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Abstract 

The elastic stress concentrations are addressed that are developed from the keyless frictionless 

press fit of a shaft subjected to bending into a hub with rounded bore edges. Derived from a 
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formal modelling of the title problem in terms of an integral equation, a set of normalised 

parameters is proposed that accounts for the combined effects on the hub stress concentration of 

the fillet radius, the shaft radius, the hub outer radius, the hub axial length, the interference, the 

Young’s modulus, and the bending couple. A numerical validation of the normalised parameters 

is presented. With the aid of Finite Elements, various design charts are compiled that (a) forecast 

the bending couple initiating the detachment between the shaft and the hub, and (b) report the 

elastic stress concentrations within the hub versus the proposed normalised parameters in the 

absence of shaft-hub detachment. Such charts assist the designer in dimensioning an interference 

fit in the presence of a bending couple. 

Keywords: bending moment, contact stresses, finite elements, interference fit, normalising 

parameters, shaft-hub detachment, stress concentration factor 

INTRODUCTION 

In this paper the problem is examined of an interference fit between a hub with rounded 

bore edges and a solid shaft subjected to bending, see Figure 1. The interference fit is assumed 

to be keyless and frictionless. 

To limit the outcome of very high stress concentrations, the hub bore edges are generally 

rounded. The aim of this paper is three fold: (a) to examine the stress concentrations at the shaft-

hub contact extremities in the vicinity of the rounded edges, concurrently promoted by the press 

fit and by the shaft bending; (b) to identify the variables that describe the situation of incipient 

detachment between the shaft and the hub as a result of the shaft bending; (c) to establish the 

normalised variables that rule the onset of the stress concentrations in the absence of shaft-hub 

detachment. 
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Such normalised variables ease the compilation of design charts that may assist the 

designer in avoiding an undesired detachment between the shaft and the hub, in forecasting the 

hub stress level in the absence of shaft-hub detachment, in predicting the possible outcome of 

yielding and in assessing the fatigue strength, and in selecting a convenient interval for the fillet 

radius of the rounded edges of the hub bore. It is underlined that the present paper addresses a 

traditional stress concentration problem, and that fretting fatigue aspects are only marginally 

touched upon; they constitute a topic beyond the scope of this paper. 

This paper constitutes an extension of the works (Strozzi et al., 2011a; Strozzi et al., 

2012), in which the hub stress concentrations originated by the press fit alone have been 

examined, whereas the effect of the application of a bending couple to the press fitted shaft has 

not been considered. This paper addresses only hub filleted edges shaped as a quarter of circle; 

filleted profiles shaped to achieve a more advantageous pressure distribution are considered in 

Strozzi et al. (2013). 

The available salient information on the stress concentrations occurring in shaft-hub 

interference fits in the absence of bending couples is perfunctorily summarised in the following, 

see Strozzi et al. (2011a), for a solid shaft, and Croccolo, De Agostinis, and Vincenzi (2012) for 

the extension to a hollow shaft. Moving in the shaft axis direction, the contact pressure remains 

almost flat in the central zone of the shaft-hub contact, where it may be confidently evaluated 

with the Lamé equations for thick-walled cylinders; it exhibits Hertzian-type local bumps in the 

lateral zones where the hub bore edges are rounded; the contact pressure becomes null at the 

contact extremities. The lateral bumps and the central flattish zone confer to the contact pressure 

distribution a camel-backed profile. The peak equivalent stress in the shaft-hub press fit always 

occurs within the hub and not within the shaft, and it is located in the vicinity of the radiused 
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edges of the hub bore. Consistent with the Hertzian nature of the pressure bumps, the maximum 

equivalent stress within the hub does not fall at the hub bore surface, but at a sub-superficial 

point. 

In the following, the consequences on the press fit stress concentrations of the application 

of a bending moment to the shaft are addressed. The above bending moment confers a curvature 

to the shaft, which thus exhibits a concave and a convex side; it is conjectured in White and 

Humpherson (1969) and numerically proved in Garnett and Grimm (1989) that the shaft 

curvature modifies the stress field with respect to its counterpart addressing the press fit alone, 

by increasing (lowering) the lateral peak contact stresses in the shaft concave (convex) side. This 

result may be rationalized by observing that the shaft curvature increases the amount of 

compression exerted between the shaft and the hub extremities in the shaft concave side, thus 

enhancing the lateral peak contact stresses with respect to an unbent shaft. The stress field is no 

longer axisymmetric, but it becomes three-dimensional; as a result of the shaft rotation (the 

bending moment is supposed not to rotate with the shaft), the stresses are no longer steady as in 

Strozzi et al. (2011a), but they are subjected to a fatigue cycle. Unfortunately, although the Finite 

Element (FE) analysis carried out in Garnett and Grimm (1989) is considerably detailed, it 

assumes that the hub bore edges are sharp and, therefore, the stress forecasts are not immediately 

applicable to the title problem, in which the hub bore edges are rounded. 

If the applied bending couple is sufficiently high, the shaft begins to detach from the hub 

in the hub bore edge proximity. A separation between the shaft and the hub contacting surfaces is 

highly undesired, since it promotes fretting between the mating surfaces. It is therefore 

technically interesting to evaluate the critical value of the bending couple that initiates the 

separation between the shaft and the hub. Although the separation problem is mentioned in the 
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pertinent literature, e.g. Garnett and Grimm, (1989), the present authors are unaware of the 

existence of diagrams or formulae forecasting the detachment initiation value of the bending 

couple. The only contribution loosely kindred to the present problem appears to be Hrylits'kyi 

and Krasnyuk (1997), where the axisymmetric, cylindrical problem of a pipe inserted into 

another pipe is considered, and the possible separation between the two pipes as a result of an 

axisymmetric pressure distribution varying in the axial direction is explored in the framework of 

the theory of elasticity. 

Since the above shaft-hub separation is undesired, the stress concentrations promoted by 

the combined effect of the interference fit and of the bending couple have been evaluated only in 

the absence of detachment. 

It is finally observed that in the computations based on the standards DIN 7190, reported 

in GWJ Technology GmbH (2013), their Fig. 11.13, two external loadings superposed to the 

press fit stresses are considered, and simple design approaches are proposed to correct the stress 

state with respect to the axisymmetric state due to the shaft-hub press fit alone; such external 

loadings are (a) a bending couple applied to the hub, together with two radial forces (constituting 

an equilibrating couple) applied to the shaft, and (b) a transverse force applied to the hub, 

equilibrated by two radial forces applied to the shaft outside the hub length. 

