
04/07/2024 20:36

Single-hidden layer neural networks for forecasting intermittent demand / Lolli, Francesco; Gamberini,
Rita; Regattieri, A.; Balugani, Elia; Gatos, T.; Gucci, S.. - In: INTERNATIONAL JOURNAL OF PRODUCTION
ECONOMICS. - ISSN 0925-5273. - 183:(2017), pp. 116-128. [10.1016/j.ijpe.2016.10.021]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

Single-hidden layer neural networks for forecasting intermittent demand

F. Lollia*, R. Gamberinia, A. Regattierib, E. Balugania, T. Gatosb, S. Guccib

a Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia,
Via Amendola 2 – Padiglione Morselli,

42100 Reggio Emilia, Italy
b Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2,

40136 Bologna, Italy

 Corresponding author: Ph.D. Francesco Lolli

 E-mail: francesco.lolli@unimore.it

 Tel.: +39 0522 522635

Single-hidden layer neural networks for forecasting intermittent demand

Abstract

Managing intermittent demand is a vital task in several industrial contexts, and good forecasting ability is a
fundamental prerequisite for an efficient inventory control system in stochastic environments. In recent
years, research has been conducted on single-hidden layer feedforward neural networks, with promising
results. In particular, back-propagation has been adopted as a gradient descent-based algorithm for training
networks. However, when managing a large number of items, it is not feasible to optimize networks at item
level, due to the effort required for tuning the parameters during the training stage. A simpler and faster
learning algorithm, called the extreme learning machine, has been therefore proposed in the literature to
address this issue, but it has never been tried for forecasting intermittent demand. On the one hand, an
extensive comparison of single-hidden layer networks trained by back-propagation is required to improve
our understanding of them as predictors of intermittent demand. On the other hand, it is also worth testing
extreme learning machines in this context, because of their lower computational complexity and good
generalisation ability.
In this paper, neural networks trained by back-propagation and extreme learning machines are compared
with benchmark neural networks, as well as standard forecasting methods for intermittent demand on real-
time series, by combining different input patterns and architectures. A statistical analysis is then conducted to
validate the best performance through different aggregation levels. Finally, some insights for practitioners
are presented to improve the potential of neural networks for implementation in real environments.
Keywords: Intermittent Demand; Forecasting; Artificial Neural Networks; Extreme Learning Machines.

1. Introduction

Forecasting intermittent demand is a highly topical concern which arises in several real environments, such
as spare parts, start-up productions and multi-echelon supply-chains. For instance, spare parts are typically
consumed intermittently and have high unit purchase costs, which exacerbates the well-known trade-off in
inventory control theory between holding and back-ordering costs. In such a stochastic contest, a prerequisite
for effective inventory management is the adoption of accurate forecasting methods. However, research
in forecasting such items has been limited (Syntetos et al., 2015).
The bias of the simple exponential smoothing as predictor of intermittent demand has led to the investigation
of new methods, pioneered by Croston (1972). In order to obtain the estimator for the expected value of the
demand per period, the guideline for the Croston-type approaches is to model intermittent demand as the
result of two independent stochastic processes involving two stochastic variables, i.e. the positive demand
and the demand occurrence. Readers can refer to Boylan and Syntetos (2010) for a review of intermittent
demand forecasting, and Teunter et al. (2011) for a more recent forecasting procedure.
Conversely, the artificial neural networks (ANNs) have attracted the attention of a wide range of
practitioners and researchers in recent years, due to their ability of learning a non-linear function from
samples without the need for any distribution assumptions. In particular, single-hidden layer feedforward
neural networks have been already investigated for forecasting intermittent demand in a few research
projects (see Carmo and Rodrigues, 2004; Gutierrez et al., 2008; Nasiri Pour et al., 2008; Mukhopadhyay et
al., 2012; and Kourentzes, 2013). All of these ANNs belong to the family of multi-layered perceptron
networks, the most widely used networks in the demand forecasting field (Bishop, 1995). In particular, the
use of a single-hidden layer for forecasting is according to the guidelines provided by Xiang et al. (2005).
All of these ANNs, with the exception of Nasiri Pour et al. (2008), adopt feedforward architectures; this
suggests that the experimental research into the use of ANNs for forecasting intermittent demand should also

be extended to time-delay and recurrent architectures, since they have been already applied to other fields
successfully.
Moreover, only gradient descent-based algorithms, with back-propagation conventionally used, have been
applied for training the aforementioned networks. However, these algorithms have several drawbacks that
limit their applicability to real settings. The main ones are: i) slow convergence to the minimum of the error
function through time-consuming iterative tuning of the hidden parameters (i.e. input and output weights and
bias); ii) risk of being trapped in local minima; iii) need to set the learning parameters (e.g. learning rate and
momentum); iv) need to establish the number of training epochs, as well as the proper stopping criterion
against overfitting. In order to overcome these drawbacks, a faster learning algorithm proposed by Huang et
al. (2006), i.e. the extreme learning machine, has more recently attracted the attention of researchers, with
promising results in several fields. Readers can refer to the review of Huang et al. (2015). Nevertheless,
extreme learning machines have never been applied for forecasting intermittent demand, even if they deserve
attention, especially for their advantages for implementation in real settings.
In this paper, a new input pattern was adopted with the aim of helping the network to learn the temporal
behaviour of the time series in terms of zero/non-zero demand. Three network architectures with this new
input pattern were tested on 24 real time series, all trained both by back-propagation and by an extreme
learning machine. The forecasting accuracy of these ANNs was compared to that achieved by other ANNs
(i.e. Gutierrez et al., 2008; Mukhopadhyay et al., 2012) and that of two well-known estimators of intermittent
demand (Croston, 1972; Syntetos and Boylan, 2005). This comparison was then enriched by adopting two
different accuracy metrics on different time horizons. Such a detailed comparison aims at bridging the gap
between theory and practice of ANNs in the field of intermittent demand. In fact, the potential for
implementation of ANNs in real environments can only increase by providing useful guidelines about their
design and training for practitioners. Finally, a statistical analysis of the networks’ performance was
conducted, for robust validation of the results.
The work is organised as follows: Section 2 contains a review of the main published contributions related
with the presented research; in Section 3 benchmark forecasting methods are briefly explained; in Section 4
single-hidden layer neural networks are enounced, along with the tested architectures; Section 5 contains the
approaches used for training the networks, i.e. back-propagation and extreme learning machine; in Section 6
the experienced networks are described, and the notation adopted for synthetically indicating them is
presented; Section 7 clarifies the comparison approach; Section 8 refers to the experimental analysis with the
parameter settings; Section 9 contains the statistical analysis performed on the results, with some suggestions
for practitioners; and Section 10 concludes the paper with some potential directions for the future research
agenda.

2. Research background

Several papers focus both on comparing ANNs to conventional forecasting approaches and introducing
modifications to ANNs to achieve significant performance improvements. In order to offer a clear and
concise classification of the main contributions of ANN applications to the forecasting field, this section
reports the main advantages of ANNs compared to other time series forecasting approaches. It then reports
on the specific application of ANN modelling to forecasting intermittent demand patterns.
Sharda and Patil (1992) conducted a forecasting M-competition (Makridakis et al., 1982) between ANNs and
the Box-Jenkins ARIMA models (Auto Regressive Integrated Moving Average), achieving similar results for
75 time series. Taking 14 of the series dealt with by Sharda and Patil (1992), and Tang and Fishwick (1993)
concluded that ANNs outperformed the Box-Jenkins ARIMA models for time series with a short memory or
with greater irregularity, while for long memory series, both approaches achieved roughly the same
performance. Kang (1991) achieved similar results through a more systematic study of 50 M-competition
time series. He concluded that the best ANN is always better than the Box-Jenkins model. Moreover, ANNs
performed better as the forecasting horizon increased and they needed less data to perform as well as

ARIMA. These results have been subsequently corroborated by several authors (Caire et al., 1992;
Lachtermacher and Fuller, 1995; Kohzadi et al., 1996; Ho et al., 2002; Zhang and Qi, 2005; Hamzaçebi et
al., 2009; West and Dellana, 2011).
In comparison with a wide variety of traditional forecasting approaches (i.e. exponential smoothing,
regression-based and multivariate modelling), beneficial effects related to the use of ANNs were described in
Chakraborty et al. (1992) and in Hill et al. (1994). In particular, in a later study, Hill et al. (1996) evaluated
the results achieved by ANNs in 1001 time series in an M-competition, obtaining forecasts significantly
better in terms of the mean absolute percentage errors (MAPEs) from ANNs. Denton (1995), after generating
several datasets, observed that in ideal situations ANNs are as good as regression, while in less ideal
situations ANNs perform better. Abdel-Aal (2008) emphasised the superiority of ANNs compared to
multivariate modelling, which requires data for the exogenous factors influencing demand which may not be
readily available.
Intermittent demand forecasting represents a specific research field for the peculiarities of the demand
generation process, which has prompted several authors to address the competition between different
approaches. Readers can refer to: Regattieri et al. (2005) on the comparison of forecasting approaches
belonging to the categories of exponential smoothing and moving average; Gamberini et al. (2010) and Lolli
et al. (2011, 2014a; 2014b) on the adoption of SARIMA models for intermittent profiles with trend and
seasonality components; and Teunter and Duncan (2009), Teunter and Sani (2009), Wallström and
Segerstedt (2010), and Babai et al. (2014) on the comparison of several variants of the original Croston’s
method.
Despite the large amount of papers that refer to the application of ANNs for time series forecasting, only a
few works focus specifically on the application of single-hidden layer ANN modelling to forecasting
intermittent demand profiles. Gutierrez et al. (2008) emphasise that traditional time series forecasting
methods sometimes fail to capture non-linear patterns in data, and are therefore not effective in the case of
intermittent demand patterns; artificial neural network modelling is thus a logical choice to overcome this
limitation. They defined a network architecture characterized by two input neurons, then compared their
forecasting accuracy with that obtained from the best-performing forecasting methods of those specifically
used for intermittent demand patterns, i.e. single exponential smoothing, Croston’s method (CR) and the
Syntetos-Boylan Approximation (SBA) introduced by Syntetos and Boylan (2005), through detailed
empirical analysis. Nasiri Pour et al. (2008) compared the performance of several ANNs (Gutierrez’
network, generalized regression neural network-GRNN, recurrent neural network-RNN and a new hybrid
network) with those obtained by the application of the SBA on 30 time series. Their new hybrid network
outperformed the other networks. Mukhopadhyay et al. (2012) modified one of the two neurons of the input
layer proposed by Gutierrez et al. (2008), applied dataset partitioning, then compared 24 time series of the
aforementioned ANNs, using an optimized weighted moving average method. Other benchmark methods
were applied, i.e. CR, SBA and SES, and the new ANN showed promising results. Kourentzes (2013)
proposed two ANNs named NN-Dual and NN-Rate, representing bivariate models, allowing interaction
between the demand and the inter-demand intervals. The comparison was performed taking CR method into
account, and several of its variants. It was also considered in terms of inventory metrics, concluding that the
ANNs had poor forecasting performance but high inventory cost savings.
With the exception of the recurrent architecture tested by Nasiri Pour et al. (2008), all the aforementioned
contributions adopt feedforward architectures. This also indicates the opportunity of investigating time-delay
neural networks, along with feedforward and recurrent networks. Moreover, the learning algorithms adopted
in these contributions are gradient descent-based, whose drawbacks have been already highlighted. Huang et
al. (2006) demonstrated that optimal output weights can be analytically obtained through a one-shot
algorithm after the input weights and the bias of the hidden neurons are generated randomly before learning.
This represents the core of the extreme learning machines. Actually, such a theoretical finding strongly
simplifies the implementation of ANNs in real settings, because of the much lower computational efforts
required. Extreme learning machines have been already applied to forecasting time series in several fields

