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Abstract 

The Messinian salinity crisis (MSC; 5.97 - 5.33 Ma) is an enigmatic episode of 

paleoceanographic change, when kilometres-thick evaporite units were deposited in the 

Mediterranean basin. It is generally accepted that during the MSC interval there was a dry 

climate in the Mediterranean region. It is difficult to assess how dry the climate was during 

the MSC because a modern analogue, in size and duration, is absent. Here we reconstruct 

hydrological changes in the Mediterranean basin during the three main MSC stages using 

excellently preserved biomarkers. We used the hydrogen isotopic composition of the long 

chain n-alkanes (δDn-alkanes) to reconstruct the hydrological changes on the land adjacent to 

the Mediterranean Sea. Additionally, the δD of long-chain alkenones (δDalkenones) is used to 

observe changes in the Mediterranean Sea water source. The δDn-alkanes recorded during the 

deposition of Primary Lower Gypsum (stage 1) in Monte Tondo indicate a δD of the 

precipitation comparable to the present-day Mediterranean implying a similar hydrologic 

regime (indicated by experiments modelling the Miocene-Pliocene transition). Elevated 

δDalkenones values from halite unit (stage 2) of the Realmonte mine are associated with kainite 

and giant polygons, consistent with presumably high evaporative conditions during halite 

deposition. The δDn-alkanes recorded during the deposition of Upper Gypsum (stage 3) in 

Eraclea Minoa indicate a δDprecipitation typical for much drier settings, similar to the Red Sea 

region. The relative contribution of the different alkenones from Eraclea Minoa is similar to 

the one observed in present-day marine settings suggesting that, during stage 3, connections 

to the open Ocean were likely maintained. However, the δDalkenones records during deposition 

of the evaporites in Eraclea Minoa are similar to those synchronously registered in the Black 

Sea implying that a similar hydrologic regime, characterized by extended drought, covered 

large areas of southeastern Europe. Based on the δDalkenones similarity and the Paratethys type 
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of ´Lago Mare´ fauna in the Mediterranean we speculate that the surface water during stage 3 

was, at times, derived from the Black Sea. 

 

Keywords: Messinian salinity crisis; Mediterranean Sea; hydrogen isotopes; alkenones; n-

alkanes; Paratethys 
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1. Introduction 

The Messinian salinity crisis (MSC) of the Mediterranean is one of the paleoceanographic 

events that had a profound impact, regionally and probably globally in the past ten million 

years. During this episode, between 5.97 and 5.33 Ma (e.g. Hsü et al., 1973; Krijgsman et al, 

1999; Manzi et al., 2013), the paleoenvironment and paleogeography of the circum-

Mediterranean was completely modified (Fig. 1). A severe deficit in the water budget of the 

Mediterranean interrupted the already limited water exchange with both the Atlantic Ocean 

and the Black Sea (e.g. Roveri et al., 2014b) causing the precipitation of an up to 2 km-thick 

evaporite unit. According to the shallow water-deep basin model (Hsü et al., 1973; Roveri et 

al., 2014a), evaporite precipitation was associated to a sea level drop in the range of 1500 

meters, up to the almost complete desiccation of the Mediterranean. This occurred at the 

MSC’s peak, between 5.60 and 5.55 Ma (Fig. 2), culminating in halite precipitation and 

marked by the incisions of deep canyons at the Mediterranean margins. Debate is still 

ongoing regarding the paleoenvironmental conditions of the final ‘desiccation’ phase. The 

deep desiccation theory has been recently challenged by new findings suggesting that the 

depositional facies association and the morphological features, including the canyons, may 

have been produced without a significant drop of the Mediterranean Sea level (Roveri el al., 

2014b, 2016). The presence of marine fish during the latest Messinian powered the 

hypothesis that fully marine environments existed in several Italian areas well before the 

Pliocene flooding (Carnevale et al., 2006). At the same time, overspilling of Paratethys 

waters into the Mediterranean has been argued to explain the presence of brackish water 

fauna (ostracod and mollusk assemblages of Paratethys affinity) in the ‘Lago Mare’
 
(5.55-

5.33 Ma) (Suc et al., 1999; Gliozzi et al., 2002; Bertini, 2006; Roveri et al., 2008b, 2008c; 

Stoica et al., 2016; Marzocchi et al., 2016). For the same time interval, palaeosalinity values 

in the adjacent Paratethys Sea (Fig. 1) were considered to have varied to a much lesser extent. 
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New data from two locations in the circum-Black Sea (Vasiliev et al., 2013 and 2015), 

however, indicate strongly enhanced evaporitic conditions in the Black Sea area of Paratethys 

as well (Fig. 1). The high evaporative conditions in the Black Sea are expressed in very 

elevated hydrogen isotope values of biomarker molecules (Vasiliev et al., 2013 and 2015). At 

that time it is commonly thought that the Mediterranean experienced its major sea-level 

drawdown phase and a physical link to Paratethys is highly likely (Vasiliev et al., 2013 and 

2015). However, the magnitude of hydrological changes and exchanges between Paratethys 

and Mediterranean basins are virtually unknown. Here we reconstruct hydrological changes 

in the Mediterranean basin during the MSC using excellently preserved biomarkers extracted 

from Monte Tondo (Northern Apennines), Realmonte salt mine and Eraclea Minoa (both 

located on Sicily). These three reference sections cover the principal time intervals of the 

MSC (Roveri et al., 2014a) respectively: the ‘Primary Lower Gypsum’ (MSC stage 1; Lower 

Evaporites), halite unit (MSC stage 2; Lower Evaporites) and ‘Upper Gypsum’ (MSC stage 

3; Upper Evaporites) (Fig. 3). Although these sections have been the subject of extensive 

studies for more than 60 years (since Selli, 1954), recent advances in the application of 

hydrogen isotopic values (δD) measured on individual organic components offer a novel, 

underexploited approach in unravelling fundamental changes in the hydrology of the 

Mediterranean Sea during the MSC. A single previous study used δD measured on individual 

sedimentary biomarkers (C22 n-alkanes and isoprenoids) (Andersen et al., 2001) to 

successfully track large and rapid hydrographic changes during deposition of the Lower 

Gypsum. Andersen et al. (2001) estimated that the δD values of the source waters varied by 

~100‰ (up to +66‰) over the ~50 kyr studied interval, because of changes in evaporation at 

low relative humidity. Despite rapid methodological developments in the field of compound 

specific δD analyses, this method has not been applied further to the Mediterranean MSC. 

For the present study we use long chain n-alkanes (C29 and C31) with a distinct odd over even 
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predominance, as they are principally derived from higher plant waxes and thus reflect the 

terrestrial environment. We use their δD to reconstruct large scale hydrological changes on 

the continent adjacent to the Mediterranean Sea over the extent of~640 kyrs, covering the 

whole MSC interval. Additionally, δD values of long-chain alkenones, produced by 

haptophyte algae are used to reconstruct the δD of Mediterranean surface water during the 

MSC. Subsequently, these δD values are exploited to reconstruct changes in the mixing 

between freshwater/evaporation and inflow of sea water from other sources for the 

Mediterranean basin. The newly obtained data will be compared and integrated with 

compound specific δD results already available for the MSC interval from the Paratethys 

realm (Vasiliev et al., 2013 and 2015). Furthermore, these δD results will be discussed along 

the available, applied already, climate modelling published results focusing on the Miocene-

Pliocene transition in the Mediterranean domain. 

