogue 

8, showed a 10-fold increased affinity for 5HT1AR, compared to 7, thus restoring the affinity of 

the lead compound 1 and doubling its 5-HT1A/α1 selectivity, as the increase also seen for α1 

subtypes is to a lesser extent. These results indicate the importance of the 2-methoxy group in 

stabilizing the binding process (see molecular modeling section). A similar trend was previously 

observed for the series of the 2,2-diphenyl-1,3-dioxolane derivatives [44]. On the contrary, the 
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introduction of a second methoxy group, as for 9, caused a drastic loss in affinity at both receptor 

systems, indicating that a steric hindrance prevents a good anchoring to the binding site.  

To investigate the effect of the replacement of the ring oxygen atom with a sulfur, 1,3-

oxathiolane derivatives 10-12 were prepared. The binding data showed that at 5HT1AR this 

substitution leaves unchanged the affinity, while it produces some effect on α1 adrenoceptors. A 

significant increases of affinity was observed only for α1D subtype in the 1,3-oxathiolane series 

(10-12) compared to the corresponding 1,3-dioxolanes (1, 7, 8), thus the 5-HT1A/α1 selectivity 

ratio is halved. Again, the 2-methoxyphenoxy derivative 12 showed the highest 5-HT1A affinity 

within this series (12> 10 >> 11). 

Surprisingly, when both oxygens atoms are replaced by sulfur, as for the 1,3-dithiolane 

derivatives 13-15, the affinity at 5-HT1AR increased, while, at α1 subtypes, it is decreased or 

unchanged. The enhancement at 5-HT1AR is remarkable only for 14, whose affinity is 15- and 

24-fold higher than the ones of the corresponding 1,3-oxathiolane 11 and 1,3-dioxolane 7. In this 

case the role of the 2-methoxy group on the phenoxyethylamine chain is less relevant, as the 

variations in affinity, especially at 5-HT1AR, is very limited and scarcely significant. This is 

probably due to an additional interactions of the 1,4-dithia-spiro[4.5]-decane moiety of 14 in 

stabilizing the binding mode of the protein-ligand complex, by several contacts with a deep 

receptor cavity, including V117, K191, Y195, T196, S199, T200, F361, F362, A365 (see 

molecular modeling section). Among all, 14 is outstanding in terms of selectivity with a 5-

HT1A/α1 ratio of 80. These findings support the previously published data and seem to confirm 

that moving from 1,3-dioxolanes or 1,3-oxathiolanes to 1,3-dithiolanes the affinity and/or 

selectivity at/for 5-HT1AR progressively increases [44]. With the exception of compounds 7 and 
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11, the same improvement is observed by replacing the 2-methoxyphenylpiperazine with the 

more flexible 2-metoxy-phenoxethylamine. 

Functional characterization at 5-HT1AR was performed for the most promising compounds 

(13-15). The results are reported in Table 2. In stimulation experiments, compounds 13-15 

increased the binding of [35S]GTPgS with pD2 values of 8.61, 8.27 and 9.58, respectively. The 

Emax values were of 37, 85and 74, defining the three compounds as partial agonists. Notably, the 

most active compound 15 exhibited an improved potency (10-fold ) and efficacy (1.5 fold) 

compared to the lead compound 1, with a pD2 value higher (10-fold) than that of the reference 

full agonist 8-OH-DPAT (pD2= 8.49, Figure 3). 

Table 2. Agonist potency (pD2), relative effectiveness (Emax) in the 
agonist-induced [35S]GTPγS-binding assay at the human 5-HT1A 
receptor. 

Compound pD2 Emax
a 

 

8.61 48 

 

8.61 37 

 
8.27 85 

 

9.58 74 

BMY-7378 9.27 26 

8-OH DPAT 8.49 100 

a Maximal stimulation expressed as a percentage of the maximal 5-HT 
response. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 13

 

 

 

Figure 3: Stimulation of [35S]GTPγS binding in HeLa cells expressing human recombinant 5-
HT1AR by compound 15 and the reference full agonist 8-OH-DPAT. 

 

Prediction of ADMET Properties  

The computational prediction of descriptors related to absorption, distribution, metabolism, 

excretion and toxicity properties (ADMET) represents a useful in silico strategy accelerating the 

lead compound discovery process [48]  

In this work, for compounds 1, 7-15 extent of blood-brain barrier permeation (LogBBB), rate of 

passive diffusion-permeability (Log PS), human intestinal absorption (HIA), volume of 

distribution (Vd), median lethal dose (LD50) related to oral administration and the logarithmic 

ratio of the octanol-water partitioning coefficient (cLogP) were calculated.  

As shown in Table 5, all the compounds are characterized by a favourable profile in terms of 

lipophilicity, being the calculated LogP below 5 (Lipinski rules) and also display the ability to 

fully be adsorbed at the human intestinal membrane. Notably, compounds 1, 10, 13-15 show 
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higher blood-brain barrier permeation with respect to the other compounds, being in any case all 

of them able to pass at the central nervous system. Finally, all the compounds exhibit a 

favourable toxicity profile, being the estimated LD50 in the range of 600-1200 mg/kg for mouse 

after oral administration. 

Table 3. Calculated ADMET properties for compounds 1, 7-15.  

Comp. LogBBBa LogPSb HIA (%) c Vd (l/kg)d LD50 (mg/kg) e cLogP 

1 0.76 -1.2 100 4.1 640 3.24 

7 0.26 -1.6 100 3.3 1200 2.88 

8 0.21 -1.9 100 3 1200 2.52 

9 0.26 -1.9 100 2.8 1200 2.83 

10 0.82 -1.1 100 3.5 680 3.96 

11 0.42 -1.3 100 6 1100 3.80 

12 0.32 -1.6 100 5.6 1000 3.30 

13 0.89 -1.1 100 3.4 600 4.58 

14 0.75 -1.2 100 6.2 890 4.49 

15 0.61 -1.3 100 5.7 870 4.15 

a Extent of brain penetration based on ratio of total drug concentrations in tissue and plasma at 
steady-state conditions;b Rate of brain penetration. PS represents Permeability-Surface area 
product and is derived from the kinetic equation of capillary transport; c HIA represents the 
human intestinal absorption, expressed as percentage of the molecule able to pass trough the 
intestinal membrane; d prediction of Volume of Distribution (Vd) of the compound in the body; e 
Acute toxicity (LD50) for mouse after oral administration (RI ≥ 30) 

 

Neuroprotective capacity of compound 15 

The neuroprotective capacity of 15 was tested for its ability to prevent the human 

neuroblastoma cell line SH-SY5Y from cell death induced by three toxicity models: 1) hydrogen 

peroxide for the generation of exogenous free radicals, 2) oligomycin A, a mitochondrial 
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respiratory chain blocker which produces mitochondrial ROS by inhibiting the mitochondrial 

electron-transport chain complex V, and 3) rotenone, showing the same effect of oligomycin A 

by inhibiting the mitochondrial electron-transport chain complex I [45].  Before the assessment 

of the neuroprotective capacity, the direct cytotoxicity of compound 15 was investigated and cell 

viability after 24 h of exposure was measured by MTT assay across a wide concentration range 

(0.1-100 µM). The IC50 values were 195 ± 1.7, 29 ± 3.4, 74.1 ± 4.5 and 51± 5 µM for H2O2, 

oligomycin A, rotenone and compound 15, respectively. Therefore, in the neuroprotective test, 

compound 15 was used at a concentration of 0.1 and 1 µM. In particular, as reported in Table 3, 

compound 15 showed good neuroprotective effect against the insult caused by oligomycin A and 

H2O2 (only at concentration of 0.1 µΜ) whereas it exhibited a minimum neuroprotection against 

rotenone, at the two tested concentrations.  

 

Table 4. Protective effect of compound 15 on SH-SY5Y cell death induced by 
H2O2 or oligomycin A or rotenone. Data are expressed as percent 
neuroprotection ± SD of three independent experiments. 

Compd [µM] H2O2 (195 µΜ) Oligomycin A(30 µΜ) Rotenone (75 µΜ) 

15 (1 µΜ µΜ µΜ µΜ) 66 ± 4 86 ± 5 66 ± 2 

15 (0.1 µΜ µΜ µΜ µΜ) 83 ± 6 81 ± 4 62 ± 2 

 

Bi-directional transport studies on MDCKII-MDR1 mon olayers  

Many cell-based in-vitro methods have been developed to determine the BBB permeation of 

compounds under investigation. Among them, MDCK-MDR1 cell line represents a well-

established in-vitro method mimicking the BBB [49, 50, 51]. It is well known that MDCKII-

MDR1 cells form tight monolayers and express P-glycoprotein (P-gp), which is specifically 

involved in the efflux transport of drugs from the BBB. In particular, we were interested in 
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assessing whether compound 15 is able to permeate MDCK-MDR1 monolayers and to interact 

with P-gp. Thus, transport studies were conducted both in AP-to-BL and BL-to-AP direction and 

the results are reported in Table 4. Compound 15 showed not significant differences in Papp 

values between AP-to-BL and BL-to-AP direction and the efflux ratio (ER) calculated by the 

equation ER = Papp, BL-AP / Papp, AP-BL was found to be less than 2, indicating that this 

compound is not likely to be considered substrate for P-gp transport. These results suggest that 

15 is able to permeate the monolayer by passive diffusion with permeability values comparable 

to diazepam. The results for the controls were within the expected values. 

 

Table 5. Bi-directional Transport Across MDCKII-MDR1 cells of 
compound 15.  

Compd Papp AP(cm/sec) Papp BL(cm/sec) ERa PappBL/PappAP 

15 1.11*10-5 1.09*10-5 0.98 

diazepam 1.46*10-5 1.23*10-5 0.84 

FD-4 1.03*10-6 2.08*10-7 0.20 
a Efflux ratio (ER) was calculated using the following equation: ER = 
Papp, BL-AP / Papp, AP-BL, where Papp, BL-AP is the apparent 
permeability of basal-to-apical transport, and Papp, AP-BL is the 
apparent permeability of apical-to-basal transport. An efflux ratio 
greater than 2 indicates that a test compound is likely to be a substrate 
for P-gp transport. 

