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Abstract. A new approximation solvability method is developed for the s-
tudy of semilinear differential equations with nonlocal conditions without the

compactness of the semigroup and of the nonlinearity. The method is based on
the Yosida approximations of the generator of C0−semigroup, the continuation

principle, and the weak topology. It is shown how the abstract result can be

applied to study the reaction-diffusion models.

1. Introduction. The paper deals with the nonlocal problem for semilinear dif-
ferential equations of the form:{

u′(t) = Au(t) + f(t, u(t)), for a.e. t ∈ [0, T ],

u(0) = Mu,
(1)

in a reflexive Banach space E having a Schauder basis satisfying the property (π1)
and a strictly convex dual space E∗, where A : D(A) ⊂ E → E is the generator of a
C0−semigroup of contractions {S(t)}t≥0; f : [0, T ]×E → E and M : C([0, T ];E)→
E.

The nonlocal problem for a semilinear differential equation with a C0−semigroup
generator was first studied by L. Byszewski [15]. The technique used in [15] is
based on the Banach fixed point theorem for contraction mappings. Then others
fixed point theorems (for example, Leray-Schauder fixed point theorem for compact
mappings, fixed point theorem for condensing mappings, Kakutani fixed point the-
orem for multivalued mappings...) are used for the study of semilinear differential
equations and inclusions in Banach spaces with various boundary conditions (see,
e.g. [5], [18] and [26] and the references therein).
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In the present paper, we introduce a new method for the study of problem
(1) which is the combination of the Yosida approximations of the generator of
C0−semigroups and an approximation solvability method. This method is a gener-
alization of the well known strong approximation used by F.E. Browder and W.V.
Petryshyn in [14] and by W.V. Petryshyn in [23]. It was developed in [20] for the s-
tudy of periodic oscillations of differential inclusions and then it was combined with
the bounding function method to investigate differential equations with nonlocal
conditions in Hilbert spaces (see [6] and [7]). In this paper we extend it to Banach
spaces.

The proofs of our main results are based on a continuation principle in Banach
spaces due to Andres-Górniewicz [3]. The employment of fixed point theorems or
continuation principles requires strong compactness conditions, which are usually
not satisfied in an infinite dimensional framework, if the evolution operator associ-
ated to A fails to be compact. In this paper making use of weak topologies we avoid
any compactness assumptions on both the nonlinear term and on the C0-semigroup.
Weak topology was first exploited to prove existence results of problems of type (1)
in [9] and in [10]. There, the proofs are based on a continuation principle in Fréchet
spaces. It requires to prove the transversality condition, known as pushing con-
dition (introduced in [17]), which is more difficult than proving the corresponding
condition in a Banach space. Unlike these results, due to the approximation scheme
which enables to reduce to a finite dimensional setting, in this paper we are able
to consider the usual transversality condition (see (A2) in Section 3). Thus, we
can handle nonlinearities with superlinear growth and we obtain, as a by-result,
the existence of a solution in a prescribed bounded set. Furthermore, we prove
the existence of a bounded solution of the equation in (1) on the whole half-line
[0,+∞).

Finally, we show how the abstract results can be applied to study various reaction-
diffusion models. More precisely, with our techniques we can handle diffusion prob-
lems of the form

∂u(t, ξ)

∂t
= ∆u(t, ξ) + f

(
t, ξ, u,

∫
Ω

k(ξ, η)u(t, η) dη

)
in an open bounded domain with sufficiently regular boundary, with Neumann or
Dirichlet conditions on the boundary and various boundary conditions. We con-
sider three possible examples of map f : [0, T ] × Ω × R × R → R arising from
various mathematical models in applied sciences. In particular, in the case of
f
(
t, ξ, u,

∫
Ω
k(ξ, η) dη

)
= h

(
t, ξ,

∫
Ω
k(ξ, η)u(t, η) dη

)
we obtain a generalized ver-

sion of the nonlocal FKPP equation. The same problem was studied also in [8]
under different assumptions and techniques.

The paper is organized as follows. In Section 2 we recall some notions and
notation from the theory of functional analysis. The main results are presented in
Section 3, in which first we prove the theorems of existence and uniqueness of mild
solutions (see Theorem 3.1 and Theorem 3.2) to problem (1) on compact intervals,
then the existence and uniqueness of bounded mild solutions to problem (1) on the
half line for the case when f : [0,+∞) × E → E (see Theorem 3.3 and Theorem
3.4). In Section 4, applications to various reaction-diffusion models are considered.

2. Preliminaries. Throughout this paper, I represents the real interval [0, T ]. By
Eω and

〈
·, ·
〉

we denote respectively the space E endowed with the weak topology
and the dual product between E and its dual.
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We recall that a sequence {en} ⊂ E is a Schauder basis for E if for every x ∈ E
there exists a unique sequence of scalars {αn(x)} ⊂ R such that

lim
n→∞

∥∥∥∥∥x−
n∑
i=1

αi(x)ei

∥∥∥∥∥ = 0.

Given {en}∞n=1 a Schauder basis of E, for every n ∈ N let En be the n−dimensional
subspace of E generated by the basis {ek}nk=1 and Pn : E → En be the projection
of E onto En. We recall in particular that Pnx =

∑n
k=1 αk(x)ek for every x ∈ E

with the coefficients {αk(x)} linear and continuous, i.e. αk ∈ E∗, ∀ k ∈ N (see [25,
pp 18-20]), thus Pnxj → Pnx0 for xj ⇀ x0, i.e. Pn : Eω → En is continuous. It is
well known that the sequence {‖Pn‖} is bounded. The Schauder basis {en} is said
to satisfy property (π1) if ‖Pn‖ = 1 for every n ∈ N.

Remark 1. For every 1 < p <∞, Lp(Ω,R) is a reflexive Banach space with topo-

logical dual the strictly convex space Lp
′
(Ω,R), where p′ is the conjugate exponent

of p, i.e. 1
p + 1

p′ = 1. Moreover for each bounded subset Ω ⊂ Rn, Lp(Ω,R) has a

Schauder basis satisfying property (π1) (see, e.g. [13]).

Some of the main properties of the projection Pn are contained in the following.
They were proved in [7, Lemma 6] for Hilbert spaces, but are valid also in Banach
spaces.

Lemma 2.1. The projection Pn : E → En satisfies the following properties:

(a) Pn : Eω → En is continuous;
(b) if xn ⇀ x in E then Pnxn ⇀ x in E.

Lemma 2.2. If fn ⇀ f in L1(I, E) then Pnfn ⇀ f in L1(I, E).

Proof. Let Φ: L1(I, E) → R be a linear and bounded functional. Hence, there is
ϕ ∈ L∞(I, E) such that

Φ(g) =

∫ T

0

〈
g(t), ϕ(t)

〉
dt for all g ∈ L1(I, E).

We have

Φ(Pnfn − f) =
∫ T

0

〈
Pnfn(t)− f(t), ϕ(t)

〉
dt

=
∫ T

0

〈
Pnfn(t)− Pnf(t), ϕ(t)

〉
dt+

∫ T
0

〈
Pnf(t)− f(t), ϕ(t)

〉
dt

=
∫ T

0

〈
fn(t)− f(t), Pnϕ(t)

〉
dt+

∫ T
0

〈
Pnf(t)− f(t), ϕ(t)

〉
dt

=
∫ T

0

〈
fn(t)− f(t), ϕ(t)

〉
dt+

∫ T
0

〈
fn(t)− f(t), Pnϕ(t)− ϕ(t)

〉
dt

+
∫ T

0

〈
Pnf(t)− f(t), ϕ(t)

〉
dt

= Φ(fn − f) +
∫ T

0

〈
fn(t)− f(t), Pnϕ(t)− ϕ(t)

〉
dt+ Φ(Pnf − f).