 

2. Stratigraphy of sampled interval 

The sedimentary record of the MSC developed over an open marine unit including marls, 

sapropels and diatomites. The MSC can be separated into three main stages (Roveri et al., 

2008a, 2008b and 2014a). Stage 1 (5.97-5.60 Ma) is characterized by the deposition of thick 

primary selenite gypsum unit (Primary Lower Gypsum; PLG; Lugli et al., 2010) in shallow 

marginal basins and by organic-rich shale and dolostone deposits in deeper settings. Stage 2 

(5.60-5.55 Ma) is characterized by the deposition of a larger variety of evaporites deposits 

forming the RLG unit (Resedimented Lower Gypsum) including halite and gypsum cumulate 

deposits, brecciated limestones (‘Calcare di Base’ type 3; Manzi et al., 2011) and clastic 

gypsum derived from the dismantlement of the PLG unit (Fig. 2). A regional-scale 

unconformity (Messinian erosional surface) deeply cutting the PLG unit in marginal settings 
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can be traced up to deeper ones at the base of the RLG unit (Roveri et al., 2008a). Finally, 

stage 3 (5.55-5.33 Ma) is characterized by the deposition of gypsum (mainly bottom grown 

selenite and cumulate) interbedded with fine- to coarse-grained terrigenous unit (Upper 

Gypsum; UG) showing in its uppermost portion the widespread occurrence of a brackish 

fauna of Paratethyan affinity. There is no known location where the entire MSC interval is 

continuously outcropping. However, different MSC intervals are well exposed around the 

Mediterranean. For this study the Monte Tondo quarry, the Realmonte salt mine and the 

Eraclea Minoa outcrop were selected as they cover the entire MSC time span. These 

exposures have already been subject to extensive previous research (e.g. Sinninghe Damsteé 

et al., 1995; Lugli et al., 1999; 2007; 2010; Van Couvering et al., 2000; Bertini, 2006; Manzi 

et al., 2009; Manzi et al., 2012; Speranza et al., 2013). 

 

2.1 Monte Tondo section – Primary Lower Gypsum unit (MSC stage 1) 

The Monte Tondo gypsum quarry, located within the Vena del Gesso basin (along the 

western Romagna Apennines), contains all the 16 cycles of the PLG, deposited during stage 1 

of the MSC (Fig. 2). The 16 precession controlled cycles (sketched in figure 2) are separated 

by bituminous shales and minor carbonates (marls and stromatolites). Four types of gypsum 

can be distinguished (Lugli et al., 2007; 2010): giant selenite, massive selenite, banded and 

branching selenite. Cycles start with shale followed directly by a selenite layer; locally a 

calcareous stromatolite layer might be present at the base of the gypsum. The bituminous 

shales may contain leaves, fishes, insects and twig remains. The PLG unit is characterized by 

a peculiar vertical organization in terms of facies distribution and thickness that has been 

recognized in different areas of the Mediterranean allowing a basin-scale correlation (Lugli et 

al., 2010). The lower two cycles are relatively thin and mainly consist of massive selenite 
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with giant crystals up to more than 2 meters high (giant selenite). Cycles 3 to 5 contain thick 

beds of vertically orientated massive selenites, grading into banded selenite. Cycle 3 starts 

with shale, followed by a limestone or stromatolite layer and massive selenite. Cycle 4 starts 

with a sequence of laminated shale, massive shale and again laminated shale, followed by a 

succession of both massive and banded selenite. Cycle 5 consists of massive selenite, 

alternated with thin shales. Cycles 6 to 15 consist of thinner beds of both massive and banded 

selenite, followed by branching selenite. Cycles 6 and 15 both show a thin stromatolite bed 

and all cycles are alternated with thin shales. Cycle 16 starts with a shale layer, succeeded by 

a massive and branching selenite. Pyrite is present in most samples (Sinninghe Damsté et al., 

1995). 

 

2.2 Realmonte salt mine – Halite and Resedimented Lower Gypsum unit (MSC stage 2) 

The halite unit, underlain and overlain by clastic evaporite deposits, is included in the RLG 

unit deposited during stage 2 of the MSC (Roveri et al., 2008a and 2014a). It occurs in the 

deeper parts of the basin whereas coeval primary gypsum cumulates are deposited at the 

margins (Manzi et al., 2012) (Fig. 2). In the Realmonte mine (southern Sicily) the halite unit 

is approximately 400 m-thick. From the bottom to the top, it consists of irregular anhydrite 

and marly mudstone breccia layer up to 2 m thick followed by units A to D (Lugli, et al., 

1999). Unit A, up to 50 m thick, contains evenly laminated halite with anhydrite nodules and 

laminae passing upward to massive halite beds with irregular mudstone bed some decimeters 

thick. Unit B (approximately 100 m thick) consists of massive even layers of halite inter-

bedded with thin kainite laminae, millimeter to centimeter-thick polyhalite spherulite and 

anhydrite laminae. The upper part contains several kainite layers up to 12 m thick. The 70–80 

m thick unit C (), consists of halite 10 to 20 cm thick layers separated by irregular mud 
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laminae and contains minor polyhalite and anhydrite. Unit D, up to 60 m thick, begins with a 

gray anhydrite-rich mudstone passing to an anhydrite laminate sequence followed by halite 

millimeter- to centimeter-thick layers intercalated with anhydrite laminae and decimeter-thick 

halite beds. Lugli et al. (1999) proposed that these lithologies reflect the shallowing and the 

desiccation of the evaporitic basin resulting from a possible combination of factors: (1) uplift 

of the basin floor by thrust activity, (2) simple evaporitic drawdown and (3) a basin-wide 

drop of the Mediterranean sea level. Manzi et al. (2012) suggest that the well-developed 

cyclicity characterizing the halite unit is related to annual climate variations and the 

deposition of the Sicilian Messinian halite could have lasted only a few thousands of years 

(Roveri et al., 2008).  

 

2.3 Eraclea Minoa section - Upper Gypsum unit (stage 3) 

The Eraclea Minoa section is located on the SW coast of Sicily and hosts the global boundary 

stratotype section and point for the Zanclean stage, marking the beginning of the Pliocene 

(Van Couvering et al., 2000). The section provides also one of the most complete 

sedimentary successions of the Upper Gypsum (stage 3; Upper Evaporites) (Manzi et al., 

2009). We collected samples from 8 cycles covering the uppermost part of the Miocene and 

the lower part of the Pliocene (Fig. 2).The cyclic sedimentation starts with an alternation of 

marls and sandstones, followed by clastic and primary (cumulate facies) and ends with 

massive selenite (selenite crust, massive selenite separated by thin marl layers, domed 

selenite and reworked selenite on top of the domes) (Manzi et al., 2009). The section is laying 

on the RLG unit (Roveri et al., 2008) here consisting of a gypsum turbidite megabed 

including blocks of PLG in its basal chaotic part, followed by a 2-m thick cumulate gypsum 

layer suggested to be time equivalent of the halite in Sicily (Manzi et al., 2009). Cycle 1 
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consists of banded selenite only. Cycle 2 contains thin marl layers, selenite crust and massive 

selenite. Cycle 3 consists of marls, followed by selenite crust and massive selenite. Cycles 4, 

5, the first part of cycle 6 and 7 show the same basic cyclic pattern. Cycle 6 is divided into 

three parts, of which the last two consist mainly of marls, thin bedded sandstones and are 

considered as sub-cycles. The interval above cycle 4 contains typical Lago-Mare faunal 

assemblages (Melanopsis and ostracods; Manzi et al., 2009). Above the gypsum bed of cycle 

7, a terrigenous interval, including marls and sandstone (‘Arenazzolo’ sandstone beds), is 

present; it consists of deltaic deposits that are also present in the lower part of the previous 

Upper Gypsum cycles (Manzi et al. 2009). The strata deposited during the subsequent 

Pliocene consist of an alternation of marls and sapropelitic shales known as Trubi formation 

(Van Couvering et al., 2000). 

 

3. Experimental methods 

3.1. Lipid extraction, separation and analyses 

In total 41 rock samples (12 from Monte Tondo, 2 from Realmonte mine and 27 from Eraclea 

Minoa), weighing between 8 and 60 g, were dried and thoroughly ground. Larger samples 

(i.e. 15-60 g) were extracted using a Soxhlet apparatus with a dichloromethane (DCM) – 

methanol (7.5:1, v/v) mixture. Smaller samples (up to 15 g) were extracted by accelerated 

solvent extraction (ASE, Dionex 200) using a DCM-methanol (9:1, v/v) organic solvent 

mixture at 100°C and 1000 psi.  All extracts were rotary – evaporated to near dryness and 

subsequently further dried under a nitrogen flow. The total lipid extracts were dried over an 

anhydrous Na2SO4 column. Elemental sulfur was removed using activated copper in DCM. 

