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Single-hidden layer neural networks for forecasting intermittent demand 
 

Abstract 

Managing intermittent demand is a vital task in several industrial contexts, and good forecasting ability is a 
fundamental prerequisite for an efficient inventory control system in stochastic environments. In recent 
years, research has been conducted on single-hidden layer feedforward neural networks, with promising 
results. In particular, back-propagation has been adopted as a gradient descent-based algorithm for training 
networks. However, when managing a large number of items, it is not feasible to optimize networks at item 
level, due to the effort required for tuning the parameters during the training stage. A simpler and faster 
learning algorithm, called the extreme learning machine, has been therefore proposed in the literature to 
address this issue, but it has never been tried for forecasting intermittent demand. On the one hand, an 
extensive comparison of single-hidden layer networks trained by back-propagation is required to improve 
our understanding of them as predictors of intermittent demand. On the other hand, it is also worth testing 
extreme learning machines in this context, because of their lower computational complexity and good 
generalisation ability. 
In this paper, neural networks trained by back-propagation and extreme learning machines are compared 
with benchmark neural networks, as well as standard forecasting methods for intermittent demand on real-
time series, by combining different input patterns and architectures. A statistical analysis is then conducted to 
validate the best performance through different aggregation levels. Finally, some insights for practitioners 
are presented to improve the potential of neural networks for implementation in real environments.   
Keywords: Intermittent Demand; Forecasting; Artificial Neural Networks; Extreme Learning Machines. 

 

1. Introduction 

Forecasting intermittent demand is a highly topical concern which arises in several real environments, such 
as spare parts, start-up productions and multi-echelon supply-chains. For instance, spare parts are typically 
consumed intermittently and have high unit purchase costs, which exacerbates the well-known trade-off in 
inventory control theory between holding and back-ordering costs. In such a stochastic contest, a prerequisite 
for effective inventory management is the adoption of accurate forecasting methods. However, research 
in forecasting such items has been limited (Syntetos et al., 2015).  
The bias of the simple exponential smoothing as predictor of intermittent demand has led to the investigation 
of new methods, pioneered by Croston (1972). In order to obtain the estimator for the expected value of the 
demand per period, the guideline for the Croston-type approaches is to model intermittent demand as the 
result of two independent stochastic processes involving two stochastic variables, i.e. the positive demand 
and the demand occurrence. Readers can refer to Boylan and Syntetos (2010) for a review of intermittent 
demand forecasting, and Teunter et al. (2011) for a more recent forecasting procedure. 
Conversely, the artificial neural networks (ANNs) have attracted the attention of a wide range of 
practitioners and researchers in recent years, due to their ability of learning a non-linear function from 
samples without the need for any distribution assumptions. In particular, single-hidden layer feedforward 
neural networks have been already investigated for forecasting intermittent demand in a few research 
projects (see Carmo and Rodrigues, 2004; Gutierrez et al., 2008; Nasiri Pour et al., 2008; Mukhopadhyay et 
al., 2012; and Kourentzes, 2013). All of these ANNs belong to the family of multi-layered perceptron 
networks, the most widely used networks in the demand forecasting field (Bishop, 1995). In particular, the 
use of a single-hidden layer for forecasting is according to the guidelines provided by Xiang et al. (2005).  
All of these ANNs, with the exception of Nasiri Pour et al. (2008), adopt feedforward architectures; this 
suggests that the experimental research into the use of ANNs for forecasting intermittent demand should also 



be extended to time-delay and recurrent architectures, since they have been already applied to other fields 
successfully.  
Moreover, only gradient descent-based algorithms, with back-propagation conventionally used, have been 
applied for training the aforementioned networks. However, these algorithms have several drawbacks that 
limit their applicability to real settings. The main ones are: i) slow convergence to the minimum of the error 
function through time-consuming iterative tuning of the hidden parameters (i.e. input and output weights and 
bias); ii) risk of being trapped in local minima; iii) need to set the learning parameters (e.g. learning rate and 
momentum); iv) need to establish the number of training epochs, as well as the proper stopping criterion 
against overfitting. In order to overcome these drawbacks, a faster learning algorithm proposed by Huang et 
al. (2006), i.e. the extreme learning machine, has more recently attracted the attention of researchers, with 
promising results in several fields. Readers can refer to the review of Huang et al. (2015). Nevertheless, 
extreme learning machines have never been applied for forecasting intermittent demand, even if they deserve 
attention, especially for their advantages for implementation in real settings. 
In this paper, a new input pattern was adopted with the aim of helping the network to learn the temporal 
behaviour of the time series in terms of zero/non-zero demand. Three network architectures with this new 
input pattern were tested on 24 real time series, all trained both by back-propagation and by an extreme 
learning machine. The forecasting accuracy of these ANNs was compared to that achieved by other ANNs 
(i.e. Gutierrez et al., 2008; Mukhopadhyay et al., 2012) and that of two well-known estimators of intermittent 
demand (Croston, 1972; Syntetos and Boylan, 2005). This comparison was then enriched by adopting two 
different accuracy metrics on different time horizons. Such a detailed comparison aims at bridging the gap 
between theory and practice of ANNs in the field of intermittent demand. In fact, the potential for 
implementation of ANNs in real environments can only increase by providing useful guidelines about their 
design and training for practitioners. Finally, a statistical analysis of the networks’ performance was 
conducted, for robust validation of the results. 
The work is organised as follows: Section 2 contains a review of the main published contributions related 
with the presented research; in Section 3 benchmark forecasting methods are briefly explained; in Section 4 
single-hidden layer neural networks are enounced, along with the tested architectures; Section 5 contains the 
approaches used for training the networks, i.e. back-propagation and extreme learning machine; in Section 6 
the experienced networks are described, and the notation adopted for synthetically indicating them is 
presented; Section 7 clarifies the comparison approach; Section 8 refers to the experimental analysis with the 
parameter settings; Section 9 contains the statistical analysis performed on the results, with some suggestions 
for practitioners; and Section 10 concludes the paper with some potential directions for the future research 
agenda. 
 
2. Research background 

Several papers focus both on comparing ANNs to conventional forecasting approaches and introducing 
modifications to ANNs to achieve significant performance improvements. In order to offer a clear and 
concise classification of the main contributions of ANN applications to the forecasting field, this section 
reports the main advantages of ANNs compared to other time series forecasting approaches. It then reports 
on the specific application of ANN modelling to forecasting intermittent demand patterns. 
Sharda and Patil (1992) conducted a forecasting M-competition (Makridakis et al., 1982) between ANNs and 
the Box-Jenkins ARIMA models (Auto Regressive Integrated Moving Average), achieving similar results for 
75 time series. Taking 14 of the series dealt with by Sharda and Patil (1992), and Tang and Fishwick (1993) 
concluded that ANNs outperformed the Box-Jenkins ARIMA models for time series with a short memory or 
with greater irregularity, while for long memory series, both approaches achieved roughly the same 
performance. Kang (1991) achieved similar results through a more systematic study of 50 M-competition 
time series. He concluded that the best ANN is always better than the Box-Jenkins model. Moreover, ANNs 
performed better as the forecasting horizon increased and they needed less data to perform as well as 