Recall that fn
L1(I,E)
⇀ f and trivially Png

L1(I,E)−→ g for every g ∈ L1(I, E), therefore,

Φ(Pnfn − f)→ 0 as n→∞, i.e., Pnfn
L1(I,E)
⇀ f .

We can introduce the adjoint projections as P∗n : E∗ → E∗n,
〈
P∗ng, x

〉
=
〈
g,Pnx

〉
,

n ∈ N. For every x =
∑∞
k=1 αk(x)ek, the range of P∗n, R(P∗n) = span{αk}nk=1, for

every n ∈ N, see [25, Theorem 12.1]; moreover, being E a reflexive space it follows
that P∗ng → g, for every n ∈ N, see [25, Corollary 12.2].

Furthermore, we denote with J : E → E∗ the duality map

J(x) =
{
g ∈ E∗ : ‖g‖ = ‖x‖ and

〈
x, g
〉

= ‖x‖2
}
.
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Since E∗ is a strictly convex Banach space, the duality map is single valued; more-
over, since E has a basis satisfying property (π1), it follows

P∗nJ(x) = J(x), for all n ∈ N and x ∈ En
(see [13]).

Given A ⊂ E, let A be the closure of A, while BE(0, R) denotes the closed ball

BE(0, R) = {w ∈ E : ‖w‖ ≤ R}.

By C(I, E) and L1(I, E) we denote respectively the Banach space of all continuous
functions x : I → E with norm

‖x‖C = max
t∈I
‖x(t)‖,

and the Banach space of summable functions with norm

‖x‖1 =

∫ T

0

‖x(t)‖ dt.

A ball of radius R centered at 0 in the space C(I, E) is denoted by BC(0, R).
Finally, with (L, ‖·‖L) we denote the Banach space of linear and bounded operators
in E.

We recall the following characterization of weak convergence in the space of
continuous functions.

Theorem 2.3. (see [12]) A sequence of continuous functions {xn}n ⇀ x ∈ C(I;E)
if and only if

(i) there exists N > 0 such that, for every n ∈ N and t ∈ I, ‖xn(t)‖ ≤ N ;
(ii) for every t ∈ I, xn(t) ⇀ x(t).

It follows that {xn}n ⇀ x ∈ C(I;E) implies that {xn}n ⇀ x ∈ L1(I;E).
Let S ⊆ R be a measurable subset. A subset A ⊂ L1(S,E) is called uniformly

integrable if for every ε > 0 there is δ > 0 such that Ω ⊂ S and µ(Ω) < δ implies∥∥∥∥∫
Ω

f dµ

∥∥∥∥ < ε for all f ∈ A,

where µ is the Lebesgue measure on R.
We propose now the continuation principle that we use to prove the main result.

Theorem 2.4. (see, e.g. [3]) Let Q be a closed, convex subset of a Banach space
F with nonempty interior and T : Q× [0, 1]→ F be a compact map having a closed
graph such that T (Q, 0) ⊂ intQ and T (·, λ) is fixed points free on the boundary of
Q for all λ ∈ [0, 1). Then there exists y ∈ F such that y = T (y, 1).

3. Main results.

3.1. Existence results on compact intervals. We will study the existence of
mild solutions to problem (1) under the following assumptions:

(A1) M is a linear and bounded operator with ‖M‖ ≤ 1;
(A2) there exist R0 > r0 > 0 such that〈

J(z), f(t, z)
〉
≤ 0,

for a.e. ∈ I and for z ∈ E : r0 < ‖z‖ < R0;
(A3) for every z ∈ E the function f(·, z) : I → E is measurable;
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(A4) for every bounded subset Ω ⊂ E there exists a function vΩ ∈ L1(I,R) such
that

‖f(t, z)‖ ≤ vΩ(t),

for a.e. t ∈ I and all z ∈ Ω;
(A5) for a.e. t ∈ I the function f(t, ·) : Eω → Eω is continuous;
(A5)′ there exist R ∈ (r0, R0) and a function L(·) ∈ L1(I, E) such that

‖f(t, z)− f(t, w)‖ ≤ L(t)‖z − w‖,
for a.e. t ∈ I and all z, w ∈ BE(0, R), where R0, r0 are the constants from
(A2).

For R ∈ (r0, R0) denote K = BE(0, R) and Q = C(I,K). For each m ∈ N, set
Q(m) = Q ∩ C(I, Em).

Remark 2. Let us note that:

(a) The transversality condition (A2) assures that every solution of the equation
in (1) located in a suitable bounded region of E is strictly contained in such
a region for t ∈ (0, T ], i.e. it isn’t tangent to its boundary. This guarantees
the absence of fixed points of the solution operator in the boundary of a given
candidate set of solutions, which is a key ingredient when attaching solvability
by means of fixed point theorems. Notice that, in the special case when E is
a Hilbert space, condition (A2) reads as〈

z, f(t, z)
〉
≤ 0,

for a.e. ∈ I and for z ∈ E : r0 < ‖z‖ < R0, which is an usual assumption in
this setting;

(b) It is clear that under conditions (A3) − (A5) [or, (A3) − (A4) and (A5)′] for
every q ∈ Q the function f∗(t) := f(t, q(t)) is in the space L1(I, E);

(c) The class of boundary value problems with the operatorM satisfying condition
(A1) is sufficiently large. In particular, it includes the following well-known
problems:
(i) Mx = 0 (the general Cauchy condition x(0) = x0 can be replaced by

condition z(0) = 0 by a transformation z = x− x0);
(ii) Mx = ±x(T ) (periodic and anti-periodic problems);

(iii) Mx =
∑k0

i=1 αix(ti) with αi ∈ R and
∑k0

i=1 |αi| ≤ 1, where
0 ≤ t1 < · · · < tk0 ≤ T (multi-point problem);

(iv) Mx = 1
T

∫ T
0
x(t)dt (mean value problem);

(v) Mx =
∫ T

0
w(t)x(t)dt with ‖w‖1 ≤ 1 (weighted condition).

Define the continuous operator T : Q→ C(I, E),

T (x)(t) = S(t)Mx+

∫ t

0

S(t− s)f(s, x(s))ds.

By mild solutions on Q of problem (1), we mean continuous functions x ∈ Q such
that

x = T (x).

Theorem 3.1. Let conditions (A1)− (A5) hold. Then the set of mild solutions on
Q of problem (1) is nonempty and weakly compact in C(I, E). If, in addition, the
C0−semigroup generated by A is compact, then the set of mild solutions on Q of
problem (1) is also strongly compact in C([a, T ];E) for each a ∈ (0, T ).
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Proof. For each n ∈ N, let An := n2R(n,A) − nI be the Yosida approximation of
A, where R(n,A) = (nI − A)−1 and I is the identity operator. It is well known
(see, e.g. [26, Lemma 3.2.1 and 3.2.2]) that An ∈ L(E) and {etAn} is a semigroup
of contractions such that

lim
n→∞

etAnx = S(t)x, (2)

for every t ∈ I and x ∈ E. Now, for every n ∈ N consider the problem{
u′(t) = Anu(t) + f(t, u(t)), for a.e. t ∈ I,
u(0) = Mu.