Copper flakes were activated with 2M HCl and afterwards rinsed with MilliQ ultra-pure 

water, methanol and DCM, a treatment repeated up to three times when necessary. An aliquot 
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of the extract was separated using column chromatography with activated Al2O3 as stationary 

phase by subsequent elution with n-hexane/DCM (9:1, v:v), n-hexane/DCM (1:1, v:v), and  a 

mixture of DCM/ methanol (1:1, v:v) to obtain the apolar, ketone and polar fractions, 

respectively. n-Alkanes were isolated from the apolar fraction using urea-adduction. To this 

end, the apolar fraction was dissolved in 200 μl methanol/urea (~10%, H2NCONH2, Merck) 

solution. Subsequently, 200 μl acetone and 200 μl n-hexane were added to the solution, 

frozen (-20ºC) and dried under N2 flow. Urea crystals were washed with n-hexane to remove 

the non-adductable branched and cyclic compounds and subsequently dissolved in a 500 μl 

methanol and 500 μl MilliQ ultra-pure water mixture. The n-alkanes were extracted from the 

solution using n-hexane. The urea-adduction procedure was repeated up to three times to 

eliminate non-adductable compounds as much as possible. Alkenones were obtained from the 

ketone fraction using urea adduction as well, using the same procedure as for the n-alkanes. 

All fractions were measured using Gas Chromatography/Flame Ionization Detector 

(GC/FID) first. The n-alkanes and alkenones were identified based on mass spectra and their 

retention times using Gas Chromatography-Mass Spectrometry (GC-MS) on a Thermo-

Finnigan Trace DSQ instrument. The fractions (dissolved in n-hexane) were injected on-

column at 70 ºC (CP-Sil 5CB fused silica column (30 m × 0.31 mm i.d; film thickness 0.1 

μm). The oven was set at constant pressure (100 kPa) and then programmed to increase to 

130 °C at 20 °C min
-1

, and then at 5 °C min
-1

 to 320 °C at which it was held isothermally for 

10 min.  

 

3.2 Compound-specific hydrogen isotope analyses 

Compound-specific hydrogen isotope (δD) compositions of individual n-alkanes and 

alkenones were measured on the adducted fractions using a HP 6890N Gas Chromatograph 
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(GC) coupled to a Thermo-Finningan Delta Plus XP Isotope Ratio Mass Spectrometer 

(IRMS). The fractions (dissolved in hexane) were injected on-column at 70 °C, the oven 

being programmed to increase to 130 °C at 20 °C min
-1

, and then at 5 °C min
-1

 to 320 °C at 

which it was held isothermal for 10 min. The film thickness of the CP-Sil 5 column was 0.4 

μm and a constant flow of He was used at 1.5 ml min
−1

. Eluting compounds were pyrolyzed 

on-line in an empty ceramic tube heated at 1450 °C, which was pre-activated by a 5 min 

methane flow of 0.5 ml min
−1

. H3
+
 factors were determined daily on the isotope ratio mass 

spectrometer and were at any time < 5. H2 gas with known isotopic composition was used as 

reference and a mixture of C16–C32 n-alkanes with known isotopic composition (ranging from 

−42‰ to −256‰ vs. Vienna Standard Mean Ocean Water (V-SMOW)) was used to monitor 

the performance of the system (Schimmelman Mixture A and B, Biogeochemical 

Laboratories, Indiana University). A squalane standard was co-injected with every sample 

with an average value of −171±3‰, which compared favorably with its offline determined 

value of −168.9‰. Each fraction was measured between two and five times, depending on 

the amount of material available. 

  

4. Results 

4.1. n-Alkane abundance 

The apolar fractions contain a series of n-alkanes ranging from n-C16 to n-C34, with the long-

chain (C27-C31) n-alkanes having the highest abundances. These long-chain n-alkanes show a 

strong odd-over-even carbon number predominance (Table 1, Figs 3a, e and k). At some 

levels the contribution of the shorter chain n-alkanes is to some degree higher (Figs 3c and e) 

although the long-chain (C27-C31) n-alkanes clearly dominate the distribution. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 13 

There are marked differences between the n-alkanes contribution form the samples 

collected in Monte Tondo and Eraclea Minoa. These differences are in the ranges for the 

degree of oddity (CPI), expressed as following relation: 

CPI = (((A25+A27+A29+A31+A33)/(A24+A26+A28+A30+A32)) + ((A25+A27+A29+A31+A33)/( 

A26+A28+A30+A32+A34)))*0.5 where A represents the area under the chromatogram peak for 

individual n-alkanes. The CPI values vary from 3 to 7.9  in Monte Tondo samples while for 

Eraclea Minoa CPI vary from 1.7 to 3.7 (Table 1). 

Although all 41 samples yielded enough lipids to identify the organic compounds (e.g. 

Fig. 3a and g), since the stable isotope analyses requires much more material to be injected, 

the extracted amounts were enough for δD analyses in 23 samples only. 

 

4.1.1. n-Alkane δD ratios 

The δD of the C29 and C31 n-alkanes (majorly produced by higher terrestrial plants) from 

Monte Tondo section range between −175‰ and −138‰ (Table 1) and show a strong 

correlation (R
2
 = 0.92; Fig. 4), with no appreciable offset between the isotopic values 

between the compounds. In general, the δD values of the C29 n-alkane are somewhat less 

negative than those of the C31 n-alkane (Fig. 5 and Table 1). From the analyzed Monte Tondo 

interval, four out of twelve samples contained organically bound sulphur (Sinninghe Damsté 

et al., 1995) to such a degree that they could not be measured on mass-spectrometers (GC-

MS nor GC-IRMS).The extracts from the Realmonte samples contained insufficient n-

alkanes to allow for δD isotope measurements.  

Only six out of the total twenty-seven extracted samples from Eraclea Minoa section 

contained sufficient long chain n-alkanes that could be analyzed for δD of the C29 and C31 n-
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alkanes. The δD of the C29 and C31 n-alkanes range between −150‰ and −124‰ (Table 1) 

and correlate (R
2
 = 0.75; Fig. 4). As for Monte Tondo, the δD values of the C29 n-alkane are 

somewhat less negative than those of the C31 n-alkane (Fig. 4 and Table 1).  

 

4.2. Long chain ketones 

The ketone fractions show the presence of long-chain unsaturated ethyl and methyl ketones 

(alkenones) (C37-C39) in the Eraclea Minoa section and the Realmonte samples (Figs 3b, d 

and h). The alkenone distribution shows a remarkable dominance of the C37 ketone, followed 

closely by the C38 ketone and lower but nonetheless appreciable concentrations of the C39 

ketone. Both C37 and C38 ketones are dominated by the di-unsaturated components. 

Alkenones were not detected in Monte Tondo ketone fractions.  

4.2.1. Alkenones δD values 

The stable hydrogen isotopic composition of the C37 and C38 alkenones (δDalkenone) varies 

markedly between −203‰ to −125‰ (‰ V-SMOW) (Table 2) and show a strong correlation 

between each other (R
2
 = 0.81; Fig. 4). Throughout the record, the δD values of the C37 and 

C38 alkenones closely track each other, with the exception of one level in the basal part of 

Eraclea Minoa, at stratigraphic level of 4.5 m (Table 2).  

5. Discussion 

5.1. n-Alkanes and their δD isotopic compositions 

5.1.1 N-alkanes δD values 

The δD ratios of n-alkanes reflect primarily the δD composition of precipitation (e.g. Sachse 

et al., 2004a, 2004b) and are affected to a lesser degree by evapotranspiration (e.g. Sachse et 
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al., 2006, Polissar and Freeman, 2010). Accordingly, the δDn-alkanes have been successfully 

used for reconstruction of terrestrial paleo-δDprecipitation and paleo-evaporation (e.g. Andersen 

et al., 2001; Pagani et al., 2006; Sachse et al., 2004a; Schefuss et al., 2005; Speelman et al., 

2010; Tipple and Pagani, 2010, Feakins et al., 2013; Vasiliev et al., 2013, 2015; Niedermeyer 

et al., 2016). At all times, the quantitative interpretation of the δDwater acknowledges the 

plant-physiology-induced limitations and, potential soil water evaporation effects marked by 

differences between the woody vegetation and the grasslands (Smith and Freeman, 2006; 

Feakins and Sessions, 2010)  

 The amplitude observed in the δDn-alkanes record of Monte Tondo is approximately 

40‰ and in the δDn-alkanes record of Eraclea Minoa approximately 25‰ (Table 1 and Fig. 5). 

