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ABSTRACT 19 

The Shallow Benthic Zonation is one of the most important achievements of biostratigraphy in the last 20 

twenty years. Here we summarize the state of the art in the field of Larger Benthic Foraminifera (LBF) 21 

and sketch the main lines of research that are improving the precision and usefulness of this scale. The 22 

goal of updating the zonation requires a wealth of data coming not only from biostratigraphic 23 

investigations but also from paleoenvironmental analyses, biological knowledge, rigorous taxonomic 24 



determination, and understanding of paleobiogeography. The papers collected for this special issue are 25 

contributions to this broad research program. 26 

 27 

This introductory note is dedicated to the memory of Lukas Hottinger (1933–2011). 28 

 29 

INTRODUCTION 30 

 Larger benthic foraminifera (LBF), a taxonomically heterogeneous group of 31 

unicellular organisms, are characterized by their complex internal structures, endosymbiosis, 32 

and large size. They have inhabited warm, shallow and oligotrophic tropical and subtropical 33 

seas (Langer and Hottinger, 2000) since the late Paleozoic. Over this period, they achieved 34 

great abundance and geographical distribution several times: fusulinids on Permian-35 

Carboniferous shelves; orbitolinids, alveolinids and orbitoids in Cretaceous platform systems; 36 

and a variety of groups (alveolinids, nummulitids, complex miliolids, complex rotaliids, 37 

orthophragmines, myogypsinids, and lepidocyclinids) in Cenozoic shallow seas. The last are 38 

the focus of this note.  39 

 40 

PALEOECOLOGY AND BIOSTRATIGRAPHY OF LBF 41 

 LBF have been used since the 19th century both for paleoenvironmental 42 

reconstructions and for biostratigraphy. Their paleoenvironmental significance has been much 43 

improved over the last three decades because understanding of their functional morphology 44 

and ecological requirements has significantly increased, mainly through the study of living 45 

representatives (e.g., Hottinger, 1983, 1997, 2006; Hallock, 1985; Lee and Hallock, 1987; 46 

Hohenegger et al., 1999; Yordanova and Hohenegger, 2007). Nevertheless, further 47 

investigations to elucidate the relationship among physical, chemical and biological factors 48 

influencing the distribution and population dynamics of the different groups of LBF are still 49 

needed.  50 



  Regarding biostratigraphy, LBF biozones have been of great importance for dating 51 

shallow water carbonate deposits ever since they were first introduced. Even in recent years, 52 

with the increasing importance of alternative stratigraphic methods, these biozones have 53 

maintained their central role because in shallow water settings, geochemical signals are 54 

usually affected by diagenetic bias, magnetostratigraphy often cannot be applied, and 55 

planktonic index fossils are either scarce or absent.  56 

 Since the 1960s many studies have been carried out on the thick Mesozoic and 57 

Cenozoic shallow-marine sequences in the Tethyan realm (Hottinger, 1960; Drobne, 1977; 58 

Schaub, 1981; Less, 1987; Caus et al., 1996). As Pignatti (1998) underlined, shallow marine 59 

sedimentation is strongly influenced by eustatic cycles, therefore intrinsically discontinuous. 60 

The superposition of discrete intervals of rock with distinctive LBF assemblages has been 61 

observed and tested in several localities, allowing construction of a Cenozoic biozonal scheme 62 

which has undergone no substantial changes over more than 50 years.  63 

 The calibration between LBF zones and plankton/nannoplankton zones is of prime 64 

importance in order to evaluate the timing of ecosystem perturbations and revolutions. 65 

Generally speaking, benthic foraminifera are closely controlled by environmental conditions 66 

and characterized by a relatively slow evolutionary rate, strong facies dependence, and 67 

provincialism. These limitations also apply to LBF, but the evolutionary rates are in this case 68 

much higher than for smaller foraminifera, allowing a time resolution to be achieved that is no 69 

worse than plankton and nannoplankton biozones. If we look at the Paleogene, according to 70 

Vandenberghe et al. (2012) there are 24 LBF biozones over about 43 Ma, with a mean 71 

duration of 1.79 Ma/biozone; for comparison, in the same time interval, there are 30 72 

planktonic foraminiferal zones, with a mean duration of 1.43 Ma/biozone, and 24 (NP) or 19 73 

(CP) nannoplankton zones, with mean durations of 1.79 and 2.26 Ma/biozone, respectively. 74 



 The Paleogene witnessed the evolution of the LBF from the small and simple K/Pg 75 

survivors up to large and internally complex forms, which became really abundant from the 76 