(e.g. Sun et al., 2008; Lian et al., 2014; Mohammadi et al., 2015; Heinermann and Kramer, 2016; Ertugrul,
2016), but they have never been tested before for forecasting intermittent demand, despite the fact that these
demand profiles are highly critical to predict, as well as relevant in many real industrial settings.
On the one hand, the main novelty of this contribution is the adoption of extreme learning machines in this
context. On the other hand, it represents an extension of previous work in terms of architecture, with the aim
of improving our understanding of the behaviour of neural networks as a predictor of intermittent demand,
and thus encouraging practitioners to implement them accurately in real environments.

3. Intermittent demand estimators: CR and SBA

Croston (1972) proposed a method that considers both the demand size and the inter-arrival time between
demands as the stochastic variables of a Bernoulli process; these variables are assumed to have constant
means and variances and to be mutually independent. CR is based on two simple exponential smoothing,
only when demand occurs, both of the demand size at the end of the review time period 𝑡 (𝑧), and of the
interval between non-null demands (𝑝). Thus, the equations are as follows:

𝑧 = 𝛼𝑑 + (1 − 𝛼)𝑧 (1)
𝑝 = 𝛽 𝑔 + (1 − 𝛽)𝑝 (2)

where 𝑔 is the actual value of the time between consecutive transactions at the instant 𝑡 and 𝛼 and 𝛽 are the
smoothing parameters.
If no demand occurs, then the smoothed estimates remain unchanged. If demand does occur, then the
estimates are updated. If demand occurs in every time period, Croston’s estimator is identical to a simple
exponential smoothing for each time period.
The expected value of the demand, used as forecast for demand per period (𝐷) at the end of time period t,
is given by:

𝐷 = (3)

An error in CR’s mathematical derivation of expected intermittent demand size was reported by Syntetos and
Boylan (2001), who proposed a revision as an approximate correction of CR: the SBA method.
Several variations were applied to CR after its introduction in 1972, with SBA considered by several authors
as one of the most effective for high level of intermittence.
The forecast demand per period (𝐷) at the end of time period 𝑡 for the SBA is given by:

𝐷 = (1 −) (4)

Note that Eq.(3) is similar to Eq.(4), except for the presence of the corrective factor (1 −). In fact, both 𝑧

and 𝑝 have the same meaning as those in Eq.(3).

4. Single-hidden layer neural networks

Three different single-hidden layer architectures have been adopted, i.e. feedforward, time-delay, and
recurrent, which are set out in Sections 4.1, 4.2, and 4.3 respectively.

4.1 Feedforward neural networks

Given a set of 𝑇 samples {(𝐱𝐭, 𝐝𝐭)|𝑡 = 1, … , 𝑇}, with 𝐱𝐭 = (𝑥 , 𝑥 , … , 𝑥) ∈ ℝ𝒏 and 𝐝𝐭 =

(𝑑 , 𝑑 , … , 𝑑) ∈ ℝ𝒎 corresponding respectively to the input and the target vectors for the supervised
training, a single-hidden layer feedforward neural network with 𝑁 hidden neurons and activation function 𝑔
is represented as follows:

𝐺 (𝐱𝐭) = ∑ 𝛃𝐢𝑔(𝐰𝐢 ∙ 𝐱𝐭 + 𝑏) with 𝑡 = 1, … , 𝑇 (5)

where 𝐰𝐢 = (𝑤 , 𝑤 , … , 𝑤) is the input weight vector connecting the input neurons with the 𝑖-th hidden

neuron, 𝛃𝐢 = (𝛽 , 𝛽 , … , 𝛽) is the output weight vector connecting the hidden to the output neurons, and
𝑏 is the bias associated with the 𝑖-th hidden neuron.
Approximating the sample with zero errors is equivalent to find 𝐰𝐢, 𝛃𝐢, and 𝑏 such that:

‖𝐺 (𝐱𝐭) − 𝐝𝐭‖ = 0 with 𝑡 = 1, … , 𝑇 (6)

It is possible to reformulate these 𝑇 equations by introducing the so called hidden layer output matrix 𝐇
(Huang and Babri, 1998; Huang, 2003), where the 𝑖-th column contains all the outputs of the 𝑖-th hidden
neuron fed by all the 𝑇 samples:

𝐇𝛃 = 𝐃 (7)

where:

𝐇 =
𝑔(𝐰𝟏 ∙ 𝐱𝟏 + 𝑏) … 𝑔(𝐰𝐍 ∙ 𝐱𝟏 + 𝑏)

… … …
𝑔(𝐰𝟏 ∙ 𝐱𝐓 + 𝑏) … 𝑔(𝐰𝐍 ∙ 𝐱𝐓 + 𝑏)

×

 (8)

𝛃 =
𝛃𝟏

…
𝛃𝐍 ×

 and 𝐃 =
𝐝𝟏

…
𝐝𝐓 ×

 (9)

Figure 1 shows the standard feedforward architecture.

Figure 1. The feedforward neural network

4.2 Time-delay neural networks

The time-delay architecture (see Figure 2) differs from the feedforward one since each input 𝑡 not only
includes the feedforward network input 𝐱𝐭 but also some of the preceding samples. The number of these
preceding inputs is called taps. Thus the time-delay neural network input 𝑡 is:

1

…

n

1

i

N

1

…

m

𝑤𝑖1

𝛽𝑖1

𝐺𝑁(𝐱𝐭) 𝐱𝐭

𝐱𝐭 = 𝐱𝐭, 𝐱𝐭 𝟏, … , 𝐱𝐭 𝐭𝐚𝐩𝐬 (10)

This changes both the dimension of each input vector, 𝐱𝐭 ∈ ℝ ∙(), and of each input weight vector

𝐰𝐢 ∈ ℝ ∙(). The rest of the architecture remains the same.

Figure 2. The time-delay neural network.

4.3 Recurrent neural networks

Recurrent architecture (see Figure 3) contains a context layer which is fully connected to the hidden layer
and recurrently enriches the training stage using the previous output signals. The recurrent architecture can
be modelled and used as a feedforward one by changing the network input. Each input 𝑡 not only includes
the sample 𝐱𝐭 but also hidden layer’s output, produced for the previous input, defined as:

𝐠𝐭 = 𝑔(𝐰𝟏 ∙ 𝐱𝐭 + 𝑏), 𝑔(𝐰𝟐 ∙ 𝐱𝐭 + 𝑏), … , 𝑔(𝐰𝐍 ∙ 𝐱𝐭 + 𝑏) (11)

Thus the time-delay neural network input for the period 𝑡 is:

𝐱𝐭 = (𝐱𝐭, 𝐠𝐭 𝟏) (12)

This architecture was proposed by Elman and Zipser (1988) to provide dynamic memory to the network. It
was also tested by Nasiri Pour et al. (2008), with promising results for forecasting intermittent demand
patterns. If back-propagation is adopted for training the network, a further parameter named time constant
has to be set, with a value of less than one; it allows back-propagation of the previous output signals with a
contribution that decays slowly toward zero during each cycle. Hence, the context layer contains its own
embedded ‘memory’ mechanism. In the extreme learning machines training there is no time constant. Each
input weight vector 𝒘𝒊 is set before the training takes place and all the output weight vectors 𝛃𝐢 are affected
by the 𝒙𝒕 time-delay neural network inputs only.

1

…

n

1

i

N

1

…

m

𝑤𝑖1

𝛽𝑖1

𝐱𝐭

1

…

n

𝐱𝐭−𝐭𝐚𝐩𝐬

𝐱𝐭 𝐺𝑁 (𝐱𝐭)

Figure 3. The recurrent neural network.

5. Learning approaches

Training the network aims at finding 𝐰𝒊
∗, 𝛃∗, and 𝑏∗ for each 𝑖-th hidden neuron, minimising the error

‖𝐺 (𝐱𝐭) − 𝐝𝐭‖ over the samples. From Eq.(7):

‖𝐇(𝐰𝟏

∗, … , 𝐰𝐍
∗ , 𝛃𝟏

∗ , … , 𝛃𝐍
∗ , 𝑏∗, … , 𝑏∗)𝛃∗ − 𝐃‖ = min

𝐰𝐢,𝛃𝐢,
‖𝐇(𝐰𝟏, … , 𝐰𝐍, 𝛃𝟏, … , 𝛃𝐍, 𝑏 , … , 𝑏)𝛃 − 𝐃‖ (13)

From Eq.(5), this is equivalent to minimising the total error 𝐸 made by the network in approximating the 𝑇
samples:

𝐸 = ∑ ∑ 𝛃𝐢𝑔(𝐰𝐢 ∙ 𝐱𝐭 + 𝑏) − 𝐝𝐭 (14)

Eq.(14) represents a least squares problem, where a batch quadratic error has to be minimised, and can be
solved through different algorithms. As introduced in Section 1, two learning algorithms are compared here.
The first one (Section 5.1) is the well-known back-propagation algorithm (Rumelhart et al., 1986) and
belongs to the family of gradient-based algorithms. The latter is more recent (Huang et al., 2004; Huang et
al., 2006) and is called extreme learning machines (Section 5.2).