In the composite record of Monte Tondo and Eraclea Minoa the amplitude is 50‰, evolving 

from lower δDn-alkanes values for the PLG from the Northern Apennines increasing to 

significantly higher δDn-alkanes during the deposition of Upper Gypsum from Eraclea Minoa 

(Fig. 5). This overall large range hints towards important changes occurring in the basin 

hydrology or/and potentially an overall time-shift in the composition of the vegetation 

between the first and the third MSC stage of the Italian sections. Additionally, these two sites 

could have been characterized by different vegetation governed by the latitudinal difference 

(Monte Tondo - PLG from the Northern Apennines versus Eraclea Minoa - Upper Gypsum in 

Sicily) (Favre et al., 2007). 

 

5.1.2 Comparison with the n-alkanes δD values from present-day records 

In the present-day situation, the measured δDC29n-alkanes values from existing lakes located 

closest to the Sicily section (Lago Grande and Lago Piccolo di Monticchio; Basilicata 

Region) record values between −169‰ and −180‰ (Sachse et al, 2004). These values are 
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40‰ to 56‰ more depleted than the δDC29n-alkanes registered in the Upper Gypsum of Eraclea 

Minoa (−124‰ and −140‰) (Fig. 5). Seemingly, there are no differences between samples 

of evaporites and marls. Nevertheless, the data set needs to be significantly larger to have 

attributed a statistical meaning. However, the large offset between the present-day δDC29n-

alkanes values and the ones recorded during the deposition of the stage 3 evaporites indicates 

that conditions were significantly different from today. 

The δDC29n-alkanes from the present-day lakes located closest to the Monte Tondo 

quarry section record values between −159‰ and −167‰ (Sachse et al, 2004). The values 

obtained from the PLG of Monte Tondo (ranging between −138‰ and −171‰) (Fig. 5) are 

close to those recorded in present-day Italian lakes (Lago di Massaciuccoli and Lago di 

Mezzano) (Sachse et al, 2004). 

To estimate the δDprecip we applied a constant biosynthetic fractionation between 

source water and n-alkane of 157‰ (Sachse et al., 2006; Sessions et al., 1999). Additionally, 

a different evapo-transpiration enrichment effect was applied for δDprecipitation calculations 

(Table 1): (1) of ~30‰ (Sachse et al., 2006) corresponding to modern Western Europe humid 

conditions and (2) of ~60‰ as described for arid ecosystems (Feakins and Sessions, 2010). 

Assuming a Western Europe-like humid environment, the δDprecipitation values would 

have varied between –52‰ and –14‰ (Table 1) for Monte Tondo. These values are similar 

to the δDprecipitation of around –41‰ to –25‰ recorded presently at stations around Italy (Fig. 

1; IAEA, 2001). In the case of prevailing arid conditions (Feakins and Sessions, 2010) the 

calculated δDprecipitation would have varied between –85.5‰ and –44‰, values more in line 

with the Alpine region of Eurasia (IAEA, 2001). The situation is, however, much different for 

Eraclea Minoa where, assuming a Western Europe-like humid environment, the δDprecipitation 

values would have varied between –12‰ and +7‰. Values as high as –8‰ for δDprecipitation 
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are found in dry coastal areas of the easternmost Mediterranean (e.g. Syria, Jordan, Israel), 

where excess evaporation affects the region (Fig. 1). In present day configuration, values for 

δDprecipitation of +7‰ are registered in the region of the Red Sea – Gulf of Aden and the 

tropical South Atlantic (Bowen and Revenaugh, 2003). However, for δDprecipitation to reach 

values as high as +7‰, the source for the vapors generating the clouds (e.g. Mediterranean 

during Upper Gypsum deposition) should have been heavily deuterium enriched. This 

assumption is supported by the deposition of gypsum, largely formed during periods of 

negative water budget defined by excess evaporation. Assuming a dry climate and woody 

vegetation the δDprecipitation values (Feakins and Sessions, 2010) would have varied between –

51‰ and –33‰ for the Eraclea Minoa section (Table 1). These values largely overlap with 

the δDprecipitation of around –41‰ to –25‰ recorded today around Italy (Fig. 1; IAEA, 2001). 

The δDn-alkanes (i.e. δDprecipitation) values for the Upper Gypsum records persistently 

more δD enriched isotopic values while the values for the δDn-alkanes (i.e. δDprecipitation) of the 

PLG fluctuate on a significantly larger range (Fig. 5, Table 1). 

The values of the δDn-alkanes (i.e. δDprecipitation) for the PLG fluctuate around the 

expected ones for the present-day environment of the Northern Apennines, where the Monte 

Tondo section is located. The possible effect related to the latitude difference between the 

paleogeographic positions of the two sections on the δDprecipitation could account for ~15‰ 

difference, similarly to the situation at the present time. 

The trend towards higher δDprecipitation values in the younger part of the record (Upper 

Gypsum of Eraclea Minoa) can be explained by three different mechanisms, or a combination 

thereof. First, a change in the dominant water vapor source could offset overall values. 

Second, distance to the vapor source might have decreased. Third, continental temperatures 

might have increased. All three proposed mechanisms would strongly influence the 
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composition of the higher-plant vegetation, which is the source for the long-chain n-alkanes 

and indirectly, alter the recorded δDn-alkanes values. 

A potential change in the dominant water vapor source cannot be excluded, situation 

that could be determined by a deviation of air circulation from being predominantly 

influenced by westerly’s. A significant modification of the distance to the Atlantic moisture 

source, however, is less likely because palaeogeography did not change considerably between 

stage 1 and 3. During stage 1 the Mediterranean Sea water level was modulated by the on-off, 

precession-controlled, connection to the Atlantic (Roveri et al, 2014), while during the final, 

stage 3 of the MSC an influx of fresher water from Paratethys supplied water to form, at least 

for a while, the Mediterranean ‘Lago Mare’ phase. The location and the dimension of the 

Mediterranean-Paratethys sill during the MSC are unknown but, as already suggested by 

Marzocchi et al., 2016, for this the mechanism to account for the widespread occurrence of 

the Paratethyan type of fauna in the marginal Mediterranean marginal basins, the sea level 

must have been high enough for the Mediterranean Sea to be close to full, but still lower than 

the Mediterranean-Atlantic sill. Conversely, the world climate during the deposition of the 

Upper Gypsum was on a warming trend, explaining the higher δDn-alkanes (i.e. δDprecip) values 

(Fig. 5) recorded in Eraclea Minoa. The larger variation recorded in the values of δDn-alkanes 

(i.e. δDprecip) from Monte Tondo is in line with the larger climate variability during the 

deposition of the PLG. 

 

5.2. Alkenones and their δD isotopic compositions 

Alkenones are long-chain ketones synthesized by unicellular haptophyte prymnesiophyte 

algae, common in the photic zone of the modern ocean (Marlowe et al., 1984; Volkman et al., 

1980). Alkenones have been also reported from brackish and freshwater lakes from around 
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the world (e.g. Volkman et al., 1980; Kristen et al., 2010). Changes in the relative abundance 

of alkenones with a different degree of unsaturation, expressed in the U
k’

37
 
index, are 

commonly used to deduce past sea surface water temperature (Brassell et al., 1986; Prahl & 

Wakeham, 1987).  

The occurrence of alkenones in the studied sections was unexpected because the 

sedimentary successions were deposited under exceptionally highly saline conditions. 

Moreover, in the Realmonte and Eraclea Minoa successions, relative abundances of the C37, 

C38 and C39 alkenones (Fig. 3b, d and h) mimics closely those present in present-day marine 

settings. Both C37:2 and C38:2 alkenones strongly dominate the distribution at Eraclea Minoa 

and in the Realmonte salt. Therefore, the calculated temperatures based on the U
k’

37 proxy, 

would suggest high temperatures throughout, at or above the maximum calibration 

temperature of 28°C. The relative abundance of the C39:2 alkenone in the studied sections is 

somewhat higher than observed in open marine settings and more similar to what has been 

found in the present-day Black Sea, high alkalinity lakes (Thiel et al., 1997) and both in 

DSDP core 380A from the central Black Sea and the Taman section from the Black Sea coast 

(Vasiliev et al., 2013 and 2015). Although high alkalinity lakes show a dominant C37:4 

alkenone, this compound is absent from the Mediterranean MSC record. The relative 

abundances of C37, C38 and C39 are constant throughout the record (Fig. 3b, d and h). Because 

of the unknown alkenone producer(s) we refrain from calculating temperatures based on the 

U
k’

37 index. 