(3)

To prove the existence of solutions u ∈ Q of the problem (3) we will use the bounding
function technique and the approximation solvability method. In fact, consider the
auxiliary problem in C(I, Em){

u′(t) = PmAnu(t) + Pmf(t, u(t)),

u(0) = PmMu.
(4)

Step 1. Let us show that problem (4) has a (strong) solution um ∈ Q(m) for each
m ∈ N. Toward this goal, fix m and q ∈ Q(m). Consider the linear Cauchy problem{

u′(t) = λPmAnq(t) + λPmf(t, q(t)),

u(0) = λPmMq,
(5)

where λ ∈ [0, 1].
It is clear that problem (5) has a unique solution, therefore we can define the

solution operator Σ: Q(m) × [0, 1]→ C(I, Em),

Σ(q, λ)(t) = λPmMq + λ

∫ t

0

(
PmAnq(s) + Pmf(s, q(s))

)
ds.

Let us show that the operator Σ has closed graph and it is compact. Indeed, let
{qk} ⊂ Q(m) and {λk} ⊂ [0, 1] be two strongly convergent sequences to q0 ∈ Q(m)

and λ0 ∈ [0, 1] respectively and assume that the sequence {Σ(qk, λk)} strongly con-
verges to x0 ∈ C(I, Em). We shall prove that x0 = Σ(q0, λ0). By the linearity and

continuity of the operators M , Pm and An it follows that λkPmMqk
E→ λ0PmMq0

and PmAnqk(t)
E→ PmAnq0(t) for every t ∈ I. By virtue of the continuity of f

and observing that Em is a finite dimensional space we have that Pmf(t, qk(t)) →
Pmf(t, q0(t)) for a.e. t ∈ I. Moreover, notice that {qk} ⊂ Q(m), then by the
boundedness of the operators Pm, M and An and by (A4) we have

‖PmAnqk(t) + Pmf(t, qk(t))‖ ≤ R‖An‖L + vK(t)

for a.e. t ∈ I. By the Lebesgue Dominated Convergence Theorem we have that

λk

∫ t

0

(
PmAnqk(s) + Pmf(s, qk(s))

)
ds

E→ λ0

∫ t

0

(
PmAnq0(s) + Pmf(s, q0(s))

)
ds,

for every t ∈ I. By the uniqueness of the limit we obtain that

x0(t) = λ0PmMq0 + λ0

∫ t

0

(
PmAnq0(s) + Pmf(s, q0(s))

)
ds,

for every t ∈ I.
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Now, let {qk} ⊂ Q(m) and {λk} ⊂ [0, 1] and denote xk = Σ(qk, λk). Recalling
that {xk} is a sequence of strong solutions of (5), we have that

‖x′k(t)‖ ≤ R‖An‖L + vK(t),

for a.e. t ∈ I, and hence {x′k} is uniformly integrable. It follows the equicontinuity
of the sequence {xk}. Moreover, according to (A1), it also follows that

‖xk(t)‖ ≤ R+

∫ t

0

‖x′k(s)‖ds,

i.e. the equiboundedness of {xk}. Then, applying the Ascoli-Arzelà Theorem we
obtain the relative compactness of {xk} and the claimed result.

Observe that Σ(·, 0) = {0} ⊂ int Q(m) and assume that there exists (q, λ) ∈
∂Q(m) × (0, 1) such that

q = Σ(q, λ),

or equivalently, {
q′(t) = λPmAnq(t) + λPmf(t, q(t)),

q(0) = λPmMq.

Since q ∈ ∂Q(m) it follows that there exists t0 ∈ [0, T ] such that ‖q(t0)‖ = R. If
t0 = 0, then

R = ‖q(0)‖ = ‖λPmMq‖ ≤ λ‖q‖C < R,

giving a contradiction. So, t0 ∈ (0, T ]. Hence, according to ‖q(0)‖ < R = ‖q(t0)‖
we can take a sufficiently small ε > 0 such that r0 < ‖q(t)‖ ≤ R for all t ∈ (t0−ε, t0)
and ‖q(t0 − ε)‖ < R. Condition (A2) implies that〈

J(q(t)), f(t, q(t))
〉
≤ 0 for a.e. t ∈ (t0 − ε, t0).

Since q(t) ∈ Em we have〈
J(q(t)),Pmf(t, q(t))

〉
=
〈
P∗mJ(q(t)), f(t, q(t))

〉
=
〈
J(q(t)), f(t, q(t))

〉
≤ 0,

for a.e. t ∈ (t0 − ε, t0).
On the other hand, since ‖R(n,A)‖L ≤ n−1 (see [26, Theorem 3.1.1]), we have〈

J(q(t)),PmAnq(t)
〉

=
〈
J(q(t)), n2R(n,A)q(t)

〉
− n

〈
J(q(t)), q(t)

〉
≤ n2‖R(n,A)‖L‖q(t)‖

2 − n‖q(t)‖2 ≤ 0,

for all t ∈ [0, T ].
Consequently, ∫ t0

t0−ε

〈
J(q(t)),PmAnq(t) + Pmf(t, q(t))

〉
dt ≤ 0.

However,∫ t0
t0−ε

〈
J(q(t)),PmAnq(t) + Pmf(t, q(t))

〉
dt =

∫ t0
t0−ε

〈
J(q(t)), q′(t)

〉
dt

=
∫ t0
t0−ε

d
dt

(
‖q(t)‖2

)
= ‖q(t0)‖2 − ‖q(t0 − ε)‖2 > 0,

giving a contradiction.
Applying Theorem 2.4 we obtain that for each m ∈ N there exists um ∈ Q(m)

which is a solution to (4).

Step 2. In this step, we prove that for every n ∈ N problem (3) has a (strong)
solution. Denote fm(t) = Anum(t)+f(t, um(t)). From the condition {um} ⊂ Q and
according to (A4) it follows that there exists ν∗ ∈ L1(I, E) such that ‖fm(t)‖ ≤ ν∗(t)
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for a.e. t ∈ I and every m. Therefore, the sequence {fm} is bounded and uniformly
integrable in L1(I, E). So, it is relatively weakly compact in L1(I, E). W.l.o.g.
assume that

fm
L1(I,E)
⇀ f0.

From Lemma 2.2 we get that u
′

m = Pmfm
L1(I,E)
⇀ f0. Moreover, the set {um(0) :

m ∈ N} is bounded in the reflexive Banach space E. So, w.l.o.g. we can assume
that

um(0)
E
⇀ γ0. (6)

Consider the absolute continuous function

u0(t) := γ0 +

∫ t

0

f0(s) ds, t ∈ I.

Clearly u0 is absolutely continuous and u′0(t) = f0(t) for a.e. t. Moreover, it is easy
to see that

um(t) = um(0) +

∫ t

0

u
′

m(s) ds
E
⇀ u0(t)

for all t ∈ I. By (A5), Lemma 2.1 and the linearity and continuity of the operator An
we get that for a.e. t ∈ I and for every weak neighborhood V of Anu0(t)+f(t, u0(t))
there exists m0 = m0(t, V ) such that

fm(t) ∈ V for all m ≥ m0.

Now, by the Mazur Lemma (see, e.g. [16], p. 16) there is a sequence of convex

combinations {f (m)},

f
(m)

=

∞∑
k=m

σmkfk, σmk ≥ 0, and

∞∑
k=m

σmk = 1,

which converges to u
′

0 in L1(I, E). Applying e.g. [24, Theorem 38] we assume
w.l.o.g that

f
(m)

(t)
E→ u

′

0(t) for a.e. t ∈ I.
So, by the convexity of the set V we have

f
(m)

(t) ∈ V for all m ≥ m0.

Therefore, by the uniqueness of the weak limit we get u
′

0(t) = Anu0(t) + f
(
t, u0(t)

)
for a.e. t ∈ I. Hence, Theorem 2.3 implies

um
C(I,E)
⇀ u0,

and thus, Mum
E
⇀ Mu0. Consequently, again according to Lemma 2.1, um(0) =

PmMum
E
⇀ Mu0. From (6) we have Mu0 = γ0 = u0(0), obtaining that u0 is a

solution to problem (3).