ARIMA. These results have been subsequently corroborated by several authors (Caire et al., 1992; 
Lachtermacher and Fuller, 1995; Kohzadi et al., 1996; Ho et al., 2002; Zhang and Qi, 2005; Hamzaçebi et 
al., 2009; West and Dellana, 2011). 
In comparison with a wide variety of traditional forecasting approaches (i.e. exponential smoothing, 
regression-based and multivariate modelling), beneficial effects related to the use of ANNs were described in 
Chakraborty et al. (1992) and in Hill et al. (1994). In particular, in a later study, Hill et al. (1996) evaluated 
the results achieved by ANNs in 1001 time series in an M-competition, obtaining forecasts significantly 
better in terms of the mean absolute percentage errors (MAPEs) from ANNs. Denton (1995), after generating 
several datasets, observed that in ideal situations ANNs are as good as regression, while in less ideal 
situations ANNs perform better. Abdel-Aal (2008) emphasised the superiority of ANNs compared to 
multivariate modelling, which requires data for the exogenous factors influencing demand which may not be 
readily available. 
Intermittent demand forecasting represents a specific research field for the peculiarities of the demand 
generation process, which has prompted several authors to address the competition between different 
approaches. Readers can refer to: Regattieri et al. (2005) on the comparison of forecasting approaches 
belonging to the categories of exponential smoothing and moving average; Gamberini et al. (2010) and Lolli 
et al. (2011, 2014a; 2014b) on the adoption of SARIMA models for intermittent profiles with trend and 
seasonality components; and Teunter and Duncan (2009), Teunter and Sani (2009), Wallström and 
Segerstedt (2010), and Babai et al. (2014) on the comparison of several variants of the original Croston’s 
method.  
Despite the large amount of papers that refer to the application of ANNs for time series forecasting, only a 
few works focus specifically on the application of single-hidden layer ANN modelling to forecasting 
intermittent demand profiles. Gutierrez et al. (2008) emphasise that traditional time series forecasting 
methods sometimes fail to capture non-linear patterns in data, and are therefore not effective in the case of 
intermittent demand patterns; artificial neural network modelling is thus a logical choice to overcome this 
limitation. They defined a network architecture characterized by two input neurons, then compared their 
forecasting accuracy with that obtained from the best-performing forecasting methods of those specifically 
used for intermittent demand patterns, i.e. single exponential smoothing, Croston’s method (CR) and the 
Syntetos-Boylan Approximation (SBA) introduced by Syntetos and Boylan (2005), through detailed 
empirical analysis. Nasiri Pour et al. (2008) compared the performance of several ANNs (Gutierrez’ 
network, generalized regression neural network-GRNN, recurrent neural network-RNN and a new hybrid 
network) with those obtained by the application of the SBA on 30 time series. Their new hybrid network 
outperformed the other networks. Mukhopadhyay et al. (2012) modified one of the two neurons of the input 
layer proposed by Gutierrez et al. (2008), applied dataset partitioning, then compared 24 time series of the 
aforementioned ANNs, using an optimized weighted moving average method. Other benchmark methods 
were applied, i.e. CR, SBA and SES, and the new ANN showed promising results. Kourentzes (2013) 
proposed two ANNs named NN-Dual and NN-Rate, representing bivariate models, allowing interaction 
between the demand and the inter-demand intervals. The comparison was performed taking CR method into 
account, and several of its variants. It was also considered in terms of inventory metrics, concluding that the 
ANNs had poor forecasting performance but high inventory cost savings. 
With the exception of the recurrent architecture tested by Nasiri Pour et al. (2008), all the aforementioned 
contributions adopt feedforward architectures. This also indicates the opportunity of investigating time-delay 
neural networks, along with feedforward and recurrent networks. Moreover, the learning algorithms adopted 
in these contributions are gradient descent-based, whose drawbacks have been already highlighted. Huang et 
al. (2006) demonstrated that optimal output weights can be analytically obtained through a one-shot 
algorithm after the input weights and the bias of the hidden neurons are generated randomly before learning. 
This represents the core of the extreme learning machines. Actually, such a theoretical finding strongly 
simplifies the implementation of ANNs in real settings, because of the much lower computational efforts 
required. Extreme learning machines have been already applied to forecasting time series in several fields 



(e.g. Sun et al., 2008; Lian et al., 2014; Mohammadi et al., 2015; Heinermann and Kramer, 2016; Ertugrul, 
2016), but they have never been tested before for forecasting intermittent demand, despite the fact that these 
demand profiles are highly critical to predict, as well as relevant in many real industrial settings. 
On the one hand, the main novelty of this contribution is the adoption of extreme learning machines in this 
context. On the other hand, it represents an extension of previous work in terms of architecture, with the aim 
of improving our understanding of the behaviour of neural networks as a predictor of intermittent demand, 
and thus encouraging practitioners to implement them accurately in real environments. 
 
3. Intermittent demand estimators: CR and SBA 

Croston (1972) proposed a method that considers both the demand size and the inter-arrival time between 
demands as the stochastic variables of a Bernoulli process; these variables are assumed to have constant 
means and variances and to be mutually independent. CR is based on two simple exponential smoothing, 
only when demand occurs, both of the demand size at the end of the review time period 𝑡 (𝑧 ), and of the 
interval between non-null demands (𝑝 ). Thus, the equations are as follows: 
 
𝑧 = 𝛼𝑑 + (1 − 𝛼)𝑧               (1) 
𝑝 = 𝛽 𝑔 + (1 − 𝛽)𝑝                          (2) 
 
where 𝑔  is the actual value of the time between consecutive transactions at the instant 𝑡 and 𝛼 and 𝛽 are the 
smoothing parameters.  
If no demand occurs, then the smoothed estimates remain unchanged. If demand does occur, then the 
estimates are updated. If demand occurs in every time period, Croston’s estimator is identical to a simple 
exponential smoothing for each time period.  
The expected value of the demand, used as forecast for demand per period (𝐷 ) at the end of time period t, 
is given by: 
 

𝐷 =                       (3) 

 
An error in CR’s mathematical derivation of expected intermittent demand size was reported by Syntetos and 
Boylan (2001), who proposed a revision as an approximate correction of CR: the SBA method. 
Several variations were applied to CR after its introduction in 1972, with SBA considered by several authors 
as one of the most effective for high level of intermittence.  
The forecast demand per period (𝐷 ) at the end of time period 𝑡 for the SBA is given by: 
 

𝐷 = (1 − )                    (4) 

 

Note that Eq.(3) is similar to Eq.(4), except for the presence of the corrective factor (1 − ). In fact, both 𝑧  

and 𝑝  have the same meaning as those in Eq.(3). 
 
4. Single-hidden layer neural networks 

Three different single-hidden layer architectures have been adopted, i.e. feedforward, time-delay, and 
recurrent, which are set out in Sections 4.1, 4.2, and 4.3 respectively.  
 
4.1 Feedforward neural networks 



Given a set of 𝑇 samples {(𝐱𝐭, 𝐝𝐭)|𝑡 = 1, … , 𝑇}, with 𝐱𝐭 = (𝑥 , 𝑥 , … , 𝑥 ) ∈ ℝ𝒏 and 𝐝𝐭 =

(𝑑 , 𝑑 , … , 𝑑 ) ∈ ℝ𝒎 corresponding respectively to the input and the target vectors for the supervised 
training, a single-hidden layer feedforward neural network with 𝑁 hidden neurons and activation function 𝑔 
is represented as follows: 
 

𝐺 (𝐱𝐭) = ∑ 𝛃𝐢𝑔(𝐰𝐢 ∙ 𝐱𝐭 + 𝑏 )    with 𝑡 = 1, … , 𝑇             (5) 
 
where 𝐰𝐢 = (𝑤 , 𝑤 , … , 𝑤 )  is the input weight vector connecting the input neurons with the 𝑖-th hidden 

neuron, 𝛃𝐢 = (𝛽 , 𝛽 , … , 𝛽 )  is the output weight vector connecting the hidden to the output neurons, and 
𝑏  is the bias associated with the 𝑖-th hidden neuron. 
Approximating the sample with zero errors is equivalent to find 𝐰𝐢, 𝛃𝐢, and 𝑏  such that: 
 
‖𝐺 (𝐱𝐭) − 𝐝𝐭‖ = 0    with 𝑡 = 1, … , 𝑇               (6) 
 
It is possible to reformulate these 𝑇 equations by introducing the so called hidden layer output matrix 𝐇 
(Huang and Babri, 1998; Huang, 2003), where the 𝑖-th column contains all the outputs of the 𝑖-th hidden 
neuron fed by all the 𝑇 samples: 
 
𝐇𝛃 = 𝐃                    (7) 
 
where: 
 

𝐇 =
𝑔(𝐰𝟏 ∙ 𝐱𝟏 + 𝑏 ) … 𝑔(𝐰𝐍 ∙ 𝐱𝟏 + 𝑏 )

… … …
𝑔(𝐰𝟏 ∙ 𝐱𝐓 + 𝑏 ) … 𝑔(𝐰𝐍 ∙ 𝐱𝐓 + 𝑏 )

×

             (8) 

 

𝛃 =
𝛃𝟏

…
𝛃𝐍 ×

  and    𝐃 =
𝐝𝟏

…
𝐝𝐓 ×

               (9) 

 
Figure 1 shows the standard feedforward architecture. 

 

Figure 1. The feedforward neural network 

4.2 Time-delay neural networks 

The time-delay architecture (see Figure 2) differs from the feedforward one since each input 𝑡 not only 
includes the feedforward network input 𝐱𝐭 but also some of the preceding samples. The number of these 
preceding inputs is called taps. Thus the time-delay neural network input 𝑡 is: 

1

…

n

1

i

N

1

…

m

𝑤𝑖1 

𝛽𝑖1 

𝐺𝑁(𝐱𝐭) 𝐱𝐭 



𝐱𝐭 = 𝐱𝐭, 𝐱𝐭 𝟏, … , 𝐱𝐭 𝐭𝐚𝐩𝐬                (10) 

This changes both the dimension of each input vector, 𝐱𝐭 ∈ ℝ ∙( ), and of each input weight vector 

𝐰𝐢 ∈ ℝ ∙( ). The rest of the architecture remains the same. 