Although the above loadings are practically as interesting as the loading depicted in 

Figure 1, they are described by a higher number of variables. In particular, the position of the 

application of the equilibrating loads must be accounted for, and, therefore, results of ample 

validity are more difficult to achieve. The above loadings are not treated in this paper, and they 

are not depicted here to avoid confusion. 
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Several additional works investigate a shrink fit assembly subjected to rotating bending, 

but mainly from the viewpoint of the growth of fretting fatigue cracks, e.g. Lee et al. (2006); 

Gutkin and Alfredsson (2008); Madia, Beretta, and Zerbst (2008). 

The main aim of this paper is to identify the normalised variables that rule the onset of 

the stress concentrations in the absence of surface separation between the shaft and the hub. In 

fact, the intensity of the contact pressure bumps, and the corresponding stress concentrations due 

to the combined effects of a press fit and a shaft bending, depend on seven dimensional 

variables, namely the shaft radius, the hub outer radius, the hub axial length, the fillet radius, the 

interference, the bending couple applied to the shaft, and the hub and shaft Young’s moduli, see 

Figure 1 for the definition of most of the symbols. Since the number of variables to be 

simultaneously considered is appreciable, it is a demanding task to organize complete design 

charts or to derive formulae of ample validity, suitable for forecasting the hub stress 

concentrations. A regrouping of the above variables, capable of reducing the number of 

independent variables and, hopefully, of evidencing the more important parameters, is therefore 

desirable. 

In this paper, the leading seven variables are regrouped to define five dimensionless 

parameters that dictate the outcome of the stress concentrations, whose rationale is presented in 

Section 3 by formally casting the title problem in terms of an integral equation. The relative 

influence of the five adimensional parameters is explored. A table compiled with the aid of FE, 

confirming the validity of the normalising parameters, is presented in Section 5. Diagrams 

quantifying the situation of incipient detachment between the shaft and the hub are reported in 

Section 6. Design diagrams compiled for situations of absence of shaft-hub detachment, that are 
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useful for the dimensioning of an interference fit, are reported in Section 7, and their 

applicability to fatigue stress cycles is discussed in Section 8. 

SIMPLIFYING ASSUMPTIONS 

Most of the assumptions made in Strozzi et al. (2011a), and commonly accepted in the 

mechanical analysis of shaft-hub press fits, are adopted in the present study. 

It is assumed that the rounded edges of the hub bore, see Figure 1, are described by a 

quarter of circumference. Consequently, the fillet radius fully describes the geometry of the 

mating surfaces at the hub-shaft contact. 

The shaft is assumed to protrude from the hub by a sizeable length, so that the effect on 

the shaft-hub contact stresses of the shaft extremities is insignificant with respect to an infinitely 

long shaft. 

The shaft is supposed to be solid. 

The materials of the shaft and of the hub are assumed to behave elastically and to exhibit 

the same Young’s modulus. The Poisson’s ratio is assumed to possess the commonplace value 

0.3. 

The shaft-hub contact is modelled as frictionless. 

The shear stresses connected to the torque transmission are neglected; the inertial forces 

due to the shaft rotation are ignored. 

It is finally assumed that an interference fit is always present, whereas the bending 

couples applied to the shaft may be absent. The bending moment is assumed not to rotate with 

the shaft. 
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FORMAL MODELLING IN TERMS OF AN INTEGRAL 

EQUATION 

In this section the normalised variables that rule the onset of the stress concentrations in 

the absence of shaft-hub detachment are derived by formally casting the title problem in terms of 

an integral equation. Figure 1 illustrates the geometry of the title problem, and it clarifies the 

meaning of the majority of the seven variables defining the problem under scrutiny. Such 

variables are the shaft radius, ri, the hub outer radius, ro, the hub axial length, l, the fillet radius at 

the hub bore edge, r, the diametral interference of the shaft-hub fit, I, and the bending couple 

applied to the shaft projecting extremities, C. The hub inner radius nominally coincides with the 

shaft radius, ri. The Young’s modulus of the shaft and the hub is denoted by E. 

The above seven independent variables may be regrouped on a mathematical basis to 

achieve composed, normalised parameters. However, a favourable regrouping of the leading 

variables, evidencing the most influential terms, may only stem from a physical description of 

the contact mechanism. To this aim, the title problem is formally cast in terms of an integral 

equation. 

However, following Strozzi et al. (2011a), instead of considering the actual problem 

depicted in Figures 1 and 2(a) and (b) (for simplicity, the drawings of Figure 2(a) and (b) refer 

to the situation of null bending couple), the closely related, more manageable problem of Figure 

2c–f is examined. In this simplified problem, the whole hub bore border is rounded, whereas in 

the actual problem (see Figures (a) and (b)) the bore border is described by a flat zone 

surrounded by two rounded portions. With this simplification, there is no need to treat separately 

the flat and rounded parts of the hub profile, and the single Eq. (2) below describes the initial 
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overlapping/clearance along the whole shaft-hub contact width, see also Eq. (7) of Ciavarella, 

Hills, and Monno (1998). It has been shown in Strozzi et al. (2011a) that the normalised 

variables derived from the simplified problem of Figure 2(c) and (d) are valid for the actual 

geometry too. The integral equation expresses the imposition that the contact pressure, p, must 

move apart the mating surfaces of the shaft and of the hub bore, until they do not overlap, under 

the restriction that the contact pressure be positive or null. The unknown function is the contact 

pressure, p, appearing under integration at the left-hand side of the integral equation, whereas the 

right-hand side is the known term, representing the initial overlapping/clearance between the two 

undeformed surfaces of the shaft and of the hub. 

The modelling of the left-hand side containing the unknown contact pressure, p, is 

examined first. The Green function, k, describes the relative radial displacement at the axial, z, 

Figure 2(c) and angular, θ, Figure 2(f), coordinates of the two shaft-hub mating profiles for a 

concentrated radial force applied at the axial, z', Figure 2(c), and angular, ω, Figure 2(f), 

coordinates. In addition, ri denotes the shaft radius. In other words, in agreement with the 

integral equation formulation favoured in this study, the variables z' and  are inner, dummy 

variables, whereas z and  are outer variables. 

Accordingly, the left-hand side of the integral equation is 

    ',',,', dzd
i

rzpzzk 
 (1) 

where denotes the extent of the contact zone between the shaft surface and the hub 

bore surface, expressed in terms of the axial, z', and angular, , coordinates. 
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The modelling of the initial overlapping/clearance is examined in the following. For an 

unbent shaft, the initial radial interference, g, between the shaft surface and the plate bore surface 

is, e.g. Johnson (1987); Ciavarella, Hills, and Monno (1998) 

  22

2
zrr

I
zg 

 (2) 

where I indicates the diametral interference, r denotes the radius of the hub bore rounded 

edge, and z is the axial coordinate, whose origin is at the hub centre, Figure 2(c). 