5.1 Back-propagation

This is a first order gradient method, where a backward pass starts by computing the error gradient on
𝐺 (𝐱𝐭) (Eq.(5)), and then propagates derivatives from the output to the input layer by using the chain rule in
order to assess the error gradient with respect to 𝐖 = (𝐰𝟏, … , 𝐰𝐍, 𝛃𝟏, … , 𝛃𝐍, 𝑏 , … , 𝑏). The error surface is
thus explored by following the opposite of the error gradient in order to establish a global minimum; this
constitutes the training stage over a predefined number of iterations named epochs.
Two different learning modes can be used during the training stage. In the first type, called batch learning,
the whole sample set is presented to the network in each epoch 𝑒. Hence, the error must be minimised across
all the training samples in the opposite direction of the resulting gradient. Eq.(14) represents the batch error
across the samples, whose gradient must be evaluated. In the second one, called online or example-by-

𝛽𝑖1

1

…

n

1

i

N

1

…

m

𝑤𝑖1

𝐱𝐭

1

…

N

𝐠𝐭

1

…

N

𝐠𝐭−𝟏

𝐱𝐭 𝐺𝑁(𝐱𝐭)

example learning, 𝐖 is changed after the presentation of each sample from 1 to 𝑇. That is to say, the error
gradient is first calculated using the first sample, and then the second one, and so on until 𝑇. This can
potentially lead to instability whenever they change offset due to the randomized position of the subsequent
training samples in the error space, and computation effort may be wasted on irrelevant data. Conversely,
online learning can be helpful to escape from local minima. Online learning is the only type that can be
applied to real-time problems, i.e. when data arrive in real time.
The standard gradient descent formula adopts the learning rate 𝜂 , indicating how far the components of 𝐖
change on the error surface over the epochs, in terms of the percentage of gradient arrow length. Given a
generic epoch 𝑒 and the expression of the back-propagated error 𝐸, the vector 𝐖𝒆 referring to the epoch 𝑒 is
given by:

𝐖𝒆 = 𝐖𝒆 𝟏 − 𝜂
(𝐖)

𝐖
 (15)

For example, a learning rate equal to one causes the movements on the error surface to be exactly equal to
the gradient. A learning rate value which is too high may cause entrapment of the learning in a local
minimum, due to the oscillation phenomenon. Conversely, a low value leads to a slow learning stage.
A common way to improve the gradient descent is to combine the gradient descent (Eq.(15)) with a
momentum 𝜇 (reader can refer to Rumelhart et al., 1986; Qian 1999). This factor determines the inertia of
the weight change through the application of exponential smoothing, with the aim of establishing the relative
importance of past weight changes for the current one, analogous to a common smoothing parameter.
The learning rate and momentum are therefore applied to the weight change formula for the current epoch 𝑒
as follows:

∆𝐖𝒆 = 𝜇∆𝐖𝐞 𝟏 − 𝜂
(𝐖)

𝐖
 (16)

With:

∆𝐖𝒆 = 𝐖𝒆 − 𝐖𝒆 𝟏 (17)

Note that a null momentum means the past weight change will not be considered.
Several works deal with the choice of 𝜂 and 𝜇, providing useful criteria for selecting 𝜂 and 𝜇 (e.g. 𝜂 + 𝜇 =

1) but do not guarantee their optimality, regardless of the specific problem type faced by the ANNs.
Gutierrez et al. (2008) adopt 𝜂 = 0.1 and 𝜇 = 0.9, as well as Mukhopadhyay et al. (2012), while Nasiri Pour
et al. (2012) do not state these values. Kourentzes (2013) applies the Levenberg-Marquardt algorithm instead
of the gradient descent (for a description of this algorithm, see Fun and Hagan, 1996).
ANNs trained by means of the gradient descent of the back-propagated error suffer from the weaknesses
already emphasized in Section 1. Among these, they are susceptible to the overfitting like all the machine
learning tools, which compromises their generalizing ability through reduced adaptability to new data. There
may be several potential causes of the overfitting phenomenon to be investigated (e.g. high number of
neurons in the hidden layers, high number of setting parameters, limited training data, etc...), including the
excessive length of the training stage in terms of the number of epochs. Hence a wide set of stopping criteria
have been introduced in the literature, with the aim of avoiding the overfitting phenomenon, as well as the
subsequent worsening of predictive performance for new data. Fixing the number of learning epochs,
choosing a threshold value for the error during the training, applying cross-validation and early stopping are
some of the possible strategies to avoid overfitting. Readers can refer to Prechelt (1998), Nguyen et al.
(2005), Chan et al. (2006) and Piotrowski and Napiorkowski (2013) for a comprehensive review of the
overfitting phenomenon, along with the strategies for avoiding it. With regard to the ANNs used to forecast
intermittent demand, Gutierrez et al. (2008) state that the training should stop whenever the error is

minimized, as do Mukhopadhyay et al. (2012). However, it is worth emphasising that the best stopping
criterion cannot be generalized, regardless of the ANN or the data being handled. This is supported by the
empirical evidence reported in the experimental section.

5.2 Extreme learning machines

Two theorems constitute the theoretical foundation of extreme learning machines, whose proofs are reported
in Huang et al. (2006).
The first states that a for a single-hidden layer feedforward neural network where 𝑁 = 𝑇, that is to say with a
number of hidden neurons equal to the number of samples, and an activation function 𝑔 that is infinitely
differentiable in any interval, the hidden layer output matrix 𝐇 (see Eq.(8)) is invertible, and ‖𝐇𝛃 − 𝐃‖ = 0
for any 𝐰𝐢 and 𝑏 randomly chosen according to any continuous probability distribution. It follows that a
single-hidden layer feedforward neural network with these properties satisfies the universal approximation
capability (Huang et al., 2015), and can approximate the 𝑇 samples with zero error. Moreover, given the
random initialisation of 𝐰𝐢 and 𝑏 , the only free parameters for learning are thus the weights between the
hidden layer and the output layer, which are the components of the vector 𝛃 (see Eq.(9)). The
implementation of extreme learning machines is therefore greatly simplified because the iterative tuning of
the hidden neurons is no longer required.
Given an activation function 𝑔 infinitely differentiable in any interval and for any 𝐰𝐢 and 𝑏 randomly
chosen according to any continuous probability distribution, and according to the first theorem, the second
one states that there always exists a number of hidden neurons 𝑁 ≤ 𝑇 such that ‖𝐇𝛃 − 𝐃‖ < 𝜀, for any
small positive value 𝜀 > 0. The upper bound of the hidden nodes is therefore 𝑇. If learning error is allowed,
it follows that the only parameter to set is the number of hidden neurons. This implies the overfitting risk for
extreme learning machines as well, but only due to the number of hidden neurons. Conversely, the gradient
method may lead to overfitting, even due to an excessive tuning of the hidden neurons during the training
stage.
Since 𝑁 ≪ 𝑇 in many real applications to forecasting, which means that the errors are allowed in the training
stage, the random assignment of 𝐰𝐢 and 𝑏 makes 𝐇𝛃 = 𝐃 a linear system, and Eq.(13) is equivalent to
finding 𝛃∗ as the least-squares solution of:

‖𝐇(𝐰𝟏, … , 𝐰𝐍, b , … , b)𝛃∗ − 𝐃‖ = min‖𝐇(𝐰𝟏, … , 𝐰𝐍, b , … , b)𝛃 − 𝐃‖ (18)

Actually, if 𝑁 < 𝑇 then 𝐇 is a non-square matrix. A well-known algebraic theorem (readers can refer to
Serre, 2002) states that the smallest norm solution of Eq.(18) is:

𝛃∗ = 𝐇 𝐃 (19)

where 𝐇 is the Moore-Penrose generalised inverse of 𝐇 (Penrose and Todd, 1955). Singular value

decomposition is one of several methods used to calculate 𝐇 , e.g. orthogonalization and iterative. Huang et

al. (2006) underlined that singular value decomposition can always be used for the 𝐇 calculation in an
extreme learning machines scenario. Said calculation can take place even if the matrix 𝐇 contains linearly
dependent columns.

6. The experienced networks

By using the notation adopted previously, a general forecasting problem dealing with neural networks
consists of assessing the input pattern 𝐱𝐭 = (𝑥 , 𝑥 , … , 𝑥) ∈ ℝ𝒏, with sample 𝑡 = 1, … , 𝑇, to correlate
with the corresponding 𝑇 mono-dimensional target 𝑑 ∈ ℝ, i.e. the 𝑇 past demand values.

In this work, a three-dimensional input 𝐱𝐭, with 𝑡 = 1, … , 𝑇, is represented by the pattern 𝐱𝐭 = (𝑑 , 𝜏 , 𝛿),
where:

 𝑑 : the demand at time period 𝑡 − 1;

 𝜏 : “the number of periods separating the last two non-zero demand transactions at the end of the
immediately preceding period” (Gutierrez et al., 2008);

 𝛿 : “the cumulative number of successive periods with zero demand” (Mukhopadhyay et al.,
2012).

The second and the third input neurons were respectively introduced by Gutierrez et al. (2008) and
Mukhopadhyay et al. (2012) into their two-dimensional input patterns 𝐱𝐭 = (𝑑 , 𝜏) and 𝐱𝐭 =

(𝑑 , 𝛿), but they have never been used simultaneously. However, data from both of these input neurons
could jointly improve the training on the temporal behaviour of the time series in terms of zero/non-zero
demand. In fact, this is the main issue to be addressed with regard to intermittent demand patterns. Since
their interpretation can be misunderstood, Table 1 clarifies the input pattern with a numeric example.