 

5.2.1. Alkenones δD values  

The δD composition of the alkenones reflects predominantly the δD of the water they live in 

(Engelbracht and Sachse, 2006; Schouten et al., 2005; Paul, 2002), although values are also 

influenced by salinity,  growth rate (Schouten et al., 2005; Van der Meer et al., 2015; Sachs & 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 20 

Kawka, 2015) and probably irradiance (Pagani, 2002; Van der Meer et al., 2015). Therefore 

δDalkenone was used as a proxy to reconstruct δDwater (Englebrecht and Sachs, 2005; Schouten 

et al., 2005; Paul, 2002; Schwab and Sachs, 2011), which in turn closely reflects seawater 

salinity. The existing records of measured δD on alkenones produced in the present day ocean 

range from approximately −181‰ in the warm Sargasso Sea (at 31º N) (Englebrecht and 

Sachs 2005) to approximately −200‰ in the temperate Chesapeake Bay (at 43º N) (Schwab 

and Sachs, 2011). Results on the δDalkenones measured for latest 40,000 years from the 

Mozambique Channel (between Africa and Madagascar) indicate a 20‰ variation (from 

−180‰ to −200‰), with values of -187‰ for the most recent sediments (~1000 years old) 

(Kasper et al., 2015). In the recent to present-day Black Sea the values of δDalkenone are 

approximately −225‰, values lower than the rest of the ocean at the same latitude because of 

the large fresh water input (van der Meer et al., 2008). For the Mediterranean Basin during 

last interglacial times, the values of δDalkenone varied between −185‰ below the S5 sapropel 

and rapidly decreased to ∼−210‰ at the base of the S5 sapropel before it slowly returned to 

−190‰ (van der Meer et al., 2007). 

The results from Eraclea Minoa indicate that the hydrogen isotopic composition of the 

C37 and C38 alkenones had a much higher range, showing a variation of more than 75‰ 

(Table 2 and Figs 4 and 5). Such large offsets signal important changes in Mediterranean Sea 

hydrology as already indicated by the rhythmic alternation of marl and gypsum layers. These 

alternations are related to the acknowledged switch between the strong opposite climatic 

conditions at insolation minima and maxima of a precession cycle. Also remarkable is the 

fact that relative abundances of C37, C38 and C39 remain constant throughout the record (Fig. 

3b, d, h and Table 2), even for samples with highly contrasting δDalkenones values (Figs 3d, h 

and 4). The compositional stability of the alkenones throughout the record suggests that 

changes in the stable isotope records reflect actual environmental variability rather than a 
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change in the algal community composition. The very high values (−125‰ to −146‰) (Table 

2, Fig. 5) recorded by the δDalkenone observed at Realmonte and Eraclea Minoa indicate 

extreme drought. In both these sites extreme evaporation is expected because of the 

deposition of “high” salts (ranging from gypsum to halite and kainite). The levels containing 

kainite (an evaporite mineral) found in the Realmonte salt mine are indicative for extreme 

evaporative conditions. One of the levels (RMD at -160m) with an enriched δDalkenone value 

of −166‰ is also rich in kainite (Fig. 5). Subsequently, even more enriched δDalkenone (up to 

−143‰) values are observed at the stratigraphic level where Lugli et al., (1999) described 

giant salt polygons, evidence for a desiccation surface (Fig. 5). Similarly enriched δDalkenones 

(up to −143‰) values have been previously reported only from the Black Sea, in the Pontian 

(largely corresponding to MSC interval) in Taman (Vasiliev et al., 2013) and from the same 

time interval in the central Black Sea (DSDP 42B 380, Fig. 1, Vasiliev et al., 2015). 

The heavily enriched (up to −143‰) hydrogen isotopic values measured on the 

alkenone fractions in the studied of Eraclea Minoa and Realmonte mine sections require 

extraordinary conditions affecting the latest Miocene Mediterranean Sea. The conditions 

seem to be much different from the recent-times Mediterranean Sea where, since the last 

interglacial, the recorded δDalkenone varied between −185‰ and −210‰ (van der Meer et al., 

2007).  Regardless of the applied calibration (Englebrecht and Sachs, 2005; Paul, 2002; 

Schouten et al., 2005; Schwab and Sachs, 2011; van der Meer et al., 2015; Sachs & Kawka, 

2015), our δDalkenone results indicate extreme evaporation prevailing during stage 2 (halite) 

and 3 (Upper Gypsum). Still, similarly to alkenone based SST reconstructions
 
(Prahl and 

Wakeham, 1987), there are limitations when calculating δDwater from δDalkenone, since e.g. the 

species on which the calibration is based on did not exist during the late Miocene (Emiliania 

huxleyi and Gephyrocapsa oceanica). Therefore, we here consider only relative changes in 

δDwater (Fig. 5). 
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5.3. Comparison and integration of the δD data into the existing models 

Evaluation of the role of the Mediterranean's freshwater fluxes in controlling both its 

environmental evolution and exchange through its gateways is in its early stages being 

hampered by inadequate rainfall datasets as well as by model-data mismatch on temporal as 

well as spatial scales (Flecker et al, 2015). Most model data cover the entire MSC event, 

without distinction between the three specific stages of the MSC. Even more, more complex 

models like isotope-enabled general circulation models (GCM) are absent for the MSC events 

of the Mediterranean. Therefore we discuss our δD data in relation to the existing models of 

hydroclimate analysis available for the Late Miocene of the Mediterranean.   

Results from simulations on an atmosphere-only GCM indicate an increase in net 

precipitation during the Late Miocene, causing increased river runoff around three times 

greater than today as a consequence of increased input from North African rivers feeding the 

Eastern Mediterranean (Gladstone et al., 2007). Many more rivers were thought to have 

transported water from the south (Griffin, 1999) as a result of a stronger African summer 

monsoon (Marzocchi et al., 2015; Gladstone et al., 2007). However, the same model predicts 

a smaller net hydrologic budget (river discharge plus precipitation minus evaporation) than 

for present day. At precession scale, wetter periods in the Mediterranean region may also 

have resulted from enhanced wintertime storm track activity in the Atlantic and associated 

increased precipitation (Kutzbach et al., 2014). Our δD data from the stage 3 of the MSC 

(Eraclea Minoa section) would suggest drier conditions than present-day, in line with the 

predicted smaller net hydrologic budget of Gladstone et al. (2007) despite the three times 

higher modelled runoff.  Gladstone et al. (2007) model focuses on a comparison between the 

situation during Late Miocene, period of time covering the entire MSC, and the present-day 
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conditions. The model does not distinguish among the three MSC stages and therefore we 

cannot relate to our three δD data sets, specific to the three different stages of the MSC. 

The vegetation experiments did not show dramatic climate changes at the margins of 

the Mediterranean basin during the MSC (Schneck et al., 2010). Our δDn-alkanes data from the 

Monte Tondo section deposited during stage 1 of the MSC indicate a δDprecipitation similar to 

the present–day Mediterranean regime. Therefore, the precipitations would not have been a 

factor determining vegetation changes in the Mediterranean domain. 

Considering that our research provides only the second dataset on the δD related 

proxies on the Mediterranean MSC we would favour more δD data acquisition at a precession 

scale. The sampling and data acquisition could be concentrated on resolving ‘the inadequate 

rainfall data as well as model-data mismatch on temporal as well as spatial scales’ (Flecker et 

al., 2015). The spatial coverage should be concentrated on the west (wetter) to east (dryer) 

transect of the Mediterranean as well on the latitudinal transect from the north (covered by 

forest now) to south (dry conditions type of vegetation). The temporal coverage would 

concentrate specifically on the three stages of the MSC, on the onset, development and the 

demise. The much different hydrological conditions assumed for the three stages requires 

detailed data acquisition, to be used as data-check in further modelling exercises of complex 

models like isotope-enabled general circulation models. 