Step 3. We will show now that problem (1) has a mild solution in Q. For each
n ∈ N let un ∈ Q be a solution to the problem (3), i.e.,

un(t) = etAnMun +

∫ t

0

e(t−s)Anf(s, un(s))ds.
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From {un} ⊂ Q, (A1) and the reflexivity of the space E we get that there exists u ∈
E such that, up to subsequence, Mun

E
⇀ u. Moreover, denoting fn(t) = f(t, un(t)),

from un ∈ Q and (A4) it follows that there exists v∗ ∈ L1(I,R) such that

‖fn(t)‖ ≤ v∗(t) for a.e. t ∈ I.
Hence, we get that {fn} is bounded and uniformly integrable in L1(I, E). W.l.o.g.
assume that

fn
L1(I,E)
⇀ f.

For every t ∈ I, we have∫ t

0

‖e(t−s)Anfn(s)‖ ds ≤
∫ t

0

‖fn(s)‖ ds ≤ ‖v∗‖1

and similarly ∫ t

0

‖S(t− s)f(s)‖ ds ≤ ‖v∗‖1.

Consequently, the maps e(t−·)Anfn and S(t − ·)f belong to the space L1([0, t];E)
for every t ∈ I. Now let us show that

e(t−·)Anfn
L1([0,t];E)

⇀ S(t− ·)f for each t ∈ I.
To this aim, let Φ: L1([0, t];E) → R be a linear and bounded functional. Hence,
there is ϕ ∈ L∞([0, t];E∗) such that

Φ(g) =

∫ t

0

〈
g(s), ϕ(s)

〉
ds for all g ∈ L1([0, t];E).

We have

Φ(e(t−·)Anfn − S(t− ·)f) =

∫ t

0

〈
e(t−s)Anfn(s)− S(t− s)f(s), ϕ(s)

〉
ds

=

∫ t

0

〈
e(t−s)Anfn(s)− e(t−s)Anf(s), ϕ(s)

〉
ds+∫ t

0

〈
e(t−s)Anf(s)− S(t− s)f(s), ϕ(s)

〉
ds.

By (2) and the Lebesgue dominated convergence theorem, we have that∫ t

0

〈
e(t−s)Anf(s)− S(t− s)f(s), ϕ(s)

〉
ds→ 0,

for every t ∈ I. Further, let A∗ : D(A∗) ⊂ E∗ → E∗ be the adjoint operator of
A. It is well known (see, e.g. [26, Theorem 3.7.1]) that A∗ is the generator of the
C0−semigroup of contractions {S∗(t)}t≥0, where S∗(t) is the adjoint of the operator
S(t). Moreover,

lim
n→∞

etA
∗
nz∗ = S∗(t)z∗, (7)

for t ∈ I and z∗ ∈ E∗, where A∗n = n2R(n,A∗)− nI.
Consequently, ∫ t

0

〈
e(t−s)Anfn(s)− e(t−s)Anf(s), ϕ(s)

〉
ds =

=
∫ t

0

〈
fn(s)− f(s), e(t−s)A∗nϕ(s)

〉
ds

=
∫ t

0

〈
fn(s)− f(s), e(t−s)A∗nϕ(s)− S∗(t− s)ϕ(s)

〉
ds

+
∫ t

0

〈
fn(s)− f(s), S∗(t− s)ϕ(s)

〉
ds.
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Clearly S∗(t− ·)ϕ(·) ∈ L∞([0, t];E) thus∫ t

0

〈
fn(s)− f(s), S∗(t− s)ϕ(s)

〉
ds→ 0 as n→∞.

Notice that, from (7) we get that e(t−s)A∗nϕ(s) → S∗(t − s)ϕ(s) for a.e. s ∈ [0, t].
Moreover the convergence is dominated, thus

e(t−·)A∗nϕ(·) L
∞(I,E∗)
⇀ S∗(t− ·)ϕ(·)

and we get that∫ t

0

〈
fn(s)− f(s), e(t−s)A∗nϕ(s)− S∗(t− s)ϕ(s)

〉
ds→ 0 as n→∞.

So Φ(e(t−·)A∗nϕ(·))→ Φ(S(t− ·)ϕ(·)), i.e.

un(t) ⇀ S(t)u+

∫ t

0

S(t− s)f(s) ds := u(t)

for every t ∈ I. Thus, un
C(I,E)
⇀ u ∈ Q.

Now let us show that if {zn} ⊂ E, zn
E
⇀ z, then etAnzn

E
⇀ S(t)z for each t ∈ I.

In fact, for every g ∈ E∗ we have〈
g, etAnzn − S(t)z

〉
=
〈
g, etAnz − S(t)z

〉
+
〈
g, etAn(zn − z)

〉
.

By virtue of (2) it follows that〈
g, etAnz − S(t)z

〉
→ 0 as n→∞.

Further,〈
g, etAn(zn − z)

〉
=

〈
(etAn)∗g, zn − z

〉
=
〈
etA

∗
ng, zn − z

〉
=

〈
etA

∗
ng − S(t)∗g, zn − z

〉
+
〈
S(t)∗g, zn − n

〉
→ 0 as n→∞.

Thus, according to (A1) and (A5), we get

etAnMun
E
⇀ S(t)Mu,

and ∫ t

0

e(t−s)Anf(s, un(s))ds
E
⇀

∫ t

0

S(t− s)f(s, u(s))ds.

Therefore, by the uniqueness of the weak limit we have

u(t) = S(t)Mu+

∫ t

0

S(t− s)f(s, u(s))ds, for every t ∈ I,

obtaining the claimed result.

Step 4. Now we will show that the set of solutions to problem (1) is weakly compact
in C(I, E). Let {uk} ⊂ Q be a sequence of solutions to the problem (1), i.e.,

uk(t) = S(t)Muk +

∫ t

0

S(t− s)f(s, uk(s))ds.

Denoting with fk(t) = f(t, uk(t)), k ∈ N, from uk ∈ Q and (A4) it follows that there
exists v∗ ∈ L1(I,R) such that

‖fk(t)‖ ≤ v∗(t) for a.e. t ∈ I.
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Hence, we get that {fk} is bounded and uniformly integrable in L1(I, E). W.l.o.g.
assume that

fk
L1(I,E)
⇀ f. (8)

For every t ∈ I, it easily follows that∫ t

a

S(t− s)fk(s) ds
E
⇀

∫ t

a

S(t− s)f(s) ds.

Moreover, from {uk} ⊂ Q, (A1) and the reflexivity of the space E we get that there

exists u ∈ E such that, up to subsequence, Muk
E
⇀ u. Hence

uk(t) ⇀ S(t)u+

∫ t

0

S(t− s)f(s) ds := u(t)

for every t ∈ I. Thus, uk
C(I,E)
⇀ u ∈ Q.

Thus, by the linearity and continuity of the semigroup S(t) according to (A1)
and (A5), we get

S(t)Mun
E
⇀ S(t)Mu,

and ∫ t

0

S(t− s)f(s, un(s))ds
E
⇀

∫ t

0

S(t− s)f(s, u(s))ds.

Therefore, by the uniqueness of the weak limit we have

u(t) = S(t)Mu+

∫ t

0

S(t− s)f(s, u(s))ds, for every t ∈ I.

Step 5. Finally, let the C0−semigroup {S(t)}t≥0 generated by A be compact and
a ∈ (0, T ) be an arbitrary number. We will show that the set of solutions on Q to
problem (1) is compact in C([a, T ], E).