The shaft bending caused by the two bending couples, C, produces a radial displacement, 

f, Figure 2(e), of the shaft surface that may be evaluated with the classical beam theory. The 

expression of f is 

   cos2

2
, z

EJ

C
zf

s



 (3) 

where, again, z denotes the axial coordinate, and  the angular coordinate, whose origin 

falls at the midpoint of the shaft convex side, Figure 2(f). In addition, Js is the moment of inertia 

of the shaft circular cross section, and E is the Young’s modulus common to the shaft and hub 

materials. 

A further term for the radial displacement, that accounts for a shaft vertical rigid 

translation, e, relative to the hub, needs to be added to the previous Eqs. (2, 3). This translation 

modifies the contact pressure until the shaft vertical equilibrium is satisfied. The corresponding 

radial displacement, h, Figure 2(e), is 

   coseh   (4) 

where e remains constant with the axial position. 
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By employing the previous Eqs. (1–4), the integral equation becomes 

     coscos
22

',',,', 222 ez
EJ

C
zrr

I
dzdrzpzzk i 

  (5) 

SIMPLIFICATION AND NORMALISATION OF THE 

INTEGRAL EQUATION 

It is difficult to determine the analytical expression of the Green function k, especially for 

the hub, since its axial length is finite, and to analytically solve the integral Eq. (5). However, by 

evidencing the properties of k, and by introducing some simplifications and normalisations, the 

integral equation may be given a more compact expression, that provides useful information on a 

physically-based regrouping of the leading variables. 

As a first observation, the function k may be expressed in terms of coordinates 

normalised with respect to a representative dimension of the press fit, for example the shaft 

radius, ri. Secondly, the Green function is inversely proportional to ri and to the Young’s 

modulus E common to the two materials of the shaft and the hub. Therefore 

 













  ,,

'
,,,',

i
r

z

i
r

z

E
i

r

k
zzk

 (6) 

where k  is a normalised Green function referring to a unit shaft radius and a unit 

Young’s modulus. 

The initial radial interference, g, between the shaft surface and the hub bore surface, see 

Eq. (2), may be simplified by adopting the classical Hertzian-type, parabolic approximation, e.g. 

Strozzi et al. (2011a) 
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 
r

zI
zg

2

2

2


 (7) 

By employing Eqs. (6,7), the integral equation (5) becomes 

   coscos
222

',',,
'

, 2
2

ez
EJ

C

r

zI
dzd

i
rzp

i
r

z

i
r

z

E
i

r

k
























 (8) 

The shaft vertical rigid translation, e, may be exactly computed by solving the integral 

Eq. (8) in terms of the contact pressure and of e, and by imposing the vertical equilibrium 

condition for the shaft. This approach being prohibitively complex, an approximate evaluation of 

e may be achieved by assuming that the distribution of the contact pressure, p, be approximately 

proportional to the known term of the integral equation, expressing the initial radial 

clearance/overlapping between the shaft and the hub, and by formulating the vertical equilibrium 

condition for the shaft in terms of this approximate pressure distribution, which depends on e. 

The assumption of the contact pressure being proportional to the known term of the 

integral equation is consistent with a Winkler-type approximation (see Antoni, 2014 for a 

comparable application), and it is expected to be acceptable in the central part of the contact, 

where the contact pressure varies smoothly; instead, this approximation will become appreciably 

poorer in the vicinity of the pressure bumps, characterised by high gradients, (see Croccolo, De 

Agostinis, and Vincenzi 2012; Strozzi, 2012; Strozzi and Bertocchi, 2015). However, since these 

latter contact portions are relatively small, their contribution to the shaft vertical equilibrium 

condition is deemed to be limited with respect to that of the central part of the contact. 

Moving to the formulation of the shaft vertical equilibrium equation, the following 

simplified approach is adopted. The integration of the vertical component of the contact pressure 

in the z direction is carried out along the whole hub length, l, i.e., the (narrow) zones are included 
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in which the shaft-hub contact is physically absent as a result of the presence of the rounded 

edges. Consequently, the shaft vertical equilibrium requires that 


































2/

2/

0coscoscos2

22

2

2

l

l

d
i

rdzez
EJ

C

r

zI

s







 (9) 

which produces the following approximate value for e 

sEJ

Cl
e

24

2


 (10) 

The numerical results of Section 5 confirm the validity of the above procedure. By 

inserting the above value for e into the integral Eq. (8) one finally obtains 

   cos
24

2
cos2

22

2

2
',',,

'
,

ss EJ

Cl
z

EJ

C

r

zI
dzd

i
rzp

i
r

z

i
r

z

E
i

r

k
























 (11) 

The main aim of the development of the integral formulation (11) of the title problem is 

not to provide the contact pressure profile, but to suggest how to regroup the leading variables in 

a physically sound manner. Instead, the evaluation of the contact pressure profile is relegated to 

FE. 

The following passages aim at normalising the two sides of the integral Eq. (11), in order 

to define the normalised parameters that rule the title problem. The contact pressure p may be 

normalised with respect to the reference contact pressure p0, computed by ignoring the presence 

of the bending couple, C, by modelling the press fit problem as plane (polar), and by employing 

the classical Lamé equations for thick-walled cylinders. Consistent with the above normalisation, 

in the definition of the stress concentration factor Kt, the contact pressure p0 has been assumed as 

the normalising parameter. The reference contact pressure p0 describes the contact pressure along 
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the central portion of the actual shaft-hub press fit, in the absence of the bending couple, C 

(recalling that the diametral interference I is assumed to be non-null, whereas the bending couple 

C may be null), and it may be expressed in terms of the diametral interference I, the shaft radius, 

ri, and the hub radial aspect ratio, see e.g. Strozzi et al. (2011a) 
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where F(ri/ro) denotes the function (1(ri/ro)
2)/4. By normalising p over p0, the integral 

Eq. (12) may be recast as 
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or, after some manipulations, as 
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An attentive examination of the normalised integral Eq. (14) indicates that the normalised 

pressure, p/p0, may be expressed in terms of four normalised variables, namely ri/ro, 
2 / ( )ir Ir

, 

 2 / IEJsiCr
, ri/l. It should however be noted that the above analysis ignores the effect of a 

further parameter. In fact, the above normalised parameters stem from an integration carried out 

in the z' variable up to the contact extremities, and, therefore, they do not account for the hub 

projections beyond the contact zone, whose presence increases the hub radial stiffness, see 
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Strozzi et al. (2011a) for details, and Strozzi et al. (2014) for the plane counterpart of the 

problem. Consequently, a fifth normalised variable must be added to the previous list, namely 

r/ri. In Strozzi et al. (2011a)—in the absence of bending couple, it is shown that the effect of this 

parameter is generally limited, and this property is deemed to be valid for the title problem too, 

i.e. in the presence of bending couple. It is concluded that the normalisation procedure favoured 

in this paper has lowered the initial seven independent variables to five normalised parameters, 

amongst which r/ri is expected to be of limited relevance. 

