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ABSTRACT

Image and video captioning are important tasks in visual data
analytics, as they concern the capability of describing visual
content in natural language. They are the pillars of query
answering systems, improve indexing and search and allow
a natural form of human-machine interaction. Even though
promising deep learning strategies are becoming popular, the
heterogeneity of large image archives makes this task still
far from being solved. In this paper we explore how visual
saliency prediction can support image captioning. Recently,
some forms of unsupervised machine attention mechanisms
have been spreading, but the role of human attention predic-
tion has never been examined extensively for captioning. We
propose a machine attention model driven by saliency predic-
tion to provide captions in images, which can be exploited for
many services on cloud and on multimedia data. Experimen-
tal evaluations are conducted on the SALICON dataset, which
provides groundtruths for both saliency and captioning, and
on the large Microsoft COCO dataset, the most widely used
for image captioning.

Index Terms— Image Captioning, Visual Saliency, Hu-
man Eye Fixations, Attentive Mechanisms, Deep Learning.

1. INTRODUCTION

Replicating the human ability of describing an image in nat-
ural language, providing a rich set of details at a first glance,
has been one of the primary goals of different research com-
munities in the last years. Captioning models, indeed, should
not only be able to solve the challenge of identifying each and
every object in the scene, but they should also be capable of
expressing their names and relationships in natural language.
The enormous variety of visual data makes this task particu-
larly challenging. It is very hard, indeed, to predict a-priori
and only driven by data what could be interesting in an im-
age and what should be described. Nevertheless, describing
visual data in natural language opens the door to many fu-
ture applications: the one with the largest potential impact is
that of defining new services for search and retrieval in visual
data archives, using query-answering tools, working on nat-
ural language as well as improving the performance of more

A dog running in the grass
with a frisbee in its mouth.

Two kids playing a video
game on a large television.

A black and white cat lay-
ing on a laptop.

A baseball player swing-
ing a bat at a ball.

Fig. 1. Saliency prediction and captions generated by our ap-
proach on images from the Microsoft COCO Dataset [1].

traditional keyword-based search engines.
With the advance of deep neural networks [2] and large

annotated datasets [1], recent works have significantly im-
proved the quality of caption generation, bringing the field
to a rather mature stage, in which proper captions can be au-
tomatically generated for a wide variety of natural images.
Most of the existing approaches rely on a combination of
Convolutional Neural Networks (CNN), to extract a vector-
ized representation of an input image, and Recurrent Neural
Networks (RNN), as a language model and to generate the
corresponding caption [3]. As such, they treat the input image
as a whole, neglecting the human tendency to focus on spe-
cific parts of the scene when watching an image [4], which is
is instead crucial for a convincing human-like description of
the scene.

An attempt to emulate such ability in captioning models
has been carried out by the machine attention literature [5]:
machine attention mechanisms, indeed, focus on different re-
gions of the input image during the generation of the caption,
in a fully unsupervised manner, so that regions of focus are
chosen only with the objective of generating a better descrip-
tion, without considering the actual human attentive mecha-
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nisms.
On a different note, the computer vision community has

also studied the development of approaches capable of pre-
dicting human eye fixations on images [6, 7, 8], by relying on
datasets taken with eye-tracking devices. This task, namely
saliency prediction, aims at replicating the human selective
mechanisms which drive the gaze towards some specific re-
gions of the scene, and has never been incorporated in a cap-
tioning architecture, even though, in principle, such supervi-
sion could result in better image captioning performance.

In this paper, we present a preliminary investigation on
the role of saliency prediction in image captioning architec-
tures. We propose an architecture in which the classical ma-
chine attention paradigm is extended in order to take into ac-
count salient region as well as the context of the image. Re-
ferring to this as a “saliency-guided attention”, we perform
experiments on the SALICON dataset [9] and on Microsoft
COCO [1]. Fig. 1 shows examples of image captions gener-
ated by our method on the COCO Dataset [1], along with the
corresponding visual saliency predictions. As it can be seen,
visual saliency can give valuable information on the objects
which should be named in the caption.