 

6. Data integration on composite of Monte Tondo, Realmonte and Eraclea Minoa 

6.1. δD results on biomarkers from the Mediterranean MSC 

The δD n-alkanes and δDalkenones results are in line with the presence of vast accumulations of 

evaporites, indicators for dry environmental conditions (Fig. 5, Tables 1 and 2). However, the 

δD composition of the individual biomarkers indicates that more extreme conditions were 
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characterizing the environment during stage 3 in comparison to stage 1. Regardless the 

applied evapo-transpiration enrichment effect (humid of dry environment-), the δDn-alkanes 

results indicate that much dryer conditions than today were affecting the Mediterranean 

between 5.55 and 5.32 Ma (Fig, 5). Dryer conditions were also inferred by Bertini (2006), 

who indicate an expansion of the open vegetation including the northward migration of 

Lygeum (a steppe element), occurring at about 5.5 Ma.  Additionally, at Eraclea Minoa, 

Londeix et al., (2007) observed the absence of fresh water algae inputs and very low amount 

in trees requiring humid conditions. Our higher δDn-alkanes and the existing palynology are also 

in line with the results of the enriched δDalkenones from Eraclea Minoa and Realmonte 

indicating that more evaporation relative to precipitation was affecting the Mediterranean 

water surface during the MSC climax and Upper Gypsum deposition (Fig. 5). Our enriched 

δDn-alkanes and δDalkenones suggesting dryer conditions are also sustained by preliminary δD and 

δ
18

O values of the crystallization water of gypsum from Eraclea Minoa stage 3 (Evans et al., 

2016). 

The δDn-alkanes results from Monte Tondo (deposited during stage 1 of the MSC) are 

largely varying around the values expected for the present-day configuration (latitude and 

position within the Mediterranean) suggesting a precipitation pathway similar to today. 

However, there are also levels δDn-alkanes values, typical for drier conditions (Fig. 5). Intense 

evaporation at low relative humidity was also suggested by Andersen et al., (2001). These 

authors calculated deuterium enriched isotope compositions of the Mediterranean waters of, 

sometimes reaching, +66‰ (typical for highly evaporative settings). 

Recurrent connection to the Atlantic was frequently used to explain the quasi-marine 

87
Sr/

86
Sr values recorded during deposition of the PLG (e.g. Müller and Mueller, 1991; 

Flecker and Ellam, 1999; Lugli et al., 2010; Roveri et al., 2014a). Natalicchio et al. (2014) 

found that in the northernmost offshoot of the Mediterranean Basin, gypsum did not form just 
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from pristine evaporated seawater, but rather from a mix of seawater and Ca2+ and SO4
2–

 

enriched nonmarine waters. Additionally, the presence of open marine planktic biota 

(diatoms and rare foraminifers) in northern Mediterranean sub-basins further advocated for a 

connection to a marine water body during stage 1 (Dela Pierre et al., 2014). Therefore, the 

presence of alkenone producers (unicellular haptophyte prymnesiophyte algae) was expected 

at least during prolonged marine intermittent connectivity defining the deposition during the 

stage 1 of the MSC. Unexpectedly, no alkenones were found in the PLG from the Monte 

Tondo section. The absence of alkenones during stage 3 can be related to: 1) absence of 

alkenone producers 2) lack of their preservation and/or 3) chemical alteration determined by 

the sulphurisation of the organic matter (Sinninghe Damsté et al., 1995). We favor the latter 

because: 1) unicellular haptophyte prymnesiophyte algae (the alkenone producers) are 

expected during prolonged connection to open marine environments typical for the stage 1; 2) 

alkenones are some of the most resistant biomarkers over geological time and 3) 

sulphurisation of organic matter is a process frequently affecting anoxic/disoxic 

sedimentation of the euxinic shales (Sinninghe Damsteé et al., 1995). 

 

6.2. Comparison between δD results on biomarkers from the Mediterranean and the 

Paratethys during MSC 

6.2.1. Mediterranean – Paratethys correlation 

Overspilling of the Paratethys into the Mediterranean during the latest Messinian (Cita et al., 

1978; Orszag-Sperber, 2006; Roveri et al., 2008) is acknowledged by the presence of a 

Paratethys type of biota found in the Lago Mare facies deposits (Suc et al., 1999; Gliozzi et 

al., 2002; Bertini, 2006; Roveri et al., 2008b; 2008c; Grossi et al., 2008). However, the exact 

relationship between the Mediterranean and Paratethys during the MSC was for a long time 
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hampered by the inadequate stratigraphic correlations and insufficiently robust age control on 

the Paratethys deposits. Integrated magnetobiostratigraphic studies performed in the past 10 

years on the Paratethys Messinian sedimentary successions revealed that the entire MSC 

interval in the Paratethys is included in the Pontian (Vasiliev et al., 2004, 2011; Krijgsman et 

al., 2010). 

6.2.2. Changes marking the pre-onset of the MSC 

The onset of the MSC in the Mediterranean post-dates the Maeotian–Pontian transition 

occurring at 6.04±0.01 Ma in the Paratethys (Krijgsman et al., 2010; Vasiliev et al., 2011). 

The base of the Pontian is marked by an interval containing marine foraminifera suggesting 

that a marine flooding event took place in the Paratethys, probably resulting from a 

connection with the Mediterranean (Stoica et al., 2013). The connection with the marine 

Mediterranean is also suggested by the δDalkenone recorded at two locations in the Black Sea 

(in Taman land based sections and DSPD 42B 380 Hole); these δDalkenone values (−220‰ and 

−200‰ respectively) are close to those recorded in the present-day Black Sea (−225‰), a 

restricted marine basin connected to the ocean via the Mediterranean (Vasiliev et al., 2013). 

The δDC29n-alkanes (i.e. δDprecip) recorded at the Maeotian–Pontian transition in both Taman 

land based sections and the DSDP 42B 380 Hole register values typical for the latitudinal and 

paleogeographic position similar to the present day situation (i.e. intracontinental marine 

basin). 

6.2.3. Changes during stage 1  

The δDn-alkanes results from Monte Tondo are largely suggesting a precipitation pathway 

similar, at times, to today. There are also levels where the δDC29n-alkanes values were up to 

−135‰ more enriched, probably induced by drier conditions (Fig. 5). These values are 

recognized in the branching and banded selenite facies that have been considered to mark the 
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acme of aridity and show higher 
87

Sr/
86

Sr values (Lugli et al., 2010), thus suggesting a 

deposition during higher oceanic input. Drier conditions were also inferred by Andersen et 

al., 2001, who, using the δDC22n-alkanes values calculated the deuterium enriched isotope 

composition (up to values of +66‰) of the Mediterranean waters. Such values are indicative 

for highly evaporative conditions, at least during the ~50 kyr interval covered by the samples. 

More comparative information comes from the adjacent Black Sea domain (Fig. 6). The 

values of the δDC29n-alkanes recorded from Taman and DSDP 42B Leg 380 vary around −180‰ 

to −200‰. These values are lower than those recoded in the period preceding the onset of the 

MSC in the Black Sea. During the deposition of the PLG in the Mediterranean, the δDalkenones 

values from the Black Sea basin (the Taman section and the DSPD 42B Hole 380 provided 

the new ages models of Chang et al., 2014 and van Baak et al., 2015) are recording a shift at 

~5.8 Ma from values typical for present-day Black Sea (−200‰) to values more enriched 

than any existing record (−145‰) (Fig. 6). 

6.2.4. Changes during stage 3  

The corroborated δDn-alkanes and δDalkenones results from Eraclea Minoa are suggesting 

significantly dryer conditions in Sicily during the deposition of the Upper Gypsum (stage 3). 

The values of the δDC29n-alkanes are reaching highly enriched values, up to −125‰.  The most 

enriched values are recorded in the gypsum samples, whereas the less enriched values are 

from the marls; among the latter, two samples show values similar to those of modern lakes. 