 

Antinociceptive activity 

Compound 15, endowed with high affinity and high agonist potency, was chosen for determining 

potential analgesic activity in-vivo. For the assessment of which, mice were subjected to the 

formalin test. As shown in Figure 4, compound 15 was administered 15 min before formalin at 

the dose of 3, 5 and 10 mg/kg i.p. The dose of 10 mg/kg was able to induce a significant 

analgesic effect in the second phase of formalin test (*p<0.05). Pretreatment with the selective 5-
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HT1AR antagonist WAY-100635 (3 mg/kg i.p.), 30 min before of compound 15 (10 mg/kg i.p.), 

prevented its analgesic effect (#p <0.05). WAY-100635 (3 mg/kg i.p.), per se at least at the used 

dose, did not modify the licking response after formalin injection (Figure 5). 

 

 

Figure 4. Effect of intraperitoneal (i.p.) injection of 15 (3, 5 or 10 mg/kg) on the first (0-10 min) 
and second (10-60 min) phase of the formalin test. Test compound or vehicle were injected 15 
min prior to the intraplantar injection of formalin. Data are means + S.E.M. of 8-10 mice per 
group. *p <0.05 vs. the respective groups of mice injected with vehicle. 
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Figure 5 Effect of WAY-100635 (3 mg/kg i.p.) on analgesia induced by 15 (10 mg/kg i.p.) 
during the first (0-10 min) and second (10-60 min) phase of the formalin test. Test compound or 
vehicle were injected 15 min prior to the intraplantar injection of formalin. WAY-100635 was 
injected 30 min prior to 15 or vehicle. Data are means + S.E.M. of 8-10 mice per group. *p <0.05 
vs. the respective groups of mice injected with vehicle. #p <0.05 vs mice treated with 15 (10 
mg/kg i.p.). 

 

Molecular Modeling 

Molecular modelling studies have been undertaken in order to better elucidate the affinity and 

selectivity profiles of the newly synthesized analogues of compound 1. To gain a perspective of 

the most relevant patterns of key contacts involved in the ligand binding mode, we performed 

our work based on 5-HT1AR and α1DR homology models. In the first case, we relied on the 

previously built 5-HT1AR theoretical model employed in docking studies of several in-house 

series of 5-HT1A ligands [39,52,53]  

For the human α1d receptor, a specific model has been built and is here discussed, focusing our 

attention on α1DR subtype, because of the high affinity values shown by all compounds. 
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α1D Homology Modeling 

The 3D structure of the human α1d receptor has been generated following the ligand-based 

homology modeling strategy proposed by Moro [54]. This computational option is very useful to 

build an homology model in the presence of a ligand docked into the primary template and has 

been widely and fruitfully used to build GPCR so as enzyme models [55,56,57]. In this case we 

selected a structurally-related analogue of compound 1 (compound A, as shown in Figure 6), 

exhibiting high degree of affinity and selectivity toward the alpha1D receptor (pKi alpha1D = 9.09, 

alpha1D/5-HT1A = 28) [38].  

 

Figure 6. Structure of compound A 

 

Accordingly, A was docked into the β2-adrenoreceptor X-ray coordinates (pdb: 2RH1) and 

employed in the building and refinement of the derived alpha1D model. This kind of approach 

allowed us to set up a much more suitable receptor model, to be used for efficiently exploring the 

putative binding mode of analogues 7-15. The sequence alignment of the alpha1D receptor 

(P25100) with respect to the human β2-adrenoreceptor (pdb: 2RH1) coordinates is shown in 

Figure 7. The reliability of the alignment was verified by the high value of the pairwise 

percentage residue identity (PPRI = 42%). Accordingly, a consistent number of α1D residues 

resulted to be conserved in comparison with those of the β2-adrenoreceptor TM helices: (i) V97, 

pKi α1d = 9.09
pKi 5-HT1A= 7.64
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G98, L108, V111, G113, N114, L116, V117, I118, A122 in TM1, (ii ) V130, T131, N132, Y133, 

F134, I135, L138, A139, A141, D142, L143, V149, P151, F152, A154 in TM2, (iii ) G165, 

C168, W172, D176, V177, L178, C179, T181, A182, S183, F184, L187, C188, I190, V192, 

D193, R194, Y195 in TM3 (the DRY motif; 193-195 residues), (iv) K212, A213, I216, W221, 

V223, S228 P231 in TM4, (v) Y254, A255, S258, S259, S262, F263, Y264, P226, V269, I270, 

V272, Y274, R276, V277 in TM5, (vi) E343, K345, A346, K348, T349, L350, I352, G355, 

F357, L359, C360, W361, P363, F364, F365, V367 in TM6 (CWXP motif; 360-363 residues); 

(vii) E381, V383, W389, G391, Y392, N394, S395, N398, P399, L400, I401, Y402, C404 in 

TM7 (NPXIY motif; 398-402 residues).  

 

Figure 7. Sequence alignment of the alpha1D  on the human β2-adrenoreceptor (pdb: 2RH1) 
coordinates. Any conserved region is displayed by grey histograms. All the residues included in 
α-helix and loop domains are highlighted in light yellow and pink, respectively. 
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The derived backbone conformation was inspected by Ramachandran plot (showing absence of 

outliers) and superimposed to the coordinates of the template structure (RMSD = 0.747 Å; 

Figure 8). See Materials and Methods Section for further computational details.  

 

 

Figure 8. The superimposition of the final α1D model (backbone in cyan) on the human β2-
adrenoreceptor 2RH1 coordinates (backbone in khaki) is depicted. Ligand A structure is also 
depicted in stick (C atom: light green) 

 

Molecular docking of compound A 

In a second computational step, ligand A was docked into the two in-house GPCRs models in 

order to examine and compare the corresponding binding modes at the alpha1d and 5-HT1A 

receptors. According to our calculation, A (the R enantiomer proved to be the most probable) 
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was highly stabilized into the α1D binding site through a salt-bridge interaction between the 

piperazine protonated nitrogen atom and the conserved D176, and by two H-bonds between: (i) 

one oxygen atom of the 1,3-dioxolane core and Y254 side-chain; (ii ) the methoxy group and 

K385 ε-amino group. Furthermore, the 2-methoxyphenyl ring and the diphenyl substituents were 

also engaged in π-π stacking with W172, F388 and Y254, F364 and F365, respectively (Figure 

9).  

 

Figure 9. The ligand A docking pose into the final α1D binding site is reported. The ligand is 
coloured by atom-type (C atom: yellow). Salt-bridge and H-bond contacts are displayed by line 
and coloured in red and light blue, respectively. 

 

Differently, at 5HT1AR, ligand A (the R enantiomer proved to be the most probable; pKi 5-

HT1A = 7.64) displayed a salt-bridge between the piperazine protonated nitrogen atom and the 
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key residue D116, while only one H-bond was detected between the oxygen atom of the 

dioxolane ring and Y390. The lack of an additional H-bond interaction of the methoxy group into 

the 5HT1A binding site turned around the docking pose of A with respect to alpha1D adrenoceptor. 

In this case, the methoxyphenyl ring and the diphenyl portion were oriented towards Y195, F362 

and Y96, F112, Y390 respectively, determining π-π stacking interactions (Figure 10).  

 

Figure 10. The ligand A docking pose into the 5HT1A binding site is reported. The ligand is 
coloured by atom-type (C atom: khaki). Salt-bridge and H-bond contacts are displayed by line 
and coloured in red and light green, respectively. 
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However, this orientation was detrimental for the binding with the 5-HT1AR, as confirmed by 

the biological data showing a lower affinity at 5-HT1A (pKi = 7.64) with respect to α1D (pKi = 

9.09) (Figure 6). 

Notably, these results highlighted a number of amino acids interacting with the ligands which 

are conserved within 5-HT1AR and α1D, in particular a key aspartic acid residue, showing that the 

two protein binding sites share a quite common hydrophobic/hydrophilic trend. In particular, the 

amino acids contributing to the ligand binding were classified by us into two sets:  

• a first set consisting of specific residues present in both receptors and implicated in 

strong interactions. For example the acidic D176 in α1DR or D116 in 5-HT1AR, which 

represents the common anchoring points through the formation of a salt-bridge 

interaction plus some polar residues like Y254 for α1DR and Y195 for 5-HT1AR, which 

further stabilize the ligand binding through an H-bond interaction; 

• a second set referring to specific amino acids present only in 5-HT1AR or α1DR, 

allowing the formation  of H-bonds responsible of the ligand specificity towards the 

receptor. For example K385 in α1DR and N386 in 5-HT1AR seem to be fundamental in 

conferring specificity. Thus, any focused H-bond with K385 or N386 residue, might 

allow the discovery of more selective ligands towards α1D or 5-HT1AR, respectively. 

 

5-HT1AR Docking-studies 

In our previous works we deeply investigated through docking studies 1,3-dioxolane-, 1,3-

oxathiolane-, 1,3-dithiolane-, spiro-dioxolane-tetrahydrofuran-, cyclopentanone- and 

cyclopentanol-based derivatives as 5-HT1A ligands, whose affinity profile proved to be due to the 

presence of a proper basic feature interacting with the aspartic acid D116. Moreover, agonists 
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and antagonists could also exhibit additional contacts with N386 and Y390, and with K191, 

respectively [52,53]. 

Notably, a number of following docking studies reported in literature described a unique 

receptor cavity involved in the 5-HT1A full agonists, partial agonists and antagonists binding [58-

60], giving a further validation to our previous computational findings. Indeed, H-bond 

interactions between agonists and D116 and N386 were reported in literature, falling in a crevice 

delimited by F112, I113, D116, K191, while partial agonists as well as antagonists were H-

bonded at least with D116. 

Docking studies on compounds 7-15 here performed within the previously built 5-HT1AR 

homology model [39,52,53] allowed us to further explore their structure-activity relationships 

(SAR) and to gain more insight about the pattern of substitutions involved in their affinity. 

According to our calculations, the 1,4-dioxaspirodecane derivatives 7 and 8 shared the same 

docking mode of the previously described compound 1 [39]. Indeed, both compounds (the R 

enantiomers proved to be the most probable; pKi 5-HT1A = 7.43, 8.53), were properly stabilized 

into the 5-HT1A binding site through the key salt-bridge between the protonated nitrogen atom 

and D116. Moreover, one H-bond interaction between the secondary amine and Y390 side chain 

was detected, as for 1, while the 1,4-dioxaspirodecane moiety occupied a hydrophobic cavity 

delimited by A93, Y96, Q97, F112, A383, I384 and Y390. Notably, unlike 1, compound 8 was 

able to establish an additional H-bond between the 2-methoxy oxygen atom and Y195 (Figure 

11).  
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Figure 11 . The 8 docking pose into the 5HT1A binding site is reported. The ligand is coloured 
by atom-type (C atom: magenta). Salt-bridge and H-bond contacts are displayed by line and 
coloured in red and light green, respectively. 