 

Figure 2. The time-delay neural network. 

4.3 Recurrent neural networks 

Recurrent architecture (see Figure 3) contains a context layer which is fully connected to the hidden layer 
and recurrently enriches the training stage using the previous output signals. The recurrent architecture can 
be modelled and used as a feedforward one by changing the network input. Each input 𝑡 not only includes 
the sample 𝐱𝐭 but also hidden layer’s output, produced for the previous input, defined as: 

𝐠𝐭 = 𝑔(𝐰𝟏 ∙ 𝐱𝐭 + 𝑏 ), 𝑔(𝐰𝟐 ∙ 𝐱𝐭 + 𝑏 ), … , 𝑔(𝐰𝐍 ∙ 𝐱𝐭 + 𝑏 )           (11) 

Thus the time-delay neural network input for the period 𝑡 is: 

𝐱𝐭 = (𝐱𝐭, 𝐠𝐭 𝟏)                (12) 

This architecture was proposed by Elman and Zipser (1988) to provide dynamic memory to the network. It 
was also tested by Nasiri Pour et al. (2008), with promising results for forecasting intermittent demand 
patterns. If back-propagation is adopted for training the network, a further parameter named time constant 
has to be set, with a value of less than one; it allows back-propagation of the previous output signals with a 
contribution that decays slowly toward zero during each cycle. Hence, the context layer contains its own 
embedded ‘memory’ mechanism. In the extreme learning machines training there is no time constant. Each 
input weight vector 𝒘𝒊 is set before the training takes place and all the output weight vectors 𝛃𝐢 are affected 
by the 𝒙𝒕 time-delay neural network inputs only. 
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Figure 3. The recurrent neural network. 

5. Learning approaches 

Training the network aims at finding 𝐰𝒊
∗, 𝛃∗, and 𝑏∗ for each 𝑖-th hidden neuron, minimising the error 

‖𝐺 (𝐱𝐭) − 𝐝𝐭‖ over the samples. From Eq.(7): 
 
‖𝐇(𝐰𝟏

∗, … , 𝐰𝐍
∗ , 𝛃𝟏

∗ , … , 𝛃𝐍
∗ , 𝑏∗, … , 𝑏∗ )𝛃∗ − 𝐃‖ = min

𝐰𝐢,𝛃𝐢,
‖𝐇(𝐰𝟏, … , 𝐰𝐍, 𝛃𝟏, … , 𝛃𝐍, 𝑏 , … , 𝑏 )𝛃 − 𝐃‖  (13) 

 
From Eq.(5), this is equivalent to minimising the total error 𝐸 made by the network in approximating the 𝑇 
samples: 
 

𝐸 = ∑ ∑ 𝛃𝐢𝑔(𝐰𝐢 ∙ 𝐱𝐭 + 𝑏 ) − 𝐝𝐭            (14) 

 
Eq.(14) represents a least squares problem, where a batch quadratic error has to be minimised, and can be 
solved through different algorithms. As introduced in Section 1, two learning algorithms are compared here. 
The first one (Section 5.1) is the well-known back-propagation algorithm (Rumelhart et al., 1986) and 
belongs to the family of gradient-based algorithms. The latter is more recent (Huang et al., 2004; Huang et 
al., 2006) and is called extreme learning machines (Section 5.2). 
 
5.1 Back-propagation 

This is a first order gradient method, where a backward pass starts by computing the error gradient on 
𝐺 (𝐱𝐭) (Eq.(5)), and then propagates derivatives from the output to the input layer by using the chain rule in 
order to assess the error gradient with respect to 𝐖 = (𝐰𝟏, … , 𝐰𝐍, 𝛃𝟏, … , 𝛃𝐍, 𝑏 , … , 𝑏 ). The error surface is 
thus explored by following the opposite of the error gradient in order to establish a global minimum; this 
constitutes the training stage over a predefined number of iterations named epochs.  
Two different learning modes can be used during the training stage. In the first type, called batch learning, 
the whole sample set is presented to the network in each epoch 𝑒. Hence, the error must be minimised across 
all the training samples in the opposite direction of the resulting gradient. Eq.(14) represents the batch error 
across the samples, whose gradient must be evaluated. In the second one, called online or example-by-
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example learning, 𝐖 is changed after the presentation of each sample from 1 to 𝑇. That is to say, the error 
gradient is first calculated using the first sample, and then the second one, and so on until 𝑇. This can 
potentially lead to instability whenever they change offset due to the randomized position of the subsequent 
training samples in the error space, and computation effort may be wasted on irrelevant data. Conversely, 
online learning can be helpful to escape from local minima. Online learning is the only type that can be 
applied to real-time problems, i.e. when data arrive in real time. 
The standard  gradient descent formula adopts the learning rate 𝜂 , indicating how far the components of 𝐖 
change on the error surface over the epochs, in terms of the percentage of gradient arrow length. Given a 
generic epoch 𝑒 and the expression of the back-propagated error 𝐸, the vector 𝐖𝒆 referring to the epoch 𝑒 is 
given by: 
 

𝐖𝒆 = 𝐖𝒆 𝟏 − 𝜂 
(𝐖)

𝐖
                  (15) 

 
For example, a learning rate equal to one causes the movements on the error surface to be exactly equal to 
the gradient. A learning rate value which is too high may cause entrapment of the learning in a local 
minimum, due to the oscillation phenomenon. Conversely, a low value leads to a slow learning stage. 
A common way to improve the gradient descent is to combine the gradient descent (Eq.(15)) with a 
momentum 𝜇 (reader can refer to Rumelhart et al., 1986; Qian 1999). This factor determines the inertia of 
the weight change through the application of exponential smoothing, with the aim of establishing the relative 
importance of past weight changes for the current one, analogous to a common smoothing parameter.  
The learning rate and momentum are therefore applied to the weight change formula for the current epoch 𝑒 
as follows: 
 

∆𝐖𝒆 = 𝜇∆𝐖𝐞 𝟏 − 𝜂 
(𝐖)

𝐖
                  (16) 

 
With: 
 
∆𝐖𝒆 = 𝐖𝒆 − 𝐖𝒆 𝟏                (17) 
 
Note that a null momentum means the past weight change will not be considered. 
Several works deal with the choice of 𝜂  and 𝜇, providing useful criteria for selecting 𝜂  and 𝜇 (e.g. 𝜂 + 𝜇 =

1) but do not guarantee their optimality, regardless of the specific problem type faced by the ANNs. 
Gutierrez et al. (2008) adopt 𝜂 = 0.1 and 𝜇 = 0.9, as well as Mukhopadhyay et al. (2012), while Nasiri Pour 
et al. (2012) do not state these values. Kourentzes (2013) applies the Levenberg-Marquardt algorithm instead 
of the gradient descent (for a description of this algorithm, see Fun and Hagan, 1996).  
ANNs trained by means of the gradient descent of the back-propagated error suffer from the weaknesses 
already emphasized in Section 1. Among these, they are susceptible to the overfitting like all the machine 
learning tools, which compromises their generalizing ability through reduced adaptability to new data. There 
may be several potential causes of the overfitting phenomenon to be investigated (e.g. high number of 
neurons in the hidden layers, high number of setting parameters, limited training data, etc...), including the 
excessive length of the training stage in terms of the number of epochs. Hence a wide set of stopping criteria 
have been introduced in the literature, with the aim of avoiding the overfitting phenomenon, as well as the 
subsequent worsening of predictive performance for new data. Fixing the number of learning epochs, 
choosing a threshold value for the error during the training, applying cross-validation and early stopping are 
some of the possible strategies to avoid overfitting. Readers can refer to Prechelt (1998), Nguyen et al. 
(2005), Chan et al. (2006) and Piotrowski and Napiorkowski (2013) for a comprehensive review of the 
overfitting phenomenon, along with the strategies for avoiding it. With regard to the ANNs used to forecast 
intermittent demand, Gutierrez et al. (2008) state that the training should stop whenever the error is 



minimized, as do Mukhopadhyay et al. (2012). However, it is worth emphasising that the best stopping 
criterion cannot be generalized, regardless of the ANN or the data being handled. This is supported by the 
empirical evidence reported in the experimental section. 
 