The onshore Upper Gypsum δDn-alkanes are also more enriched when compare to their alleged 

time equivalent deposits of the DSDP 42B 380 borehole of the Black Sea (−180‰). This is 

expected, since the Black Sea record originates from a more intracontinental position that 

generally translates into more depleted values for the δDprecipitation used by the vegetation 

resulting in more depleted δDC29n-alkanes. The values of the δDalkenones vary between values 

suggesting evaporative conditions (−125‰) and values suggesting more present-day values 
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in the Mediterranean (−203‰). Lower values (of −200‰) are also recorded in the DSDP 42 

B 380 Hole. A physical link between the Mediterranean and Paratethys is likely, justifying 

the similar δDalkenones values as already inferred from the presence of Paratethys type of fauna 

in the Upper Gypsum of Eraclea Minoa. Noteworthy is that, in both Mediterranean and 

Paratethys domain, there is a 30 to 40‰ enrichment in the δDn-alkanes (i. e. δDprecipitation) 

indicating concurrent changes in both Mediterranean and Paratethys during the latest phase of 

the MSC. 

 

7. Conclusions 

The δD results on specific biomarkers from the composite record covering the entire MSC 

interval in the Mediterranean Sea are converging towards large environmental changes. These 

δD data in relation to those existing in adjacent Paratethys realm (Fig. 6) are indicating: 

1) The δDn-alkanes recorded during MSC stage 1 indicate a δDprecipitation similar to the present-

day Mediterranean hydrologic regime (Fig. 6 b and c). Only at some levels, the δDn-alkanes 

(i.e. δDprecipitation) are more enriched suggesting more arid/warm conditions or a proximity 

of the vapor source. However, in conjunction with the existing δDC22n-alkanes, significantly 

drier conditions were to be expected during stage 1. Proximity of the vapor source as the 

cause for the more enriched values cannot be excluded although, during stage 1, the 

Mediterranean is considered to have experienced on-off connections to the Atlantic, 

modulated by precession. 

2) The absence of the alkenones for the entire PLG unit is most likely related to 

sulphurisation of the organic matter. Noteworthy is that, at the moment, there is no rock 

record from the deepest Mediterranean basin for the stage 1, a time when PLG was 

deposited in the marginal settings. Therefore, because of absence of offshore data, we 
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refrain stating that in the stage 1 evaporite were deposited only in the shallow part of the 

basin. This can be explained by the presence of anoxic environments at depth that 

hampered the deposition of the gypsum (Lugli et al., 2010; De Lange & Krijgsman, 

2010). The anoxia extended in the photic zone as indicated by the presence of 

isorenieratane, a biomarker produced by anaerobic green sulphur bacteria topped up by 

the strong water column stratification as shown by the occurrence of the gammacerane 

produced by bacterivorous ciliates (Sinninghe Damste, 1995).  

3) Enriched δDalkenones from the Realmonte mine (stage 2) are associated with kainite 

(mineral forming under extreme evaporation conditions) and giant polygons (evidence of 

an exposure surface). These observations combined favor the conclusion that, at least at 

some moments, the Mediterranean Sea level dropped down because of excess 

evaporation. 

4) All the δDn-alkanes values recorded during stage 3 of the MSC indicate a δDprecipitation much 

different from the present-day Mediterranean hydrological regime (Fig. 6 a). The values 

are typical for much drier settings, like Red Sea – Gulf of Aden, region with extreme 

evaporation rates.  In both Mediterranean and Paratethys domain, there is a 30 to 40‰ 

enrichment in the δDn-alkanes (i. e. δDprecipitation) indicating concurrent changes in both 

Mediterranean and Paratethys during the latest phase of the MSC.  

5) The relative contribution of alkenones in the Upper Gypsum of Eraclea Minoa is similar 

to the present-day marine setting (although the principal present-day Ocean alkenone 

producers – Emiliania huxleyi and Gephyrocapsa oceanica – did not exist at that time). 

Therefore, we may suggest two different possible scenarios. i) One of them would imply 

the existence of a connection to the open Ocean during stage 3, most probably at 

insolation minima, that could have provided the ions needed for the precipitation of the 

evaporites (Manzi et al., 2009; Roveri et al., 2014b). ii) Alternatively, since the relative 
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contribution of the C37, C38 and C39 alkenones appears similar to the one of the alkenones 

extracted from samples originating from the Black Sea (part of the Paratethys), we could 

also speculate that the alkenone producers were common for the Mediterranean and 

Black Seas, thus it was at least an outflow of Black Sea (i.e. Paratethys) waters into the 

Mediterranean, paving the way for Paratethys type of ‘Lago Mare’ fauna.  

6) There is no data of δDalkenones from the open Ocean settings deposited during the upper 

most Miocene. Therefore, we can only compare our Mediterranean MSC δDalkenones 

record with the existing ones form the equivalent in time δDalkenones of the Black Sea 

(DSDP 42B Hole 380 and Taman peninsula). The δDalkenones recorded during stage 3 

from Eraclea Minoa are similar to those equivalents in time from the Black Sea records. 

Because of this similarity we speculate that the surface water from the Upper Gypsum 

must be derived from the Black Sea, consistent with Paratethys water inflow into the 

Mediterranean. Alternatively, the Mediterranean and Paratethys could have been 

exchanging surface water at insolation maxima. 

7) The δD on biomarkers could be the method to be used to finally understand the 

extraordinary hydrological changes affecting the Mediterranean region during the MSC 

under the provision that increased resolution of δDbiomarker data will be produced 
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Table 1. δD isotopes measured on long chain C29 and C31 n-alkanes from Monto Tondo 

and Eraclea Minoa (MSC stages 1 and 3). The δDprecip is calculated for a ‘wet’ climate 

using Sachse et al. (2006) and for a ‘dry’ climate using Feakins and Sessions, (2010). 

Average, standard deviation (STDEV) and standard error of the means (SEM) are listed; n.d 

denotes levels where the δ
13

C or δD could not determine. 

 

Table 2. δD isotopes measured on alkenones from Realmonte and Eraclea Minoa (MSC 

stages 2 and 3). The δD of the source waters (δDwater) were calculated using the relations of 

Englebrecht and Sachs (2005) for C37 and C38 separately and Schwab &Sachs (2011) for 

C37:2, C37:3, C38:2 and C38:3 separately. See also the captions of table 1. 

 

Figure captions 

Figure 1. Palaeogeographic map of the late Miocene, showing the Mediterranean and 

Paratethys areas on the presented day land configuration. Major rivers draining into the 

Mediterranean and Paratethys (former sea of Eurasia) are indicated (modified after Vasiliev 

et al. 2013 and 2015). The values of the present day precipitation δDprecipitation are reported 

according to IAEA (2001) and their locations marked by the white circle. Long-term means 

were calculated by selecting yearly means in which isotope content have been measured at 

least in 75% of the precipitation for that year and at least over eight months (IAEA, 2001). 
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The locations of Taman peninsula (TM) with Zheleznyi Rog section used in Vasiliev et al., 

(2013) and Deep Sea Drilling Project 42B (Hole 380A) used in Vasiliev et al., (2015) are 

represented by yellow triangles. 

  

Figure 2. Chronostratigraphy of Late Miocene to Early Pliocene with MSC events in the 

Mediterranean (modified from CIESM, 2008; Manzi et al., 2013, Roveri et al., 2014a) and 

correlations to the oxygen isotope curves of the Atlantic margin of Morocco (Hilgen et al., 

2007). PLG, Primary Lower Gypsum; RLG, Resedimented Lower Gypsum; UG, Upper 

Gypsum; CdB, Calcare di Base. MSC stage 1 corresponds to deposition of euxinic shales and 

dolomites in the intermediate basins and to the deposition of the PLG in the shallow basins. 

MSC stage 2 corresponds to Resedimented Lower Gypsum and halite in the intermediate 

basins while in the shallow basins this stage 2 of MSC is marked by a hiatus of variable 

amplitude. MSC stage 3 corresponds to Upper Gypsum and Lago Mare in the intermediate 

basins. The hiatus of variable amplitude starting in the MSC 2 continues during the MSC 

stage 3 in some locations in the shallow basins. 