 

This kind of positioning could be due to the presence of a flexible linker, as observed within all 

the members of the series (dioxa-, oxathia- dithiaspiro-decane derivatives), being in agreement 

with the higher affinity values of 8, 12 and 15 with respect to 1, 10 and 13. Conversely, 

compound 9, bearing a slightly bulkier amine chain, was unable to occupy the ligand binding 

site.  

Interestingly, the members of the oxathia- (10, and 11, 12 the S and the R enantiomers proved 

to be the most probable) and dithiaspiro-decane series (13, and 14, 15 the S and the R 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 27

enantiomers proved to be the most probable) displayed a switched ligand binding mode, 

maintaining in any case a salt-bridge with D116, while the methoxy-analogues (10, 12 and 13, 

15) also exhibited H-bonds with Y390 (in Figure 12 the docking mode of 12 and 15, taken as 

reference compounds for the two series, are depicted).  

 

Figure 12. The compound 12 and 15 docking poses into the 5HT1A binding site are reported. The 
ligands are coloured by atom-type (12 C atom: cyan; 15 C atom: purple). Salt-bridge and H-bond 
contacts are displayed by line and coloured in red and light green, respectively. 

 

The replacement of the dioxaspiro-decane of the prototype 1 with the much more bulkier 

oxathia- and dithiaspiro-decane moved the ligand cyclohexyl ring towards a deeper cavity 

including residues V117, K191, Y195, T196, S199, T200, W358, F362, A365, partially 

constraining the phenoxyethylamine chain flexibility. Consequentially, the dithiaspiro decane 
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derivatives 14 and 15 resulted highly stabilized into the 5-HT1AR binding site also by H-bonds 

with N386, which proved to be a key residue for 5-HT1AR agonism and selectivity. Accordingly, 

among all the compounds studied in this work, 14 and 15 showed the highest 5HT1A/α1D 

selectivity ratio (79 and 37, respectively).  

 

α1DR docking-studies  

In order to rationalize the low affinity values observed at α1DR, the compounds were docked 

into the corresponding homology model. Briefly, all the ligands displayed a salt-bridge 

interaction between the protonated nitrogen atom and D176 anchoring residue. Moreover, when 

a methoxy group is present, as for compounds 8, 10, 12, 13 and 15, an H-bond interaction with 

Y254 side-chain is detected (in Figure 13 the docking mode of 12 and 15 are depicted).  
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Figure 13. The compound 12 and 15 docking pose into the final α1D binding site are reported. 
The ligand is coloured by atom-type (12 C atom: light purple; 15 C atom: light green). Salt-
bridge and H-bond contacts are displayed by line and coloured in red and light blue, respectively. 

Again, as reported for 5-HT1AR, the introduction of a flexible linker between the spiro-cyclic 

portion and the phenyl ring allow ligands to better occupy the receptor binding site. Thus, 

compounds which combine these two features displayed the higher affinity values of the series 

(8, 12 and 15). However, a drastic drop of α1 affinity is observed (pKiα1D <7.5 ) compared to the 

reference ligand A (pKiα1D = 9.09). According to our results, this is probably related to the 

introduction of the spiro-decane moiety in place of the diphenyl-substituted ring. In particular, all 

these compounds oriented the spiro-cyclic portion towards a deep hydrophobic cavity including 

M156, W172, C246, F384, K385, F388, by detecting Van der Waals contacts. Thus, the phenyl 

or 2-methoxyphenyl group of the amine chain partially occupies the receptor region delimited by 

V177,Y254, F364, F365, L368. On this basis, the absence of an aromatic substituent on the 

spiro-cyclic moiety could cause a reversed ligand binding mode with respect to A, guiding the 

phenyl or methoxy-phenyl group towards Y254, F364, F365 residues. In this way, although a 

number of π-π stacking contacts were conserved, as for A, the relevant H-bond interaction with 

K385 is lost, resulting in lower affinity values. 

 

Conclusion 

In the present work a series of derivatives of 1 were synthesized and tested for binding affinity 

and activity at 5-HT1AR and α1 adrenoceptors and SAR studies were drawn (Figure 14). In 

particular we observed that: 

• isosteric substitution of the ring oxygen atoms with sulphur favours 5-HT1AR affinity, 

potency and efficacy especially in the presence of a more flexible amine chain; 
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• compounds 14 and 15 emerged as novel 5-HT1AR partial agonists, the first being 

outstanding for selectivity (5-HT1A/ α1d = 80), the latter for potency (pD2 = 9.58) and 

efficacy ( Emax = 74%). Compared to the lead compound 1, 15 exhibited a 10-fold 

improved potency and about 50% enhanced efficacy.  

• compound 15 demonstrated to permeate the BBB by passive diffusion and showed a 

promising neuroprotective activity in vitro. 

• In formalin test compound 15 reduces significatively the linking time in Phase II at a 

dose of  10mg/Kg i.p. indicating a potent analgesic activity and suggesting an additional 

and new strategy for pain control. 

 

 

Figure 14. SAR milestones of compound 1 
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Experimental Section  

Materials and methods 

All reagents, solvents and other chemicals were used as purchased from Sigma-Aldrich 

without further purification unless otherwise specified. Air- or moisture-sensitive reactants and 

solvents were employed in reactions carried out under nitrogen atmosphere unless otherwise 

noted. Flash column chromatography purifications (medium pressure liquid chromatography) 

were carried out using Merck silica gel 60 (230-400 mesh, ASTM). The purity of compounds 

was determined by elemental analysis (C,H,N) on a Carlo Erba 1106 Analyzer in the 

Microanalysis Laboratory of the Life Sciences Department of Università degli Studi di Modena e 

Reggio Emilia and the results are within ±0.4% of the theoretical values. Melting points were 

determined with a Stuart SMP3 in open capillaries and they are uncorrected. The structures of all 

isolated compounds were confirmed by Nuclear magnetic resonance (NMR) and Mass 

spectrometry. 1H and 13C NMR (1D and 2D experiments) spectra were recorded on a DPX-

200/400 Avance (Bruker) spectrometer at 200 MHz and 400 MHz respectively and on AVANCE 

III (Bruker Biospin) at 600 MHz. Chemical shifts are expressed in δ (ppm). 1H NMR chemical 

shifts are relative to tetramethylsilane (TMS) as internal standard. 13C NMR chemical shifts are 

relative to TMS at δ 0.0 or to the 13C signal of the solvent: CDCl3 δ 77.04, CD3OD δ 49.8, 

DMSO-d6 δ 39.5. NMR data are reported as follows: chemical shift, number of protons/carbons, 

multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broadened), coupling 

constants (Hz) and assignment (Dosd= 1,4-dioxaspiro[4.5]decane; Ph= phenyl; Otsd= 1-oxa-4-

thiaspiro[4.5]decane, Ts= tosyl; Arom= aromatic; Piperaz= piperazine; Dtsd= 1,4-

dithiaspiro[4.5]decane). 1H-1H correlation spectroscopy (COSY), 1H-13C heteronuclear multiple 

quantum coherence (HMQC) and heteronuclear multiple bond connectivity (HMBC) 
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experiments were recorded for determination of 1H-1H and 1H-13C correlations respectively. 

Mass spectra were obtained on a hybrid QTOF mass spectrometer (PE SCIEX-QSTAR) using 

electrospray ionization mode (HR-ESI-MS, ion voltage of 4800 V). The HPLC experimental 

conditions of the HPLC-MS system are: flow rate 5 ml/min, sample solution (10 pmol/ml) of the 

selected compound with 0.1% acetic acid, mobile phase consisting of methanol (50%) and water 

(50%). The yields reported are based on a single experiment and are not optimized. The oxalate 

salts of all tested compounds were used for the pharmacological evaluations.  

The compounds 4 and 7 were obtained as previously reported [40].  

 

1-oxa-4-thiaspiro[4.5]decan-2-ylmethanol (2)  

A round-bottom flask was charged with cyclohexanone (2 g, 20.0 mmol), 3-mercaptopropane-

1,2-diol (2.60 g, 24.0 mmol) and (0,5 mmol/g) HClO4/SiO2 (0.4 g). The reaction mixture was 

stirred at room temperature, under nitrogen, for 6 hours. Then the reaction mixture was diluited 

with EtOAc and than filtered and evaporated under reduced pressure. Purification by flash 

chromatography (85/15 Cy/EtAc) afforded the title compound as brown oil [47]. 

Yield 3.05 g (16.0 mmol, 81%). 1H NMR (400 MHz, CDCl3): δ 1.18-1.33 (m, 1H, CHa-8 Otsd), 

1.36-1.57 (m, 3H, CHb-8, CHa-7, CHa-9 Otsd), 1.65-1.99 (m, 6H, CHb-7, CHb-9, CH2-6, CH2-

10 Otsd), 2.92 (dd, J= 9.1, 10.3 Hz, 1H, CHa-3 Otsd ), 2.98 (dd, J= 5.4, 10.3 Hz, 1H, CHb-3 

Otsd), 3.68 (dd, J= 5.3, 11.6 Hz, 1H, CHaOH), 3.81 (dd, J= 3.5, 11.6 Hz, 1H, CHbOH), 4.28-

4.39 (m, 1H, CH-2 Otsd). 13C NMR (100 MHz, CDCl3): δ 23.9 (CH2, C-8 Otsd), 24.7 (CH2, C-

7/C-9 Otsd), 25.0 (CH2, C-7/C-9 Otsd), 33.1 (CH2, C-3 Otsd), 39.7 (CH2, C-6/C-10 Otsd), 40.1 

(CH2, C-6/C-10 Otsd), 63.3 (CH2, CH2OH), 81.3 (CH, C-2 Otsd), 96.4 (C, C-5 Otsd). 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 33

1,4-dithiaspiro[4.5]decan-2-ylmethanol (3)  

The title compound [47] was obtained from cyclohexanone and 2,3-dimercaptopropan-1-ol 

following the procedure described for 2. 