Ypresian onwards, thereby giving the shallow marine facies of that time a special character 77 

which is recognizable throughout the (Neo)Tethys. Paleogene shallow-marine limestones are 78 

in fact regularly constituted of huge amounts of LBF tests over a vast area spanning the 79 

Caribbean, the Mediterranean, the Near to Far East, and the eastern side of Africa. 80 

 81 

THE SHALLOW BENTHIC ZONATION 82 

 The taxonomic and stratigraphic revision of the most diverse groups of Paleogene 83 

LBF (in particular nummulitids, alveolinids, orthophragmines) in the 1970s-1980s eventually 84 

resulted in the Tethyan Shallow Benthic (SB) zonation (Cahuzac and Poignant, 1997; Serra-85 

Kiel et al., 1998). This zonation scheme correlates shallow-water and pelagic sequences for 86 

the Paleocene-Eocene Tethys and was mainly based on the extensive work on alveolinids, 87 

nummulitids and orthophragmines by Hottinger (1960), Drobne (1977), Schaub (1981), and 88 

Less (1987). Hottinger and Drobne (1980) added to these groups some taxonomically 89 

heterogeneous imperforate foraminifera which flourished in the shallowest facies of the 90 

Tethyan realm.  91 

 As previously mentioned, it is well known that the characteristic assemblages defining 92 

the SB biozones are discontinuous, because sedimentation in shallow-marine environments 93 

often coincides with transgressive phases separated from under- and over-laying deposits by 94 

relatively long-lasted hiatuses. The SB biozones are in principle Oppel zones (Pignatti, 1998), 95 

whose recognition is made possible by the contemporary presence of several key taxa, not 96 

necessarily all of them. They are also inherently discontinuous, with boundaries subject to the 97 

stratigrapher’s judgement (Hedberg, 1976), therefore conceptually different from the 98 

plankton/nannoplankton zones which are instead usually defined by the 99 

appearance/disappearance of a few index taxa. 100 



A different approach was adopted by Less (1987), who defined the orthophragmine 101 

species/subspecies biometrically and built a continuous biozonation scale, with numbered 102 

Orthophragmine Zones (OZ) where zonal boundaries are also defined biometrically. 103 

 The SB zones were applied to a quite large area, more or less coincident with the modern 104 

Mediterranean, often referred to as Tethyan bioprovince. Sometimes the same scheme has 105 

been used outside of this area, in the Near East and the Indian Ocean regions, but this 106 

extension has never been tested properly. 107 

 Since the 1970s the correlation of the LBF zones with the nannoplankton/plankton 108 

scales and successively with magnetostratigraphy has produced an an integrated scheme that 109 

will eventually allow the LBF zones to be placed within the standard chronostratigraphic scale 110 

(e.g., Gradstein et al., 2012). 111 

 112 

UPDATING THE SB ZONES 113 

 During the eighteen years since the appearance of the SB zonation, a wealth of data on 114 

the morphology, biostratigraphy, and paleogeography of Paleogene LBF became available, 115 

leading to significant updates (Fig. 1):  116 

1) Increasing the precision in determining boundaries and achieving further subdivision of the 117 

previous standard zones as results of biometric studies on different nummulitid genera such as 118 

Heterostegina (Less et al., 2008) and Spiroclypeus (Less and Ozcan, 2008) or through a 119 

multidisciplinary study of a section (Less et al., 2011; Zakrevskaya et al., 2011; Ozcan et al., 120 

2009, 2014, 2015).   121 

2) Increasing knowledge of the characteristic foraminiferal assemblages in standard biozones, 122 

due to new studies on composition, ecology, and age attribution of regional faunas spanning 123 

from the Pyrenean Basin, to the Adriatic-Apulian area, Greece, Eastern Africa, Turkey, 124 

Oman, Pakistan, and Tibet (Benedetti et al., 2010, 2011; Cotton and Pearson, 2011, 2012; 125 



Zhang et al., 2013; Accordi et al., 2014; Cotton et al., 2014, 2015;  Drobne et al., 2014; 126 

Kahsnitz et al., 2016). 127 

3) New attempts at correlating the SB zones with isotope and magnetic stratigraphy and with 128 

the standard plankton zones (Rodriguez-Pintó, 2012, 2013; Gebhardt et al., 2013; Egger et al., 129 

2013; Molina et al., 2016). 130 

4) New studies of foraminiferal assemblages from the Peritethys (Crimea, Northern Caucasus 131 

to Mangyschlak, Northern Peri-Aralian areas) and from the Caribbean region (Zakrevskaya, 132 