Let {uk} ⊂ Q be a sequence of solutions to the problem (1), i.e.,

uk(t) = S(t)Muk +

∫ t

0

S(t− s)f(s, uk(s))ds.

Fix t ∈ [0, T ]. Reasoning as in Step 4, we get that the sequence hk,t defined as
hk,t(s) = S(t − s)f(s, uk(s)) is bounded and uniformly integrable in L1([0, t], E).
Moreover, from the compactness of S(t− s) for every s < t, it follows that the set
{hk,t(s)} is relatively compact for a.a. s < t. Since the operator P : L1([0, t], E)→
C([0, t], E) defined by Pg(r) =

∫ r
0
g(s) ds is the Cauchy operator in the special case

when the semigroup is identically equal to I, it satisfies conditions (i) and (ii) in [18,
Theorem 5.1.1], thus according to the same theorem we obtain that the sequence{∫ r

0

hk,t(s) ds

}
is relatively compact in C([0, t], E), hence, in particular, the sequence {vk} ⊂
C(I, E) defined as

vk(t) =

{∫ t

0

S(t− s)f(s, uk(s)) ds

}
is such that {vk(t)} is relatively compact in E for every t ≥ a.

Now we can use Theorem 8.4.1 in [26] to get the conclusion. This ends our
proof.
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Remark 3. Let us note that

(i) Theorem 3.1 can be proved also replacing (A1) with
(A1′) M is a weakly continuous map and ‖Mx‖ ≤ ‖x‖0 for every x ∈ C(I, E).

(ii) Whenever M is as in one of the specific cases (i), (ii) or (iii) with t1 > 0
in item (c) of Remark 6 and the C0−semigroup generated by A is compact,
then the set of mild solutions on Q of problem (1) is strongly compact in
C([0, T ], E). In fact, given a sequence {uk} ⊂ Q of mild solutions, we already
proved that it is equicontinuous in C([0, T ], E) as well as pointwise relatively

compact for every t ∈ (0, T ]. Since uk(0) =
∑k0

i=1 αiuk(ti) for some αi ∈ R
and 0 < t1 < · · · < tk0

≤ T, the relative compactness of {uk(ti)} for every
i = 1, ...k0 yields also the relative compactness of {uk(0)}, thus the claimed
result from Ascoli-Arzelá theorem.

We recall that given two Banach spaces E1 and E2 endowed with two measures of
non compactness β1 and β2, it is possible to define the (β2, β1)-norm of a bounded
linear operator L : E1 → E2 as

‖L‖(β2,β1) = inf {C > 0 : β2(L(Ω)) ≤ Cβ1(Ω), Ω bounded in E1} .

Notice that since L is a bounded and linear operator its (β1, β2)-norm is finite (see
e.g. [2, Theorem 2.4.1]). If we consider the modulus of fiber of noncompactness as
measure of non compactness in the space C([0, T ], E), i.e.

γ(Ω) = sup
t∈[0,T ]

χ(Ω(t))

with Ω ⊂ C([0, T ];E) a bounded set and χ the Hausdorff measure of noncompact-
ness in E (see, e.g. [18]), under the assumption that

max
{
‖M‖(χ,γ), ‖M‖

}
+ ‖L‖1 < 1, (9)

we can use the condition (A5)′ to obtain the uniqueness of the mild solution to
problem (1).

Theorem 3.2. Let conditions (A1)− (A3), (A5)′ and (9) hold. Then problem (1)
has a unique mild solution in Q.

Proof. For fixed n ∈ N, reasoning as in Theorem 3.1 we can prove that for every
m ∈ N problem (4) has a strong solution um ∈ Q(m) with

um(t) = etPmAnPmMum +

∫ t

0

e(t−s)PmAnPmf(s, um(s))ds.

For any t ∈ [0, T ] we can compute the Hausdorff measure of noncompactness of
{um(t)}. Precisely, since {um} is a bounded sequence and M is a bounded linear
operator we have

χ
(
{um(t)}

)
≤ χ

(
{etPmAnPmMum}

)
+ χ

({∫ t
0
e(t−s)PmAnPmf(s, um(s))ds

})
≤ ‖etPmAn‖χ

(
M{um}

)
+ χ

({∫ t
0
e(t−s)PmAnPmf(s, um(s))ds

})
≤ ‖etPmAn‖‖M‖(χ,γ) γ

(
{um}

)
+ χ

({∫ t
0
e(t−s)PmAnPmf(s, um(s))ds

})
.
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Since An generates a semigroup of contraction, it is easy to prove that ‖etPmAn‖ ≤ 1
for every t ∈ I,m ∈ N, hence (A5)′ implies that

χ
({
e(t−s)PmAnPmf(s, um(s))

})
≤ ‖e(t−s)PmAn‖χ

(
{Pmf(s, um(s))}

)
≤ L(s)χ

(
{um(s)}

)
≤ L(s) γ

(
{um}

)
,

for a.e. s ∈ I, and hence,

χ({um(t)}) ≤ ‖M‖(χ,γ) γ({um}) + γ({um})
∫ t

0

L(s) ds.

Thus,

γ({um}) ≤ γ({um})
(
‖M‖(χ,γ) + ‖L‖1

)
From ‖M‖(χ,γ) +‖L‖1 < 1 we obtain γ({um}) = 0, and so χ({um(t)}) = 0 for every
t ∈ I. Hence, the set {um(t)} is relatively compact for every t ∈ I. From um ∈ Q(m)

and (A5)′ we get that {um} is relative compact in C(I, Em) and {u′m} is bounded
and uniformly integrable in L1(I, E), thus um → u in Q and u′m ⇀ u′ in L1(I, E)
(see, e.g. [3, Lemma 1.30]). Condition (A1) implies that

u(0) = lim
m→∞

um(0) = lim
m→∞

PmMum = Mu.

Moreover, from (A5)′ and the continuity of An we obtain that f(t, um(t)) →
f(t, u(t)) and Anum(t)→ Anu(t) for a.e. t ∈ I. Consequently,

u′m(t) = PmAnum(t) + Pmf(t, um(t))→ Anu(t) + f(t, u(t))

for every t ∈ I and the convergence is dominated, implying

u′(t) = Anu(t) + f(t, u(t))

by the uniqueness of the weak limit.
So, we proved that for every n ∈ N problem (3) has a strong solution un ∈ Q,

i.e.

un(t) = etAnMun +

∫ t

0

e(t−s)Anf(s, un(s))ds. (10)

Reasoning as above we can prove that un → u0 ∈ Q. From (A1) and (A5)′ it

follows that Mun →Mu0 and f(s, un(s))
E→ f(s, u0(s)) thus e(t−s)Anf(s, un(s))→

S(t− s)f(s, u0(s)) for every t ∈ I and a.e. s ≤ t and the convergence is dominated.
Passing (10) to the limit we again obtain that

u0(t) = S(t)Mu0 +

∫ t

0

S(t− s)f(s, u0(s)) ds.

Now, assume that there exist two mild solutions u and v of problem (1) in Q, i.e.

u(t) = S(t)Mu+

∫ t

0

S(t− s)f(s, u(s))ds,

and

v(t) = S(t)Mv +

∫ t

0

S(t− s)f(s, v(s))ds.

Therefore, for every t ∈ I:

‖u(t)− v(t)‖ ≤ (‖M‖+ ‖L‖1)‖u− v‖C < ‖u− v‖C .

So, u ≡ v, i.e. problem (1) has a unique mild solution in Q.
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Remark 4. We point out that in all classical conditions listed in Remark 2 it holds

‖M‖(χ,γ) ≤ ‖M‖,
thus (9) reads as

‖M‖+ ‖L‖1 < 1.