NUMERICAL VALIDATION OF THE NORMALISED 

PARAMETERS 

To assess whether the normalised pressure, p/p0, and, more generally, the stress 

concentration factor, Kt, depend exclusively upon the five normalised variables 
2/ iIr r

, ri/ro, ri/l, 

r/ri, 
 2 / IEJsCl

, a mechanical analysis of two different shaft-hub assemblies, named Case 1 and 

Case 2, has been carried out with the aid of FE, and the numerical forecasts have been collected 

in Table 1. 

The commercial FE program MSC Marc 2013 has been employed in this study to 

determine the stress values. The 3D mesh is formed by about 670,000 nodes, whose element size 

grades smoothly from 2.2e-5 to 0.1 times ri. The nodes in contact between the shaft and the hub 

rounded edges in the axial direction are more than ten, as suggested in the pertinent literature, see 

Strozzi et al. (2011a). In some test cases, an even finer mesh was employed to assess the 

numerical convergence. The symmetry of this problem was exploited to contain the number of 

nodes. Particular attention was paid to ease the convergence of the unilateral contact algorithm 
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by preventing the problems deriving from the sliding and the resulting misalignment of the 

initially facing nodes in the finely meshed contact areas. Additional details are omitted for 

brevity. 

In Figure 3, the hub is located in the upper part, and the equivalent stress reaches its 

maximum within the hub, in the vicinity of the rounded zone. 

The shaft radius ri (nominally coinciding with the hub bore radius), the hub outer radius, 

ro, the radius of the hub bore edge, r, the hub length, l, the diametral interference, I, the Young’s 

modulus, E, and the bending couple, C, are different for the two Cases. However, the five 

dimensionless parameters 
2/ iIr r

, ri/ro, ri/l, r/ri, 
 2 / IEJsCl

, are the same for the two Cases. 

Table 1 reports the stress concentration factor Kt, defined as the hub maximum von 

Mises equivalent stress, eq,max, normalised with respect to the reference contact pressure p0 

incorporating the Young’s modulus effect. To provide information on the stress fluctuation 

during the shaft rotation, Table 1 also includes the value of Kt antipodal to the previous one, 

defined as the hub local maximum equivalent stress in an angular position antipodal to that in 

which the absolute maximum equivalent stress occurs, normalised over the reference contact 

pressure p0. Finally, the maximum equivalent stress for a null couple has also been included, to 

supply data on the relative relevance of the shaft bending effect. 

Encouragingly, Table 1 confirms the analytical expectations according to which, for 

different dimensions of the shaft and the hub, different fillet radii and initial clearances, and 

different Young's moduli, but for equal values of the above five normalised parameters, the 

normalised maximum equivalent stress remains (essentially) the same. These results also support 

the validity of the procedure adopted for the evaluation of e in Eqs. (9) and (10). The tabulated 
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values of Kt for null couple C are very close to the value 7.833 computed with the interpolating 

formula of Strozzi et al. (2012). Finally, the numerical forecasts referring to the angular position 

antipodal to the maximum stress show that the stress fluctuations may be relevant. 

6. THE SHAFT-HUB DETACHMENT 

If a press fit is considered in which the hub bore edges are either rounded or sharp, and 

the bending couple C is absent, the shaft-hub contact extent is axisymmetric. Conversely, when a 

bending couple is applied to the shaft press fitted into the hub, the shaft bends, and the contact 

stresses lose their axisymmetry. In particular, moving circumferentially along a contact extremity 

region, the contact pressure at the shaft-hub contact extremities is higher (lower) in the shaft 

concave (convex) side, see the Introduction of this paper, and Garnett and Grimm (1989); the 

shaft-hub detachment begins in the extremal zones at the shaft convex side, when the bending 

couple is sufficiently high to counterbalance the press fit contact pressure. Instead, no 

detachment takes place in the contact central, antipodal regions for the geometries examined. 

It would be conceivable to employ the five normalised variables defined in Section 4 to 

compile FE design charts summarizing the combinations of the variables that initiate the shaft 

detachment from the hub in the presence of rounded edges in the hub bore, Figure 4(a). This 

task being particularly demanding, it was decided, following Garnett and Grimm (1989), to refer 

to a hub with sharp edges, Figure 4(b), thus neglecting the effect of the rounded edges in the 

definition of the critical couple. With this simplification, the independent normalised parameters 

reduce to three, namely 
 2 / IEJsiCr

, ri/ro, ri/l. 

It is additionally noted that the sharp edge assumption permits a mechanically sound 

definition of the bending couple initiating the shaft-hub detachment. In fact, the (finite) value of 
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the bending couple is sought that annuls the press fit pressure. Instead, when the hub bore edges 

are rounded, a vanishingly small bending couple produces a shaft curvature causing a moderate 

regression, at the shaft convex side (see the Introduction), of the contact extent in the shaft axial 

direction; as the bending couple increases, the hub bore filleted portion detaches first, and, upon 

a further increase of the bending couple, the detachment zone reaches the initially flat portion of 

the hub bore axial profile; mathematically, this continuously regressive behaviour indicates that 

the shaft-hub detachment is initiated by a vanishingly small bending couple; from an engineering 

viewpoint, instead, a value is sought of the bending couple that constitutes a sound indicator of a 

significant shaft-hub detachment. A mechanically sound definition of the beginning of the shaft-

hub detachment in the presence of hub bore filleted edges is proposed below; this definition 

stems from a comparison of the detachment evolution between sharp-edged and round-edged hub 

bores, see Figure 6 below. 

A FE campaign has been carried out, and the forecasts of the bending couple initiating 

the detachment in the presence of sharp edges have been collected in Figure 5. This Figure 

reports the variable ri/ro along the x-axis, and the variable 
 2 / E s* I JiC r

 along the y-axis, where 

C* denotes the critical value of the bending couple that initiates the shaft-hub detachment. The 

ten curves refer to a selection of ri/l values, namely ri/l = 1/8, 1/7, 1/5, 1/4, 1/3, 2/5, 1/2, 2/3, 5/6, 

1, and they express the combination among the three above variables that causes a situation of 

incipient shaft-hub detachment. 

The curves referring to ri/l  1/4 are essentially superposed, thus indicating that for such 

shape ratios the hub length becomes marginally influential. In addition, since such curves are 

essentially horizontal, the effect of the ratio ri/ro is limited too. Therefore, for sufficiently long 
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hubs (ri/l  1/4) and for usual ri/ro ratios (0.3  ri/ro 0.7), the normalised expression 

 2 / E s* I JiC r
of the critical bending couple C* that initiates the shaft-hub detachment in a sharp-

edged hub, constitutes a favourable normalisation, since it allows the formulation of the 

remarkably simple equation 

4.0
2*


s

i

IEJ

rC

 (15) 

to forecast the critical value of the bending couple that initiates the shaft-hub detachment 

in a sharp-edged hub. 