In the rest of the paper, after reviewing some of the most
relevant related works, we will present our machine attention
approach, which integrates saliency prediction. Finally, an
experimental evaluation and a use case will follow.

2. RELATED WORK

In this section we briefly review related works in image cap-
tioning and visual saliency prediction, and also describe re-
cent studies that incorporate human gaze in image captioning
architectures.

2.1. Image and video captioning

Early captioning methods were based on the identification of
semantic triplets (with subject, object and verb) using visual
classifiers, and captions were generated through a language
model which fitted predicted triplets to predefined sentence
templates. Of course, this kind of sentences could not sat-
isfy the richness of natural language: for these reasons, re-
search on image and video captioning has soon moved to the
use of recurrent networks, which, given a vectored descrip-
tion of a visual content, could naturally deal with sequences
of words [3, 10, 11].

Karpathy et al. [10] used a ranking loss to align image
regions with sentence fragments, while Vinyals et al. [3] de-
veloped a generative model in which the caption is generated
by a LSTM layer, trained to maximize the likelihood of the
target description given the input image. Johnson et al. [12]
addressed the task of dense captioning, which detects and de-
scribes dense regions of interest.

Xu et al. [5] developed an approach to image captioning
which incorporates a form of machine attention in two vari-
ants (namely, “soft” and “hard” attention), by which a gener-
ative LSTM can focus on different regions of the image while
generating the corresponding caption.

2.2. Visual saliency prediction

Inspired by biological studies, traditional saliency prediction
methods have defined hand-crafted features that capture low-
level cues such as color, contrast and texture and semantic
concepts such as faces, people and text [13, 14, 15, 16]. How-
ever, these techniques were not able to effectively capture the
large variety of factors that contribute to define visual saliency
maps. With the advent of deep neural networks, saliency
prediction has achieved strong improvements both thanks to
specific architectures [6, 7, 8, 17, 18] and to large annotated
datasets [9]. In fact, recent deep saliency models have reached
significant performances, approaching to those of humans.

Huang et al. [7] proposed an architecture that integrates
saliency prediction into deep convolutional networks trained
with a saliency evaluation metric as loss function. Jetley et
al. [8] introduced a saliency map model that formulates a
map as a generalized Bernoulli distribution and they used
these maps to train a deep network trying different loss func-
tions. Kruthiventi et al. [19] instead presented an unified
framework that is capable of predicting eye fixations and seg-
menting salient objects on input images. Recently, Cornia et
al. [18] proposed an attentive mechanism incorporated in a
deep saliency architecture to iteratively refine the predicted
saliency map and significantly improve prediction results.

2.3. Captioning and saliency

Recent studies have started to investigate the use of visual
saliency to automatically describe an input image in natural
language. In particular, Sugano et al. [20] proposed a machine
attentive model that exploits gaze-annotated images: their ar-
chitecture employs human fixation points to predict image
captions for the SALICON dataset [9]. Since this is a sub-
set of the Microsoft COCO dataset [1], it is the only dataset
providing both gaze and saliency annotations.

The main drawback of their approach is the need of big
amounts of images annotated with human captions and hu-
man fixation points. Fixation points, moreover, are needed
also in the test phase, thus making this proposal unusable in
practice. For this reason, we investigate the use of saliency
maps predicted by a state of the art saliency model [18] to
improve image captioning performance. Our approach can be
potentially trained using any image captioning dataset, and
can predict captions on any image.
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Fig. 2. Overview of our image captioning model. A Saliency-Guided machine attention mechanism drives the generation of the
next word in the caption, by taking into account both salient and non-salient regions.