𝒅𝒕 𝟏 𝝉𝒕 𝟏 𝜹𝒕 𝟏
1 0 0
5 0 0
7 0 0
0 0 1
0 0 2

12 2 0
1 0 0

Table 1. An example of three-dimensional input patterns.

This input pattern is adopted into the three architectures, i.e. feedforward, time-delay, and recurrent,
respectively set out in Sections 3.1, 3.2, and 3.3. The resulting networks are trained by the back-propagation
gradient-descent algorithm, both in online and batch modalities, and by extreme learning machines. The
extreme learning machines training is performed only in the batch mode.

6.1 Notation

In order to uniquely identify a network, a compact notation consisting of a string of fields separated by “_” is
introduced, which refer to the architecture, the learning approach, and the learning mode. These fields are
indicated with the acronyms below, with their meanings written in brackets:

 Architecture: FF (Feedforward neural network); TD (Time-delay neural network); R (Recurrent neural
network).

 Learning approach: BP (Back-propagation); E (Extreme learning machines).

 Learning mode: B (Batch); O (Online).

For instance, a network TD_BP_O has a time-delay architecture and is trained using back-propagation in the
online modality.
Since the experimental comparison involves the networks of Gutierrez et al. (2008) and Mukhopadhyay et al.
(2012) as benchmarks, they are respectively indicated as “GUT” and “MUK”, assuming that these networks
are feedforward with two input neurons. However, GUT and MUK have been trained by back-propagation as
in the original contributions, both in batch and in online modalities (GUT_BP_B, GUT_BP_O, MUK_BP_B,
and MUK_BP_O) and by extreme learning machines (GUT_E and MUK_E).
CR and SBA differ only in terms of the smoothing coefficients, which are fixed at the same value (i.e. 𝛼 = 𝛽),
and are followed by the value of the smoothing coefficient, e.g. CR_0.2.

7. The comparison approach

The time series were first divided into a training and a test set. The former contains the first 𝑇 samples on
which the networks are trained, while the latter is composed of the remaining 𝑆 observations on which the
comparison is performed. Hence, the comparison involved the demands (𝑑 , 𝑑 , … , 𝑑) and the
forecasts (𝐷 , 𝐷 , … , 𝐷). The partition of the time series into a training and a subsequent test set
cannot be driven by any general rule, due to the sensitivity of ANN performance to a multitude of correlated
features affecting their generalizing ability (e.g. network architecture, time series length, training parameters,
etc.). With regard to the ANNs compared in this work, Gutierrez et al. (2008) adopted a partition of 65-35 %
of the time series for the training and the test set respectively, while Mukhopadhyay et al. (2012) tested three
different partitions, i.e. 80-20, 65-35 and 50-50 %. However, in order to make the results as comparable as
possible, the 65-35 % partition was adopted for all the approaches.
The Croston method-CR (Croston, 1972) and the Syntetos-Boylan approximation-SBA (Syntetos and
Boylan, 2005) have also been taken as benchmarks. Given a predefined set of values for the smoothing
coefficients, they were optimised by minimising the mean square error (𝑀𝑆𝐸) on the training set for each
time series. The choice of using such an accuracy measure for setting the smoothing coefficients is analogous
to the neural networks learning approach (see Eq.(7)).
The results reported by Makridakis and Hibon (2000) referring to the well-known M3-Competition, as well
as by others focusing specifically on forecasting intermittent demand (e.g. Teunter and Duncan, 2009;
Teunter and Sani, 2009) suggest using different accuracy measures for the comparison, because a single
measure could not be entirely informative on the different dimensions of the error. Readers can refer to
Wallström and Segerstedt (2010) for a review of different accuracy measures for intermittent demand. In
general, two categories of measures may be identified, which are respectively scale and non-scale dependent.
Since it is intended here to propose statistical tests on these measures from a set of time series, only non-
scale dependent measures must be used. In particular, two measures were taken into account.
The first is the common 𝑀𝐴𝑃𝐸 (Mean Absolute Percentage Error), which is expressed as follows:

𝑀𝐴𝑃𝐸 =
∑ | |

∑
 (20)

This measure provides the relationship between the average absolute error and the average demand on a
certain time horizon, so that it can be considered a valid choice for time series with different mean levels.
In fact, 𝑀𝐴𝑃𝐸 is given by the ratio of the metrics 𝑀𝐴𝐷 (Mean Absolute Deviation) and 𝐴 (Average
Demand):

𝑀𝐴𝐷 =
∑ | |

 (21)

𝐴 =
∑

 (22)

𝑀𝐴𝑃𝐸 can also be applied to intermittent demand with at least one strictly positive observation during the
time horizon, because 𝑑 does not appear in any denominator.
The second accuracy measure, i.e. 𝑀𝐸/𝐴, refers to the non-scale dependent systematic error (bias)
committed, and thus allows us to determine whether a forecasting approach on average underestimates or
overestimates the level of demand. This is expressed as the ratio between 𝑀𝐸 (Mean Error) and 𝐴 (Eq.22),
where 𝑀𝐸 is as follows:

𝑀𝐸 =
∑ ()

 (23)

Hence:

𝑀𝐸/𝐴 =
∑ ()

∑
 (24)

Actually, a positive or a negative 𝑀𝐸/𝐴 means respectively that the method underestimates or overestimates
the level of demand.
A further well-known guideline reported in Makridakis and Hibon (2000) suggests evaluating the
performance of forecasting methods for different time horizons. Here, the accuracy of the forecasting method
was evaluated for one, three and five periods ahead. In the case of three and five periods ahead in particular,
both periodic and rolling updating were tested. Periodic updating grouped the single periods into aggregated
periods. The size of each aggregated period was determined by the time horizon considered (three or five)
and a single period could belong to an aggregated period only. Each accuracy evaluation was performed
knowing the last aggregated period outcome divided by the number of single periods used to produce it. The
rolling updating, on the contrary, worked with a moving window pattern. Each single period could belong to
more aggregate periods and the central point of the aggregate period under consideration would move ahead
one single period at a time. The distinction between periodic and rolling updates only makes sense for time
horizons greater than one time period. Moreover, the number of accuracy evaluations applied for rolling
updating is higher than for periodic updating. For instance, a test set of twelve time periods with a
forecasting horizon of three periods allows four periodic and ten rolling accuracy evaluations.
To sum up, following the notation reported in Section 6.1, three new ANNs , i.e. FF, TD, and R, and two
existing ANNs, i.e. GUT (Gutierrez et al., 2008) and MUK (Mukhopadhyay et al., 2012), have been trained
by BP (Rumelhart et al., 1986), in modalities O and B, and ELM (Huang et al., 2006), and compared with
optimised CR (Croston, 1972) and SBA (Syntetos and Boylan, 2005) for three time horizons (one, three and
five periods ahead), through periodic and rolling updates, in terms of 𝑀𝐴𝑃𝐸 and 𝑀𝐸/𝐴.

8. Experimental analysis

After data collection with the relevant descriptive statistics (Section 8.1), the parameter settings are provided.
(Section 8.2).

8.1. Data collection

Twenty-four weekly intermittent time series were collected from the spare-part dataset of an industry
operating in the automotive sector. In order to highlight the erraticness and intermittence levels, CV and ADI
were computed using the definitions provided in Willemain et al. (1994). Specifically, CV represents the
coefficient of variation of non-zero demands, while ADI represents the average number of time periods
between two successive non-zero demands. Alternatively, using the definitions given in Syntetos and Boylan
(2001), CV2, i.e. the squared version of CV, can be computed. CV and ADI thus represent the measures of
demand size erraticness and intermittency respectively (see rows ADI and CV, or rows ADI and CV2, in
Table 2). Moreover, CV and ADI are not correlated here, and the time series do not show any seasonality or
trend. CV2 and ADI have been used by Syntetos et al. (2005) for categorising demand patterns on the basis of
their theoretical thresholds (0.49 and 1.32, respectively), which have been derived as the values identifying
the regions where SBA outperforms CR in terms of the theoretical mean square error. Figure 4 plots the
twenty-four time series in a CV2-ADI diagram, where the number of items and the categories of demand
patterns are reported into each quadrant.
Moreover, the mean values of the time series are reported in Table 2 in the ‘mean’ rows, along with the
length of the time series.

Table 2. The time series data collected.

Figure 4. The CV2-ADI categorisation for the time series.

8.2 Parameter settings

All the experimentation was performed using Joone®, NeuroSolutions®, and Matlab® for extreme learning
machines. Table 3 summarises all the parameter settings.
The GUT and MUK networks were set with their original architectures and training parameters. Thus, three
hidden neurons were used, with the same learning rate and momentum, i.e. 𝜀 = 0.1 and 𝜇 = 0.9 respectively.
The overfitting phenomenon has to be necessarily monitored when adopting BP as the learning approach, so
the stopping criterion should be established on a case by case basis. GUT and MUK involved training the
ANNs during subsequent steps of 15000 epochs, as in their original experimentations. A similar stopping
criterion, i.e. subsequent steps of epochs, was also adopted for FF_BP and R_BP, but the number of epochs
was set to 10000 in these cases. In fact, when the ANNs show good learning ability in the training stage due
to the additional input neuron, the overfitting phenomenon can be caused by forcing the training through an
excessive number of epochs. Moreover, given the option of continuously monitoring the 𝑀𝑆𝐸 trend, the
training stage was stopped as soon as the minimum error was reached without any further significant

Length 75 76 69 73 76 75 61 65
ADI 1.19 1.23 1.61 1.35 1.38 1.34 1.3 1.3
CV 0.71 0.57 0.44 0.57 0.62 0.96 0.63 0.65

CV2 0.5 0.32 0.19 0.32 0.38 0.92 0.4 0.42
Mean 22.23 3.07 0.87 3.89 2.61 12.01 13.34 4.23