The curves referring to 2/3  ri/l   decrease when ri/ro, increases, thus giving the 

physically unjustified impression that, for a prescribed hub outer radius ro, the value of the 

critical bending couple C* that initiates the shaft-hub detachment in a sharp-edged hub decreases 

as ri increases. To clarify this aspect, the trend of the curve referring to ri/l  is examined in 

detail in the following. Within the interval 0.3  ri/ro  0.7, this curve may be approximated by 

the following linear equation 
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By introducing the expression of Js in terms of the shaft radius ri, Eq. (16) becomes: 
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The last equation shows that, for a prescribed value of the hub outer radius ro, the above 

critical value of C* triplicates when the ratio ri/ro increases from 0.3 to 0.7. In conclusion, 
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although, for a prescribed hub outer radius ro, the normalised parameter 
 2 / E s* I JiC r

 decreases 

as ri increases, the value of the critical bending couple C* increases with ri. An increase of C* 

with ri/ro is expected on physical grounds. 

It is difficult to discuss, for a general shaft-hub assembly, the applicability to a hub with 

filleted bore edge of the detachment forecasts in terms of the critical bending couple of Figure 5, 

referring to a sharply edged hub bore. Some indications are provided by the following selected 

example. In the presence of hub bore fillets, a suitable definition of the shaft-hub detachment 

initiation is the beginning of the detachment of the initially flat portion of the hub bore axial 

profile. 

Figure 6 addresses a geometry defined by ri/ro = 0.5, ri/l = 0.5 and I/ri = 0.02; three 

normalised fillet radii have been considered, namely r/ri = 0, 0.025, 0.05. The x-axis reports the 

parameter C/C*1 quantifying the normalised surplus of the applied couple C beyond its critical 

value C* computed for a sharp edge; the y-axis reports the normalised axial extent of the shaft-

hub detachment, /ri , measured from the hub lateral faces. 

In the case of the sharp edged geometry (described by a solid curve), the detachment 

extent progresses essentially linearly with the bending couple value exceeding its critical 

threshold, up to levels of the bending couple twice its critical value. Moving to the two curves 

referring to non-null filleted edges of the hub bore (described by dotted and dashed curves), the 

detachment zone extent does not start from the origin, but from a value essentially coinciding 

with the fillet radius, since along this zone the hub is initially (i.e., when C=C*) detached from 

the shaft, apart from the extent of the compressed filleted region. When the detachment zone 
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reaches the initially flat portion of the hub axial profile, the three curves become essentially 

superposed. 

The moderate offset of the solid curve with respect to the diagram origin is due to 

numerical approximations in exactly defining the detachment initiation of the first node. The 

wiggles perceivable for high values of the x-variable are due to the detachment extent reaching 

zones where the mesh adopted is coarser. 

Figure 6 shows that for the geometry defined by r/ri = 0.025 the detachment initiation 

requires C/C*10.1, that is, the couple C that initiates the detachment for the filleted geometry 

must exceed by 10% its critical value C* referring to a sharp edge. Similarly, for the geometry 

defined by r/ri = 0.05 the detachment initiation requires C/C*10.2, that is, the couple C 

initiating the detachment for the filleted geometry must exceed by 20% its critical value C* 

referring to a sharp edge. It may be concluded that the critical couple forecasts of Figure 5, 

referring to a sharp edged hub, provide a minorant of the detaching couple for a round edged 

hub, and, therefore, they supply design information useful for preventing a possible detachment 

in a shaft-hub assembly with filleted hub bore edges too. 

DESIGN DIAGRAMS 

Design charts addressing the stress concentrations in the absence of shaft-hub detachment 

may assist the designer of a press fitted assembly in selecting the most convenient fillet radius, in 

evaluating the maximum equivalent stress, and in assessing its fatigue strength and the possible 

outcome of yielding. 
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Design diagrams are technically conceivable that report the hub stress concentration 

factor for wide intervals of the five dimensionless parameters Ir/ri
2, ri/ro, ri/l, r/ri, 

 2 / IEJsiCr
. 

However, although the normalisation procedure favoured in this paper succeeded in reducing the 

initial seven independent variables to five normalised parameters, the compilation of exhaustive 

design charts accounting for such a high number of independent normalised variables still 

remains a computationally demanding task. It was therefore decided to fix two normalised 

variables by attributing commonplace values to them, and to explore with FE the dependence of 

the hub stress concentration factor on the remaining three normalised parameters ranging within 

technically significant intervals. 

In particular, since the hub outer radius is often approximately twice the inner radius, see 

Castagnetti and Dragoni (2005), the normalised parameter ri/ro was set to 0.5. In addition, it is 

noted that the hub filleted radius r appears in two variables, namely Ir/ri
2 and r/ri. From the FE 

predictions of Figure 3 of Strozzi et al. (2011a), addressing a press fit in the absence of shaft 

bending, it emerges that the hub stress concentration factor strongly depends on the variable 

Ir/ri
2, whereas it is considerably less depending on the ratio r/ri, provided that the considered 

interval of the normalised fillet radii is not too wide. Since r/ri is often comprised within the 

technically sufficiently wide interval 0.025–0.15, see Strozzi et al. (2011a), it was decided to set 

r/ri to the intermediate value 0.05, as in Strozzi et al. (2011a). 

The effect of the remaining three normalised variables Ir/ri
2, ri/l, Cri

2/(IEJs) has been 

summarized in the five Figures 7–11, reporting along the y-axis the hub stress concentration Kt, 

defined as the hub maximum von Mises equivalent stress normalised over the reference contact 

pressure p
0
, and along the x-axis the normalised parameter Ir/ri

2, whose relevance has been 
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evidenced in Strozzi et al. (2011a). The parameter Ir/ri
2 covers the technically significant interval 

between 106 and 102. Five selected values of ri/l have been considered in Figures 7–11, namely 

1/8, 1/4, 1/2, 2/3, 1; each figure refers to a particular value of ri/l. A bilogarithmic scale has been 

adopted. 

A family of parametric curves, each referring to a particular value of 
 2 / IEJsiCr

, is 

included in each diagram. The values attributed to 
 2 / IEJsiCr

 are expressed as fractions of this 

variable computed by attributing to C its critical value C* initiating the shaft-hub detachment in a 

sharply edged, otherwise similar hub, see Section 6. In particular, the values attributed to 

 2 / IEJsiCr
 are 0, 10, 30, 60, 90% of 

 2 / E s* I JiC r
. In the diagrams, the following 

notation is used: if C/C* is equal to, say, 0.1, this means that the applied normalised couple 

 2 / IEJsiCr
 is 10% of its critical value 

 2 / E s* I JiC r
 initiating the shaft-hub detachment in a 

sharply edged hub. 