Indeed, consider the multipoint condition Mx =
∑k0

i=1 αix(ti), which includes the
Cauchy condition (with αi = 0 for every i) and the periodic and antiperiodic con-
ditions (with k0 = 1, t1 = T and α1 = ±1) and let Ω ⊂ C(I, E) be bounded.

From M(Ω) ⊂
∑k0

i=1 αiΩ(ti) and the monotonicity, algebraically semiadditivity and
semihomogeneity properties of the Hausdorff measure of noncompactness, it holds

χ
(
M(Ω)

)
≤ χ

(∑k0

i=1 αiΩ(ti)
)
≤
∑k0

i=1 χ(αiΩ(ti))

≤
∑k0

i=1 |αi|χ(Ω(ti)) ≤
∑k0

i=1 |αi|γ(Ω) = ‖M‖γ(Ω).

Take now the weighted condition Mx =
∫ T

0
w(t)x(t)dt , including the mean value

condition (with w(s) = 1
T for every s) and let Ω ⊂ C(I, E) be bounded. Then, for

every s ∈ I, since

χ({ω(s)x(s)}) ≤ |w(s)|χ({Ω(s)}) ≤ |w(s)|γ(Ω),

it follows that

χ

(∫ T

0

w(s)x(s)ds

)
≤
∫ T

0

|w(s)|γ(Ω)ds = γ(Ω)‖w‖1 = γ(Ω)‖M‖.

In both cases we get ‖M‖(χ,γ) ≤ ‖M‖.

3.2. Existence results on noncompact intervals. Given a function f : [0,+∞)
× E → E, as consequence of our method, we discuss the existence of entirely
bounded solution of the equation

u′(t) = Au(t) + f(t, u(t)), for a.e. t ∈ [0,+∞). (11)

Theorem 3.3. Assume that f : [0,+∞) × E → E satisfies (A2)-(A5) on [0,∞).
Then equation (11) admits at least one bounded mild solution on [0,+∞).

Proof. According to Theorem 3.1, for every k ∈ N+ there exists a solution uk to
the problem {

u′(t) = Au(t) + f(t, u(t)), for a.e. t ∈ [0, k],

u(0) = 0,
(12)

with ‖uk(t)‖ ≤ R for every k ∈ N and t ∈ [0, k]. Consider the restriction of the
sequence of mild solutions {uk} to the interval [0, 1], namely {uk/[0,1]}. Since the
set of mild solutions of problem (1) is weakly compact in C([0, 1];K), there exists a
subsequence still denoted as the sequence converging to a function ψ1 ∈ C([0, 1];K)
mild solution of the problem (12) in [0, 1]. Now, let us consider the sequence {uk/
[0,2]}k≥2. Again, we get that there exists a subsequence {ukn/[0,2]}k≥2 weakly con-

verging to a function ψ2 ∈ C([0, 2];K) mild solution for the problem (12) in [0, 2].
By construction it follows that

ψ2/[0,1] = ψ1 .

By iterating this process we obtain, for every k ∈ N+, a mild solution ψk : [0, k]→ E
for problem (12) such that for every integer k ≥ 2, we have

ψk[0,k−1] = ψk−1 . (13)
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Hence by the continuity of the maps ψk for any k ∈ N+ and by (13) we have that
the map ψ : [0,+∞)→ E defined as

ψ(t) =


ψ1(t) t ∈ [0, 1]
ψ2(t) t ∈]1, 2]
. . . . . .
ψk(t) t ∈]k − 1, k]
. . . . . .

is a mild solution to equation (11) on [0,+∞). Moreover, ‖ψ(t)‖ ≤ R for every
t ∈ [0,+∞), i.e. ψ is bounded on the half-line.

Easily we obtain an analogous result under the hypothesis (A5)′.

Theorem 3.4. Assume f : [0,+∞) × E → E satisfies (A2)-(A3)-(A5)′ on [0,∞)

with
∫ +∞

0
L(t)dt < 1, then equation (11) has a unique mild solution u with ‖u(t)‖ ≤

R on [0,∞).

Proof. According to Theorem 3.2 for every k ∈ N there exists a unique mild solution
uk to the problem (12) such that ‖uk(t)‖ ≤ R for all k ∈ N and t ∈ [0, k]. Hence
the map defined as

u(t) =


u1(t) t ∈ [0, 1]
u2(t) t ∈]1, 2]
. . . . . .
uk(t) t ∈]k − 1, k]
. . . . . .

is the unique mild solution of (11) on [0,+∞).

4. Applications. In this section we will apply our abstract result to study pop-
ulation diffusion models. Both our models develop from very simple and ancien-
t population growth equations, respectively the confined exponential distribution
u′ = a(N−u) and the logistic distribution u′ = au(1−u). These ordinary differential
equations were then generalized to partial differential equations to take into account
the fact that sometimes growth, transfer and diffusion all occur simultaneously in
a phenomenon. For example, when an epidemic spreads through a geographical
region, the number of infected people grows as the disease is transferred from those
infected to susceptible.

Let Ω ⊂ Rn be an open bounded domain with C1−boundary. Let us first consider
a simple linear diffusion model of the form:

∂u(t,ξ)
∂t = ∆u(t, ξ) + a(t, ξ)

(
K(t, ξ)− u(t, ξ)

)
, (t, ξ) ∈ (0, T ]× Ω,

∂u(t,ξ)
∂n = 0, (t, ξ) ∈ [0, T ]× ∂Ω

u(0, ξ) =
∑k
i=1 αiu(ti, ξ), ξ ∈ Ω.

(14)

This model is used to describe various mathematical models arising, for example,
in technology transfer, social sciences, agriculture (see [4] and [21]).

Here, u(t, ξ), K(t, ξ) and a(t, ξ) represent the population size, the carrying ca-
pacity, which is the largest population that the resources in the environment can
sustain, and the growth (or transfer) coefficient at time t and location ξ, respec-
tively. The temporal change of the population size at location ξ is given by the
diffusion term ∆u(t, ξ) and the growth component is

a(t, ξ)
(
K(t, ξ)− u(t, ξ)

)
.
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Let us mention that problem of reaction-diffusion with time and location dependent
of carrying capacity and of growth coefficient and with initial condition

u(0, ξ) = u0(ξ), for all ξ ∈ Ω

is studied intensively by researchers (see, e.g. [19]). Here we will consider problem
(14) with a multi-point condition.

Let E = L2(Ω,R). We denote with ‖ · ‖ the norm in E. For each t ∈ [0, T ] set
x(t) = u(t, ·). Assume that:
(i) a : [0, T ]× Ω→ [c,+∞) is a continuous function, with c > 0;
(ii) for every t ∈ [0, T ] the function k(t, ·) ∈ L2(Ω,R) and

sup
t∈[0,T ]

||k(t, ·)||2 = K∗ <∞

(iii) 0 < t1 < · · · < tk ≤ T and αi ∈ R are such that
∑k
i=1 |αi| ≤ 1.

Then problem (14) can be substituted by the following semilinear differential equa-
tion {

x′(t) = Ax(t) + f(t, x(t)), for t ∈ (0, T ],

x(0) = Mx =
∑k
i=1 αix(ti),

(15)

where the operator A : D(A) ⊆ E → E is defined by{
D(A) =

{
u ∈W 2,2(Ω): ∂u

∂n = 0 on [0, T ]× ∂Ω
}
,

Au = ∆u, for u ∈ D(A)

and f : [0, T ]× E → E,

f(t, z)(ξ) = a(t, ξ)
(
K(t, ξ)− z(ξ)

)
.