Length 84 73 84 74 72 74 83 82
ADI 1.91 1.92 1.87 1.85 1.5 2.85 1.38 1.41
CV 0.65 0.44 0.68 0.57 0.52 0.33 0.52 0.74

CV2 0.42 0.19 0.46 0.32 0.27 0.11 0.27 0.55
Mean 4.92 0.9 1.62 2.85 28.44 0.42 2.18 124.22

Length 76 74 68 414 83 81 83 81
ADI 1.52 1.18 3.78 1.87 1.36 1.35 1.22 1.27
CV 0.70 0.83 0.42 0.77 0.87 0.57 0.60 0.57

CV2 0.49 0.69 0.18 0.6 0.76 0.32 0.36 0.32
Mean 6 3.74 1.24 14.02 12.55 128.68 104.25 30.98

1 2 4 5 876

16

Series

9 10 11 12 13 14

3

Series

Series 17 18 19 20

15

2421 22 23

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Lumpy
(4 items)

Erratic
(2 items)

Intermittent
(13 items)

Smooth
(5 items)

CV2

ADI

decrease. This strategy appears, in the authors’ opinion, to be the most cautionary, as well as the least time-
consuming one. For TD_BP_B and TD_BP_O, their better learning ability was empirically revealed during
the training stage, and thus a threshold value of 𝑀𝑆𝐸 can be adopted. In particular, four thresholds of 𝑀𝑆𝐸
(0.005, 0.01, 0.017 and 0.026) were tested during the training stage. The threshold 𝑀𝑆𝐸 = 0.017 appeared
to be the most significant since, after that level the 𝑀𝑆𝐸, improvements became harder to achieve. In these
conditions, allowing a smaller 𝑀𝑆𝐸 could have led to overfitting phenomena.
With regard to CR and SBA, 𝛼 = 𝛽 in the range 0.05-0.2 with 0.05 according to the literature in this field
(e.g. Babai et al., 2014).

 α, β
Hidden
Neurons

Momentum
Learning

Rate
Stopping
Criterion

Partition Taps
Time

Constant

CR
0.05/0.1/
0.15/0.2

- - - - 65-35 - -

SBA
0.05/0.1/
0.15/0.2

- - - - 65-35 - -

GUT_BP_B - 3 0.9 0.1
Steps of

15000 epochs
65-35 - -

GUT_BP_O - 3 0.9 0.1
Steps of

15000 epochs
65-35 - -

GUT_E - 3 - - - 65-35 - -

MUK_BP_B - 3 0.9 0.1
Steps of

15000 epochs
65-35 - -

MUK_BP_O - 3 0.9 0.1
Steps of

15000 epochs
65-35 - -

MUK_E - 3 - - - 65-35 - -

FF_BP_B - 3 0.9 0.1
Steps of

10000 epochs
65-35 - -

FF_BP_O - 3 0.9 0.1
Steps of

10000 epochs
65-35 - -

FF_E - 3 - - - 65-35 - -

TD_BP_B - 3 0.9 0.1
Threshold

value of MSE
65-35 3 -

TD_BP_O - 3 0.9 0.1
Threshold

value of MSE
65-35 3 -

TD_E - 3 - - - 65-35 3 -

R_BP_B - 3 0.9 0.1
Steps of

10000 epochs
65-35 - 0.8

R_BP_O - 3 0.9 0.1
Steps of

10000 epochs
65-35 - 0.8

R_E - 3 - - - 65-35 - -

Table 3. The parameter settings.

9. Statistical analysis

Two different statistical analyses have been performed. The first one (Section 9.1) refers to the comparison
between the methods for different aggregation levels. The second one (Section 9.2) aims at investigating the
relationship between the features of the time series (ADI and CV) and the accuracy of the forecasting
methods under comparison. This deep statistical analysis allowed us to develop some useful suggestions for
practitioners (Section 9.3).

9.1. Comparison between methods

In this section, a statistical test is presented for each accuracy measure (𝑀𝐴𝑃𝐸 and 𝑀𝐸/𝐴) obtained in the
test set. Each test is repeated for two aggregation levels, and the latter of these contains two comparisons.
The first aggregation level refers to an overhaul analysis, that is the best performance obtained by the CR and
SBA methods (CR_0.05, …, CR_0.2, SBA_0.05, …, SBA_0.2) is compared with the best one obtained
using the back-propagation learning approach (GUT_BP_B, GUT_BP_O, MUK_BP_B,..., R_BP_O) and
the best one achieved with the extreme learning approach (GUT_E, MUK_E,..., R_E). Following the second
aggregation level, the first comparison is an in-depth analysis of the back-propagation methods; this means
that the best performing feedforward (FF_BP_B and FF_BP_O), time-delay (TD_BP_B and TD_BP_O),
recurrent (R_BP_B and R_BP_O), GUT (GUT_BP_B, GUT_BP_O) and MUK (MUK_BP_B, MUK_BP_O)
networks are compared with each other. The second comparison is among the extreme learning machines,
and is obtained by comparing FF_E, TD_E, R_E, GUT_E and MUK_E with each other. These six tests are
performed for each time horizon (one, three and five periods ahead) and update methodology (periodic and
rolling updates). This leads to a total of thirty tests. Each test follows the same pattern, which will be detailed
in this section. The significant results will be presented in a table and then analysed.
The first objective of the presented tests is to prove whether the average accuracy measure, obtained for one
method, is significantly different from the others. Since each test compares more than two methodologies, a
t-test cannot be used to address this problem. Instead an ANOVA test should be performed. Nevertheless, the
methodology differs slightly in this case. In fact each method, i.e. treatment, is measured based on the same
set of items, while the general ANOVA procedure requires each item to be evaluated using one treatment
only. This obstacle can be overcome using a variant of the test called Repeated Measures ANOVA
(rANOVA). The variance of the subjects analysed, calculated as the sum of squared distances between each
subject performance mean and the grand mean, is subtracted from the variance between. As the measures are
repeated, this sample–dependent variance can be measured and accounted for in this way, thereby increasing
the effectiveness of the test. Moreover, the standard ANOVA procedure assumes that the variance does not
change among the treatments. If this assumption holds and the test rejects the null hypothesis, then the
rejection must be caused by a difference among the performance means. The rANOVA relies on a similar
assumption, which is the sphericity assumption. The difference variance of a pair of treatments is calculated
as the sum of the squared difference of each item performance, divided by its degrees of freedom. The
Mauchly's Test is performed on these data to accept or reject (p<=0.05) the null hypothesis that these
difference variances are non-significantly different. In the examples presented, the sphericity hypothesis is
often violated. This would increase the chances of incurring type I errors, and thus rejecting more correct
null hypotheses than expected. In these cases, the Greenhouse-Geisser correction factor is applied to the
degrees of freedom used during the test ratio calculation.
Rejecting the null hypothesis means that the effectiveness for each method is significantly different. In this
case, a different test is required to address the second objective of the analysis, that is to find which methods
are different. For each pair of treatments, the Tukey’s range test is performed as a mean values comparison.
This particular test relies on a studentized range distribution and is able to manage the family-wise error rates
arising in multiple-comparison scenarios. To be considered significant, a comparison must reject (p<=0.05)
the null hypothesis, stating that the mean values considered are not different.
Table 4 contains the 𝑀𝐴𝑃𝐸 analysis results.

Time horizon Aggregation level
rANOVA
p-value

Better performer Worse performer
Tukey’s
p-value

One period ahead Overhaul analysis 0.008

BP
𝑀𝐴𝑃𝐸: 0.76

E
𝑀𝐴𝑃𝐸: 0.79

0.044

E
𝑀𝐴𝑃𝐸: 0.79

CR-SBA
𝑀𝐴𝑃𝐸: 0.81

0.045

BP
𝑀𝐴𝑃𝐸: 0.76

CR-SBA
𝑀𝐴𝑃𝐸: 0.81

0.024

Back-propagation
comparison

0.37

Extreme learning
comparison

0.37

Three periods
ahead, periodic

Overhaul analysis 0

BP
𝑀𝐴𝑃𝐸: 0.46

CR-SBA
𝑀𝐴𝑃𝐸: 0.51

0.002

E
𝑀𝐴𝑃𝐸: 0.48

CR-SBA
𝑀𝐴𝑃𝐸: 0.51

0.037

Back-propagation
comparison

0.022 Non-identifiable

Extreme learning
comparison

0.29

Three periods
ahead, rolling

Overhaul analysis 0.003
BP

𝑀𝐴𝑃𝐸: 0.47
CR-SBA

𝑀𝐴𝑃𝐸: 0.51
0.012

Back-propagation
comparison

0.014 Non-identifiable

Extreme learning
comparison

0.09

Five periods
ahead, periodic

Overhaul analysis 0.026
BP

𝑀𝐴𝑃𝐸: 0.37
CR-SBA

𝑀𝐴𝑃𝐸: 0.42
0.047

Back-propagation
comparison

0.029 Non-identifiable

Extreme learning
comparison

0.451

Five periods
ahead, rolling

Overhaul analysis 0.052

Back-propagation
comparison

0.003
MUK

𝑀𝐴𝑃𝐸: 0.40
TD

𝑀𝐴𝑃𝐸: 0.51
0.036

Extreme learning
comparison

0.279

Table 4. Statistical tests on 𝑀𝐴𝑃𝐸 for different aggregation levels.

On the overhaul analysis level and regardless of the time horizon and update methodology, the data show a
meaningful performance gap between traditional methodologies and the neural networks trained with the
back-propagation algorithm. This behaviour is not followed by the same networks trained with the extreme
learning, which present a smaller performance gap compared to traditional methods. This gap is significant
only in the first analysis, while an increase of the time horizon means it is not meaningful, as in the last three
examples. This performance difference reduction is also observable in the behaviour of networks trained by
back-propagation, compared with those trained by extreme learning. In the first comparison, the difference
between these training methodologies is significant, in favour of the back-propagation algorithm. This
distinction is lost when the time horizon is increased. From three periods ahead, only the difference between
the back-propagation and CR-SBA methods is significant. The rolling update methodology acts in the same
way, compared to the periodic one. In the three-periods scenario, the gap between BP and CR-SBA drops
from 0.05 to 0.04, changing the update methodology. The same happens in the five-periods case, where in
the rolling case, for the first time, the overhaul analysis becomes non-significant. On a lower aggregation
level, the networks trained with the extreme learning do not present meaningful performance differences.
The same networks trained with the back-propagation algorithm often present significant performance gaps,
but unfortunately the second level test is often unable to identify with which methods the performances
differ. A possible reason for this issue is provided by the last comparison, in which MUK outperforms FF.
Table 5 contains the 𝑀𝐸/𝐴 analysis results.