Consequently, these diagrams quantify the increase with respect to a null C of the hub 

stress concentration Kt in the shaft concave side, due to the presence of a bending couple whose 

value is, say, 10% of the critical bending couple. Analogously, a negative value of C/C* equal to, 

say, -0.1, indicates that the applied normalised couple 
 2 / IEJsiCr

 is still 10% of the critical 

value 
 2 / E s* I JiC r

 initiating the shaft-hub detachment in a sharply edged hub, but the reported 

hub stress concentration Kt is evaluated in the shaft convex side, i.e., in a hub zone antipodal to 

the previous one, where its value is lower than that referring to a null C. Consequently, these 

diagrams also quantify the decrease with respect to a null C of the hub stress concentration Kt in 

the shaft convex side, due to the presence of a bending couple whose value is, say, 10% of the 
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critical bending couple. See also the description of the two Kt values, referring to two hub 

antipodal positions, reported in Table 1. 

Figures 7–11 show that, as a result of the nonlinear character of this contact problem, 

Strozzi et al. (2011a), the hub stress growth at the shaft concave side, due to the application of a 

bending couple, is lower than the hub stress decrease at the shaft convex side. The curve for 

 2 / I J 0E siCr 
 coincides with the predictions of reference Strozzi et al. (2011a), dealing with 

the press fit stresses in the absence of shaft bending. 

In Strozzi et al. (2011a) it has been observed that the maximum equivalent stress within 

the hub is always higher than its counterpart within the shaft, since the hub stress state is more 

deviatoric. For this reason, only the hub equivalent stress has been reported in the diagrams. 

THE STRESS FATIGUE CYCLE AT THE HUB CONTACT 

EXTREMITIES 

The maximum equivalent stress is generally a valid indicator of the stress level in static 

situations, but not necessarily in the presence of fatigue cycles. However, in some specific 

problems, the equivalent stress concept retains its usefulness in fatigue situations too, see e.g. 

Strozzi, Baldini, and Nascimbeni (2006) and Strozzi et al. (2011b). Moving to the title problem, 

since stress fluctuations take place as a result of the shaft bending and of its rotation, the question 

arises whether the design diagrams of Section 7, reporting the hub maximum von Mises 

equivalent stress, are still applicable to this fatigue cycle. This point is discussed in the 

following. 
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First, it is recalled that the hub stress field referred to in the compilation of Figures 7–11 

ignores the torque applied to the shaft (which, if present, would produce a shear stress a, where 

the indices a and  denote the axial and circumferential directions, respectively) and it adopts a 

null coefficient of friction (which, if not null, would produce a shear stress r, where the index r 

denotes the radial direction, as well as a shear stress ra). An inevitably approximate discussion 

on the relative importance of such shear stresses with respect to the stresses accounted for in 

Figures 7–11, that is, in the absence of torque and of friction, is presented in the following. For 

simplicity, this discussion is carried out in the absence of bending couple. 

In the design phase, the torque transmissible by the coupling is effectively predicted by 

the Lamé solution, which correctly describes the central, flattish portion of the shaft-hub contact 

pressure, and it ignores the torque, the frictionally induced deformations, and the lateral pressure 

bumps. In fact, while several studies are available that quantify the pressure bump intensity, the 

effect of the torque and of its frictionally induced deformations is generally neglected, since the 

corresponding stresses are implicitly assumed as limited, and the torque-induced deformations do 

not modify the pressure profile, see Strozzi et al. (2011a). In the following, an attempt is made to 

rationalize these omissions. 

The transmissible torque is estimated by supposing that the central contact pressure holds 

for the whole contact length, and that the shear stress r is obtained by multiplying the uniform 

contact pressure by a frictional coefficient often lower than 0.2. Since the hub stress field 

employed to compile Figures 7–11 refers to the lateral pressure bumps and not to the pressure 

central part, it may be argued that the nominal value of a is considerably lower than the highest 

stresses accounted for in the design diagrams. 
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It may additionally be observed that the local a in the vicinity of the rounded edge is 

indirectly limited by the frictional threshold, since a is null on the hub frontal faces, and it 

axially increases as a consequence of the accumulation of the r frictional action, which is 

bounded. More precisely, the studies addressing the stick-slip zones in a shaft-hub press fit, see 

Ast, Rösle, and Schenk (1998) and Plinio, Moraes de Souza, and Savoy (2012), indicate that slip 

initiates from the shaft-hub contact extremities. Consequently, in such zones the shear stresses r 

and ra cannot exceed their frictional threshold. 

It is finally noted that, in shrink fit (as opposed to press fit) assemblies, the shear stress ra 

distributed along the surface of the hub bore is oriented from the contact centre outwards; 

consequently, the surface of the hub deflects in a convex fashion, and this bending action 

removes load to the extremities of the contact region with respect to the situation of null ra. The 

above mechanical interpretation has been proposed in Mather and Baines (1972) with regard to 

the concave deflection of a hollow shaft due to ra. This mechanical interpretation may also 

explain why, in particular situations, the highest values of the stresses have been found at the 

contact centre and not at the contact edges, Bhonsle and Work (1970). In conclusion, the 

assumption of null ra should be acceptable. 

It may be concluded that the three above shear stresses may be neglected in a preliminary 

stress analysis of the shaft-hub press fit. The above discussion therefore justifies the design 

diagrams of Section 7 having been compiled by ignoring the effect of torque and friction, a 

simplifying assumption, this, usually adopted in the majority of the papers dealing with the shaft-

hub press fit. 
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Moving to the stress analysis which the design diagrams of Section 7 are based upon, that 

is, in the absence of torque and friction, but in the presence of an interference and of a bending 

couple, it is recalled that only situations have been explored of bending couples not strong 

enough to (a) locally annul the pressure due to the press fit, and (b) to initiate a detachment 

between the shaft and the hub. Consequently, the nonlinearities caused by a significant 

regression of the shaft-hub contact, examined in Section 6 and in Figures 5 and 6, do not affect 

the design diagrams of Section 7. 

The observations regarding the applicability to fatigue situations of the design diagrams 

of Section 7 are regrouped into two parts. The first part addresses the shaft-hub contact in the 

absence of a bending couple, which constitutes an axisymmetric problem, whereas the second 

part deals with the shaft-hub contact in the presence of a bending couple, which requires a three-

dimensional modelling. 