3. SALIENCY-GUIDED CAPTIONING

Machine attention mechanisms [5] are a popular way of ob-
taining time-varying inputs for recurrent architectures. In im-
age captioning, it is well-known that performances can be
improved by providing the generative LSTM with the spe-
cific region of the image it needs to generate a word: at each
timestep the attention mechanism selects a region of the im-
age, based on the previous LSTM state, and feeds it to the
LSTM, so that the generation of a word is conditioned on that
specific region, instead of being driven by the entire image.

The most popular attentive mechanism is the so-called
“soft-attention” [5]. The input image is encoded as a grid of
feature vectors {a1,a2, ...,aL}, each corresponding to a spa-
tial location of the image. These are usually obtained from the
activations of a convolutional or pooling layer of a CNN. At
each timestep, the soft-attention mechanism computes a con-
text feature vector ẑt representing a specific part of the input
image, by combining feature vectors {ai}i with weights ob-
tained from a softmax operator. Formally, the context vector
ẑt is obtained as

ẑt =

L∑
i=1

αtiai, (1)

where αti are weights representing the current state of the
machine attention. These are driven by the original image
feature vectors and by the previous hidden state ht−1 of the
LSTM:

eti = vTe · φ(Wae · ai +Whe · ht−1)) (2)

αti =
exp (eti)∑L

k=1 exp (etk)
, (3)

where φ is the hyperbolic tangent tanh, Wae,Whe are
learned matrix weights and vTe is a learned row vector.

To investigate the role of visual saliency in the context of
attentive captioning models, we extend this schema by split-

ting the machine attention into saliency and non saliency re-
gions, and learning different weights for both of them. Given
a visual saliency predictor [18] which predicts a saliency map
{s1, s2, ..., sL}, having the same resolution of the feature vec-
tor grid {ai}i, and with si ∈ [0, 1], we propose to modify
Eq. 2 as follows:

esalti = vTe,sal · φ(Wae · ai +Whe · ht−1)) (4)

enosalti = vTe,nosal · φ(Wae · ai +Whe · ht−1)) (5)

eti = si · esalti + (1− si) · enosalti . (6)

Notice that our model learns different weights for saliency
and non-saliency regions (vTe,sal and vTe,nosal respectively),
and combines them into a final attentive map in which the
contributions of salient and non-salient regions are merged to-
gether. Similarly to the classical soft-attention approach, the
proposed generative LSTM can focus on every region of the
image, but the focus on salient region is driven by the output
of the saliency predictor.

3.1. Sentence generation

Given an image and sentence (y0,y1, ...,yT ), encoded with
one-hot vectors (1-of-N encoding, where N is the size of the
vocabulary), we build a generative LSTM decoder. This is
conditioned step by step on the first twords of the caption and
on the corresponding context vector, and is trained to produce
the next word of the caption. The objective function which
we optimize is the log-likelihood of correct words over the
sequence

max
w

T∑
t=1

log Pr(yt|ẑt,yt−1,yt−2, ...,y0) (7)

where w are all the parameters of the model. The probabil-
ity of a word is modeled via a softmax layer applied on the



output of the decoder. To reduce the dimensionality of the
decoder, a linear embedding transformation is used to project
one-hot word vectors into the input space of the decoder and,
viceversa, to project the output of the decoder to the dictio-
nary space.

Pr(yt|ẑt,yt−1,yt−2, ...,y0) ∝ exp(yT
t Wppt) (8)

where Wp is a matrix for transforming the decoder output
space to the word space and ht is the output of the decoder,
computed with a LSTM layer. In particular, we use a LSTM
implemented by the following equations

it = σ(Wixẑt +Wihht−1 + bi) (9)
ft = σ(Wfxẑt +Wfhht−1 + bf ) (10)
gt = φ(Wgxẑt +Wghht−1 + bg) (11)
ct = ft � ct−1 + it � gt (12)
ot = φ(Wfxẑt +Wfhht−1 + bf ) (13)
ht = ot � φ(ct) (14)

where � denotes the element-wise Hadamard product, σ is
the sigmoid function, φ is the hyperbolic tangent tanh, W∗
are learned weight matrices and b∗ are learned biases vectors.
The internal state h and memory cell c are initialized to zero.