2011; Molina et al., 2016). 133 

5) New detailed studies of the systematics and inner structures of particular LBF groups, such 134 

as rotaliids, larger miliolids, and ophtalmidids (Hottinger, 2009, 2014; Benedetti and 135 

Briguglio, 2012; Benedetti, 2015; Briguglio et al., 2011, 2013, 2016). 136 

 These recent developments in systematics, isotopic geochemistry, and structural 137 

analysis of the complex tests of LBF of the Paleogene in combination with progress in 138 

biostratigraphy of shallow marine sediments, Cenozoic paleogeography, and paleoclimate, 139 

suggest that it was an opportune time to present the SB zonation in a way that everyone may 140 

easily get updated information about the species of this particular group of microfossils. In 141 

order to obtain full appreciation of recent progress, an international informal group of 142 

micropaleontologists (Workgroup On Larger Foraminifera, WOLF, acronym thanks to 143 

Andrea Benedetti, Antonino Briguglio, and Massimo di Carlo) working on Paleogene LBF 144 

proposed to integrate all these data into a series of atlases. Traditionally, atlases are 145 

considered the most useful tool for field geologists, regional stratigraphers, and 146 

paleontologists. After nine meetings of the WOLF (Ankara 2009, Miskolc 2010, 147 

Buzet/Zagreb 2011, Vienna and Lipica 2012, Modena 2013, Gànt 2014, Graz 2015, and 148 

Leiden 2016), guidelines for the atlases, including a time-line, have been defined. The 149 

updated taxonomy, paleoecology and biostratigraphy of the different Paleogene LBF 150 



(including over 1150 recorded species) will be presented. It is planned to overcome 151 

discrepancies in quantity and quality of data between the Central Tethys area (for which 152 

monographs have existed since the late 19th century, and more recently from Turkey and the 153 

Northern Peritethys) and the Near East Tethyan, Far East Tethyan and Caribbean 154 

bioprovinces. This plan includes a revision of the main museum collections of LBF, and 155 

expansion of the WOLF to involve micropaleontologists from these regions. 156 

 157 

THE SPECIAL ISSUE 158 

The subjects of the session “Towards a calibrated Larger Foraminifera 159 

Biostratigraphic Zonation: newest results from Neotethys and beyond,” held at the Strati 2015 160 

Congress in Graz, reflect the broad nature of current studies on LBF. Among the specific 161 

topics presented are: 1) biostratigraphy of LBF from different bioprovinces, from the 162 

Caribbean, through the western (Pyrenean), central (Italy, Austria), and southern Tethys 163 

(Tunisia), moving to the Indo-Pacific realm (Pakistan); 2) correlation with other biozonations 164 

and paleoenvironmental reconstructions over a wide time span, from the late Paleocene up to 165 

the Chattian; 3) evolution of selected lineages of LBF (Heterostegina, reticulate Nummulites); 166 

4) description of the first findings of some LBF in Peritethyan areas; 5) Sr stratigraphy of the 167 

Oligocene – Miocene LBF; 6) application of X-ray microtomography (microCT) in studying 168 

the complexity of the inner architecture of LBF tests; and 7) the most updated biometric 169 

methods for investigating the characters useful for taxonomy and biostratigraphy of the LBF.  170 

This special issue collects some of the results presented in Graz and is intended as an 171 

overview of the most recent developments in research about the Cenozoic LBF, as a step on 172 

the path to producing an Atlas of Paleogene LBF. We would like to dedicate this introduction 173 

to the memory of the late Prof. Lukas Hottinger, who expressed the aim to participate to this 174 

project; every one of us benefited from his vast knowledge of the LBF and researchers will do 175 

so well into future through his fundamental contributions to the field. 176 



 177 
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FIGURE 1 — Stratigraphic zonation of the Paleocene and Eocene (after Vandenberghe et al., 327 

2012, modified). Numbers on boundaries of updated SBZ and OZ zonations (right-most 328 

columns) indicate: 1: magnetostratigraphic boundaries as proposed by Rodriguez-Pintó et al. 329 

(2012); 2: magnetostratigraphic boundaries as proposed by Rodriguez-Pintó et al. (2013); 3: 330 

boundaries as proposed by Serra-Kiel et al. (1998); 4: boundaries as proposed by Özcan et al. 331 

(2014) by correlations with NP and P zones; 5: zones of uncertain boundaries as proposed by 332 

Rodriguez-Pintó et al. (2012); 6: Orthophragmine Zone (OZ) boundaries as proposed by Less 333 

and Özcan (2012). 334 