Yield 2.90 g (14.0 mmol, 71%). 1H NMR (400 MHz, CDCl3) δ 1.22-1.39 (m, 2H, CH2-8 Dtsd), 

1.33-1.79 (m, 4H, CH2-7, CH2-9 Dtsd), 1.81-2.14 (m, 4H, CH2-6, CH2-10 Dtsd), 3.26-3.41 (m, 

2H, CH2-3 Dtsd), 3.62 (dd, J= 5.1, 11.7 Hz, 1H, CHaOH), 3.77 (dd, J= 3.6, 11.7 Hz, 1H, 

CHbOH), 3.84-3.96 (m, 1H, CH-2 Dtsd). 13C NMR (100 MHz, CDCl3): δ 22.6 (CH2, C-8 Dtsd), 

25.3 (CH2, C-7/C-9 Dtsd), 25.9 (CH2, C-7/C-9 Dtsd), 35.3 (CH2, C-3 Dtsd), 37.2 (CH2, C-6/C-10 

Dtsd), 37.6 (CH2, C-6/C-10 Dtsd), 52.3 (CH, C-2 Dtsd), 58.6 (C, C-5 Dtsd), 61.9 (CH2, CH2OH). 

 

1-oxa-4-thiaspiro[4.5]decan-2-ylmethyl 4-methylbenzenesulfonate (5) 

To a solution of 2 (1.5 g, 7.98 mmol) and Et3N (1.11 ml, 7.98 mmol) in CH2Cl2 (10 mL) tosyl 

chloride (2.43 g, 18.0 mmol) was added at 0°C. The resulting mixture was stirred at room 

temperature, under nitrogen for 6 h and then the solvent was evaporated. The residue was taken 

up with EtOAc and washed with saturated solution sodium bicarbonate and brine. The organic 

layer was dried over anhydrous sodium sulfate, filtered and concentrated in vacuum. Purification 

by flash chromatography (gradient from 99/1 to 70/30 Cy/EtAc) afforded the title compound as 

yellow oil. 

Yield 2.25 g, (6.57 mmol, 82%). 1H NMR (400 MHz, CDCl3): δ 1.22-1.36 (m, 1H, CHa-8 Otsd), 

1.36-1.57 (m, 3H, CHb-8, CHa-7, CHa-9 Otsd), 1.63-1.94 (m, 6H,CHb-7, CHb-9, CH2-6, CH2-

10 Otsd), 2.49 (s, 3H, CH3 Ts) 2.83 (dd, J= 8.0, 10.7 Hz, 1H,CHa-3 Otsd ), 3.09 (dd, J= 5.3, 10.7 

Hz, 1H, CHb-3 Otsd), 4.09-4.22 (m, 2H, CH2OH), 4.39-4.51 (m, 1H, CH-2 Otsd), 7.39 (d, J= 8.1 

Hz, 2H, CH-3, CH-5 Ts), 7.84 (d, J= 8.1 Hz, 2H, CH-2, CH-6 Ts). 13C NMR (100 MHz, CDCl3): 
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δ 21.4 (CH3, CH3 Ts), 24.0 (CH2, C-8 Otsd), 24.7 (CH2, C-7/C-9 Otsd), 25.0 (CH2, C-7/C-9 

Otsd), 33.9 (CH2, C-3 Otsd), 39.7 (CH2, C-6/C-10 Otsd), 40.1 (CH2, C-6/C-10 Otsd), 69.6 (CH2, 

CH2OH), 78.0 (CH, C-2 Otsd), 96.9 (C, C-5 Otsd), 127.7 (2 CH, C-2, C-6 Ts), 129.6 (2 CH, C-3, 

C-5 Ts), 132.5 (C, C-1 Ts), 147.7 (C, C-4 Ts). HRMS-APCI m/z [M+H]+ calcd for C16H23O4S2
+: 

343.1032; found 343.1032. 

 

2-(chloromethyl)-1,4-dithiaspiro[4.5]decane (6) 

To a solution of 3 (2.9 g, 14.2 mmol), in toluene (15 mL) thionyl chloride (1.35 mL, 18.5 mmol) 

was added at 0°C. The resulting mixture was stirred at 80 °C for 12 h and then the solvent was 

evaporated. The residue solubilized in EtOAc was washed with saturated solution of sodium 

bicarbonate and brine. The organic phase was dried over anhydrous sodium sulfate, filtered and 

evaporated. Purification by flash chromatography (99/1 Cy/EtAc) afforded the title compound as 

dark oil.  

Yield 0.93 g (4.19 mmol, 30%). 1H NMR (400 MHz, CDCl3): δ 1.31-1.52 (m, 2H, CH2-8 Dtsd), 

1.57-1.84 (m, 4H, CH2-7, CH2-9 Dtsd), 1.94-2.07 (m, 4H, CH2-6, CH2-10 Dtsd), 3.39 (dd, J= 

4.6, 12.5 Hz, 1H, CHa-3 Dtsd), 3.47 (dd, J= 2.6, 12.5 Hz, 1H, CHb-3 Dtsd), 3.54 (dd, J= 3.7, 

10.3 Hz, 1H, CHaCl), 3.84 (dd, J= 10.3, 10.9 Hz, 1H, CHbCl), 3.88-3.97 (m, 1H, CH-2 Dtsd). 

13C NMR (100 MHz, CDCl3): δ 24.6 (CH2, C-8 Dtsd), 25.2 (CH2, C-7/C-9 Dtsd), 26.5 (CH2, C-

7/C-9 Dtsd), 38.9 (CH2, C-3 Dtsd), 42.0 (CH2, C-6/C-10 Dtsd), 43.0 (CH2, C-6/C-10 Dtsd), 45.1 

(CH2, CH2Cl), 55.0 (CH, C-2 Dtsd), 69.1 (C, C-5 Dtsd). HRMS-APCI m/z [M+H]+ calcd for 

C9H16ClS2
+: 223,0376; found 223,0378. 
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General procedure for the synthesis of the ammines 8-15. 

A 10 mL microwave vial was charged with 4 or 5 or 6 (1.0 mmol), a small excess (1.2 mmol) of 

2-phenoxy- or (2-methoxyphenoxy)- or (2,6-dimethoxyphenoxy)-ethanamine and a catalitic 

amount of potassium iodide in 1 mL of 2-methoxyethanol. The reaction was stirred under 

microwave irradiation at 160 °C (pressure 100 PSI, power 50 W) for 30 min. Then the solvent 

was evaporated under reduced pressure. The residue was taken up with EtOAc, basified with 5% 

NaOH. The organic layer was dried over anhydrous sodium sulfate, filtered and evaporated 

under reduced pressure. The residue was purified by flash column chromatography. 

 

N-(1,4-dioxaspiro[4.5]decan-2-ylmethyl)-2-(2-methoxyphenoxy)ethanamine (8) 

The title compound was purified by flash chromatography on silica gel cartridge (80/20/5 

Cy/EtAc/MeOH + 2 NH4OH) to afford 0.111 g (0.34 mmol, 54%) of 8 as yellow oil. 

1H NMR (400 MHz, CDCl3): δ 1.31-1.52 (m, 2H, CH2-8 Dosd), 1.49-1.79 (m, 8H, CH2-7, CH2-

9, CH2-6, CH2-10 Dosd), 2.66-2.95 (m, 2H, CH2N), 3.07 (t, J= 5.5 Hz, 2H, CH2CH2O), 3.69 (dd, 

J= 7.4, 7.9 Hz, 1H, CHa-3 Dosd), 3.86 (s, 3H, OCH3), 4.01-4.19 (m, 3H, CHb-3 Dosd, CH2O), 

4.19-4.36 (m, 1H, CH-2 Dosd), 6.73-7.08 (m, 4H, CH-3, CH-4, CH-5, CH-6 Ph). 13C NMR (100 

MHz, CDCl3): δ 23.6 (CH2, C-8 Dosd), 24.1 (CH2, C-7/C-9 Dosd), 25.2 (CH2, C-7/C-9 Dosd), 

34.3 (CH2, C-6/C-10 Dosd), 36.4 (CH2, C-6/C-10 Dosd), 48.1 (CH2, CH2CH2O), 51.7 (CH2, 

CHCH2N), 67.0 (CH2, C-3 Dosd), 73.0 (CH2, CH2O), 74.6 (CH, C-2 Dosd), 109.5 (C, C-5 

Dosd), 111.9 (CH, C-3 Ph), 114.4 (CH, C-5 Ph), 120.6 (CH, C-6 Ph), 121.7 (CH, C-4 Ph), 148.1 

(C, C-1 Ph), 149.7 (C, C-2 Ph). 

The free amine (0.100 g, 0.31 mmol) was dissolved in Et2O and treated with 1.2 eq. of oxalic 

acid to give 0.083 g (0.20 mmol, 64% yield) of the corresponding oxalate salt. 
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Mp: 201-203°C. 1H NMR (600 MHz, DMSO-d6): δ 1.25-1.44 (m, 2H, CH2-8), 1.45-1.68 (m, 8H, 

CH2-7, CH2-9 CH2-6, CH2-10 Dosd), 3,13 (dd, J= 2.8, 4.2 Hz, 1H, CHCHaN) 3.18-3.29 (m, 3H, 

CHCHbN, CH2CH2O), 3.74 (dd, J= 1.8, 2.8 Hz, 1H, CHa-3 Dosd), 3.80 (s, 3H, OCH3), 4.05-

4.14 (m, 3H, CH2O, CHb-3 Dosd), 4.37-4.44 (m, 1H, CH-2 Dosd), 6.87-7.05 (m, 4H, CH-3, CH-

4, CH-5, CH-6 Ph). HRMS-ESI m/z [M+H]+ calcd for C18H28NO4
+: 322.2013; found 322.2016. 

Anal. calcd for C20H29NO8: C 58.38, H 7.10, N 3.40; found: C 58.62, H 7.27, N 3.49.  

 

N-(1,4-dioxaspiro[4.5]decan-2-ylmethyl)-2-(2,6-dimethoxyphenoxy)ethanamine (9) 

The title compound was purified by flash column chromatography on silica gel (gradient from 

30/70 to 100 Cy/EtAc) to afford 0.165 g (0.47 mmol, 54%) of 9 as oil. 