5.2 Extreme learning machines 

Two theorems constitute the theoretical foundation of extreme learning machines, whose proofs are reported 
in Huang et al. (2006).  
The first states that a for a single-hidden layer feedforward neural network where 𝑁 = 𝑇, that is to say with a 
number of hidden neurons equal to the number of samples, and an activation function 𝑔 that is infinitely 
differentiable in any interval, the hidden layer output matrix 𝐇 (see Eq.(8)) is invertible, and ‖𝐇𝛃 − 𝐃‖ = 0 
for any 𝐰𝐢 and 𝑏  randomly chosen according to any continuous probability distribution. It follows that a 
single-hidden layer feedforward neural network with these properties satisfies the universal approximation 
capability (Huang et al., 2015), and can approximate the 𝑇 samples with zero error. Moreover, given the 
random initialisation of 𝐰𝐢 and 𝑏 , the only free parameters for learning are thus the weights between the 
hidden layer and the output layer, which are the components of the vector 𝛃 (see Eq.(9)). The 
implementation of extreme learning machines is therefore greatly simplified because the iterative tuning of 
the hidden neurons is no longer required. 
Given an activation function 𝑔 infinitely differentiable in any interval and for any 𝐰𝐢 and 𝑏  randomly 
chosen according to any continuous probability distribution, and according to the first theorem, the second 
one states that there always exists a number of hidden neurons 𝑁 ≤ 𝑇 such that ‖𝐇𝛃 − 𝐃‖ < 𝜀, for any 
small positive value 𝜀 > 0. The upper bound of the hidden nodes is therefore 𝑇. If learning error is allowed, 
it follows that the only parameter to set is the number of hidden neurons. This implies the overfitting risk for 
extreme learning machines as well, but only due to the number of hidden neurons. Conversely, the gradient 
method may lead to overfitting, even due to an excessive tuning of the hidden neurons during the training 
stage. 
Since 𝑁 ≪ 𝑇 in many real applications to forecasting, which means that the errors are allowed in the training 
stage, the random assignment of 𝐰𝐢 and 𝑏  makes 𝐇𝛃 = 𝐃 a linear system, and Eq.(13) is equivalent to 
finding 𝛃∗ as the least-squares solution of: 
 
‖𝐇(𝐰𝟏, … , 𝐰𝐍, b , … , b )𝛃∗ − 𝐃‖ = min‖𝐇(𝐰𝟏, … , 𝐰𝐍, b , … , b )𝛃 − 𝐃‖       (18) 

 
Actually, if 𝑁 < 𝑇 then 𝐇 is a non-square matrix. A well-known algebraic theorem (readers can refer to 
Serre, 2002) states that the smallest norm solution of Eq.(18) is: 
 

𝛃∗ = 𝐇 𝐃                (19) 
 

where 𝐇  is the Moore-Penrose generalised inverse of 𝐇 (Penrose and Todd, 1955). Singular value 

decomposition is one of several methods used to calculate 𝐇 , e.g. orthogonalization and iterative. Huang et 

al. (2006) underlined that singular value decomposition can always be used for the 𝐇  calculation in an 
extreme learning machines scenario. Said calculation can take place even if the matrix 𝐇 contains linearly 
dependent columns. 
 
6. The experienced networks  

By using the notation adopted previously, a general forecasting problem dealing with neural networks 
consists of assessing the input pattern 𝐱𝐭 = (𝑥 , 𝑥 , … , 𝑥 ) ∈ ℝ𝒏, with sample 𝑡 = 1, … , 𝑇, to correlate 
with the corresponding 𝑇 mono-dimensional target 𝑑 ∈ ℝ, i.e. the 𝑇 past demand values.  



In this work, a three-dimensional input 𝐱𝐭, with 𝑡 = 1, … , 𝑇, is represented by the pattern 𝐱𝐭 = (𝑑 , 𝜏 , 𝛿 ), 
where: 

 𝑑 : the demand at time period 𝑡 − 1; 

 𝜏 : “the number of periods separating the last two non-zero demand transactions at the end of the 
immediately preceding period” (Gutierrez et al., 2008); 

 𝛿 : “the cumulative number of successive periods with zero demand” (Mukhopadhyay et al., 
2012). 

 
The second and the third input neurons were respectively introduced by Gutierrez et al. (2008) and 
Mukhopadhyay et al. (2012) into their two-dimensional input patterns 𝐱𝐭 = (𝑑 , 𝜏 ) and 𝐱𝐭 =

(𝑑 , 𝛿 ), but they have never been used simultaneously. However, data from both of these input neurons 
could jointly improve the training on the temporal behaviour of the time series in terms of zero/non-zero 
demand. In fact, this is the main issue to be addressed with regard to intermittent demand patterns. Since 
their interpretation can be misunderstood, Table 1 clarifies the input pattern with a numeric example.  
 

𝒅𝒕 𝟏 𝝉𝒕 𝟏 𝜹𝒕 𝟏 
1 0 0 
5 0 0 
7 0 0 
0 0 1 
0 0 2 

12 2 0 
1 0 0 

Table 1. An example of three-dimensional input patterns.  

This input pattern is adopted into the three architectures, i.e. feedforward, time-delay, and recurrent, 
respectively set out in Sections 3.1, 3.2, and 3.3. The resulting networks are trained by the back-propagation 
gradient-descent algorithm, both in online and batch modalities, and by extreme learning machines. The 
extreme learning machines training is performed only in the batch mode. 
  
6.1 Notation 

In order to uniquely identify a network, a compact notation consisting of a string of fields separated by “_” is 
introduced, which refer to the architecture, the learning approach, and the learning mode. These fields are 
indicated with the acronyms below, with their meanings written in brackets:  

 Architecture: FF (Feedforward neural network); TD (Time-delay neural network); R (Recurrent neural 
network). 

 Learning approach: BP (Back-propagation); E (Extreme learning machines). 

 Learning mode: B (Batch); O (Online). 

For instance, a network TD_BP_O has a time-delay architecture and is trained using back-propagation in the 
online modality.  
Since the experimental comparison involves the networks of Gutierrez et al. (2008) and Mukhopadhyay et al. 
(2012) as benchmarks, they are respectively indicated as “GUT” and “MUK”, assuming that these networks 
are feedforward with two input neurons. However, GUT and MUK have been trained by back-propagation as 
in the original contributions, both in batch and in online modalities (GUT_BP_B, GUT_BP_O, MUK_BP_B, 
and MUK_BP_O) and by extreme learning machines (GUT_E and MUK_E). 
CR and SBA differ only in terms of the smoothing coefficients, which are fixed at the same value (i.e. 𝛼 = 𝛽), 
and are followed by the value of the smoothing coefficient, e.g. CR_0.2. 
  



7. The comparison approach 

The time series were first divided into a training and a test set. The former contains the first 𝑇 samples on 
which the networks are trained, while the latter is composed of the remaining 𝑆 observations on which the 
comparison is performed. Hence, the comparison involved the demands (𝑑 , 𝑑 , … , 𝑑 ) and the 
forecasts (𝐷 , 𝐷 , … , 𝐷 ). The partition of the time series into a training and a subsequent test set 
cannot be driven by any general rule, due to the sensitivity of ANN performance to a multitude of correlated 
features affecting their generalizing ability (e.g. network architecture, time series length, training parameters, 
etc.). With regard to the ANNs compared in this work, Gutierrez et al. (2008) adopted a partition of 65-35 % 
of the time series for the training and the test set respectively, while Mukhopadhyay et al. (2012) tested three 
different partitions, i.e. 80-20, 65-35 and 50-50 %. However, in order to make the results as comparable as 
possible, the 65-35 % partition was adopted for all the approaches.   
The Croston method-CR (Croston, 1972) and the Syntetos-Boylan approximation-SBA (Syntetos and 
Boylan, 2005) have also been taken as benchmarks. Given a predefined set of values for the smoothing 
coefficients, they were optimised by minimising the mean square error (𝑀𝑆𝐸) on the training set for each 
time series. The choice of using such an accuracy measure for setting the smoothing coefficients is analogous 
to the neural networks learning approach (see Eq.(7)).  
The results reported by Makridakis and Hibon (2000) referring to the well-known M3-Competition, as well 
as by others focusing specifically on forecasting intermittent demand (e.g. Teunter and Duncan, 2009; 
Teunter and Sani, 2009) suggest using different accuracy measures for the comparison, because a single 
measure could not be entirely informative on the different dimensions of the error. Readers can refer to 
Wallström and Segerstedt (2010) for a review of different accuracy measures for intermittent demand. In 
general, two categories of measures may be identified, which are respectively scale and non-scale dependent. 
Since it is intended here to propose statistical tests on these measures from a set of time series, only non-
scale dependent measures must be used. In particular, two measures were taken into account.  
The first is the common 𝑀𝐴𝑃𝐸 (Mean Absolute Percentage Error), which is expressed as follows:  
 

