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Abstract. Starting from the work by Barzilai and Borwein, the interest for gradient methods has gained a great amount of attention,
and efficient low-cost schemes are available nowadays. The acceleration strategies used by these methods are based on the definition
of effective steplength updating rules, which capture spectral properties of the Hessian of the objective function. The methods
arising from this idea represent effective computational tools, extremely appealing for a variety of large-scale optimization problems
arising in applications. In this work we discuss the spectral properties of some recently proposed gradient methods with the aim of
providing insight into their computational effectiveness. Numerical experiments supporting and illustrating the theoretical analysis
are provided.

INTRODUCTION

Several strategies for accelerating gradient methods have been devised in the last years, stimulated by the seminal work
by Barzilai and Borwein [1]. These strategies share the idea of defining steplengths that capture spectral properties of
the Hessian of the objective function; based on them, new first-order methods for continuous nonlinear optimization
have been designed, which showed to be effective in some practical contexts [2, 3, 4, 5, 6]. However, the convergence
results available do not explain the great improvement with respect to the classical Cauchy Steepest Descent (SD)
method, and we still do not have a deep understanding of the behaviour of the new methods.

In this work we discuss the spectral properties of some recently proposed steplength rules, with the aim of
providing insight into their computational effectiveness. To this purpose, we consider a very simple unconstrained
quadratic programming problem, suitable for analyzing the role of the eigenvalues of the Hessian in the behaviour of
gradient methods:

min f (x) =
1
2

xT Ax − bT x, (1)

where A ∈ Rn×n is symmetric positive definite and b ∈ Rn. The generic gradient method for (1) is defined by the
iteration

xk+1 = xk − αkgk, (2)

where gk = ∇ f (xk) = Axk − b, and the steplength αk > 0 is chosen through some predefined rule. For instance, the
classical SD and Minimum Residual (MR) methods take the following steplengths, which guarantee monotonicity of
the sequences { f (xk)} and {‖∇ f (xk)‖}, respectively:

αSD
k = argmin

α>0
f (xk − αgk) =

gT
k gk

gT
k Agk

, αMR
k = argmin

α>0
‖∇ f (xk − αgk)‖ =

gT
k Agk

gT
k A2gk

. (3)



Let λ1 ≥ λ2 ≥ . . . , λn−1 ≥ λn be the eigenvalues of A, with associated orthonormal eigenvectors d1, d2, . . . , dn. Without
loss of generality, henceforth we make the following assumptions:

A1. λ1 > λ2 and λn−1 > λn > 0;
A2. at the starting point x0, ∇ f (x0) =

∑n
i=1 µ

0
i di, with µ0

1 , 0 and µ0
n , 0.

Since gk+1 = gk − αkAgk =
∏k

j=0(I − α jA)g0, we have

gk+1 =

n∑
i=1

µk+1
i di, µk+1

i = µ0
i

k∏
j=0

(1 − α jλi) = µk
i (1 − αkλi). (4)

STEPLENGTHS AND HESSIAN SPECTRUM

Starting from recurrence (4), the following properties can be deduced:

• if at the k-th iteration µk
i = 0 for some i, then µh

i = 0 for h > k;
• if at the k-th iteration αk = 1/λi, then µk+1

i = 0;
• the SD and MR methods have finite termination if and only if at some iteration the gradient is an eigenvector

of A;
•

∣∣∣µk+1
i

∣∣∣ < ∣∣∣µk
i

∣∣∣ if and only if αk < 2/λi;
• for αk ≈ 1/λ j,

∣∣∣µk+1
i

∣∣∣ > ∣∣∣µk
i

∣∣∣ when i < j and λi > 2λ j;

• αSD
k =

∑n
i=1(µk

i )2/
(∑n

i=1(µk
i )2λi

)
, αMR

k =
∑n

i=1(µk
i )2λi/

(∑n
i=1(µk

i )2λ2
i

)
.

Thus, small steplengths αk (say close to 1/λ1) tend to decrease a large number of eigencomponents, with negligible
reduction of those corresponding to small eigenvalues. The latter can be significantly reduced by using large values
of αk, but this may end up increasing the eigencomponents corresponding to the dominating eigenvalues, as well as
fostering non-monotonic behaviour. Therefore, some balance between large and small steplengths seems to be a key
issue in devising effective gradient methods and this basic idea has given rise to novel steplength selection rules, some
of which will be described in the sequel.

The spectral properties of the SD method have been deeply investigated [7, 8, 9, 10]. An interesting theoretical
result concerning the asymptotic behaviour of this method is reported next [8].