1H NMR (400 MHz, CDCl3): δ 1.34-1.50 (m, 2H, CH2-8 Dosd), 1.52-1.82 (m, 8H, CH2-7, CH2-

9, CH2-6, CH2-10 Dosd), 2.91 (d, J= 5.9 Hz, 2H, CHCH2N), 3.02 (t, J= 5.4 Hz, 2H, CH2CH2O), 

3.74 (dd, J= 6.3, 8.1 Hz, CHa-3 Dosd), 3.90 (s, 6H, 2 x OCH3), 4.06-4.19 (m, 3H, CHb-3 Dosd, 

CH2O), 4.35-4.47 (m, 1H, CH-2 Dosd), 6.61 (d, J= 7.4 Hz, 2H, CH-3, CH-5 Ph), 7.04 (t, J= 7.4 

Hz, CH-4 Ph). 13C NMR (100 MHz, CDCl3): δ = 23.5 (CH2, C-8 Dosd), 23.7 (CH2, C-7/C-9 

Dosd), 24.9 (CH2, C-7/C-9 Dosd), 34.7 (CH2, C-6/C-10 Dosd), 36.4 (CH2, C-6/C-10 Dosd), 49.3 

(CH2, CH2CH2O), 52.1 (CH2, CHCH2N), 55.8 (2 CH3, OCH3), 67.0 (CH2, C-3 Dosd), 71.4 (CH2, 

CH2O), 74.3 (CH, C-2 Dosd), 104.9 (2 CH, C-3, C-5 Ph), 109.7 (C, C-5 Dosd), 123.7 (CH, C-4 

Ph), 136.3 (C, C-1 Ph), 153.3 (2 C, C-2, C-6 Ph). 

The free amine (0.150 g, 0.42 mmol) was dissolved in Et2O and treated with 1.2 eq. of oxalic 

acid to give 0.108 g (0.24 mmol, 58% yield) of the corresponding oxalate salt. 

Mp: 182-184°C. 1H NMR (600 MHz, DMSO-d6): δ 1.29-1.42 (m, 2H, CH2-8), 1.47-1.63 (m, 8H, 

CH2-7, CH2-9 CH2-6, CH2-10 Dosd), 3,10 (dd, J= 2.9, 4.3 Hz, 1H, CHCHaN) 3.20-3.30 (m, 3H, 
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CHCHbN, CH2CH2O), 3.74 (dd, J= 1.9, 2.9 Hz, 1H, CHa-3 Dosd), 3.79 (s, 6H, OCH3), 4.06-

4.13 (m, 3H, CH2O, CHb-3 Dosd), 4.41 (m, 1H, CH-2 Dosd), 6.71 (d, 2H, J= 8.5 Hz, CH-3, CH-

5 Ph), 7.06 (t, J= 8.3 Hz, 1H, CH-4Ph). HRMS-ESI m/z [M+H]+ calcd for C19H30NO5
+: 

352.2118; found 352.2126. Anal. calcd for C21H31NO9: C 57.13, H 7.08, N 3.17; found: C 57.42, 

H 7.31, N 3.44. 

 

1-(1-oxa-4-thiaspiro[4.5]decan-2-ylmethyl)-4-(2-methoxyphenyl)piperazine (10) 

The title compound was purified by flash chromatography on silica gel cartridge (80/20 

Cy/EtAc) to afford 0.178 g (0.49 mmol, 67% of 10 as oil. 

1H NMR (400 MHz, CDCl3): δ 1.23-1.41 (m, 1H, CHa-8 Otsd), 1.42-1.60 (m, 3H, CHb-8, CHa-

7, CHa-9 Otsd), 1.67-2.04 (m, 6H, CHb-7, CHb-9, CH2-6, CH2-10 Otsd), 2.67-2.97 (m, 7H, 

CH2-N, CH2-2, CH2-6 Piperaz, CHa-3 Otsd), 3.08-3.27 (m, 5H, CH2-3, CH2-5 piperaz, CHb-3 

Otsd), 3.90 (s, 3H, OCH3), 4.43-4.56 (m, 1H, CH-2 Otsd), 6.90 (d, J= 7.9 Hz, 1H,CH-3 Arom), 

6.93-7.02 (m, 2H, CH-5, CH-6 Arom), 7.04-7.16 (m, 1H, CH-4 Arom). 13C NMR (100 MHz, 

CDCl3): δ 24.1 (CH2, C-8 Otsd), 24.8 (CH2, C-7/C-9 Otsd), 25.1 (CH2, C-7/C-9 Otsd), 36.4 

(CH2, C-3 Otsd), 39.9 (CH2, C-6/C-10 Otsd), 40.5 (CH2, C-6/C-10 Otsd), 50.2 (2 CH2, C-3, C-5 

Piperaz), 53.8 (2 CH2, C-2, C-6 Piperaz), 55.1 (CH3, OCH3), 61.4 (CH2, CH2N), 79.2 (CH, C-2 

Otsd), 96.4 (C, C-5 Otsd), 110.9 (CH, C-3 Arom), 117.9 (CH, C-5 Arom), 120.7 (CH, C-6 

Arom), 122.7 (CH, C-4 Arom), 141.0 (C, C-1 Arom), 152.0 (C, C-2 Arom). 

The free amine (0.178 g, 0.49 mmol) was dissolved in Et2O and treated with 1.2 eq. of oxalic 

acid to give 0.174 g (0.38 mmol, 79% yield) of the corresponding oxalate salt. 

Mp: 217-218°C. 1H NMR (600 MHz, DMSO-d6): δ 1.25-1.48 (m, 4H, CH2-8, CHa-7, CHa-9 

Otsd), 1.62-1.94 (m, 6H,CHb-7, CHb-9, CH2-6, CH2-10 Otsd), 2.81 (dd, J= 9.4, 10.3 Hz, 1H, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 38

CHa-3 Otsd), 3.11-3.32 (m, 11H, CH2-2, CH2-3, CH2-5, CH2-6 Piperaz, CHb-3 Otsd , CH2N), 

3.79 (s, 3H, OCH3), 4.55-4.62 (m, 1H, CH-2), 6.87-7.02 (m, 4H, Arom). HRMS-ESI m/z 

[M+H] + calcd for C20H31N2O2S
+: 363.2106; found 363.2103. Anal. calcd for C22H32N2O6S: C 

58.39, H 7.13, N 6.19; found: C 58.44, H 7.27, N 6.24. 

 

{1-oxa-4-thiaspiro[4.5]decan-2-ylmethyl}(2-phenoxyethyl)amine (11) 

The title compound was purified by flash chromatography on silica gel cartridge (80/20 

Cy/EtAc) to afford 0.056 g (0.18 mmol, 25%) of 11 as yellow oil. 

1H NMR (400 MHz, CDCl3): δ 1.21-1.39 (m, 1H, CHa-8 Otsd), 1.43-1.61 (m, 3H, CHb-8, CHa-

7, CHa-9 Otsd), 1.73-2.01 (m, 6H,CHb-7, CHb-9, CH2-6, CH2-10 Otsd), 2.85 (dd, J= 9.2, 10.0 

Hz, 1H, CHa-3 Otsd), 2.91-3.06 (m, 2H, CHCH2NH), 3.09 (dd, J= 5.0, 10.0 Hz, 1H, CHb-3 

Otsd), 3.14 (d, J= 5.3 Hz, 2H, NHCH2CH2), 4.09 (t, J= 5.3 Hz, 2H, CH2O), 4.42-4.51 (m, 1H, 

CH-2 Otsd), 6.82-7.12 (m, 3H, CH-2, CH-4, CH-6 Ph), 7.21-7.48 (m, 2H, CH-3, CH-5 Ph). 13C 

NMR (100 MHz, CDCl3): δ 24.0 (CH2, C-8 Otsd), 24.8 (CH2, C-7/C-9 Otsd), 25.1 (CH2, C-7/C-

9 Otsd), 35.3 (CH2, C-3 Otsd), 39.9 (CH2, C-6/C-10 Otsd), 40.4 (CH2, C-6/C-10 Otsd), 48.7 

(CH2, NCH2CH2), 52.6 (CH2, CHCH2N), 66.8 (CH2, CH2O), 80.4 (CH, C-2 Otsd), 96.3 (C, C-5 

Otsd), 114.3 (2 CH, C-2, C-6 Ph), 120.6 (CH, C-4 Ph), 129.2 (2 CH, C-3, C-5 Ph), 158.5 (C, C-1 

Ph). 

The free amine (0.057 g, 0.186 mmol) was dissolved in Et2O and treated with 1.2 eq. of oxalic 

acid to give 0.067 g (0.169 mmol, 91% yield) of the corresponding oxalate salt. 

Mp: 210-211°C. 1H NMR (600 MHz, DMSO-d6) δ 1.20-1.52 (m, 4H, CH2-8, CHa-7, CHa-9 

Otsd), 1.64-1.93 (m, 6H, CHb-7, CHb-9, CH2-6, CH2-10 Otsd), 2.83 (dd, J= 8.5, 10.6 Hz, 1H, 

CHa-3 Otsd), 3.14-3.22 (m, 2H, CHb-3 Otsd, CHCHaN), 3.31-3.42 (m, 3H, CHCHbN, 
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NCH2CH2), 4.25 (t, J= 4.9 Hz, 2H, CH2O), 4.52 (m, 1H, CH-2 Otsd), 6.99 (m, 3H, CH-2, CH-4, 

CH-6 Ph), 7.32 (m, 2H, CH-3, CH-5 Ph). HRMS-ESI m/z [M+H]+ calcd for C17H26NO2S
+: 

308.1679; found 308.1675. Anal. calcd for C19H27NO6S: C 57.41, H 6.85, N 3.52, found: C 

57.62, H 6.94, N 3.66. 

 

N-(1-oxa-4-thiaspiro[4.5]decan-2-ylmethyl)-2-(2-methoxyphenoxy)ethanamine (12) 

The title compound was purified by flash chromatography on silica gel cartridge (70/30/10 

Cy/EtAc/MeOH + 1 NH4OH) to afford 0.046 g (0.14 mmol, 19%) of 12 as yellow oil. 