 

Figure 3. Representative chromatograms of biomarker fractions of representative 

sedimentary samples of the Monto Tondo, Realmonte and Eraclea Minoa (MSC stages 

1, 2 and 3). In the left hand side are the represented the a-polar fractions (a, c, e, g, i, and k); 

note the n-alkanes with a distinctly odd (green) over even (orange) carbon-number 

predominance. In the right hand side are the ketone fractions (b, d, f, h, j and l). Note the 

similarity of the alkenone distribution in both sediments although they belong to levels with 

the distinctly different δDalkenone.  
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Figure 4. Cross plots of δD measured on n-alkanes and long chain alkenones from 

Monto Tondo and Eraclea Minoa (MSC stages 1 and 3). The numbers in italics indicate 

stratigraphic levels (in mbsf) of samples further from the correlation lines. Comparison of 

measured δD on C29 and δD on C31 n-alkanes and of measured δD on C37 and δD on C38 

alkenones.  

 

Figure 5. δD isotopes of C29 and C31 n-alkanes and C37 and C38 long chain alkenones 

recorded in the composite of Monte Tondo, Realmonte and Eraclea Minoa sections 

(MSC stages 1, 2 and 3). Between the n-alkanes and alkenones records is the schematic 

representation of the Messinian Salinity Crisis stages (1, 2 and 3) coinciding with Monte 

Tondo, Real Monte and Eraclea Minoa. In the upper part of the y axes are the δD scales are 

indicated possible causes for depleted versus enriched δDn-alkanes and δDalkenones values 

recorded. Blue line indicate the values recorded in the present day setting for the n-alkanes in 

the lakes close to the actual location of the studied sections (Sachse et al., 2006) and in the 

alkenones from the Mediterranean in the recent times (Van der Meer et al., 2007). Error bars 

are based on the standard deviation of the complete set of replicate analyses and indicate 

standard errors of the mean. To not complicate the figure we refrain from presenting the 

calculated values for the δDprecipitation in the two cases exposed in the main text and 

enumerated in table 1 (European ‘humid’ temperate and ‘arid’ climates). 

 

Figure 6. Comparison of the δDn-alkanes and δDalkenones records of Mediterranean (Monte 

Tondo, Realmonte and Eraclea Minoa) and of Paratethys (DSDP Hole 380A and 
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Zheleznyi Rog of Taman Peninsula). On the left side Mediterranean and Paratethys time 

scales are presented next to oxygen isotope record. TG indicates glacial–interglacial marine 

stages. Events of the Messinian Salinity Crisis and regional Black Sea (i.e. Paratethys) stage 

names are listed. The age model is according to Krijgsman et al. (2010). The foraminifer 

symbol indicates the level of marine transgression into Paratethys. The Mediterranean values 

in red are from this study and substantiated with δDn-alkanes and δDalkenones data from Vasiliev 

et al., 2013, 2015 and D water estimated by Andersen et al., 2001. Scenarios of 

Mediterranean-Paratethys-Atlantic connections at important moments of MSC (for 

consistency with the succession of the events read from the bottom of the figure to the top 

one, form panels c to a). a) ‘Lago Mare’/ Gypsum deposition (stage 3) of the MSC under the 

assumption that an intermittent influx from the ocean (via Atlantic) existed at a not 

significant Mediterranean Sea level drop, as suggested by marine fishes and marked with the 

purple arrow (Carnevale et al., Roveri et al., 2014b). The probable influx of Paratethys 

waters, as suggested by ‘Lago Mare’ type of biota is marked by blue arrow. Both influxes 

into Mediterranean, from Atlantic and from Black Sea, are possible; b) Halite deposition 

during the climax of the MSC (stage 2) under the assumption that a moderate Mediterranean 

Sea level drop existed. Still, excess precipitation in the Black Sea could result in overspill 

into Mediterranean. c) PLG deposition (stage 1) of the MSC. Remark the ~40 ‰ difference 

between the δDn-alkanes of Upper Gypsum and δDn-alkanes of Lower Primary Gypsum. Remark 

more than 50 ‰ variation in the δDalkenones between values recorded for the halite (stage 2) 

and ‘Lago Mare’/ Gypsum deposition (stage 3). HSL and LSL stand for high or low sea level 

respectively.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Table 1 

Sample 
code 

Level 
(m) 

Rock type 
Age 
(Ma) 

δDnC29 
(‰) 

N 
STDE

V 

δDpp from δDnC29 

(‰) δDnC31 
(‰) 

N 
STDE

V 

δDpp from δDnC31 
(‰) CP

I 
AC
L 

WET  DRY WET DRY 

                

MTO 1_3 2.5 
massive 
selenite 

5.96
9 -150.5 1   -23.5 -62.3 -159.1 1   -33.5 -71.9 6.0 

29.
6 

MTO 3_3a 12 
massive 
selenite 

5.92
9 -166.8 1   -42.3 -80.4 -166.8 1   -42.3 -80.4 5.8 

29.
9 

MTO 6_4a 103 banded selenite 
5.89

7 -135.7 2 5.8 -6.6 -46.1 -146.5 2 1.3 -19.0 -58.0 3.0 
28.

8 
MTO 
7_4_2 126 banded selenite 

5.83
7 -147.0 1   -19.6 -58.5 -150.6 1   -23.6 -62.4 5.8 

30.
1 

MTO 12_4 173 banded selenite 
5.72

1 -163.1 1   -38.0 -76.2 -165.8 1   -41.1 -79.2 5.2 
28.

6 

MTO 13_5 189.5 
branching 
selenite 

5.70
2 -139.9 2 4.6 -11.3 -50.6 -142.0 2 16.0 -13.8 -53.0 6.0 

29.
6 

MTO 15_2 205 limestone 
5.66

3 -171.5 6 6.9 -47.7 -85.5 -175.1 6 8.2 -51.9 -89.5 5.9 
29.

2 

MTO 16_5 223 
branching 
selenite 

5.64
3 -148.3 2 5.9 -21.0 -59.9 -155.8 2 3.0 -29.6 -68.2 7.9 

29.
8 

                

EM_og_15 4.5 banded selenite 5.53 -129.6 1   0.4 -39.3 -138.4 2 2.4 -9.6 -49.0 
n.d
. n.d. 

EM-og1 118 marl 
5.40

5 -123.9 2 3.6 7.0 -33.0 -134.3 2 2.0 -4.9 -44.4 2.2 
28.

9 

EM2 118.8 marl 
5.41

6 -129.9 1   0.1 -39.7 -134.0 2 3.7 -4.6 -44.2 2.5 
29.

2 

EM6'_26 159.5 marl 
5.39

4 -137.0 2 2.2 -8.0 -47.4 -140.4 2 1.7 -12.0 -51.2 2.3 
29.

4 

EM6''_7 170 marl 
5.38

6 -124.4 3 0.7 6.5 -33.5 -135.5 3 2.4 -6.3 -45.8 1.7 
29.

1 

EM8_6 238.2 marl 
5.33

3 -140.2 1   -11.8 -51.0 -150.5 4 0.9 -23.6 -62.4 3.7 
29.

8 
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Table 2 

Sample 
Depth 

(m) 
Age 
(Ma) 

δDC37 

(‰) 
N STDEV 

δDC38 

(‰) 
N STDEV 

dDw Englebrecht & 
Sachs (2005) 

dDw Schwab & Sachs (2011) 

C37 C38 
 δDC37:2 δDC37:3 δDC38:2 δDC38:3 

EM_og_15 4.5 5.4837 -125.2 1   -165.1 1   136 91 66 67 11 33 

EM Ra 112.5 5.3962 n.d n.d.   -145.6 1 
 

n.d. 117 n.d n.d 40 58 

EM og 09 128 5.3888 -203.0 1   -202.2 1 
 

30 41 -33 -66 -44 -15 

EM12ket 128.5 5.3883 -182.6 4   -180.8 
 

1 58 70 -7 -31 -12 13 

EM6'_26 159.5 5.3801 -168.3 5 2.97 -175.1 4 2 78 78 11 -7 -4 20 

EM6''_7 170 5.3774 -164.9 3 2.70 -169.6 5 4 82 85 16 -1 4 27 

EM8_6 238.2 5.3387 -199.2 1 3.20 -200.9 3 5 35 43 -28 -59 -42 -13 

               RMI -106 5.58 n.d.     -142.8 1   n.d. 121 n.d. n.d. 44 62 

RMD -160 5.57 -165.5 1   -167.6 1   81 88 15 -2 7 30 

 

ACCEPTED MANUSCRIPT