𝑀𝐴𝑃𝐸 =
∑ | |

∑
                                                                   (20)  

 
This measure provides the relationship between the average absolute error and the average demand on a 
certain time horizon, so that it can be considered a valid choice for time series with different mean levels. 
In fact, 𝑀𝐴𝑃𝐸 is given by the ratio of the metrics 𝑀𝐴𝐷 (Mean Absolute Deviation) and 𝐴 (Average 
Demand): 
 

𝑀𝐴𝐷 =
∑ | |

                                                                             (21) 

𝐴 =
∑

                                                                                                                             (22) 

 
𝑀𝐴𝑃𝐸 can also be applied to intermittent demand with at least one strictly positive observation during the 
time horizon, because 𝑑  does not appear in any denominator.  
The second accuracy measure, i.e.  𝑀𝐸/𝐴, refers to the non-scale dependent systematic error (bias) 
committed, and thus allows us to determine whether a forecasting approach on average underestimates or 
overestimates the level of demand. This is expressed as the ratio between 𝑀𝐸 (Mean Error) and 𝐴 (Eq.22), 
where 𝑀𝐸 is as follows: 
 

𝑀𝐸 =
∑ ( )

                                                        (23) 

 



Hence: 

𝑀𝐸/𝐴 =
∑ ( )

∑
                 (24) 

 
Actually, a positive or a negative 𝑀𝐸/𝐴 means respectively that the method underestimates or overestimates 
the level of demand. 
A further well-known guideline reported in Makridakis and Hibon (2000) suggests evaluating the 
performance of forecasting methods for different time horizons. Here, the accuracy of the forecasting method 
was evaluated for one, three and five periods ahead. In the case of three and five periods ahead in particular, 
both periodic and rolling updating were tested. Periodic updating grouped the single periods into aggregated 
periods. The size of each aggregated period was determined by the time horizon considered (three or five) 
and a single period could belong to an aggregated period only. Each accuracy evaluation was performed 
knowing the last aggregated period outcome divided by the number of single periods used to produce it. The 
rolling updating, on the contrary, worked with a moving window pattern. Each single period could belong to 
more aggregate periods and the central point of the aggregate period under consideration would move ahead 
one single period at a time. The distinction between periodic and rolling updates only makes sense for time 
horizons greater than one time period. Moreover, the number of accuracy evaluations applied for rolling 
updating is higher than for periodic updating. For instance, a test set of twelve time periods with a 
forecasting horizon of three periods allows four periodic and ten rolling accuracy evaluations.      
To sum up, following the notation reported in Section 6.1, three new ANNs , i.e. FF, TD, and R, and two 
existing ANNs, i.e. GUT (Gutierrez et al., 2008) and MUK (Mukhopadhyay et al., 2012), have been trained 
by BP (Rumelhart et al., 1986), in modalities O and B, and ELM (Huang et al., 2006), and compared with 
optimised CR (Croston, 1972) and SBA (Syntetos and Boylan, 2005) for three time horizons (one, three and 
five periods ahead), through periodic and rolling updates, in terms of 𝑀𝐴𝑃𝐸 and 𝑀𝐸/𝐴. 
 

8. Experimental analysis 

After data collection with the relevant descriptive statistics (Section 8.1), the parameter settings are provided.  
(Section 8.2).  
 
8.1. Data collection 

Twenty-four weekly intermittent time series were collected from the spare-part dataset of an industry 
operating in the automotive sector. In order to highlight the erraticness and intermittence levels, CV and ADI 
were computed using the definitions provided in Willemain et al. (1994). Specifically, CV represents the 
coefficient of variation of non-zero demands, while ADI represents the average number of time periods 
between two successive non-zero demands. Alternatively, using the definitions given in Syntetos and Boylan 
(2001), CV2, i.e. the squared version of CV, can be computed. CV and ADI thus represent the measures of 
demand size erraticness and intermittency respectively (see rows ADI and CV, or rows ADI and CV2, in 
Table 2). Moreover, CV and ADI are not correlated here, and the time series do not show any seasonality or 
trend. CV2 and ADI have been used by Syntetos et al. (2005) for categorising demand patterns on the basis of 
their theoretical thresholds (0.49 and 1.32, respectively), which have been derived as the values identifying 
the regions where SBA outperforms CR in terms of the theoretical mean square error. Figure 4 plots the 
twenty-four time series in a CV2-ADI diagram, where the number of items and the categories of demand 
patterns are reported into each quadrant.  
Moreover, the mean values of the time series are reported in Table 2 in the ‘mean’ rows, along with the 
length of the time series. 
 



 

Table 2. The time series data collected. 
 

 

Figure 4. The CV2-ADI categorisation for the time series.    

 

8.2 Parameter settings 

All the experimentation was performed using Joone®, NeuroSolutions®, and Matlab® for extreme learning 
machines. Table 3 summarises all the parameter settings. 
The GUT and MUK networks were set with their original architectures and training parameters. Thus, three 
hidden neurons were used, with the same learning rate and momentum, i.e. 𝜀 = 0.1 and 𝜇 = 0.9 respectively.  
The overfitting phenomenon has to be necessarily monitored when adopting BP as the learning approach, so 
the stopping criterion should be established on a case by case basis. GUT and MUK involved training the 
ANNs during subsequent steps of 15000 epochs, as in their original experimentations. A similar stopping 
criterion, i.e. subsequent steps of epochs, was also adopted for FF_BP and R_BP, but the number of epochs 
was set to 10000 in these cases. In fact, when the ANNs show good learning ability in the training stage due 
to the additional input neuron, the overfitting phenomenon can be caused by forcing the training through an 
excessive number of epochs. Moreover, given the option of continuously monitoring the 𝑀𝑆𝐸 trend, the 
training stage was stopped as soon as the minimum error was reached without any further significant 

Length 75 76 69 73 76 75 61 65
ADI 1.19 1.23 1.61 1.35 1.38 1.34 1.3 1.3
CV 0.71 0.57 0.44 0.57 0.62 0.96 0.63 0.65

CV2 0.5 0.32 0.19 0.32 0.38 0.92 0.4 0.42
Mean 22.23 3.07 0.87 3.89 2.61 12.01 13.34 4.23

Length 84 73 84 74 72 74 83 82
ADI 1.91 1.92 1.87 1.85 1.5 2.85 1.38 1.41
CV 0.65 0.44 0.68 0.57 0.52 0.33 0.52 0.74

CV2 0.42 0.19 0.46 0.32 0.27 0.11 0.27 0.55
Mean 4.92 0.9 1.62 2.85 28.44 0.42 2.18 124.22

Length 76 74 68 414 83 81 83 81
ADI 1.52 1.18 3.78 1.87 1.36 1.35 1.22 1.27
CV 0.70 0.83 0.42 0.77 0.87 0.57 0.60 0.57

CV2 0.49 0.69 0.18 0.6 0.76 0.32 0.36 0.32
Mean 6 3.74 1.24 14.02 12.55 128.68 104.25 30.98
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decrease. This strategy appears, in the authors’ opinion, to be the most cautionary, as well as the least time-
consuming one. For TD_BP_B and TD_BP_O, their better learning ability was empirically revealed during 
the training stage, and thus a threshold value of 𝑀𝑆𝐸 can be adopted. In particular, four thresholds of 𝑀𝑆𝐸 
(0.005, 0.01, 0.017 and 0.026) were tested during the training stage. The threshold 𝑀𝑆𝐸 = 0.017 appeared 
to be the most significant since, after that level the 𝑀𝑆𝐸, improvements became harder to achieve. In these 
conditions, allowing a smaller 𝑀𝑆𝐸 could have led to overfitting phenomena. 
With regard to CR and SBA,  𝛼 = 𝛽 in the range 0.05-0.2 with 0.05 according to the literature in this field 
(e.g. Babai et al., 2014). 
 