1H NMR (400 MHz, CDCl3): δ 1.23-1.38 (m, 1H, CHa-8 Otsd), 1.41-1.58 (m, 3H, CHb-8, CHa-

7, CHa-9 Otsd), 1.69-2.00 (m, 6H,CHb-7, CHb-9, CH2-6, CH2-10 Otsd), 2.86 (dd, J= 9.1, 9.9 

Hz, 1H, CHa-3 Otsd), 3.01 (d, J= 5.4 Hz, 2H, CHCH2N), 3.09 (dd, J= 5.0, 9.9 Hz, 1H, CHb-3), 

3.15 (dt, J= 1.3, 5.2 Hz, 2H, NCH2CH2), 3.90 (s, 3H, OCH3), 4.19 (t, J= 5.2 Hz, 2H, CH2O), 

4.39-4.50 (m, 1H, CH-2 Otsd), 6.72-7.04 (m, 4H, Ph). 13C NMR (100 MHz, CDCl3): δ 24.0 

(CH2, C-8 Otsd), 24.8 (CH2, C-7/C-9 Otsd), 25.1 (CH2, C-7/C-9 Otsd), 35.3 (CH2, C-3 Otsd), 

39.9 (CH2, C-6/C-10 Otsd), 40.4 (CH2, C-6/C-10 Otsd), 48.5 (CH2, NCH2CH2), 52.5 (CH2, 

CHCH2N), 55.6 (CH3, OCH3), 68.4 (CH2, CH2O), 80.2 (CH, C-2 Otsd), 96.3 (C, C-5 Otsd), 

111.8 (CH, C-3 Ph), 114.3 (CH, C-5 Ph), 120.7 (CH, C-6 Ph), 121.5 (CH, C-4 Ph), 148.0 (C, C-1 

Ph), 149.6 (C, C-2 Ph). 

The free amine (0.046 g, 0.137 mmol) was dissolved in Et2O and treated with 1.2 eq. of oxalic 

acid to give 0.048 g (0.159 mmol, 83% yield) of the corresponding oxalate salt.  

Mp: 202-203°C. 1H NMR (600 MHz, DMSO-d6) δ 1.23-1.48 (m, 4H, CH2-8, CHa-7, CHa-9 

Otsd), 1.66-1.89 (m, 6H, CHb-7, CHb-9, CH2-6, CH2-10 Otsd), 2.82 (dd, J= 9.2, 10.0 Hz, 1H, 

CHa-3 Otsd), 3.17 (dd, J= 4.5, 10.0 Hz, 1H, CHb-3 Otsd), 3.24 (dd, J= 8.1, 12.4 Hz, 1H, 
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CHCHaN), 3.31-3.40 (m, 3H, CHCHbN, NCH2CH2), 3.78 (s, 3H, OCH3), 4.23 (t, J= 5.2 Hz, 2H, 

CH2O), 4.52 (m, 1H, CH-2 Otsd), 6.88-7.05 (m, 4H, Ph). HRMS-ESI m/z [M+H]+ calcd for 

C18H28NO3S
+: 338.1784; found 338, 1797. Anal. calcd for C20H29NO7S: C 56.19, H 6.84, N 

3.28; found: C 56.28, H 6.99, N 3.37. 

 

1-{1,4-dithiaspiro[4.5]decan-2-ylmethyl}-4-(2-methoxyphenyl)piperazine (13) 

The title compound was purified by flash chromatography on silica gel cartridge (90/10 

Cy/EtAc) to afford 0.136 g (0.36 mmol, 53%) of 13 as dark oil. 

1H NMR (400 MHz, CDCl3) δ = 1.33-1.51 (m, 2H, CH2-8 Dtsd), 1.53-1.81 (m, 4H, CH2-7, CH2-

9 Dtsd), 1.92-2.09 (m, 4H, CH2-6, CH2-10 Dtsd), 2.47-2.77 (m, 7H, CH2-N, CH2-2, CH2-6 

Piperaz, CHa-3 Dtsd), 3.01-3.25 (m, 5H, CH2-3, CH2-5 Piperaz, CHb-3 Dtsd), 3.25-3.47 (m, 2H, 

CH2-3 Dtsd), 3.85 (m, 3H, OCH3), 3.87-3.99 (m, 1H, CH-2 Dtsd), 6.90 (d, J= 8.0 Hz, 1H, CH-3 

Arom), 6.91-7.05 (m, 2H, CH-5, CH-6 Arom), 7.06-7.15 (m, 1H, CH-4 Arom). 13C NMR (100 

MHz, CDCl3): δ 24.1 (CH2, C-8 Dtsd), 25.0 (CH2, C-7/C-9 Dtsd), 26.3 (CH2, C-7/C-9 Dtsd), 

38.1 (CH2, C-3 Dtsd), 41.9 (CH2, C-6/C-10 Dtsd), 42.5 (CH2, C-6/C-10 Dtsd), 50.1 (2 CH2, C-3, 

C-5 Piperaz), 53.7 (2 CH2, C-2, C-6 Piperaz), 55.1 (CH3, OCH3), 55.2 (CH, C-2 Dtsd), 61.2 

(CH2, CH2N), 69.3 (C, C-5 Dtsd), 111.0 (CH, C-3 Arom), 117.8 (CH, C-5 Arom), 120.6 (CH, C-

6 Arom), 122.6 (CH, C-4 Arom), 141.0 (C, C-1 Arom), 151.9 (C, C-2 Arom). 

The free amine (0.136 g, 0.36 mmol) was dissolved in Et2O and treated with 1.2 eq. of oxalic 

acid to give 0.128 g (0.27 mmol, 76% yield) of the corresponding oxalate salt. 

Mp: 170-172°C. 1H NMR (600 MHz, DMSO-d6) δ 1.31-1.43 (m, 2H,CH2-8 Dtsd), 1.48-1.66 (m, 

4H, CH2-7, CH2-9 Dtsd), 1.86-2.07 (m, 4H, CH2-6, CH2-10 Dtsd), 2.64-3.42 (m, 12H, CH2-2, 

CH2-3, CH2-5, CH2-6 Piperaz, CH2N, CH2-3 Dtsd), 3.78 (s, 3H, OCH3), 4.09 (m, 1H, CH-2 
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Dtsd), 6.83-7.03 (m, 4H, Arom). HRMS-ESI m/z [M+H]+ calcd for C20H31N2OS2
+: 379.1872; 

found 379.1872. Anal. calcd for C22H32N2O5S2: C 56.38, H 6.88, N 5.98; found: C 56.48, H 7.02, 

N 6.11. 

 

{1,4-dithiaspiro[4.5]decan-2-ylmethyl}(2-phenoxyethyl)amine (14) 

The title compound was purified by flash chromatography on silica gel cartridge (70/30 

Cy/EtAc) to afford 0.032 g (0.1 mmol, 15%) of 14 as yellow oil. 

1H NMR (400 MHz, CDCl3) δ 1.18-1.49 (m, 6H, CH2-7, CH2-8, CH2-9 Dtsd), 1.64 (m, 4H, CH2-

6, CH2-10 Dtsd), 2.95 (dd, J= 7.4, 12.2 Hz, 1H, CHaNH), 3.02 (dd, J= 6.9, 12.2 Hz, 1H, 

CHbNH), 3.05 (t, J= 5.2 Hz, 2H, NHCH2CH2), 3.19 (dd, J= 5.6, 12.0 Hz, 1H, CHa-3 Dtsd), 3.35 

(dd, J=12.0, 5.1 Hz, 1H, CHb-3 Dtsd), 3.83-3.95 (m, 1H, CH-2 Dtsd), 4.08 (t, J= 5.3 Hz, 2H, 

CH2O), 6.81-7.08 (m, 3H, CH-2, CH-4, CH-6 Ph), 7.21-7.39 (m, 2H, CH-3, CH-5 Ph). 13C NMR 

(100 MHz, CDCl3): δ 24.3 (CH2, C-8 Dtsd), 24.9 (CH2, C-7/C-9 Dtsd), 25.1 (CH2, C-7/C-9 

Dtsd), 38.4 (CH2, C-3 Dtsd), 40.9 (CH2, C-6/C-10 Dtsd), 41.6 (CH2, C-6/C-10 Dtsd), 48.4 (CH2, 

NCH2CH2), 50.5 (CH, C-2 Dtsd), 52.4 (CH2, CHCH2N), 68.2 (CH2, CH2O), 69.0 (C, C-5 Dtsd), 

114.2 (2 CH, C-2, C-6 Ph), 120.7 (CH, C-4 Ph), 129.2 (2 CH, C-3, C-5 Ph), 158.6 (C, C-1 Ph). 

The free amine (0.032 g, 0.099 mmol) was dissolved in acetone and treated with 1.2 eq. of oxalic 

acid to give 0.038 g (0.092 mmol, 92% yield) of the corresponding oxalate salt. 

Mp: 211-214°C. 1H NMR (600 MHz, DMSO-d6) δ 1.34-1.41 (m, 2H,CH2-8 Dtsd), 1.50-1.65 (m, 

4H, CH2-7, CH2-9 Dtsd), 1.89-2.02 (m, 4H, CH2-6, CH2-10 Dtsd), 3.16 (dd, J= 5.3, 12.3 Hz, 1H, 

CHa-3 Dtsd), 3.27-3.45 (m, 5H, CH2N, CH2CH2O, CHb-3 Dtsd), 4.07 (m, 1H, CH-2 Dtsd), 4.20 

(t, J= 5.2 Hz, 2H, CH2O), 6.93-7.01 (m, 3H, CH-2, CH-4, CH-6 Ph), 7.21-7.33 (m, 2H, CH-3, 
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CH-5 Ph). HRMS-ESI m/z [M+H]+ calcd for C17H26NOS2
+: 324.1449; found 324.1450. Anal. 

calcd for C19H27NO5S2: C 55.18, H 6.58, N 3.39; found: C 55.33, H 6.71, N 3.57. 

 

{1,4-dithiaspiro[4.5]decan-2-ylmethyl}[2-(2-methoxyphenoxy)ethyl]amine (15) 

The title compound was purified by flash chromatography on silica gel cartridge (50/50 

Cy/EtAc) to afford 0.183g (0.52 mmol, 47%) of 15 as dark oil. 