Time horizon Aggregation level
rANOVA
p-value

Better performer Worse performer
Tukey’s
p-value

One period ahead
Overhaul analysis 0.676

0.018 MUK FF 0.057

Back-propagation
comparison

𝑀𝐸/𝐴: 0 𝑀𝐸/𝐴: -0.1

MUK
𝑀𝐸/𝐴:

R
𝑀𝐸/𝐴: -0.16

0.055

Extreme learning
comparison

0.48

Three periods
ahead, periodic

Overhaul analysis 0.536

Back-propagation
comparison

0.022

MUK
𝑀𝐸/𝐴: -0.03

FF
𝑀𝐸/𝐴: -0.14

0.045

MUK
𝑀𝐸/𝐴: -0.03

R
𝑀𝐸/𝐴: -0.22

0.054

Extreme learning
comparison

0.466

Three periods
ahead, rolling

Overhaul analysis 0.924

Back-propagation
comparison

0.014

MUK
𝑀𝐸/𝐴: -0.01

FF
𝑀𝐸/𝐴: -0.12

0.042

MUK
𝑀𝐸/𝐴: -0.01

R
𝑀𝐸/𝐴: -0.19

0.046

Extreme learning
comparison

0.28

Five periods
ahead, periodic

Overhaul analysis 0.507

Back-propagation
comparison

0.028
MUK

𝑀𝐸/𝐴: -0.02
FF

𝑀𝐸/𝐴: -0.11
0.021

Extreme learning
comparison

0.346

Five periods
ahead, rolling

Overhaul analysis 0.733

Back-propagation
comparison

0.016

MUK
𝑀𝐸/𝐴: -0.03

FF
𝑀𝐸/𝐴: -0.13

0.022

MUK
𝑀𝐸/𝐴: -0.03

R
𝑀𝐸/𝐴: -0.22

0.053

Extreme learning
comparison

0.256

Table 5. Statistical tests on 𝑀𝐸/𝐴 for different aggregation levels.

Both the overhaul analysis and the extreme learning comparison are strongly non-significant. Using a
different learning approach does not provide different performances in terms of the relative systematic error.
In the same way, if the neural network is trained with the extreme learning methodology, the architecture
choice does not provide meaningful performance improvements. The only difference is among the networks
trained with back-propagation. This difference is always highlighted in the rANOVA results, but it is not
always easy to identify the gap source by applying the Tukey’s test. Some rejected Tukey’s tests show p-
values very close to 0.05 with a meaningful pattern, and thus have been shown. The most robust result in the
back-propagation analysis is the performance difference between the MUK and the FF, the former
outperforming the latter. This finding is present across all the time horizons and update methodologies, being
non-significant only in the one period horizon. The least robust result in the back-propagation analysis is the
effectiveness gap between the MUK and R methods, the former probably being more effective. This relation
is more doubtful since it is proved only in the three-period rolling scenario. All the others cases show p-
values only close to the significant amount 0.05, while in the five-period-ahead time horizon with periodic
update methodology, this last result is absent, as the p-value found (0.068) is quite far from the objective
value.
From table 4, it appears that the 𝑀𝐴𝑃𝐸 achieved in the overhaul analysis decreases while the time horizon
increases. For example, the BP performance moves from 0.76 in the one-period-ahead horizon to 0.46 in the
three-period-ahead periodic scenario and 0.47 in the rolling one. The reduction is also significant in the five-
period-ahead periodic horizon, with a 𝑀𝐴𝑃𝐸 of 0.37. The corresponding rolling case reaches a performance

of 0.40. The first test is nevertheless unable to prove this phenomenon, as each p-value is calculated within a
time horizon. A third test has therefore been carried out, comparing the best 𝑀𝐴𝑃𝐸 performance obtained by
each time horizon and update methodology. A fourth specular test has also been run, comparing the 𝑀𝐸/𝐴
performance across the same time horizons and update methodologies. Both these tests contain a rANOVA
analysis and a subsequent Tukey’s test, performed if the first analysis provides significant results.
Table 6 contains the 𝑀𝐴𝑃𝐸 analysis results.

Comparison
r-ANOVA

p-value
Better performer Worse performer

Tukey’s
p-value

Between time horizons 0

Five periods ahead,
rolling

𝑀𝐴𝑃𝐸: 0.35

Three periods
ahead, periodic
𝑀𝐴𝑃𝐸: 0.45

0.001

Five periods ahead,
rolling

𝑀𝐴𝑃𝐸: 0.35

Three periods
ahead, rolling
𝑀𝐴𝑃𝐸: 0.46

0

Five periods ahead,
rolling

𝑀𝐴𝑃𝐸: 0.35

One period ahead
𝑀𝐴𝑃𝐸: 0.77

0

Five periods ahead,
periodic

𝑀𝐴𝑃𝐸: 0.35

Three periods
ahead, periodic
𝑀𝐴𝑃𝐸: 0.45

0.001

Five periods ahead,
periodic

𝑀𝐴𝑃𝐸: 0.35

Three periods
ahead, rolling
𝑀𝐴𝑃𝐸: 0.46

0

Five periods ahead,
periodic

𝑀𝐴𝑃𝐸: 0.35

One period ahead
𝑀𝐴𝑃𝐸: 0.77

0

Three periods ahead,
periodic

𝑀𝐴𝑃𝐸: 0.45

One period ahead
𝑀𝐴𝑃𝐸: 0.77

0

Three periods ahead,
rolling

𝑀𝐴𝑃𝐸: 0.46

One period ahead
𝑀𝐴𝑃𝐸: 0.77

0

Table 6. Statistical tests on 𝑀𝐴𝑃𝐸 through different time horizons.

The results shown prove the inverse link between time horizons and 𝑀𝐴𝑃𝐸 performances. The rANOVA
analysis is strongly significant and so are the singular Tukey’s pairwise tests between different time
horizons. Conversely, a strong lack of significance has been found when comparing different update
methodologies within the same time horizon. The comparison between five periods ahead periodic and
rolling achieves a p-value close to 1. The corresponding match between three periods ahead periodic and
rolling achieves a p-value of 0.88. This lack of significance further confirms the link between time horizon
and 𝑀𝐴𝑃𝐸 performances, unaffected by the selected update methodologies.
Table 7 contains the 𝑀𝐸/𝐴 analysis results.

Comparison
r-ANOVA

p-value
Better

performer
Worse

performer
Tukey’s
p-value

Between time horizons 0.431

Table 7. Statistical tests on 𝑀𝐸/𝐴 through different time horizons.

This last test shows no connection between time horizons and 𝑀𝐸/𝐴 performances. Since the rANOVA p-
value shows a strong lack of significance, there is no need to perform a Tukey’s test.

9.2. Regression analysis

As described in Section 8.1, the data used in this experimental analysis are characterized by the 𝐴𝐷𝐼 and 𝐶𝑉
parameters, presented in Table 2. It may be significant to compare the performances achieved in each
scenario with the characteristics of the series achieving said performances in terms of 𝑀𝐴𝑃𝐸 and 𝑀𝐸/𝐴.
When the performance measure focused on is the 𝑀𝐴𝑃𝐸, a direct relation can be seen by plotting it against
the 𝐴𝐷𝐼 characteristic. Conversely, this behaviour is absent when the 𝑀𝐴𝑃𝐸 is plotted against 𝐶𝑉 . The
second performance measure, 𝑀𝐸/𝐴, shows no significant patterns when plotted against 𝐴𝐷𝐼 or 𝐶𝑉 . The
𝑀𝐴𝑃𝐸 behaviour is believed to be linear, and this can be proved by calculating the simple regression line.
After the line parameters have been calculated, an ANOVA test can be performed, comparing the variance
unexplained by the regression with the total variance. The underlying null hypothesis states that the linear
relationship does not explain the 𝑀𝐴𝑃𝐸 behaviour any better than the average 𝑀𝐴𝑃𝐸 value across the series.
The null hypothesis is discarded if the p-value achieved is equal to or lower than 0.05. In this case, the linear
model explains the performance behaviour significantly better than the average 𝑀𝐴𝑃𝐸 value. Regression
lines are calculated on three levels of analysis. The first level is the time horizon and the update
methodology. Five lines are generated using the best result available in that time horizon by adopting that
update methodology for each series. Each line is treated separately, meaning that five different ANOVA tests
are performed in order to identify which structures are meaningfully linear. The second level of analysis
draws a line for the back-propagation and the extreme learning machines. These lines are calculated within
the time horizon frame, leading to a total of fifteen lines. As in the previous analysis, each line is managed
independently. This level corresponds to the overhaul analysis performed in section 9.1. The third analysis
level operates on non-grouped neural network data. Each neural network method is evaluated, with its time
frame, learning algorithm and structure. This leads to fifty lines and corresponding tests. In the table below,
the results for this last scenarios are provided in an aggregate form, presenting only the minimum and
maximum values registered.
Table 8 contains the regression line parameters and the ANOVA test p-values.