 α, β 
Hidden 
Neurons 

Momentum 
Learning 

Rate 
Stopping 
Criterion 

Partition Taps 
Time  

Constant 

CR 
0.05/0.1/ 
0.15/0.2 

- - - - 65-35 - - 

SBA 
0.05/0.1/ 
0.15/0.2 

- - - - 65-35 - - 

GUT_BP_B - 3 0.9 0.1 
Steps of  

15000 epochs 
65-35 - - 

GUT_BP_O - 3 0.9 0.1 
Steps of  

15000 epochs 
65-35 - - 

GUT_E - 3 - - - 65-35 - - 

MUK_BP_B - 3 0.9 0.1 
Steps of  

15000 epochs 
65-35 - - 

MUK_BP_O - 3 0.9 0.1 
Steps of  

15000 epochs 
65-35 - - 

MUK_E - 3 - - - 65-35 - - 

FF_BP_B - 3 0.9 0.1 
Steps of  

10000 epochs 
65-35 - - 

FF_BP_O - 3 0.9 0.1 
Steps of  

10000 epochs 
65-35 - - 

FF_E - 3 - - - 65-35 - - 

TD_BP_B - 3 0.9 0.1 
Threshold 

value of MSE 
65-35 3 - 

TD_BP_O - 3 0.9 0.1 
Threshold 

value of MSE 
65-35 3 - 

TD_E - 3 - - - 65-35 3 - 

R_BP_B - 3 0.9 0.1 
Steps of  

10000 epochs 
65-35 - 0.8 

R_BP_O - 3 0.9 0.1 
Steps of  

10000 epochs 
65-35 - 0.8 

R_E - 3 - - - 65-35 - - 

Table 3. The parameter settings. 
 

9. Statistical analysis 

Two different statistical analyses have been performed. The first one (Section 9.1) refers to the comparison 
between the methods for different aggregation levels. The second one (Section 9.2) aims at investigating the 
relationship between the features of the time series (ADI and CV) and the accuracy of the forecasting 
methods under comparison. This deep statistical analysis allowed us to develop some useful suggestions for 
practitioners (Section 9.3). 
 
9.1. Comparison between methods 



In this section, a statistical test is presented for each accuracy measure (𝑀𝐴𝑃𝐸 and 𝑀𝐸/𝐴) obtained in the 
test set. Each test is repeated for two aggregation levels, and the latter of these contains two comparisons. 
The first aggregation level refers to an overhaul analysis, that is the best performance obtained by the CR and 
SBA methods (CR_0.05, …, CR_0.2, SBA_0.05, …, SBA_0.2) is compared with the best one obtained 
using the back-propagation learning approach (GUT_BP_B, GUT_BP_O, MUK_BP_B,..., R_BP_O)  and 
the best one achieved with the extreme learning approach (GUT_E, MUK_E,..., R_E). Following the second 
aggregation level, the first comparison is an in-depth analysis of the back-propagation methods; this means 
that the best performing feedforward (FF_BP_B and FF_BP_O), time-delay (TD_BP_B and TD_BP_O), 
recurrent (R_BP_B and R_BP_O), GUT (GUT_BP_B, GUT_BP_O) and MUK (MUK_BP_B, MUK_BP_O) 
networks are compared with each other. The second comparison is among the extreme learning machines, 
and is obtained by comparing FF_E, TD_E, R_E, GUT_E and MUK_E with each other. These six tests are 
performed for each time horizon (one, three and five periods ahead) and update methodology (periodic and 
rolling updates). This leads to a total of thirty tests. Each test follows the same pattern, which will be detailed 
in this section. The significant results will be presented in a table and then analysed. 
The first objective of the presented tests is to prove whether the average accuracy measure, obtained for one 
method, is significantly different from the others. Since each test compares more than two methodologies, a 
t-test cannot be used to address this problem. Instead an ANOVA test should be performed. Nevertheless, the 
methodology differs slightly in this case. In fact each method, i.e. treatment, is measured based on the same 
set of items, while the general ANOVA procedure requires each item to be evaluated using one treatment 
only. This obstacle can be overcome using a variant of the test called Repeated Measures ANOVA 
(rANOVA). The variance of the subjects analysed, calculated as the sum of squared distances between each 
subject performance mean and the grand mean, is subtracted from the variance between. As the measures are 
repeated, this sample–dependent variance can be measured and accounted for in this way, thereby increasing 
the effectiveness of the test. Moreover, the standard ANOVA procedure assumes that the variance does not 
change among the treatments. If this assumption holds and the test rejects the null hypothesis, then the 
rejection must be caused by a difference among the performance means. The rANOVA relies on a similar 
assumption, which is the sphericity assumption. The difference variance of a pair of treatments is calculated 
as the sum of the squared difference of each item performance, divided by its degrees of freedom. The 
Mauchly's Test is performed on these data to accept or reject (p<=0.05) the null hypothesis that these 
difference variances are non-significantly different. In the examples presented, the sphericity hypothesis is 
often violated. This would increase the chances of incurring type I errors, and thus rejecting more correct 
null hypotheses than expected. In these cases, the Greenhouse-Geisser correction factor is applied to the 
degrees of freedom used during the test ratio calculation. 
Rejecting the null hypothesis means that the effectiveness for each method is significantly different. In this 
case, a different test is required to address the second objective of the analysis, that is to find which methods 
are different. For each pair of treatments, the Tukey’s range test is performed as a mean values comparison. 
This particular test relies on a studentized range distribution and is able to manage the family-wise error rates 
arising in multiple-comparison scenarios. To be considered significant, a comparison must reject (p<=0.05) 
the null hypothesis, stating that the mean values considered are not different. 
Table 4 contains the 𝑀𝐴𝑃𝐸 analysis results. 
 

Time horizon Aggregation level 
rANOVA 
p-value 

Better performer Worse performer 
Tukey’s  
p-value 

One period ahead Overhaul analysis 0.008 

BP 
𝑀𝐴𝑃𝐸: 0.76 

E 
𝑀𝐴𝑃𝐸: 0.79 

0.044 

E 
𝑀𝐴𝑃𝐸: 0.79 

CR-SBA 
𝑀𝐴𝑃𝐸: 0.81 

0.045 

BP 
𝑀𝐴𝑃𝐸: 0.76 

CR-SBA 
𝑀𝐴𝑃𝐸: 0.81 

0.024 



Back-propagation 
comparison 

0.37   

Extreme learning 
comparison 

0.37   

Three periods 
ahead, periodic 

Overhaul analysis 0 

BP 
𝑀𝐴𝑃𝐸: 0.46 

CR-SBA 
𝑀𝐴𝑃𝐸: 0.51 

0.002 

E 
𝑀𝐴𝑃𝐸: 0.48 

CR-SBA 
𝑀𝐴𝑃𝐸: 0.51 

0.037 

Back-propagation 
comparison 

0.022 Non-identifiable  

Extreme learning 
comparison 

0.29   

Three periods 
ahead, rolling 

Overhaul analysis 0.003 
BP 

𝑀𝐴𝑃𝐸: 0.47 
CR-SBA 

𝑀𝐴𝑃𝐸: 0.51 
0.012 

Back-propagation 
comparison 

0.014 Non-identifiable  

Extreme learning 
comparison 

0.09   

Five periods 
ahead, periodic 

Overhaul analysis 0.026 
BP 

𝑀𝐴𝑃𝐸: 0.37 
CR-SBA 

𝑀𝐴𝑃𝐸: 0.42 
0.047 

Back-propagation 
comparison 

0.029 Non-identifiable  

Extreme learning 
comparison 

0.451   

Five periods 
ahead, rolling 

Overhaul analysis 0.052   

Back-propagation 
comparison 

0.003 
MUK 

𝑀𝐴𝑃𝐸: 0.40 
TD 

𝑀𝐴𝑃𝐸: 0.51 
0.036 

Extreme learning 
comparison 

0.279   

Table 4. Statistical tests on 𝑀𝐴𝑃𝐸 for different aggregation levels. 
 
On the overhaul analysis level and regardless of the time horizon and update methodology, the data show a 
meaningful performance gap between traditional methodologies and the neural networks trained with the 
back-propagation algorithm. This behaviour is not followed by the same networks trained with the extreme 
learning, which present a smaller performance gap compared to traditional methods. This gap is significant 
only in the first analysis, while an increase of the time horizon means it is not meaningful, as in the last three 
examples. This performance difference reduction is also observable in the behaviour of networks trained by 
back-propagation, compared with those trained by extreme learning. In the first comparison, the difference 
between these training methodologies is significant, in favour of the back-propagation algorithm. This 
distinction is lost when the time horizon is increased. From three periods ahead, only the difference between 
the back-propagation and CR-SBA methods is significant. The rolling update methodology acts in the same 
way, compared to the periodic one. In the three-periods scenario, the gap between BP and CR-SBA drops 
from 0.05 to 0.04, changing the update methodology. The same happens in the five-periods case, where in 
the rolling case, for the first time, the overhaul analysis becomes non-significant. On a lower aggregation 
level, the networks trained with the extreme learning do not present meaningful performance differences. 
The same networks trained with the back-propagation algorithm often present significant performance gaps, 
but unfortunately the second level test is often unable to identify with which methods the performances 
differ. A possible reason for this issue is provided by the last comparison, in which MUK outperforms FF.  
Table 5 contains the 𝑀𝐸/𝐴 analysis results. 