1H NMR (400 MHz, CDCl3) δ 1.21-1.40 (m, 2H,CH2-8 Dtsd), 1.49-1.69 (m, 4H, CH2-7, CH2-9 

Dtsd), 1.83-2.14 (m, 4H, CH2-6, CH2-10 Dtsd), 2.89 (dd, J= 7.0, 12.1 Hz, 1H, CHaNH), 2.93-

3.16 (m, 3H, CHaNH, NHCH2CH2), 3.19 (dd, J= 5.7, 12.0 Hz, 1H, CHa-3 Dtsd), 3.35 (dd, J= 

5.1, 12.0 Hz, 1H, CHb-3 Dtsd), 3.81-3.92 (m, 4H, OCH3, CH-2 Dtsd), 4.16 (t, J= 5.3 Hz, 2H, 

CH2O), 6.73-7.06 (m, 4H, Ph). 13C NMR (100 MHz, CDCl3): δ 24.2 (CH2, C-8 Dtsd), 24.8 (CH2, 

C-7/C-9 Dtsd), 25.4 (CH2, C-7/C-9 Dtsd), 37.9 (CH2, C-3 Dtsd), 40.8 (CH2, C-6/C-10 Dtsd), 

41.4 (CH2, C-6/C-10 Dtsd), 48.5 (CH2, NCH2CH2), 50.3 (CH, C-2 Dtsd), 52.5 (CH2, CHCH2N), 

55.8 (CH3, OCH3), 68.6 (CH2, CH2O), 69.0 (C, C-5 Dtsd), 111.9 (CH, C-3 Ph), 114.3 (CH, C-5 

Ph), 120.8 (CH, C-6 Ph), 121.5 (CH, C-4 Ph), 147.9 (C, C-1 Ph), 149.7 (C, C-2 Ph). 

The free amine (0.183 g, 0.52 mmol) was dissolved in Et2O and treated with 1.2 eq. of oxalic 

acid to give 0.216 g (0.486 mmol, 94% yield) of the corresponding oxalate salt. 

Mp: 206-207°C. 1H NMR (600 MHz, DMSO-d6) δ 1.34-1.44 (m, 2H,CH2-8 Dtsd), 1.48-1.65 (m, 

4H, CH2-7, CH2-9 Dtsd), 1.86-2.01 (m, 4H, CH2-6, CH2-10 Dtsd), 3.18 (dd, J= 5.1, 12.5 Hz, 1H, 

CHa-3 Dtsd), 3.30-3.44 (m, 5H, CH2N, CH2CH2O, CHb-3 Dtsd), 3.78 (s, 3H, OCH3), 4.11 (m, 

1H, CH-2 Dtsd), 4.21 (t, J= 5.4 Hz, 2H, CH2O), 6.86-7.04 (m, 4H, Ph). HRMS-ESI m/z [M+H]+ 

calcd for C18H28NO2S2
+: 354.116; found 354.1556. Anal. calcd for C20H29NO6S2: C 54.15, H 

6.59, N 3.16; found: C 54.17, H 6.762, N 3.19. 
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Biological assays 

Radioligand Binding Assay at Human Recombinant 5-HT1AR and αααα1 Adrenoceptor 

Subtypes. 

A human cell line (HeLa) stably transfected with genomic clone G-21 coding for the human 5-

HT1A serotoninergic receptor was used. Cells were grown as monolayers in Dulbecco’s modified 

Eagle’s medium supplemented with 10% fetal calf serum and gentamycin (100 µg/mL) under 5% 

CO2 at 37 °C. Cells were detached from the growth flask at 95% confluence by a cell scraper and 

were lysed in ice-cold Tris (5 mM) and EDTA buffer (5 mM, pH 7.4). Homogenates were 

centrifuged for 20 min at 40000g, and pellets were resuspended in a small volume of ice-cold 

Tris/EDTA buffer (above) and immediately frozen and stored at 70 °C until use. On the day of 

experiment, cell membranes (80-90 µg of protein) were resuspended in binding buffer (50 mM 

Tris, 2.5 mM MgCl2, and 10 mM pargiline, pH 7.4). Membranes were incubated in a final 

volume of 0.32 mL for 30 min at 30 °C with 1 nM [3H]8-OH-DPAT, in the absence or presence 

of various concentrations of the competing drugs (1 pM to 1 µM); each experimental condition 

was performed in triplicate. Nonspecific binding was determined in the presence of 10 µM 5-HT 

[42]. Binding to recombinant human α<alpha>1 adrenoceptor subtypes was performed in 

membranes from Chinese hamster ovary (CHO) cells transfected by electroporation with DNA 

expressing the gene encoding each α1 adrenoceptor subtype. Cloning and stable expression of 

the human α1 adrenoceptor genes were performed as described [41]. CHO cell membranes (70 

µg of protein) were incubated in 50 mM Tris (pH 7.4) with 0.1 – 0.4 nM [3H]prazosin, in a final 

volume of 0.32 mL for 30 min at 25 °C, in the absence or presence of competing drugs (1 pM to 

1 µM). Nonspecific binding was determined in the presence of 10 µM Tamsulosin. The 

incubation was stopped by addition of ice-cold Tris buffer and rapid filtration through Unifilter B 
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filters (Perkin-Elmer) using a Filtermate cell harvester (Packard), and the radioactivity retained 

on the filters was determined by TopCount, Perkin-Elmer liquid scintillation counting at 90% 

efficiency.  

 

[35S]GTPγS Binding Assay. 

The effects of the various compounds tested on [35S]GTPγS binding in HeLa cells expressing 

the recombinant human 5-HT1A receptor were evaluated according to the method of Stanton and 

Beer [43] with minor modifications [44,52]. Stimulation experiments: Cell membranes (50-70 µg 

of protein) were resuspended in buffer containing 20 mM HEPES, 3 mM MgSO4, and 120 mM 

NaCl (pH 7.4). The membranes were incubated with 30 µM GDP, and various concentrations 

(from 0.01 nM to 10 µM) of test drugs or 8-OH-DPAT (reference curve) for 20 min at 30 °C in a 

final volume of 0.5 mL. Samples were transferred to ice, [35S]GTPγS (200 pM) was added, and 

samples were incubated for another 30 min at 30 °C. The pre-incubation with both agonist and 

antagonist, before initiating the [35S]GTPγS binding, ensures that agonist and antagonist are at 

equilibrium. Nonspecific binding was determined in the presence of 10 µM GTPγS. Incubation 

was stopped by the addition of ice-cold HEPES buffer and rapid filtration on Unifilter B filters 

(Perkin Elmer) using a Filtermate cell harvester (Packard). The filters were washed with ice-cold 

Hepes buffer, and the radioactivity retained on the filters was determined by TopCount, Perkin 

Elmer liquid scintillation counting at 90% efficiency. 

 

Data Analysis 

Binding data were analyzed using the nonlinear curve-fitting program GraphPad (Prism for 

windows, version 5.04). Scatchard plots were linear for all preparations. None of the pseudo-Hill 
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coefficients (nH) were significantly different from unity (p > 0.05). Equilibrium dissociation 

constants (Ki) were derived from the Cheng− Prusoff equation Ki = IC50/(L/Kd), where L and Kd 

are the concentration and the equilibrium dissociation constant of the radioligand. pKi values are 

the mean of 2−3 separate experiments performed in duplicate [61]. Stimulation of [35S]GTPγS 

binding induced by the compounds tested was expressed as the percent increase in binding above 

basal value, with the maximal stimulation observed with 8-OH-DPAT taken as 100%. The 

concentration−response curves of the agonistic activity were analyzed by GraphPad as reported 

above [62]. The maximum percentage of stimulation of [35S]GTPγS binding (Emax) achieved for 

each drug, and the concentration required to obtain 50% of Emax (pD2 = −log10 [EC50]), were 

evaluated.  

 

Cytotoxicity Assays  

Cytotoxicity assays were carried out against human neuroblastoma cell line SH-SY5Y. Cells 

were cultured at 37 °C in a humidified incubator containing 5% CO2 and feed with DMEM 

(Lonza) nutrient supplemented with 10% heat inactivated FBS, 2 mM L-glutamine, 100 U/mL 

penicillin and 100 µg/mL streptomycin. Cytotoxicity of compounds is expressed as IC50 values, 

the concentrations that cause 50% growth inhibition. The results were determined using the 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide [51]. Cells were dispensed into 96-

well microtiter plates at a density of 10,000 cells/well. Following overnight incubation, cells 

were treated with the tested compounds, oligomycin A and rotenone in the range concentration  

0.1-100 µM, and with the range 1-500 µM for H2O2. Then the plates were incubated at 37 °C for 

24 h. An amount of 10 µL of 0.5% w/v MTT was further added to each well and the plates were 

incubated for an additional 3 h at 37 °C. Finally the cells were lysed by addition of 100 µL of 
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DMSO/EtOH 1:1 (v/v) solution. The absorbance at 570 nm was determined using a Perkin Elmer 

2030 multilabel reader Victor TM X3.  

 

Neuroprotective capacity  

The neuroprotective capacity of the compounds was tested, as reported by Benchekroun et al. 

[45] Briefly, the ability of the compounds to prevent the human neuroblastoma cell line SH-

SY5Y from death was evaluated by using three toxicity models: 1) H2O2, as a producer of 

exogenous free radicals, 2) oligomycin A, a mitochondrial respiratory chain blocker which 

produces mitochondrial ROS by inhibiting the mitochondrial electron-transport chain complex 

V, and 3) rotenone, showing the same effect of oligomycin A by inhibiting the mitochondrial 

electron-transport chain complex I. In this experiment, the toxic insults were used at the 

concentrations equal to their IC50 after 24 h of incubation: 195, 30 and 75 µΜ for H2O2, 

oligomycin A and rotenone, respectively. The tested compounds were used at non-cytotoxic 

concentrations after 24h of incubation. Compounds that are able of inhibiting the effect of the 

toxic insults may be considered neuroprotectants [63]. For the assay, SH-SY5Y cells were plated 

in 96-well plates at a seeding density of 10,000 cells /well. After 24 h of incubation at 37 °C in a 

humidified incubator containing 5% CO2, cells were co-incubated with H2O2 (195 µΜ), or 

oligomycin A (30 µΜ), or rotenone (75 µΜ) and tested compound at several concentration for 

further 24 h. In particular, compound 15 was tested at concentrations 0.1 and 1 µΜ .  The cell 

viability was determined by MTT assay and analysed as previously described.  

 

Bi-directional Transport Studies on MDCKII-MDR1 Mon olayers  
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Apical to basolateral (Papp, AP) and basolateral to apical (Papp, BL) permeability of the tested 

compounds was measured using Madin-Darby Canine Kidney (i.e., MDCK) cells, retrovirally 

transfected with the human MDR1 cDNA (MDCKII-MDR1), as previously reported [49,50]. 