4. EXPERIMENTAL EVALUATION

4.1. Datasets and metrics

We evaluate the contribution of saliency maps in our image
captioning network on two different datasets: SALICON [9]
and Microsoft COCO [1].

The Microsoft COCO dataset is composed by more than
120,000 images divided in training and validation sets, where
each of them is annotated with five sentences using Amazon
Mechanical Turk.

The SALICON dataset is a subset of COCO in which im-
ages are provided with their saliency maps. Gaze annotations
are collected with a mouse-contingent paradigm which results
to be very similar to an eye-tracking system, as demonstrated
in [9]. This dataset contains 10,000 training images, 5,000
validation images and 5,000 testing images, all having a size
of 480× 640.

We employ four popular metrics for evaluation:
BLEU [21], ROUGEL [22], METEOR [23] and CIDEr [24].
BLEU is a modified form of precision between n-grams
to compare a candidate translation against multiple refer-
ence translations. We evaluate our predictions with BLEU
using mono-grams, bi-grams, three-grams and four-grams.
ROUGEL computes an F-measure considering the longest
co-occurring in sequence n-grams. METEOR, instead, is
based on the harmonic mean of unigram precision and recall,
with recall weighted higher than precision. It also has several
features that are not found in other metrics, such as stemming

and synonymy matching, along with the standard exact
word matching. CIDEr, finally, computes the average cosine
similarity between n-grams found in the generated caption
and those found in reference sentences, weighting them using
TF-IDF. To ensure a fair evaluation, we use the Microsoft
COCO evaluation toolkit1 to compute all scores.

4.2. Implementation details

As mentioned, the input image is encoded as a grid of fea-
ture vectors coming from a CNN. In our experiments on the
SALICON dataset, we extract image features from the last
convolutional layer of two different CNNs: the VGG-16 [25]
and the ResNet-50 [26]. On the Microsoft COCO, instead,
we train our network using only image features coming from
the ResNet-50. Since all images from the SALICON dataset
have all the same size of 480× 640, we set the image size for
this dataset to 480× 640 thus obtaining L = 15× 20 = 300.
For the COCO dataset, we set the image size to 480 × 480
obtaining L = 15× 15 = 225.

Saliency maps predicted with [18] have the same size of
the input images. For this reason, we resize saliency maps to
a size of 15× 20 for training on the SALICON dataset and to
a size of 15× 15 for training on the Microsoft COCO dataset.

All other implementation details are kept the same as in
Xu et al. [5]. In all our experiments, we train our network
with the Nestorov Adam optimizer [27].

4.3. Results

Table 1 compares the performances of our approach against
the unsupervised machine attention approach in [5], using all
the metrics described in Section 4.1. In this case, training is
performed on the SALICON training set, and evaluation is
carried out on the SALICON validation set. We employ, as
the base CNN, the recent ResNet-50 model [26], as well as
the more widely used VGG-16 [25].

As it can be seen, our attention model, which incorporates
visual saliency, is able to achieve better results on all metrics,
except from ROUGEL in the VGG-16 setting, in which we
achieve exactly the same result. For reference, we also report
the performance of the architecture when using groundtruth
saliency maps, instead of those predicted by [18]: as it can be
seen, even though using groundtruth maps provides slightly
better results, a proper saliency prediction model can be used
without significant loss of performance.

We also perform the same test on the COCO dataset. Be-
ing the saliency predictor of [18] trained on SALICON, the
experiment is useful to assess the generalization capabilities
of the complete model. Results are reported in Table 2: as
it can be seen, also in this case, our model can surpass the
performance of the soft-attention proposal of [5].

1https://github.com/tylin/coco-caption
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Table 1. Image captioning results on SALICON validation set [9] in terms of BLEU@1-4, METEOR, ROUGEL and CIDEr.
The results are reported using two different CNNs to extract features from input images: the VGG-16 and the ResNet-50.