It is well known (see, e.g. [26, Theorem 4.2.2]) that A is the generator of a
C0−semigroup of contractions on E.

By a mild solution of problem (14) we mean a continuous function x ∈ C([0, T ];E)
that is a mild solution of (15).

Theorem 4.1. If
k∑
i=1

|αi|+ T ||a||0 < 1,

then in BC(0, a∗K∗c ) the problem (14) has a unique mild solution.

Remark 5. (a) The existence of mild solutions to problem (14) is a quite general
result, since we do not need any other constrained condition on the functions
a(t, ξ) and K(t, ξ);

(b) the multi-point condition can be replaced by other conditions such that ‖M‖ ≤
1 (see Remark 2).

Proof of Theorem 4.1. It is easy to see that the map f satisfies conditions (A3)
and (A5)′ with L(t) = a∗ for every t. Let us verify condition (A2). In fact, since
E is a separable Hilbert space, so we have J(z) = z for every z ∈ E. For every
(t, z) ∈ [0, T ]× E we have〈

z, f(t, z)
〉

=
∫

Ω
z(ξ)a(t, ξ)

(
K(t, ξ)− z(ξ)

)
dξ

≤ a∗K∗‖z‖ − c‖z‖2 < 0,
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provided

‖z‖ > a∗K∗
c

.

Therefore, from Theorem 3.2 and Remarks 2 and 4 we obtain the existence of a
unique mild solution of problem (14).

Now, let us consider again the reaction-diffusion equation in (14) for the case
a(t, ξ) = a > 0 for all (t, ξ) ∈ [0, T ]×Ω, but with the growth component depending
also on the total population size over the considered area. More precisely, the
population dynamic is described by the following problem

∂u
∂t = ∆u(t, ξ) + a

(
K(t, ξ)− bu(t, ξ)

1 +
∫

Ω
|u(t, ξ)|dξ

)
, (t, ξ) ∈ (0, T ]× Ω,

∂u(t,ξ)
∂n = 0, (t, ξ) ∈ [0, T ]× ∂Ω

u(0, ξ) =
∑k
i=1 αiu(ti, ξ), ξ ∈ Ω.

(16)

Assume (ii) and (iii). Let f : [0, T ]× E → E be a map defined by

f(t, z)(ξ) = a

(
K(t, ξ)− bz(ξ)

1 +
∫

Ω
|z(ξ)|dξ

)
,

then problem (16) can be written as problem (15).

Theorem 4.2. If b > K∗|Ω|
1
2 , and

a <
(1−

∑k
i=1 |αi|)(b−K∗|Ω|

1
2 )

b2T
.

then in BC(0, K∗

b−K∗|Ω|
1
2

) the problem (16) has a unique mild solution.

Proof. It is clear that conditions (A1) and (A3) hold true. Let us verify condition
(A2) and (A5)′. Toward this goal, for every (t, z) ∈ [0, T ]× E we have〈

z, f(t, z)
〉

= a
∫

Ω
z(ξ)

(
K(t, ξ)− bz(ξ)

1+
∫
Ω
|z(ξ)|dξ

)
dξ

≤ aK∗‖z‖ − ab‖z‖2

1+|Ω|
1
2 ‖z‖

= a‖z‖
1+‖z‖

[
(K∗|Ω|

1
2 − b)‖z‖+K∗

]
< 0,

provided

‖z‖ > K∗

b−K∗|Ω|
1
2

.

Hence, condition (A2) holds true. For t ∈ [0, T ] and z, w ∈ B(0, K∗

b−K∗|Ω|
1
2

), denoting

‖z‖1 =
∫

Ω
|z(ξ)|dξ, we have

‖f(t, z)− f(t, w)‖ =

= ab
∥∥∥ z

1+‖z‖1 −
w

1+‖w‖1

∥∥∥
≤ ab

(1+‖z‖1)(1+‖w‖1)

∥∥∥z − w + z‖w‖1 − w‖z‖1
∥∥∥
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≤ ab
(1+‖z‖1)(1+‖w‖1)

(
‖z − w‖+

∥∥∥∥z‖w‖1 − w‖z‖1∥∥∥∥
)

≤ ab
(1+‖z‖1)(1+‖w‖1)

(
‖z − w‖+

∥∥∥∥z‖w‖1 − w‖w‖1 + w‖w‖1 − w‖z‖1
∥∥∥∥
)

≤ ab
(1+‖z‖1)(1+‖w‖1)

(
‖z − w‖+ ‖w‖1‖z − w‖+ ‖w‖

∣∣∣∣‖w‖1 − ‖z‖1∣∣∣∣
)

≤ ab
(1+‖z‖1)(1+‖w‖1)

(
‖z − w‖+ ‖w‖1‖z − w‖+ ‖w‖‖w − z‖1

)
≤ ab

(1+‖z‖1)(1+‖w‖1) (1 + ‖w‖1 + ‖w‖|Ω| 12 )‖w − z‖

≤ ab

(
1

1+‖z‖1 + ‖w‖|Ω|
1
2

(1+‖z‖1)(1+‖w‖1)

)
‖w − z‖

≤ ab

(
1 + K∗|Ω|

1
2

b−K∗|Ω|
1
2

)
‖w − z‖.

Since (A5)′ is satisfied with L = ab2

b−K∗|Ω|
1
2
, from Theorem 3.2 and Remarks 2 and

4 we obtain that problem (16) has a unique mild solution.

Let now Ω ⊂ Rn be an open bounded domain with C2-boundary. Consider the
periodic problem
ut = ∆u− bu(t, ξ) + u h

(
t, ξ,

∫
Ω

k(ξ, η)u(t, η)dη
)

+ l(t, ξ), (t, ξ) ∈ (0, 1]× Ω,

u(t, ξ) = 0, (t, ξ) ∈ [0, 1]× ∂Ω,

u(0, ξ) = u(1, ξ), ξ ∈ Ω.

(17)
Problem (17) is a generalized version of the nonlocal Fisher-Kolmogorov-Petrovskii-
Piscounov equation (FKPP), which describes a model of spatial diffusion and evo-
lution of a population with non local consumptions of resources (see [1, 11]).

In (17) u(t, ξ) represents the density of the population at time t and position ξ.
The coefficient b > 0 is the death rate. The proliferation rate h depends on the
time, the position and the total size of the population weighted by the kernel k
corresponding to the probability of an individual to move from one position to an
other. It contains also the forcing term l. The periodic condition aims to take under
control the diffusion of the population.

Let E = Lp(Ω,R), 1 < p <∞. We denote with ‖ · ‖p the norm in E. By means
of a reformulation of this problem we will prove the existence of a mild solution to
(17).

To this aim, for each t ∈ [0, 1], set x(t) = u(t, ·); let Wm,p(Ω,R) be the Sobolev s-
pace and Wm,p

0 (Ω,R) the subspace containing all functions of Wm,p(Ω,R) vanishing
at the boundary ∂Ω.

Assume that:
(i) the function h : [0, 1]× Ω× R→ R is such that

(1) h(·, ·, c) is measurable for every c ∈ R;
(2) h(t, ξ, ·) is continuous for a.e. t ∈ [0, 1] and ξ ∈ Ω;
(3) there exists a monotone increasing function β : R+ → R+ such that

|h(t, ξ, c)| ≤ β(|c|),
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for every (t, ξ, c) ∈ [0, 1]× Ω× R.
(ii) for a.e. ξ ∈ Ω the function k(ξ, ·) ∈ Lp′(Ω,R) and

sup
ξ∈Ω
||k(ξ, ·)||p′ = k <∞.