The cells were cultured in DMEM medium and seeded at a density of 100,000 cell/cm2 onto 

polyester 12 well Transwell inserts (pore size 0.4 µm, 12 mm diameter, apical volume 0.5 mL, 

basolateral volume 1.5 mL). At first, MDCKII-MDR1 cell barrier function was verified by 

means of trans-epithelial electrical resistance (TEER) using an EVOM apparatus and by the 

measurement of the flux of the paracellular standard fluorescein isothiocyanate-dextran (FD4, 

Sigma) (200 µg/mL) and the transcellular standard diazepam (75 µΜ). The TEER was measured 

in growth media at room temperature and calculated as the measured resistance minus the 

resistance of an empty Transwell (blank without cells). Cell monolayers with TEER values 800 

Ohm cm2 were used for the successive transport experiments. The cells were equilibrated in 

transport medium in both the apical and basolateral chambers for 30 minutes at 37 °C. The 

composition of transport medium was: 0.4 mM K2HPO4, 25 mM NaHCO3, 3 mM KCl, 122 mM 

NaCl, 10 mM glucose with final pH of 7.4, and the osmolarity was 300 mOsm as determined by 

a freeze point based osmometer. At time 0, culture medium was aspirated from both the apical 

(AP) and basolateral (BL) chambers of each insert, and cell monolayers were washed three times 

(10 min per wash) with Dulbecco`s Phosphate Buffered Saline (DPBS) pH = 7.4. Finally, a 

solution of compounds diluted in transport medium was added to the apical or basolateral 

chamber. For AP-to-BL or BL-to-AP flux studies, the drug solution was added in the AP 

chamber or in the BL chamber, respectively. Except for FD4, which was solubilized directly in 

the assay medium at a concentration of 200 µg/mL, the other compounds were first dissolved in 

DMSO and then diluted with the assay medium to a final concentration of 75 µM. Next, the 
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tested solutions were added to the donor side (0.5 mL for the AP chamber and 1.5 mL for the BL 

chamber) and fresh assay medium was placed in the receiver compartment. The percentage of 

DMSO never exceeded 1% (v/v) in the samples. The transport experiments were carried out 

under cell culture conditions (37 °C, 5% CO2, 95% humidity). After incubation time of 120 min, 

samples were removed from the apical and basolateral side of the monolayer and then stored 

until further analysis. Quantitative analysis of the tested compounds and diazepam, was 

performed through UV–visible (Vis) spectroscopy using a PerkinElmer double-beam UV–visible 

spectrophotometer Lambda Bio 20 (Milan, Italy), equipped with 10 mm path-length-matched 

quartz cells. Standard calibration curves were prepared at maximum absorption wavelength of 

each compound using PBS as solvent and were linear (r2 = 0.999) over the range of tested 

concentration (from 5 to 100 µM). The FD4 samples were analyzed with a Victor3 fluorometer 

(Wallac Victor3, 1420 Multilabel Counter, Perkin-Elmer) at excitation and emission wavelengths 

of 485 and 535 nm, respectively. Each compound was tested in triplicate, and the experiments 

were repeated three times. 

The apparent permeability, in units of cm/sec, was calculated using the following equation: 

 

where “VA” is the volume in the acceptor well, “area” is the surface area of the membrane, 

“time” is the total transport time, “[drug]acceptor” is the concentration of the drug measured by 

UV-spectroscopy and “[drug]initial” is the initial drug concentration in the AP or BL chamber. 

Efflux ratio (ER) was calculated using the following equation: ER = Papp, BL-AP / Papp, AP-

BL, where Papp, BL-AP is the apparent permeability of basal-to-apical transport, and Papp, AP-
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BL is the apparent permeability of apical-to-basal transport. An efflux ratio greater than 2 

indicates that a test compound is likely to be a substrate for P-gp transport. 

 

Antinociceptive activity in in-vivo model 

For the assessment of antinociceptive activity of inflammatory pain, mice were subjected to the 

formalin test. Male Swiss CB1 mice (Envigo, S.Pietro al Natisone (UD)) weighing 25-30 g were 

used. Animals were kept at a constant room temperature (25 ± 1 °C) under a 12:12 h light and 

dark cycle with free access to food and water. Each mouse was used for only one experiment. 

Experimental procedures were approved by the Local Ethical Committee (IACUC) and 

conducted in accordance with international guidelines as well as European Communities Council 

Directive and National Regulations (CEE Council 86/609 and DL 116/92). All tests were 

performed blind to treatment. 

Formalin (5%, 10 µl; Sigma-Aldrich) was injected subcutaneously into the plantar side of the 

right hind paw [64]. After the injection, mice were immediately placed in a plexiglas box: the 

total time (in seconds) spent on licking or biting the injected hind paw was recorded for each five 

minute in selected intervals, 0–10 (phase I) and 10–60 (phase II) min, in the different 

experimental group as indicator of nociceptive behavior. Formalin scores were separated in two 

phases: phase I (0–10 min) and phase II (10–60 min). A mean response was then calculated for 

each phase. Compound 15 and WAY-100635 (Sigma-Aldrich) were dissolved in normal saline 

solution containing 10% dimethyl sulfoxide (DMSO, Sigma-Aldrich). A vehicle solution 

containing 10 % DMSO was given as control. Compound 15  and vehicle were intraplantar (i.p.) 

administered (5ml/kg) 15 minutes before formalin. WAY-100635 (3mg/kg i.p.) was injected 30 

minutes before test compound or vehicle. Data are expressed as mean values (SEM). Analysis of 

variance (two-way repeated measures ANOVA followed by post hoc Bonferroni test) were 
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performed to assess significance using the Instat 3.0 software (GraphPad Software, San Diego, 

CA). p < 0.05 was considered significant.  

 

Molecular Modeling 

Ligand preparation 

Compounds A and 9-11, 14-16, 19-21 were built, parameterised (Gasteiger-Huckel method) 

and energy minimised within MOE using MMFF94 force field [65]. For all compounds, the 

protonated form was considered for the in silico analyses. 

Alpha1D homology modeling 

The alpha1D theoretical model has been built starting from the X-ray structure of the β2-

adrenoreceptor (PDB code: 2RH1; resolution = 2.40 Å) [66], by applying the ligand-based 

homology modeling strategy. In particular, compound A was docked into the β2-adrenoreceptor 

binding site and employed in the alpha1D model building and refinement, by taking into account 

the ligand specific steric and chemical features. The amino acid sequence of α1D-adrenoreceptor 

(P25100) was retrieved from the SWISSPROT database [67] while the three-dimensional 

structure co-ordinates file of the GPCR template was obtained from the Protein Data Bank [68]. 

The amino acid sequences of α1D TM helices were aligned with the corresponding residues of 

2RH1, on the basis of the Blosum62 matrix (MOE software). The connecting loops were 

constructed by the loop search method implemented in MOE. The MOE output file included a 

series of ten models which were independently built on the basis of a Boltzmann-weighted 

randomized procedure [69], combined with specialized logic for the handling of sequence 

insertions and deletions [70]. Among the derived models, there were no significant main chain 

deviations. The model with the best packing quality function was selected for full energy 
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minimization. The retained structure was minimized with MOE using the AMBER94 force field 

[71]. The energy minimization was carried out by the 1000 steps of steepest descent followed by 

conjugate gradient minimization until the rms gradient of the potential energy was less than 0.1 

kcal mol-1 Å-1. The assessment of the final obtained model was performed using Ramachandran 

plots, generated within MOE.  

Docking studies 

Docking studies were performed according to the following protocol. The binding site of the 

ligand in the 5HT1A receptor model (previously built by us) was determined starting from the fact 

that, for the ligand activity, formation of the salt bridge between the protonated piperazine 

nitrogen on the ligand and Asp116 is necessary [72-74]. 

On the other hand, the α1d-adrenoreceptor binding site has been determined taking into account 

the conserved residues highlighted by superimposition on the 2RH1 X-ray β2-adrenoreceptor 

binding site. For all compounds, each isomer was docked into the putative ligand binding site by 

means of the Surflex docking module implemented in Sybyl-X1.0 [75].  

Surflex-Dock uses an empirically derived scoring function based on the binding affinities of X-

ray protein-ligand complexes. The Surflex-Dock scoring function is a weighted sum of non-

linear functions involving van der Waals surface distances between the appropriate pairs of 

exposed protein and ligand atoms, including hydrophobic, polar, repulsive, entropic and 

solvation and crash terms represented in terms of a total score conferred to any calculated 

conformer.  

Then, for all compounds, the best docking geometries (selected on the basis of the SurFlex 

scoring functions) were refined by ligand/receptor complex energy minimization (CHARMM27) 

by means of the MOE software. To verify the reliability of the derived docking poses, the 
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obtained ligand/receptor complexes were further investigated by docking calculations (10 run), 

using MOE-Dock (Genetic algorithm; applied on the poses already located into the putative 5-

HT1A and alpha1D receptors). The conformers showing lower energy scoring functions and rmsd 

values (respect to the starting poses) were selected as the most stable and allowed us to identify 

the most probable conformers interacting with the two GPCRs. 

 

Prediction of ADMET Properties  

The prediction of ADMET properties were performed using the Advanced Chemistry 

Developmente (ACD) Percepta platform. The aforementioned descriptors blood-brain barrier 

permeation (LogBBB), rate of passive diffusion-permeability (Log PS), human intestinal 

absorption (HIA), volume of distribution (Vd), median lethal dose (LD50) related to oral 

administration and the logarithmic ratio of the octanol-water partitioning coefficient (cLogP) 

were calculated. All of them were derived and evaluated by Percepta on the basis of training 

libraries, implemente in the software, which include a consistent number of molecules whose 

pharmacokinetic and toxicity profile are known. 
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Highlights 

• 1,4-dioxaspiro[4,5]dec-2-ylmethyl-amines were synthesized and tested.  

• Oxygen/Sulphur substitution favors 5-HT1AR affinity, potency and efficacy. 

• 14 and 15 behave as selective and potent 5-HT1AR partial agonists. 

• 15 shows a promising neuroprotective activity in-vitro. 

• 15 reduces significantly the linking time in Phase II at a dose of 10mg/Kg i.p. 