Starting from the axisymmetric problem, the shaft-hub press fit in the presence of an 

initial interference but in the absence of a bending couple, is progressive with the imposed 

interference, and, therefore, it is nonlinear, see Strozzi et al. (2011a). However, the numerical 

forecasts indicate that such behaviour is only moderately nonlinear. In particular, the stress 

components in the zone where the maximum equivalent stress occurs, remain reasonably 

proportional among them as the interference is increased, and the loci where the maximum 

equivalent stress falls, move gradually with the shaft-hub interference adopted. That the 

nonlinearities due to the contact progressive behaviour are weak, is confirmed by the recent 

analytical-numerical results achieved for a plane strain analogue of the axisymmetric shaft-hub 

press fit, Strozzi et al. (2014). 
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Moving to the three-dimensional modelling of a shaft-hub press fit in the presence of a 

bending couple and of an initial interference, it is recalled that the effect of the couple is to 

increase (lower) the stress components in the shaft concave (convex) side, with respect to its 

axisymmetric counterpart (i.e., in the presence of an interference but in the absence of a bending 

couple). 

In this case too the numerical forecasts indicate that the stress components in the zone 

where the maximum equivalent stress occurs, remain reasonably proportional among them as the 

bending couple is increased. In other words, limiting ourselves to the zone where the bending 

couple intensifies the stresses with respect to its axisymmetric counterpart, the stress growth due 

to an increase of the bending couple is similar to the stress growth due to an increase of the 

initial interference, in the sense that in both cases the stresses raise by remaining reasonably 

proportional among them, and by maintaining the same proportionality coefficients for the 

axisymmetric and for the three-dimensional problems. In fact, the two stress fields, activated by 

(a) the interference, and (b) the bending couple, are kindred by the circumstance that the stress 

field (a) remains constant in the circumferential direction, whereas the field (b) changes 

smoothly in the circumferential direction; consequently, they both may be likened to plane strain 

situations, for which the above proportionality has recently been confirmed in Strozzi et al. 

(2014). The above similarity is detailed for a particular case in Figure 12, discussed below. 

From Table 1 it is possible to appreciate the deviation from linearity for a particular case, 

by extracting the two Kt values addressing the two antipodal, reference positions, namely 10.583 

and 4.618, by computing their mean value, 7.60, and by comparing this average to the Kt value 

addressing the null bending couple situation, 7.873. The relative mismatch between the mean 
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value and its null couple counterpart quantifies the deviation from linearity; for this particular 

problem, this indicator is as low as 3.5%. 

The above discussion clarifies that the stress cycle originated by the shaft rotation and 

due to the initial interference and to the bending couple, may be interpreted to be defined by a 

mean part engendered by the interference alone, and by an alternating part generated by the 

bending couple inversion; in addition, the stress components fluctuate by remaining reasonably 

proportional among them. 

By accepting the previously discussed linear approximation, the stress fatigue cycle may 

be treated as a proportional loading, a situation, this, in which the equivalent stress concept is 

still applicable to fatigue problems, e.g. Socie, Darrell, and Marquis (2000). The equivalent 

uniaxial fatigue cycle may thus be estimated by assuming an equivalent uniaxial mean value 

defined as the maximum von Mises equivalent stress for the axisymmetric case, that is, in the 

presence of interference but in the absence of bending couple, see Strozzi et al. (2011a) and 

Strozzi et al. (2012), whereas the equivalent uniaxial alternating value may be estimated as the 

difference between the maximum equivalent stress due to both interference and bending couple, 

which may be extracted from the design diagrams of Section 7, and the maximum equivalent 

stress for the axisymmetric case. Here the definition is adopted according to which the 

alternating stress is the difference between the maximum stress and its mean value. 

An alternative approach that does not rely on the proportional loading hypothesis is 

discussed in the following with reference to Case 1 of Table 1, for which a detailed FE stress 

history investigation has been carried out. Such investigation allows the reliability of the 

previous simplified approach to be assessed. 
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In particular, the stress variation has been explored that is promoted by the alternating 

bending moment due to the shaft rotation, combined with the reference interference. A parallel 

investigation has been carried out by considering a fictitious fluctuation of the interference, 

whose bounds are selected so that the extremal values of the equivalent stress coincide with 

those of the previous study. Although this second analysis is purely academic, it allows the 

comparison of the stress field variation at the pressure bump due to an increase of either the 

bending moment or of the interference. 

In summary, two parallel FE studies have been carried out, namely: (a) a fluctuating 

loading due to the bending moment, combined to a steady loading due to the initial interference; 

(b) a fluctuating loading due to the interference, whereas the bending moment is null. 

Figure 12 collects the FE forecasts of the two above studies; the four stress components 

σr, σa, σ, ra (r and a are null due to symmetry), computed at the location where the maximum 

equivalent stress falls during the cycle, have been plotted versus the reference stress component 

σr. 

From the FE predictions it emerges that the curves referring to the two studies are 

generally essentially superposed, where the maximum discrepancy occurs for σ. 

The fact that the stress curves of Figure 12 may approximately be interpreted as linear 

from the origin, where the maximum errors occur for the ra and σ components, justifies the 

previously proposed proportional loading assumption. It should also be noted that, while the 

stress curves referring to the interference alone vanish with the interference itself, the stress σ, 

computed for the value of the bending moment causing an incipient detachment, does not 
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necessarily vanish with σr. This observation rationalizes the fact that the two σ curves are only 

approximately superposed. 

The following observations address the alternative, Dang Van type approach, that is 

suitable for assessment purposes, since it does not require the proportional loading hypothesis. 

Such criterion involves two distinct stress indicators of the fatigue cycle, namely the mean 

hydrostatic stress component, and a suitable alternate shear stress term. 

The hydrostatic stress component being compressive during the whole fatigue cycle—a 

condition common to many Hertzian-like loadings—a preliminary fatigue assessment may be 

performed by conservatively neglecting the relieving influence of such compressive component, 

and by focusing on the remaining indicator. In fact, such relieving influence has been questioned 

in situations comparable to the title problem. For instance, in Desimone, Bernasconi, and Beretta 

(2005), in the case of a rolling contact fatigue assessment, a modified Dang Van criterion has 

been applied that ignores the supposedly positive effect of the hydrostatic term if compressive in 

nature. 

Following the above criterion, the fatigue assessment may exclusively be evaluated on 

the basis of the usual Dang Van alternate shear stress term, described in Dang Van, Griveau, and 

Message (1989); in brief, such term is computed by removing from the instantaneous deviatoric 

tensors a mean counterpart, and by extracting from the residual terms a maximum equivalent 

Tresca shear stress value. 

For the case under scrutiny, it has been verified that the mean deviatoric tensor is equal to 

the average of the two extremal cycle tensors; such behavior is characteristic of proportional 
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cycles, but it also holds for the cycle encountered in this study, which exhibits a sufficiently 

small deviation from proportionality. 