Level of analysis Time horizon
Learning

methodology
Single method Intercept Slope

ANOVA
p-value

Time horizons

One period ahead

-0.014 0.518 0.000

Three periods ahead,
periodic

-0.034 0.293 0.005

Three periods ahead, rolling -0.063 0.326 0.000

Five periods ahead, periodic -0.043 0.247 0.030

Five periods ahead, rolling -0.088 0.276 0.001

Overhaul
analysis

One period ahead
Back-propagation

-0.026 0.530 0.000

Extreme learning -0.038 0.558 0.000

Three periods ahead,
periodic

Back-propagation

-0.049 0.312 0.007

Extreme learning -0.046 0.325 0.009

Three periods ahead, rolling
Back-propagation

-0.101 0.359 0.000

Extreme learning -0.074 0.354 0.000

Five periods ahead, periodic
Back-propagation

-0.033 0.257 0.029

Extreme learning -0.083 0.296 0.016

Five periods ahead, rolling
Back-propagation

-0.124 0.309 0.001

Extreme learning -0.137 0.329 0.003

Single methods One period ahead
Back-propagation

Min value -0.124 0.432 0.000

Max value 0.241 0.653 0.048

Extreme learning Min value -0.187 0.583 0.000

Max value -0.035 0.690 0.000

Three periods ahead,
periodic

Back-propagation
Min value -0.202 0.277 0.027

Max value 0.041 0.532 0.050

Extreme learning
Min value -0.133 0.295 0.006

Max value 0.027 0.429 0.030

Three periods ahead, rolling

Back-propagation
Min value -0.295 0.328 0.001

Max value -0.008 0.598 0.010

Extreme learning
Min value -0.159 0.341 0.001

Max value -0.029 0.452 0.002

Five periods ahead, periodic

Back-propagation
Min value -0.261 0.271 0.017

Max value 0.011 0.523 0.091

Extreme learning
Min value -0.184 0.284 0.007

Max value -0.036 0.399 0.038

Five periods ahead, rolling

Back-propagation
Min value -0.446 0.287 0.003

Max value -0.048 0.638 0.020

Extreme learning
Min value -0.288 0.332 0.001

Max value -0.099 0.470 0.010

Table 8. Regression line parameters for 𝑀𝐴𝑃𝐸 and 𝐴𝐷𝐼 with the corresponding statistical tests.

In the table above, the only non-significant regression line is the one applied to the GUT_BP_B in the five-
periods-ahead time horizon (p-value: 0.091). All the other regression lines can explain the 𝑀𝐴𝑃𝐸 behaviour
significantly better than the average 𝑀𝐴𝑃𝐸. This strongly confirms the linear model as a reliable
approximation of the 𝑀𝐴𝑃𝐸 behaviour, regardless of the methodology applied and the aggregation level
considered.
Figure 5 below shows, as an example, the one-period-ahead Overhaul analysis.

Figure 5. Regression lines for 𝑀𝐴𝑃𝐸 and 𝐴𝐷𝐼, in the one-period-ahead Overhaul analysis.

9.3 Suggestions for practitioners

To sum up the deep statistical analysis performed, and derive indications that are useful for improving the
applicability of neural networks to real settings, the following points should be emphasised:

 Neural networks are harder to implement than the simple CR and SBA methods but they do achieve
significantly better performance in terms of 𝑀𝐴𝑃𝐸.

 The choice of a longer time horizon can significantly decrease the 𝑀𝐴𝑃𝐸 values, regardless of the
training method or architecture chosen. This directly impacts the forecasting effectiveness, also from
an inventory management point of view.

 The extreme learning machine training method is easier and faster to implement, but may produce
less effective results. If possible, a back-propagation algorithm is preferable.

 If the back-propagation training methodology is chosen, we recommend implementing the MUK
network. It achieves better results in terms of 𝑀𝐸/𝐴 and could also lead to better performance in
terms of 𝑀𝐴𝑃𝐸.

 The forecasting performance in terms of 𝑀𝐴𝑃𝐸 is directly and linearly related to the 𝐴𝐷𝐼. The more
erratic the time series is, the worse the forecasting performance becomes. This happens regardless of
the methodology applied and can significantly affect inventory management. On the contrary, the
systematic error committed by the networks is not linearly related to the 𝐴𝐷𝐼. This implies that the
forecast-oriented categorisation of demand patterns has to be realised only in terms of 𝐴𝐷𝐼 when
single-hidden layer neural networks are adopted.

10. Conclusions and extensions

Accurate forecasts are of fundamental importance for an efficient inventory control system. This is evident in
the case of intermittent demand, especially when the purchase and backorder costs are high. Spare parts
management is one example of this, where expensive items requiring high availability in order not to appear
in backorders typically show intermittent profiles. Single-hidden layer neural networks represent a promising
approach, whose main strength is their ability to generalise non-linear functions without the need for
distribution assumptions. However, few papers have been devoted to investigating their forecasting accuracy
for intermittent demand, and they have not been widely implemented in real industrial environments due to
the intensive computational efforts required by the gradient descent-based algorithms for training the
networks. Back-propagation belongs to this family of algorithms, and has been typically adopted into this
research field.
In order to improve the understanding of these predictors in the field of intermittent demand forecasting, this
paper provides a comparison between standard methods, i.e. CR (Croston, 1972) and SBA (Syntetos and
Boylan, 2005), and a set of ANNs with different input patterns, architectures (feedforward, time-delay, and
recurrent), and trained by two different learning approaches (back-propagation and extreme learning
machines), on twenty-four real time series. Two accuracy metrics, updated on both a periodic and a rolling
base, were applied for three forecasting horizons (i.e. 1, 3 and 5 periods ahead). Thus, the comparison of the
aforementioned methods was designed to be as complete as possible in order to investigate the main aspects
affecting forecasting accuracy and provide some useful guidelines for practitioners. In particular, the extreme
learning machines have been tested for the first time as predictors of intermittent demand because of their
lean implementation in comparison with the back-propagation.
The statistical analysis has revealed the overall superior performance of the back-propagation in terms of
𝑀𝐴𝑃𝐸, while the systematic error (i.e. bias) does not change significantly. Among the networks trained by
back-propagation, the two-input network proposed by Mukhopadhyay et al. (2012) has shown the lower bias
over all the time horizons under comparison, while significant differences were not identified in terms of
𝑀𝐴𝑃𝐸. Moreover, the forecasting accuracy of all the methods in terms of 𝑀𝐴𝑃𝐸 has almost doubled by
augmenting the forecasting horizon from one to three periods ahead. This result is meaningful from an
inventory point of view, when setting the review interval of periodic review inventory systems.
Finally, only ADI has shown a linear effect on 𝑀𝐴𝑃𝐸 with a satisfactory significance level.

Although the back-propagation revealed better performances, and thus should be suggested to practitioners,
the price of this increased performances is paid by the higher computational efforts during the training stage.
Conversely, extreme learning machines are easier to implement. Investigating the possibility of improving
their accuracy as predictors of the intermittent demand may be interesting for further research in the future.
Some possible directions may include the investigation on the impact of the distribution form for generating
the hidden layer parameters, and the optimisation of the number of hidden nodes by using a threefold
partition of time series (i.e. sets of training, optimisation of nodes, and test). Furthermore, given the easy
implementation of the extreme learning machines, they could be experienced both on real and on pseudo-
randomly generated large dataset.

References

Abdel-Aal, R.E., 2008. Univariate modeling and forecasting of monthly energy demand time series using
abductive and neural networks. Comput. Ind. Eng. 54, 903–917. doi:10.1016/j.cie.2007.10.020

Babai, M.Z., Syntetos, A., Teunter, R., 2014. Intermittent demand forecasting: An empirical study on
accuracy and the risk of obsolescence. Int. J. Prod. Econ. 157, 212–219. doi:10.1016/j.ijpe.2014.08.019

Bishop, C.M., 1995. Neural Networks for Pattern Recognition, Journal of the American Statistical
Association. doi:10.2307/2965437

Boylan, J.E., Syntetos, A.A., 2010. Spare parts management: A review of forecasting research and
extensions. IMA J. Manag. Math. 21, 227–237. doi:10.1093/imaman/dpp016

Caire, P., Hatabian, G., Muller, C., 1992. Progress in forecasting by neural networks. [Proceedings 1992]
IJCNN Int. J. Conf. Neural Networks 2, 540–545. doi:10.1109/IJCNN.1992.226932

Carmo, J.L., Rodrigues, A.J., 2004. Adaptive forecasting of irregular demand processes. Eng. Appl. Artif.
Intell. 17, 137–143. doi:10.1016/j.engappai.2004.01.001

Chakraborty, K., Mehrotra, K., Mohan, C.K., Ranka, S., 1992. Forecasting the behavior of multivariate time
series using neural networks. Neural Networks 5, 961–970. doi:10.1016/S0893-6080(05)80092-9

Chan, Z.S.H., Ngan, H.W., Rad, A.B., David, A.K., Kasabov, N., 2006. Short-term ANN load forecasting
from limited data using generalization learning strategies. Neurocomputing 70, 409–419.
doi:10.1016/j.neucom.2005.12.131

Croston, J.D., 1972. Forecasting and Stock Control for Intermittent Demands. J. Oper. Res. Soc.
doi:10.1057/jors.1972.50

Denton, J.W., 1995. How good are neural networks for causal forecasting? J. Bus. Forecasting 14, 17–20.