(iii) for a.e. t ∈ [0, 1] the function l(t, ·) ∈ Lp(Ω,R) and

sup
t∈[0,1]

||l(t, ·)||p = l <∞.

We can substitute (17) by the following problem{
x′(t) = Ax(t) + f(t, x(t)), for a.e. t ∈ [0, 1],

x(0) = x(1),
(18)

where {
D(A) = W 2,p (Ω,R) ∩W 1,p

0 (Ω,R) ,

A : D(A) ⊂ E → E, Aw = ∆w,

and f : [0, 1]× E → E, f(t, w) = −bw + g(t, w) + l(t, ·) with

g : [0, 1]× E → E, g(t, w)(ξ) = w(ξ)h

(
t, ξ,

∫
Ω

k(ξ, η)w(η) dη

)
.

It is known that A generates a compact C0-semigroup of contractions {U(t)}t≥0

on E (see, e.g. [26, Theorem 4.1.3]). Moreover we remark that g is well-defined.
Indeed, from Hölder inequality, (3) and (ii), for w ∈ E it follows∣∣∣∣h(t, ξ,∫

Ω

k(ξ, η)w(η) dη
)∣∣∣∣ ≤ β(∣∣∣∫

Ω

k(ξ, η)w(η)dη
∣∣∣) ≤ β(k‖w‖p), (19)

for a.e. t ∈ [0, 1]× Ω.
Again, by a mild solution of problem (17) we mean a continuous function x ∈

C([0, T ];E) that is a mild solution of (18).

Theorem 4.3. If b > l
R + β(kR) for some R > 0, then problem (17) has a mild

solution in BC(0, R). Moreover the set of mild solution of (17) is strongly compact
in C([0, 1], Lp(Ω,R)).

Proof. We show that all assumptions of Theorem 3.1 hold true. First of all, accord-
ing to (19), for every w ∈ E,

‖f(t, w)‖p ≤ [b+ β(k‖w‖p)]‖w‖p + l.

The measurability of f(·, w) is trivially satisfied. So, conditions (A3) and (A4) hold
true. We now prove that f(t, ·) is weakly sequentially continuous for a.e. t. Indeed,
it is sufficient to prove that g(t, ·) is weakly sequentially continuous for a.e. t. Let

wn
E
⇀ w0, trivially we have∫

Ω

k(ξ, η)wn(η) dη →
∫

Ω

k(ξ, η)w0(η) dη for a.e. ξ ∈ Ω.

Therefore, (2) implies that

h
(
t, ξ,

∫
Ω

k(ξ, η)wn(η)dη
)
→ h

(
t, ξ,

∫
Ω

k(ξ, η)w0(η)dη
)



2996 IRENE BENEDETTI, NGUYEN VAN LOI AND VALENTINA TADDEI

for a.e. ξ ∈ Ω. Moreover from (3) we obtain that the convergence is dominated,

hence, from the boundedness of {‖wn‖p} we get that for every given ϕ ∈ Lp′(Ω,R)
it holds that∣∣∣∣∫Ω ϕ(ξ)wn(ξ)

[
h
(
t, ξ,

∫
Ω
k(ξ, η)wn(η)dη

)
− h
(
t, ξ,

∫
Ω
k(ξ, η)w0(η)dη

)]
dξ

∣∣∣∣ ≤
‖wn‖p

[∫
Ω
|ϕ(ξ)|p′

∣∣∣h(t, ξ, ∫Ω k(ξ, η)wn(η)dη
)
− h
(
t, ξ,

∫
Ω
k(ξ, η)w0(η)dη

)∣∣∣p′dξ] 1
p′

→ 0

i.e.

wn

[
h
(
t, ·,
∫

Ω

k(·, η)wn(η)dη
)
− h
(
t, ·,
∫

Ω

k(·, η)w0(η)dη
)]
⇀ 0

in Lp(Ω,R). From (3) we also get that

h
(
t, ·,
∫

Ω

k(·, η)w0(η)dη
)

(wn − w0) ⇀ 0

in Lp(Ω,R), obtaining that

wnh
(
t, ·,
∫

Ω

k(·, η)wn(η)dη
)
− w0h

(
t, ·,
∫

Ω

k(·, η)w0(η)dη
)
⇀ 0

i.e. the claimed result. Hence, condition (A5) holds true.
Now, let us check the condition (A2). To this aim, we recall (see, e.g. [13]) that for
w ∈ E, ‖w‖p > 0, we have

〈J(w), v〉 =
1

‖w‖p−2
p

∫
Ω

|w(ξ)|p−2 w(ξ) v(ξ) dξ.

Therefore, given R > 0, for a.e. t ∈ [0, 1] and w ∈ E, 0 < ‖w‖p < R:〈
J(w), g(t, w)

〉
=

1

‖w‖p−2
p

∫
Ω

|w(ξ)|p h
(
t, ξ,

∫
Ω

k(ξ, η)w(η) dη
)
dξ

≤ 1

‖w‖p−2
p

∫
Ω
|w(ξ)|p β

(
k ‖w‖p

)
dξ

≤ β(kR)‖w‖2p.

Moreover〈
J(w), l(t, ·)

〉
=

1

‖w‖p−2
p

∫
Ω

|w(ξ)|p−2 w(ξ) l(t, ξ)dξ

≤ 1

‖w‖p−2
p

∫
Ω
|w(ξ)|p−1 |l(t, ξ)|dξ

≤ 1

‖w‖p−2
p

(∫
Ω

(
|w(ξ)|p−1

)p′
dξ
) 1

p′
(∫

Ω
|l(t, ξ)|pdξ

) 1
p

.

Since (∫
Ω

(
|w(ξ)|p−1

)p′
dξ
) 1

p′
=
(∫

Ω

|w(ξ)|pdξ
) p−1

p

= ‖w‖p−1
p ,

we obtain 〈
J(w), l(t, ·)

〉
≤ ‖l(t, ·)‖p
‖w‖p−2

p

‖w‖p−1
p ≤ l‖w‖p.

Consequently,〈
J(w), f(t, w)

〉
=
〈
J(w),−bw

〉
+
〈
J(w), g(t, w)

〉
+
〈
J(w), l(t, ·)

〉
≤ −‖w‖p

[(
b− β(kR)

)
‖w‖p − l

]
< 0.
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provided
l

b− β(kR)
< ‖w‖p < R.

So, condition (A2) holds true. Applying Theorem 3.1 we obtain the claimed
result.

Remark 6. In the case of Ω non-empty, open and unbounded subset of Rn the
operator A : D(A) ⊂ L2(Ω,R)→ L2(Ω,R) defined as{

D(A) = {w ∈W 1,2
0 (Ω,R) , ∆w ∈ L2(Ω,R)}

Aw = ∆w,

is the generator of a non compact semigroup of contraction (see Theorem 4.1.2 in

[26]). Hence, if b > l
R + β(kR) for some R > 0, by Theorem 3.1 we obtain a

non-empty solution set of (17) that is weakly compact in C([0, 1], L2(Ω,R)).

Remark 7. Let us note that

(a) In the classical case β(c) = a(1 + c) the condition in Theorem 4.3 reads as

b > 2
√
al k + a.

(b) In problem (17) we can consider an equation of this kind:

ut = ∆u− bu+ h

(
t, ξ,

∫
Ω

k(ξ, η)u(t, η) dη

)
with h satisfying hypotheses (i)-(iii) above except for the growth condition (3)
that is replaced by
(3)’ there exists a function γ ∈ Lp(Ω,R+) such that

|h(t, ξ, c)| ≤ γ(ξ)β(|c|),
for every (t, ξ, c) ∈ [0, 1]× Ω× R with β as above.
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