It has been found that the value of the Dang Van alternate shear stress term, which is the 

significant damage criterion according to Desimone, Bernasconi, and Beretta (2005), when the 

mean hydrostatic stress is compressive, is 35 percent higher than its counterpart derived from the 

two equivalent von Mises stress values retrieved from the diagrams in the cases of a) 

simultaneous application of bending moment and interference, b) application of interference 

only. Such derived shear stress term is obtained as the difference between the two above values, 

scaled by the usual √3 term relating the pure shear stress case and its von Mises equivalent stress 

value. 

The deviation between the two damage indicators, i.e. the Dang Van and the simplified 

von Mises type approach, does not appear to vary significantly with the applied moment; in fact, 

by applying two bending moments which are either one third or one sixth of that of Table 1, the 

actual Dang Van alternate shear stress is respectively 35 and 31% higher than the von Mises 

derived counterpart. 

Such deviation is conceivably ascribable to three concurring effects: (i) the loading is not 

strictly proportional, and in particular the von Mises equivalent stress fluctuation amplitude 

underestimates the equivalent value of the stress component amplitude; ii) a pair of mean 

(C/C* = 0) and maximum (actual C/C* ratio) von Mises values retrieved from Figures 7–11 refer 

to two different, although near, sub-superficial points, where the maximum equivalent stress falls 

in the two cases; (iii) the equivalent stress formulations involved are different. 
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An error as high as 35% is not unfrequently met in the multiaxial fatigue realm; for 

instance in Foletti, Beretta, and Tarantino (2014), Figure 12, the modified Dang Van criterion as 

proposed in Desimone, Bernasconi, and Beretta (2005) and favoured in this paper is tested versus 

experimental rolling contact fatigue data; a comparable deviation is perceivable both among the 

theoretical predictions, and between predictions and measurements. 

As a final remark, although in this nonlinear contact problem the fluctuating fatigue cycle 

does not strictly coincide with its rotating analogue, FE investigations have clarified that the two 

load conditions produce numerically indistinguishable forecasts. 

It may be concluded that the design diagrams of Section 7 retain their usefulness in 

estimating an equivalent uniaxial fatigue cycle, and that they are applicable, although in an 

approximate fashion, to forecast a possible fatigue damage. 

The previous error analysis has been carried out with reference to a specific fatigue cycle. 

A detailed investigation of the error incurred in applying this approximate fatigue analysis for a 

general situation is beyond the scope of this paper. 

Future extensions of this paper include the analysis of the frictional effects, e.g. 

Michalowski and Gawecki (1996), fretting fatigue considerations, e.g. Wang et al. (2006), the 

analysis of shaft-hub contact profiles more evolved than those described by a flat portion 

surrounded by two rounded zones, e.g. Kwak and Lee (2009), and the effect of localized sliding 

zones between the hub and the shaft due to the application of torque, Kim (2011). 

CONCLUSIONS 
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The elastic stress concentrations developed from the keyless frictionless press fit of a 

shaft subjected to bending into a hub with rounded bore edges have been addressed. Derived 

from a formal modelling of the title problem in terms of an integral equation, a set of five 

normalised parameters has been obtained that accounts for the combined effects on the hub stress 

concentration of the fillet radius, the shaft radius, the hub outer radius, the hub axial length, the 

interference, the Young’s modulus, and the bending couple. A numerical validation of the 

normalised parameters has been presented in tabular form. With the aid of Finite Elements, 

various design charts have been compiled that (a) forecast the bending couple initiating the 

detachment between the shaft and the hub, and (b) report the elastic stress concentrations within 

the hub versus the proposed normalised parameters in the absence of shaft-hub detachment. Such 

charts assist the designer in correctly dimensioning an interference fit in the presence of a 

bending couple. 
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Table 1. Comparison between two test cases exhibiting different geometries but characterized by 

the same values of the normalising parameters 

 Case 1 Case 2 

hub inner radius, ri 20 mm 15 mm 

hub inner radius, ro 40 mm 30 mm 

fillet radius, r 1 mm 0.75 mm 

hub length, l 100 mm 75 mm 

diametral interference, I 0.04 mm 0.03 mm 

Young’s modulus, E 210000 MPa 100000 MPa 

applied couple, C 660 Nm 132.6 Nm 

2/ iIr r
 

0.0001 0.0001 

ri/ro 0.5 0.5 

ri/l 0.2 0.2 

r/ri 0.05 0.05 

Cl2/(IEJs) 1.563 1.563 

p0 78.75 MPa 37.5 MPa 

eq,max 833.4 MPa 396.8 MPa 

Kt = eq,max / p0 10.583 10.581 

Kt antipodal to the previous 

one 

4.618 4.619 

Kt for C = 0 7.873 7.872 
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Figure 1. The shaft-hub assembly. 
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Figure 2. Simplification of the contact problem. 
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Figure 3. The FE equivalent stress field, normalised with respect to the reference contact 

pressure po. 

 

 

  

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

on
ne

ct
ic

ut
] 

at
 0

3:
16

 1
4 

O
ct

ob
er

 2
01

5 



 

41 

Figure 4. The shaft-hub detachment in the cases of (a) filleted hub bore edge; (b) sharp hub bore 

edge. 
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Figure 5. The value of 
 2 / E s* I JiC r

 versus ri/ro for a selection of ri/l values, in the situation of 

incipient shaft-hub detachment. The hub edges are sharp. 
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Figure 6. The normalised detachment extent /ri versus C/C*1 for ri/ro = 0.5, ri/l = 0.5, 

I = 0.02ri and for the three normalised fillet radii r/ri = 0, 0.025, 0.05. 
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Figure 7. Hub stress concentration Kt in terms of 
2/ iIr r

, for ri/ro = 0.5, ri/l = 1/8, and for a 

selection of 
 2 / IEJsiCr

 values. 
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Figure 8. Hub stress concentration Kt in terms of 
2/ iIr r

, for ri/ro = 0.5, ri/l = 1/4, and for a 

selection of 
 2 / IEJsiCr

 values. 
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Figure 9. Hub stress concentration Kt in terms of 
2/ iIr r

, for ri/ro = 0.5, ri/l = 1/2, and for a 

selection of 
 2 / IEJsiCr

 values. 
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Figure 10. Hub stress concentration Kt in terms of 
2/ iIr r

, for ri/ro = 0.5, ri/l = 2/3, and for a 

selection of 
 2 / IEJsiCr

 values. 
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Figure 11. Hub stress concentration Kt in terms of 
2/ iIr r

, for ri/ro = 0.5, ri/l = 1, and for a 

selection of 
 2 / IEJsiCr

 values. 

 

  

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

on
ne

ct
ic

ut
] 

at
 0

3:
16

 1
4 

O
ct

ob
er

 2
01

5 



 

49 

Figure 12. Stress components at the point where the maximum equivalent stress occurs, for a 

fluctuating bending moment, and for a fluctuating interference. 
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