Theorem 1 Let {xk} be a sequence generated by the SD method. Then

lim
k→∞

(µk
1)2∑n

j=1(µk
j)

2
=


c2

1 + c2 if k odd,

1
1 + c2 if k even,

lim
k→∞

(µk
n)2∑n

j=1(µk
j)

2
=


1

1 + c2 if k odd,

c2

1 + c2 if k even,
lim
k→∞

(µk
i )2∑n

j=1(µk
j)

2
= 0 (1 < i < n)

where c = limk→∞ µ
2k
n /µ

2k
1 = − limk→∞ µ

2k+1
1 /µ2k+1

n .

The main consequence of Theorem 1 is that the SD method eventually performs its search in the 2D space spanned by
d1 and dn, thus showing the well-known zigzagging behaviour. This is in contrast with the possibility for the sequence
{1/αk} to travel in the spectrum of the Hessian, which, according to the previous observations, seems to be a desirable
feature for gradient methods. Furthermore, for the Cauchy choice of the steplength it is well known that the method
has Q-linear rate of convergence which depends on ρ = (λ1 − λn)/(λ1 + λn) [7].

The Barzilai-Borwein (BB) steplength rules are given by:

αBB1
k =

‖sk−1‖
2

sT
k−1yk−1

, αBB2
k =

sT
k−1yk−1

‖yk−1‖
2 ,

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1; they were obtained by including some second order information through
a secant condition, and can be regarded as quasi-Newton methods with the Hessian approximated by 1

αk
I.

An interesting property of these rules is that

1
λ1
≤ αBB2

k =
gk−1

T Agk−1

gk−1
T A2gk−1

≤ αBB1
k =

gk−1
T gk−1

gk−1
T Agk−1

≤
1
λn

;



furthermore, with these rules, both the sequences { f (xk)} and {‖∇ f (xk)‖} are non-monotonic. For strictly convex
quadratic problems the BB methods have R-linear convergence, which does not explain why they are in practice much
faster than the SD method. An explanation of this behaviour is the ability of generating sequences {1/αk} sweeping
the spectrum of A [11].

Starting from [1], many other gradient methods have been proposed. Several methods, either based on the al-
ternation of Cauchy and BB steplengths or the cyclic use of them (see, e.g., [12, 13, 14]), fit into the framework of
Gradient Methods with Retards (GMR) [15]. The convergence rate of these methods is R-linear, but their practical
convergence behaviour is superior than the SD one. The approaches based on a prefixed alternation of steplength
rules seem to be overcome by the selection rules ABB and ABBmin, proposed in [16] and [17], which use an adaptive
switching criterion for alternating the BB1 and BB2 steplengths:

αABB
k =

 αBB2
k if

αBB2
k

αBB1
k

< τ,

αBB1
k otherwise,

αABBmin
k =

 min
{
αBB2

j : j = max{1, k − m}, .., k
}
, if

αBB2
k

αBB1
k

< τ,

αBB1
k , otherwise,

where m is a nonnegative integer and τ ∈ (0, 1). Following the original Adaptive Barzilai–Borwein (ABB) in [16], the
ABBmin strategy aims at generating a sequence of small steplengths with the BB2 rule so that next value computed
by the BB1 rule becomes a suitable approximation of the inverse of some small eigenvalue. The switching criterion is
based on the value αBB2

k / αBB1
k = cos2θk−1, where θk−1 is the angle between gk−1 and Agk−1, and allows to select αBB1

k
when gk−1 is a sufficiently good approximation of an eigenvector of A [17].

A different approach is behind some recently proposed gradient methods, which alternate SD steplengths with a
sequence of constant steplenghts computed by some specific rule that exploits previous SD steplenghts, with the aim
of escaping from the two dimensional space in which the SD method tends to eventually reduce its search. The SDA
and SDC methods [9, 18] compute their constant steplengths by exploiting the formulas

αA
k =

 1
αSD

k−1

+
1
αSD

k

−1

, αY
k = 2


√√√√ 1

αSD
k−1

−
1
αSD

k

2

+ 4
‖gk‖

2(
αSD

k−1‖gk−1‖
)2 +

1
αSD

k−1

+
1
αSD

k


−1

.

We note that the steplength αY
k , proposed by Yuan [19] and used in a different algorithmic framework, was determined

by imposing finite termination for two-dimensional convex quadratic problems. In [9, 18] the authors prove that the
steplengths αA

k and αY
k are related and share similar asymptotic properties, shown by the following theorem.

Theorem 2 Let
{
αSD

k

}
be a sequence generated by the SD method. Then the sequences

{
αA

k

}
and

{
αY

k

}
satisfy

lim
k
αA

k =
1

λ1 + λn
, lim

k
αY

k =
1
λ1
.