Elman, J.L., Zipser, D., 1988. Learning the hidden structure of speech. J. Acoust. Soc. Am. 83, 1615–1626.
doi:10.1121/1.395916

Ertugrul, Ömer Faruk, 2016. Forecasting electricity load by a novel recurrent extreme learning machines
approach. Int. J. Electr. Power Energy Syst. 78, 429–435. doi:10.1016/j.ijepes.2015.12.006

Fun, M.-H., Hagan,M.T., 1996. Levenberg–Marquardt training for modular networks. IEEE Int. Conf. on
Neural Networks 1, 468–473. doi:10.1109/ICNN.1996.548938

Gamberini, R., Lolli, F., Rimini, B., Sgarbossa, F., 2010. Forecasting of sporadic demand patterns with
seasonality and trend components: An empirical comparison between holt-winters and (s)ARIMA
methods. Math. Probl. Eng. 2010. Article ID 579010, 14 pages. http://dx.doi.org/10.1155/2010/579010

Gutierrez, R.S., Solis, A.O., Mukhopadhyay, S., 2008. Lumpy demand forecasting using neural networks.
Int. J. Prod. Econ. 111, 409–420. doi:10.1016/j.ijpe.2007.01.007

Hamzaçebi, C., Akay, D., Kutay, F., 2009. Comparison of direct and iterative artificial neural network
forecast approaches in multi-periodic time series forecasting. Expert Syst. Appl. 36, 3839–3844.

doi:10.1016/j.eswa.2008.02.042

Heinermann, J., Kramer, O., 2016. Machine learning ensembles for wind power prediction. Renew. Energy
89, 671–679. doi:10.1016/j.renene.2015.11.073

Hill, T., Marquez, L., O’Connor, M., Remus, W., 1994. Artificial neural network models for forecasting and
decision making. Int. J. Forecast. 10, 5-15. doi:10.1016/0169-2070(94)90045-0

Hill, T., O’Connor, M., Remus, W., 1996. Neural Network Models for Time Series Forecasts. Manage. Sci.
42, 1082–1092. doi:10.1287/mnsc.42.7.1082

Ho, S.L., Xie, M., Goh, T.N., 2002. A comparative study of neural network and Box-Jenkins ARIMA
modeling in time series prediction. Comput. Ind. Eng. 42, 371–375. doi:10.1016/S0360-
8352(02)00036-0

Huang, G.-B, 2003. Learning capability and storage capacity of two-hidden-layer feedforward networks.
IEEE Trans. Neural Networks 14, 274–281. doi:10.1109/TNN.2003.809401

Huang, G.-B, Babri, H.A., 1998. Upper bounds on the number of hidden neurons in feedforward networks
with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Networks 9, 224–229.
doi:10.1109/72.655045

Huang, G., Huang, G.-B, Song, S., You, K., 2015. Trends in extreme learning machines: A review. Neural
Networks 61, 32–48. doi:10.1016/j.neunet.2014.10.001

Huang, G.-B, Zhu, Q., Siew, C., 2004. Extreme Learning Machine : A New Learning Scheme of
Feedforward Neural Networks. IEEE Int. Jt. Conf. Neural Networks 2, 985–990.
doi:10.1109/IJCNN.2004.1380068

Huang, G.-B., Zhu, Q., Siew, C., Ã, G.H., Zhu, Q., Siew, C., Huang, G.-B., Zhu, Q., Siew, C., 2006.
Extreme learning machine: Theory and applications. Neurocomputing 70, 489–501.
doi:10.1016/j.neucom.2005.12.126

Kang, S., 1991. An investigation of the use of feedforward neural networks for forecasting, Ph.D.
Dissertation, Kent State.

Kohzadi, N., Boyd, M.S., Kermanshahi, B., Kaastra, I., 1996. A comparison of artificial neural network and
time series models for forecasting commodity prices. Neurocomputing 10, 169–181. doi:10.1016/0925-
2312(95)00020-8

Kourentzes, N., 2013. Intermittent demand forecasts with neural networks. Int. J. Prod. Econ. 143, 198–206.
doi:10.1016/j.ijpe.2013.01.009

Lachtermacher, G., Fuller, J.D., 1995. Back propagation in time-series forecasting. J. Forecast. 14, 381–393.
doi:10.1002/for.3980140405

Lian, C., Zeng, Z., Yao, W., Tang, H., 2014. Ensemble of extreme learning machine for landslide
displacement prediction based on time series analysis. Neural Comput. Appl. 24, 99–107.
doi:10.1007/s00521-013-1446-3

Lolli, F., Gamberini, R., Regattieri, A., Rimini, B., 2014a. Application of tramo-seats automatic procedure
for forecasting intermittent demand patterns, in: OPT-I 2014 - 1st International Conference on
Engineering and Applied Sciences Optimization. National Technical University of Athens, Kos Island -
Greece, pp. 1435–1445.

Lolli, F., Gamberini, R., Regattieri, A., Rimini, B., Grassi, A., Belluti, P., 2011. Application of tramo-seats
automatic procedure for forecasting sporadic and irregular demand patterns with seasonality, in: HMS
2011–13th International Conference on Harbor, Maritime and Multimodal Logistics Modeling and
Simulation, Held at the International Mediterranean and Latin American Modeling Multiconference,
I3M 2011, Rome, Italy, pp. 214–220, 2014a

Lolli, F., Gamberini, R., Regattieri, A., Rimini, B., Morsiani, M., 2014b. On the liaison between forecasting
and periodic inventory control : application of sarima models to intermittent demand profiles, in: OPT-I
2014 - 1st International Conference on Engineering and Applied Sciences Optimization. National

Technical University of Athens, Kos Island - Greece, pp. 1426–1434.

Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, J., Parzen, E.,
Winkler, R., 1982. The accuracy of extrapolation (time series) methods: Results of a forecasting
competition. J. Forecast. 1, 111–153. doi:10.1002/for.3980010202

Makridakis, S., Hibon, M., 2000. The M3-Competition: results, conclusions and implications. Int. J.
Forecast. doi:10.1016/S0169-2070(00)00057-1

Mohammadi, K., Shamshirband, S., Yee, P.L., Petković, D., Zamani, M., Ch, S., 2015. Predicting the wind
power density based upon extreme learning machine. Energy 86, 232–239.
doi:10.1016/j.energy.2015.03.111

Mukhopadhyay, S., Solis, A.O., Gutierrez, R.S., 2012. The accuracy of non-traditional versus traditional
methods of forecasting lumpy demand. J. Forecast. 31, 721–735. doi:10.1002/for.1242

Nasiri Pour, A., Rostami Tabar, B., Rahimzadeh, A., 2008. A hybrid neural network and traditional approach
for forecasting lumpy demand. World Academy of Science, Engineering and Technology 40, 384–390.

Nguyen, M.H., Abbass, H.A., McKay, R.I., 2005. Stopping criteria for ensemble of evolutionary artificial
neural networks. Appl. Soft Comput. J. 6, 100–107. doi:10.1016/j.asoc.2004.12.005

Penrose, R., Todd, J. A., 1955. A generalized inverse for matrices. Math. Proc. Cambridge Philos. Soc. 51,
406–413. doi:10.1017/S0305004100030401

Piotrowski, A.P., Napiorkowski, J.J., 2013. A comparison of methods to avoid overfitting in neural networks
training in the case of catchment runoff modelling. J. Hydrol. 476, 97–111.
doi:10.1016/j.jhydrol.2012.10.019

Prechelt, L., 1998. Automatic early stopping using cross validation: Quantifying the criteria. Neural
Networks 11, 761–767. doi:10.1016/S0893-6080(98)00010-0

Qian, N., 1999. On the momentum term in gradient descent learning algorithms. Neural Networks 12, 145–
151. doi:10.1016/S0893-6080(98)00116-6

Regattieri, A., Gamberi, M., Gamberini, R., Manzini, R., 2005. Managing lumpy demand for aircraft spare
parts. J. Air Transp. Manag. 11, 426–431. doi:10.1016/j.jairtraman.2005.06.003

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by back-propagating errors.
Nature 323, 533–536. doi:10.1038/323533a0

Serre, D., 2002. Matrices: Theory and applications, Springer. doi:10.1007/978-1-4419-7683-3

Sharda, R., Patil, R., 1992. Connectionist approach to time series prediction: an empirical test. J. Intell.
Manuf. 3, 317–323. doi:10.1007/BF01577272

Sun, Z.-L., Choi, T.-M., Au, K.-F., Yu, Y., 2008. Sales forecasting using extreme learning machine with
applications in fashion retailing. Decis. Support Syst. 46, 411–419. doi:10.1016/j.dss.2008.07.009

Syntetos, A.A., Zied Babai, M., Gardner, E.S., 2015. Forecasting intermittent inventory demands: simple
parametric methods vs. bootstrapping. J. Bus. Res. 68, 1746–1752. doi:10.1016/j.jbusres.2015.03.034

Syntetos, A.A., Boylan, J.E., 2001. On the bias of intermittent demand estimates. Int. J. Prod. Econ. 71, 457-
466. doi:10.1016/S0925-5273(00)00143-2

Syntetos, A.A., Boylan, J.E., 2005. The accuracy of intermittent demand estimates. Int. J. Forecast. 21, 303–
314. doi:10.1016/j.ijforecast.2004.10.001

Syntetos, A.A., Boylan, J.E., Croston, J.D., 2005. On the categorization of demand patterns. J. Oper. Res.
Soc. 56, 495–503 http://www.jstor.org/stable/41021.

Tang, Z., Fishwick, P.A., 1993. Feedforward Neural Nets as Models for Time Series Forecasting. INFORMS
J. Comput. 5, 374–385. doi:10.1287/ijoc.5.4.374

Teunter, R., Sani, B., 2009. On the bias of Croston’s forecasting method. Eur. J. Oper. Res. 194, 177–183.

doi:10.1016/j.ejor.2007.12.001

Teunter, R.H., Duncan, L., 2009. Forecasting intermittent demand: a comparative study. J. Oper. Res. Soc.
60, 321–329. doi:10.1057/palgrave.jors.2602569

Teunter, R.H., Syntetos, A.A., Babai, M.Z., 2011. Intermittent demand: Linking forecasting to inventory
obsolescence. Eur. J. Oper. Res. 214, 606–615. doi:10.1016/j.ejor.2011.05.018

Wallström, P., Segerstedt, A., 2010. Evaluation of forecasting error measurements and techniques for
intermittent demand. Int. J. Prod. Econ. 128, 625–636. doi:10.1016/j.ijpe.2010.07.013

West, D., Dellana, S., 2011. An empirical analysis of neural network memory structures for basin water
quality forecasting. Int. J. Forecast. 27, 777–803. doi:10.1016/j.ijforecast.2010.09.003

Willemain, T.R., Smart, C.N., Shockor, J.H., DeSautels, P. a., 1994. Forecasting intermittent demand in
manufacturing: a comparative evaluation of Croston’s method. Int. J. Forecast. 10, 529–538.
doi:10.1016/0169-2070(94)90021-3

Xiang, C., Ding, S.Q., Lee, T.H., 2005. Geometrical interpretation and architecture selection of MLP. IEEE
Trans. Neural Networks 16, 84–96. doi:10.1109/TNN.2004.836197

Zhang, G.P., Qi, M., 2005. Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res.
160, 501–514. doi:10.1016/j.ejor.2003.08.037