Time horizon Aggregation level 
rANOVA 
p-value 

Better performer Worse performer 
Tukey’s 
p-value 

One period ahead 
Overhaul analysis 0.676   

0.018 MUK FF 0.057 



Back-propagation 
comparison 

𝑀𝐸/𝐴: 0 𝑀𝐸/𝐴: -0.1 

MUK 
𝑀𝐸/𝐴: 

R 
𝑀𝐸/𝐴: -0.16 

0.055 

Extreme learning 
comparison 

0.48   

Three periods 
ahead, periodic 

Overhaul analysis 0.536   

Back-propagation 
comparison 

0.022 

MUK 
𝑀𝐸/𝐴: -0.03 

FF 
𝑀𝐸/𝐴: -0.14 

0.045 

MUK 
𝑀𝐸/𝐴: -0.03 

R 
𝑀𝐸/𝐴: -0.22 

0.054 

Extreme learning 
comparison 

0.466   

Three periods 
ahead, rolling 

Overhaul analysis 0.924   

Back-propagation 
comparison 

0.014 

MUK 
𝑀𝐸/𝐴: -0.01 

FF 
𝑀𝐸/𝐴: -0.12 

0.042 

MUK 
𝑀𝐸/𝐴: -0.01 

R 
𝑀𝐸/𝐴: -0.19 

0.046 

Extreme learning 
comparison 

0.28   

Five periods 
ahead, periodic 

Overhaul analysis 0.507   

Back-propagation 
comparison 

0.028 
MUK 

𝑀𝐸/𝐴: -0.02 
FF 

𝑀𝐸/𝐴: -0.11 
0.021 

Extreme learning 
comparison 

0.346   

Five periods 
ahead, rolling 

Overhaul analysis 0.733   

Back-propagation 
comparison 

0.016 

MUK 
𝑀𝐸/𝐴: -0.03 

FF 
𝑀𝐸/𝐴: -0.13 

0.022 

MUK 
𝑀𝐸/𝐴: -0.03 

R 
𝑀𝐸/𝐴: -0.22 

0.053 

Extreme learning 
comparison 

0.256   

Table 5. Statistical tests on 𝑀𝐸/𝐴 for different aggregation levels. 
 
Both the overhaul analysis and the extreme learning comparison are strongly non-significant. Using a 
different learning approach does not provide different performances in terms of the relative systematic error. 
In the same way, if the neural network is trained with the extreme learning methodology, the architecture 
choice does not provide meaningful performance improvements. The only difference is among the networks 
trained with back-propagation. This difference is always highlighted in the rANOVA results, but it is not 
always easy to identify the gap source by applying the Tukey’s test. Some rejected Tukey’s tests show p-
values very close to 0.05 with a meaningful pattern, and thus have been shown. The most robust result in the 
back-propagation analysis is the performance difference between the MUK and the FF, the former 
outperforming the latter. This finding is present across all the time horizons and update methodologies, being 
non-significant only in the one period horizon. The least robust result in the back-propagation analysis is the 
effectiveness gap between the MUK and R methods, the former probably being more effective. This relation 
is more doubtful since it is proved only in the three-period rolling scenario. All the others cases show p-
values only close to the significant amount 0.05, while in the five-period-ahead time horizon with periodic 
update methodology, this last result is absent, as the p-value found (0.068) is quite far from the objective 
value. 
From table 4, it appears that the 𝑀𝐴𝑃𝐸 achieved in the overhaul analysis decreases while the time horizon 
increases. For example, the BP performance moves from 0.76 in the one-period-ahead horizon to 0.46 in the 
three-period-ahead periodic scenario and 0.47 in the rolling one. The reduction is also significant in the five-
period-ahead periodic horizon, with a 𝑀𝐴𝑃𝐸 of 0.37. The corresponding rolling case reaches a performance 



of 0.40. The first test is nevertheless unable to prove this phenomenon, as each p-value is calculated within a 
time horizon. A third test has therefore been carried out, comparing the best 𝑀𝐴𝑃𝐸 performance obtained by 
each time horizon and update methodology. A fourth specular test has also been run, comparing the 𝑀𝐸/𝐴 
performance across the same time horizons and update methodologies. Both these tests contain a rANOVA 
analysis and a subsequent Tukey’s test, performed if the first analysis provides significant results. 
Table 6 contains the 𝑀𝐴𝑃𝐸 analysis results. 

Comparison 
r-ANOVA 

p-value 
Better performer Worse performer 

Tukey’s 
p-value 

Between time horizons 0 

Five periods ahead, 
rolling 

𝑀𝐴𝑃𝐸: 0.35 

Three periods 
ahead, periodic 
𝑀𝐴𝑃𝐸: 0.45 

0.001 

Five periods ahead, 
rolling 

𝑀𝐴𝑃𝐸: 0.35 

Three periods 
ahead, rolling 
𝑀𝐴𝑃𝐸: 0.46 

0 

Five periods ahead, 
rolling 

𝑀𝐴𝑃𝐸: 0.35 

One period ahead 
𝑀𝐴𝑃𝐸: 0.77 

0 

Five periods ahead, 
periodic 

𝑀𝐴𝑃𝐸: 0.35 

Three periods 
ahead, periodic 
𝑀𝐴𝑃𝐸: 0.45 

0.001 

Five periods ahead, 
periodic 

𝑀𝐴𝑃𝐸: 0.35 

Three periods 
ahead, rolling 
𝑀𝐴𝑃𝐸: 0.46 

0 

Five periods ahead, 
periodic 

𝑀𝐴𝑃𝐸: 0.35 

One period ahead 
𝑀𝐴𝑃𝐸: 0.77 

0 

Three periods ahead, 
periodic 

𝑀𝐴𝑃𝐸: 0.45 

One period ahead 
𝑀𝐴𝑃𝐸: 0.77 

0 

Three periods ahead, 
rolling 

𝑀𝐴𝑃𝐸: 0.46 

One period ahead 
𝑀𝐴𝑃𝐸: 0.77 

0 

Table 6. Statistical tests on 𝑀𝐴𝑃𝐸 through different time horizons. 
 
The results shown prove the inverse link between time horizons and 𝑀𝐴𝑃𝐸 performances. The rANOVA 
analysis is strongly significant and so are the singular Tukey’s pairwise tests between different time 
horizons. Conversely, a strong lack of significance has been found when comparing different update 
methodologies within the same time horizon. The comparison between five periods ahead periodic and 
rolling achieves a p-value close to 1. The corresponding match between three periods ahead periodic and 
rolling achieves a p-value of 0.88. This lack of significance further confirms the link between time horizon 
and 𝑀𝐴𝑃𝐸 performances, unaffected by the selected update methodologies.  
Table 7 contains the 𝑀𝐸/𝐴 analysis results. 

Comparison 
r-ANOVA 

p-value 
Better 

performer 
Worse 

performer 
Tukey’s 
p-value 

Between time horizons 0.431     

Table 7. Statistical tests on 𝑀𝐸/𝐴 through different time horizons. 
 
This last test shows no connection between time horizons and 𝑀𝐸/𝐴 performances. Since the rANOVA p-
value shows a strong lack of significance, there is no need to perform a Tukey’s test. 
 



9.2. Regression analysis 

As described in Section 8.1, the data used in this experimental analysis are characterized by the 𝐴𝐷𝐼 and 𝐶𝑉  
parameters, presented in Table 2. It may be significant to compare the performances achieved in each 
scenario with the characteristics of the series achieving said performances in terms of 𝑀𝐴𝑃𝐸 and 𝑀𝐸/𝐴. 
When the performance measure focused on is the 𝑀𝐴𝑃𝐸, a direct relation can be seen by plotting it against 
the 𝐴𝐷𝐼 characteristic. Conversely, this behaviour is absent when the 𝑀𝐴𝑃𝐸 is plotted against 𝐶𝑉 . The 
second performance measure, 𝑀𝐸/𝐴, shows no significant patterns when plotted against 𝐴𝐷𝐼 or 𝐶𝑉 . The 
𝑀𝐴𝑃𝐸 behaviour is believed to be linear, and this can be proved by calculating the simple regression line. 
After the line parameters have been calculated, an ANOVA test can be performed, comparing the variance 
unexplained by the regression with the total variance. The underlying null hypothesis states that the linear 
relationship does not explain the 𝑀𝐴𝑃𝐸 behaviour any better than the average 𝑀𝐴𝑃𝐸 value across the series. 
The null hypothesis is discarded if the p-value achieved is equal to or lower than 0.05. In this case, the linear 
model explains the performance behaviour significantly better than the average 𝑀𝐴𝑃𝐸 value. Regression 
lines are calculated on three levels of analysis. The first level is the time horizon and the update 
methodology. Five lines are generated using the best result available in that time horizon by adopting that 
update methodology for each series. Each line is treated separately, meaning that five different ANOVA tests 
are performed in order to identify which structures are meaningfully linear. The second level of analysis 
draws a line for the back-propagation and the extreme learning machines. These lines are calculated within 
the time horizon frame, leading to a total of fifteen lines. As in the previous analysis, each line is managed 
independently. This level corresponds to the overhaul analysis performed in section 9.1. The third analysis 
level operates on non-grouped neural network data. Each neural network method is evaluated, with its time 
frame, learning algorithm and structure. This leads to fifty lines and corresponding tests. In the table below, 
the results for this last scenarios are provided in an aggregate form, presenting only the minimum and 
maximum values registered. 
Table 8 contains the regression line parameters and the ANOVA test p-values. 