The steplengths of the SDA and the SDC methods, αSDA
k and αSDC

k , are defined by the following rule:

αk =

{
αSD

k if mod (k, h + m) < h,
α̂s otherwise, with s = max{i ≤ k : mod (i, h + m) = h}, (5)

where α̂s = αA
s for SDA and α̂s = αY

s for SDC, and h and m are nonnegative integers with h ≥ 2. In SDC, the use
of a finite sequence of Cauchy steps has a twofold goal: forcing the search in the two-dimensional space spanned by
the eigenvectors d1 and dn and getting a suitable approximation of the reciprocal of λ1 through αY

k , in order to drive
toward zero µk

1. If the component of the gradient along the eigenvector d1 were completely removed, a sequence of
Cauchy steps followed by constant steps computed with the Yuan rule would drive toward zero the component along
the eigenvector d2, and so on. Thus, the cyclic alternation of steplengths defined by (5) attempts to eliminate the
components of the gradient according to the decreasing order of the eigenvalues of A. The SDA method has similar
properties; in this case, the selected constant steplength attempts to exploit the tendency of the gradient method with
steplength 1/(λ1 + λn) to align the search direction with dn, i.e., to eliminate the remaining eigencomponents. We also
observe that if the Hessian matrix is ill conditioned, 1/(λ1 + λn) ≈ 1/λ1 and then SDA and SDC are expected to have
very close behaviours. As the GMR methods, SDA and SDC have R-linear convergence, but in practice are competitive



with the fastest gradient methods currently available. Furthermore, although the two methods are non-monotonic, a
suitable choice of h and m leads to monotonicity in practice.

The alternation of Cauchy steplengths and constant steplengths characterizes also the Cauchy-short steps methods
proposed in [10]. The idea is to break the SD cycle by applying either very short or very long steps approximating
suitable Hessian eigenvalues. Note that this strategy is also shared by the SDA and SDC methods, although they have
been designed by taking a different point of view.

Finally, a different approach aimed at capturing the spectrum of the Hessian is exploited by the limited memory
steepest descent method proposed in [20]. The basic idea is to divide the sequence of gradient iterations into groups
of m ≥ 1 iterations, referred to as sweeps, and to compute the steplengths for each sweep as the inverse of the Ritz
values of the Hessian matrix, by exploiting the gradients obtained during the previous sweep.

NUMERICAL ILLUSTRATION

In order to illustrate our analysis, we compare some gradient methods on a very simple problem [17] of the form (1),
with Hessian matrix

A = diag(λ1, . . . , λ10), λi = 111(11 − i) − 110, i = 1, . . . , 10,
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FIGURE 1. History of steplength, gradient norm and component along dn, and function error ( f (xk) − fmin), for the ABB (top),
ABBmin (middle) and SDC (bottom) methods.



and random b with entries in [−10, 10]. For the sake of space, we only consider ABB (τ = 0.15), ABBmin (τ = 0.8,
m = 6) and SDC (h = 3, m = 3), which are representative of most of the strategies described in the previous section.
The starting guess x0 has been randomly generated too, with entries in [−1, 1]. As stop condition we take ‖gk‖ < ‖g0‖ ε,
with ε = 10−6. We focus on the distribution of the steplengths αk in the interval [1/λ1, 1/λn] = [0.001, 1] and on its
impact on the convergence behaviour.

We first compare the ABB and ABBmin methods (see Fig. 1, top and middle). ABBmin tends to use the BB2
rule many more times, thus taking steplengths that on the average are smaller than ABB. ABBmin produces very
few large steps; this happens twice, at iterations 20 and 44, with a quite remarkable effect in reducing the gradient
component along the eigenvector dn, and more generally along di for large i. The long steps appear to produce in
the objective function some fluctuation followed by a strong decrease. The general behaviour of ABB is similar, but
the non-monotonicity is slightly more noticeable, and this seems to deteriorate the performance of the method. We
verified that this behaviour becomes more evident as the accuracy requirement increases. For instance, when ε = 10−8,
ABB takes almost twice the number of iterations taken by ABBmin.

Figure 1 (bottom) shows that the SDC method has a convergence history close to that of the ABBmin method.
However, as observed in the previous section, SDC has a monotonic behaviour, fostered by Yuan steps that are very
short in agreement with Theorem 2. A careful examination shows that the first 18 iterations are able to significantly
reduce the gradient components along di for small i (this can be deduced from ‖gk‖ ≈ |dT

n gk |)), thus allowing the
method to adopt a long step (almost equal to 1 = 1/λn) at iteration 19, which produces a large decrease in the
objective function and a strong reduction of the gradient component along dn. As for ABBmin, the use of few selected
long steps produces remarkable effects on the overall SDC behaviour.

In conclusion, the methods we considered, although based on different strategies, apparently share the ability of
using large steplengths in a selective way to overcome the chaotic behaviour of BB, allowing improvement in terms
of monotonicity and computational efficiency. This ability can be successfully exploited also in more general contexts
of unconstrained/constrained optimization [4, 6, 11, 14, 20], when the large scale of the applications makes the use of
effective gradient approaches an unavoidable choice.
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