CNN BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGEL CIDEr

Soft Attention [5] VGG-16 0.680 0.501 0.358 0.256 0.222 0.497 0.691

Saliency-Guided Attention VGG-16 0.682 0.505 0.361 0.258 0.223 0.497 0.694

Saliency-Guided Att. (with GT saliency maps) VGG-16 0.684 0.503 0.360 0.257 0.224 0.501 0.696

Soft Attention [5] ResNet-50 0.700 0.523 0.379 0.274 0.235 0.510 0.771

Saliency-Guided Attention ResNet-50 0.709 0.534 0.388 0.280 0.233 0.513 0.774

Saliency-Guided Att. (with GT saliency maps) ResNet-50 0.702 0.527 0.383 0.277 0.236 0.513 0.779

Table 2. Image captioning results on Microsoft COCO validation set [1] in terms of BLEU@1-4, METEOR, ROUGEL and
CIDEr.

CNN BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGEL CIDEr

Soft Attention [5] ResNet-50 0.717 0.546 0.402 0.294 0.253 0.529 0.939

Saliency-Guided Attention ResNet-50 0.718 0.547 0.404 0.296 0.254 0.530 0.944

Ours: A man and a woman are playing
frisbee on a field.
Soft Attention [5]: A man standing next
to a man holding a frisbee.
GT: Two people in Swarthmore College
sweatshirts are playing frisbee.

Ours: A group of people sitting on a
boat in a lake.
Soft Attention [5]: A group of people
sitting on top of a boat.
GT: Family of five people in a green ca-
noe on a lake.

Ours: A large jetliner sitting on top of
an airport runway.
Soft Attention [5]: A large air plane on
a runway.
GT: A large passenger jet sitting on top
of an airport runway.

Fig. 3. Example results on the Microsoft COCO dataset [1].

4.4. A use case in the cloud: NeuralStory

We conclude by presenting an interesting use-case of the pro-
posed architecture. This work is, indeed, part of a large
project called NeuralStory, which aims at providing new ser-
vices for annotation, retrieval and re-use of video material in
education. The goal of the project is to re-organize video ma-
terial by extracting its storytelling structure and presenting it
with new forms of summarization for quick browsing. Videos

are divided into shots and scenes with a deep learning-based
approach [28], using images, audio and semantic concepts ex-
tracted with a suitable CNN. The resulting annotation is also
provided with text, extracted with speech-to-text tools, con-
cepts and possibly user-generated annotations.

The system behind the project works on the cloud and is
powered by the eXo Platform ECMS2. Videos can be pro-
vided by private users or content owners, and the analysis
process is carried out automatically on the cloud. A web in-
terface allows students, teachers and any user to browse and
create multimodal slides (called MeSlides) for re-using visual
and textual data enriched with automatic annotations.

Fig. 4 shows some captions automatically generated by
our architecture on images taken from an art documentary
which is part of NeuralStory. As it can be seen, even though
the model has been trained on a different domain, it is still
able to generalize and provide appropriate captions. With this
work we intend to enrich the annotation and key-frame de-
scription on the web interface. Automatically generated cap-
tions will be useful for human search, for automatic search by
query, and possibly for future query-answering services.

5. CONCLUSION

In this paper, we investigated the role of visual saliency for
image captioning. A novel machine attention architecture,
which seamlessy incorporates visual saliency prediction, has
been proposed and experimentally validated. Finally, a case
study involving a video platform has been presented.

2 https://www.exoplatform.com

https://www.exoplatform.com


A woman in a red jacket is
riding a bicycle.

A boat is in the water near
a large mountain.

A woman is looking at a
television screen.

A city with a large boat in
the water.

A large building with a
large clock mounted to its
side.

Fig. 4. Saliency maps and captions generated on sample im-
ages taken from the Meet the Romans with Mary Beard TV
series.
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