Level of analysis Time horizon 
Learning 

methodology 
Single method Intercept Slope 

ANOVA 
p-value 

Time horizons 

One period ahead 

  

-0.014 0.518 0.000 

Three periods ahead, 
periodic 

-0.034 0.293 0.005 

Three periods ahead, rolling -0.063 0.326 0.000 

Five periods ahead, periodic -0.043 0.247 0.030 

Five periods ahead, rolling -0.088 0.276 0.001 

Overhaul 
analysis 

One period ahead 
Back-propagation 

  
-0.026 0.530 0.000 

Extreme learning -0.038 0.558 0.000 

Three periods ahead, 
periodic 

Back-propagation 
  

-0.049 0.312 0.007 

Extreme learning -0.046 0.325 0.009 

Three periods ahead, rolling 
Back-propagation 

  
-0.101 0.359 0.000 

Extreme learning -0.074 0.354 0.000 

Five periods ahead, periodic 
Back-propagation 

  
-0.033 0.257 0.029 

Extreme learning -0.083 0.296 0.016 

Five periods ahead, rolling 
Back-propagation 

  
-0.124 0.309 0.001 

Extreme learning -0.137 0.329 0.003 

Single methods One period ahead 
Back-propagation 

Min value -0.124 0.432 0.000 

Max value 0.241 0.653 0.048 

Extreme learning Min value -0.187 0.583 0.000 



Max value -0.035 0.690 0.000 

Three periods ahead, 
periodic 

Back-propagation 
Min value -0.202 0.277 0.027 

Max value 0.041 0.532 0.050 

Extreme learning 
Min value -0.133 0.295 0.006 

Max value 0.027 0.429 0.030 

Three periods ahead, rolling 

Back-propagation 
Min value -0.295 0.328 0.001 

Max value -0.008 0.598 0.010 

Extreme learning 
Min value -0.159 0.341 0.001 

Max value -0.029 0.452 0.002 

Five periods ahead, periodic 

Back-propagation 
Min value -0.261 0.271 0.017 

Max value 0.011 0.523 0.091 

Extreme learning 
Min value -0.184 0.284 0.007 

Max value -0.036 0.399 0.038 

Five periods ahead, rolling 

Back-propagation 
Min value -0.446 0.287 0.003 

Max value -0.048 0.638 0.020 

Extreme learning 
Min value -0.288 0.332 0.001 

Max value -0.099 0.470 0.010 

Table 8. Regression line parameters for 𝑀𝐴𝑃𝐸 and 𝐴𝐷𝐼 with the corresponding statistical tests. 
 
In the table above, the only non-significant regression line is the one applied to the GUT_BP_B in the five-
periods-ahead time horizon (p-value: 0.091). All the other regression lines can explain the 𝑀𝐴𝑃𝐸 behaviour 
significantly better than the average 𝑀𝐴𝑃𝐸. This strongly confirms the linear model as a reliable 
approximation of the 𝑀𝐴𝑃𝐸 behaviour, regardless of the methodology applied and the aggregation level 
considered. 
Figure 5 below shows, as an example, the one-period-ahead Overhaul analysis. 
 

 
Figure 5. Regression lines for 𝑀𝐴𝑃𝐸 and 𝐴𝐷𝐼, in the one-period-ahead Overhaul analysis. 
 

9.3 Suggestions for practitioners 

To sum up the deep statistical analysis performed, and derive indications that are useful for improving the 
applicability of neural networks to real settings, the following points should be emphasised: 



 Neural networks are harder to implement than the simple CR and SBA methods but they do achieve 
significantly better performance in terms of 𝑀𝐴𝑃𝐸. 

 The choice of a longer time horizon can significantly decrease the 𝑀𝐴𝑃𝐸 values, regardless of the 
training method or architecture chosen. This directly impacts the forecasting effectiveness, also from 
an inventory management point of view. 

 The extreme learning machine training method is easier and faster to implement, but may produce 
less effective results. If possible, a back-propagation algorithm is preferable. 

 If the back-propagation training methodology is chosen, we recommend implementing the MUK 
network. It achieves better results in terms of 𝑀𝐸/𝐴 and could also lead to better performance in 
terms of 𝑀𝐴𝑃𝐸. 

 The forecasting performance in terms of 𝑀𝐴𝑃𝐸 is directly and linearly related to the 𝐴𝐷𝐼. The more 
erratic the time series is, the worse the forecasting performance becomes. This happens regardless of 
the methodology applied and can significantly affect inventory management. On the contrary, the 
systematic error committed by the networks is not linearly related to the 𝐴𝐷𝐼. This implies that the 
forecast-oriented categorisation of demand patterns has to be realised only in terms of 𝐴𝐷𝐼 when 
single-hidden layer neural networks are adopted. 
 

 
10. Conclusions and extensions 

Accurate forecasts are of fundamental importance for an efficient inventory control system. This is evident in 
the case of intermittent demand, especially when the purchase and backorder costs are high. Spare parts 
management is one example of this, where expensive items requiring high availability in order not to appear 
in backorders typically show intermittent profiles. Single-hidden layer neural networks represent a promising 
approach, whose main strength is their ability to generalise non-linear functions without the need for 
distribution assumptions. However, few papers have been devoted to investigating their forecasting accuracy 
for intermittent demand, and they have not been widely implemented in real industrial environments due to 
the intensive computational efforts required by the gradient descent-based algorithms for training the 
networks. Back-propagation belongs to this family of algorithms, and has been typically adopted into this 
research field.  
In order to improve the understanding of these predictors in the field of intermittent demand forecasting, this 
paper provides a comparison between standard methods, i.e. CR (Croston, 1972) and SBA (Syntetos and 
Boylan, 2005), and a set of ANNs with different input patterns, architectures (feedforward, time-delay, and 
recurrent), and trained by two different learning approaches (back-propagation and extreme learning 
machines), on twenty-four real time series. Two accuracy metrics, updated on both a periodic and a rolling 
base, were applied for three forecasting horizons (i.e. 1, 3 and 5 periods ahead). Thus, the comparison of the 
aforementioned methods was designed to be as complete as possible in order to investigate the main aspects 
affecting forecasting accuracy and provide some useful guidelines for practitioners. In particular, the extreme 
learning machines have been tested for the first time as predictors of intermittent demand because of their 
lean implementation in comparison with the back-propagation. 
The statistical analysis has revealed the overall superior performance of the back-propagation in terms of 
𝑀𝐴𝑃𝐸, while the systematic error (i.e. bias) does not change significantly. Among the networks trained by 
back-propagation, the two-input network proposed by Mukhopadhyay et al. (2012) has shown the lower bias 
over all the time horizons under comparison, while significant differences were not identified in terms of 
𝑀𝐴𝑃𝐸. Moreover, the forecasting accuracy of all the methods in terms of 𝑀𝐴𝑃𝐸 has almost doubled by 
augmenting the forecasting horizon from one to three periods ahead. This result is meaningful from an 
inventory point of view, when setting the review interval of periodic review inventory systems.  
Finally, only ADI has shown a linear effect on 𝑀𝐴𝑃𝐸 with a satisfactory significance level. 



Although the back-propagation revealed better performances, and thus should be suggested to practitioners, 
the price of this increased performances is paid by the higher computational efforts during the training stage. 
Conversely, extreme learning machines are easier to implement. Investigating the possibility of improving 
their accuracy as predictors of the intermittent demand may be interesting for further research in the future. 
Some possible directions may include the investigation on the impact of the distribution form for generating 
the hidden layer parameters, and the optimisation of the number of hidden nodes by using a threefold 
partition of time series (i.e. sets of training, optimisation of nodes, and test). Furthermore, given the easy 
implementation of the extreme learning machines, they could be experienced both on real and on pseudo-
randomly generated large dataset. 
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