
13/08/2024 08:35

Timing characterization of OpenMP4 tasking model / Serrano, Maria A.; Melani, Alessandra; Vargas,
Roberto; Marongiu, Andrea; Bertogna, Marko; Quiñones, Eduardo. - (2015), pp. 157-166. (Intervento
presentato al convegno International Conference on Compilers, Architecture and Synthesis for Embedded
Systems, CASES 2015 tenutosi a Movenpick Hotel Amsterdam City Center, nld nel 4-9 ottobre 2015)
[10.1109/CASES.2015.7324556].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

IEEE - Institute of Electrical and Electronics Engineers Inc.

This is the peer reviewd version of the followng article:

Timing Characterization of OpenMP4 Tasking Model

Maria A. Serrano
Barcelona Supercomputing Center and

Technical University of Catalonia,
Barcelona, Spain

maria.serranogracia@bsc.es

Alessandra Melani
Scuola Superiore Sant’Anna,

Pisa, Italy
alessandra.melani@sssup.it

Roberto Vargas
Barcelona Supercomputing Center and

Technical University of Catalonia,
Barcelona, Spain

roberto.vargas@bsc.es

Andrea Marongiu
Swiss Federal Institute of Technology,

Zurich, Switzerland
a.marongiu@iis.ee.ethz.ch

Marko Bertogna
University of Modena and Reggio

Emilia, Modena, Italy
marko.bertogna@unimore.it

Eduardo Quiñones
Barcelona Supercomputing Center,

Barcelona, Spain
eduardo.quinones@bsc.es

Abstract
OpenMP is increasingly being supported by the newest high-end
embedded many-core processors. Despite the lack of any notion
of real-time execution, the latest specification of OpenMP (v4.0)
introduces a tasking model that resembles the way real-time em-
bedded applications are modeled and designed, i.e., as a set of peri-
odic task graphs. This makes OpenMP4 a convenient candidate to
be adopted in future real-time systems. However, OpenMP4 incor-
porates as well features to guarantee backward compatibility with
previous versions that limit its practical usability in real-time sys-
tems. The most notable example is the distinction between tied and
untied tasks. Tied tasks force all parts of a task to be executed on the
same thread that started the execution, whereas a suspended untied
task is allowed to resume execution on a different thread. More-
over, tied tasks are forbidden to be scheduled in threads in which
other non-descendant tied tasks are suspended. As a result, the ex-
ecution model of tied tasks, which is the default model in OpenMP
to simplify the coexistence with legacy constructs, clearly restricts
the performance and has serious implications on the response time
analysis of OpenMP4 applications, making difficult to adopt it in
real-time environments.

In this paper, we revisit OpenMP design choices, introducing
timing predictability as a new and key metric of interest. Our first
results confirm that even if tied tasks can be timing analyzed, the
quality of the analysis is much worse than with untied tasks. We
thus reason about the benefits of using untied tasks, deriving a
response time analysis for this model, and so allowing OpenMP4
untied model to be applied to real-time systems.

1. Introduction
Modern high-end embedded systems are increasingly concerned
with providing higher performance in real-time, challenging
the performance capabilities of current architectures. The ad-
vent of next-generation many-core embedded platforms has the
chance of intercepting this converging need for predictable high-
performance, but an evolution of programming paradigms is re-
quired to combine traditional requirements, i.e., ease of pro-
grammability and efficient exploitation of parallel resources, with
timing analysis techniques.

OpenMP [2], the de-facto standard for shared memory par-
allel programming in high-performance computing (HPC), is in-
creasingly being adopted also in embedded parallel and heteroge-

neous systems [11] [4] [6] [9] [17] [19]. Originally focused on a
thread-centric model to exploit massively data-parallel and loop-
intensive types of applications, the latest specification of OpenMP
v4.0 (a.k.a. OpenMP4) has evolved to a task-centric model which
enables very sophisticated types of fine-grained and irregular par-
allelism.

The current OpenMP4 tasking model allows the programmer
to define explicit tasks and the data dependencies existing among
them. At run-time, tasks are executed by a team of threads, which
allows effectively utilizing many-core architectures while hiding
its complexity to the programmer. Although the OpenMP specifica-
tion leaves open the implementation of the task-to-thread scheduler,
available implementations typically rely on breadth-first (BFS) [16]
and work-first (WFS) [15] schedulers. The former creates all chil-
dren tasks before executing them; the latter executes new tasks im-
mediately after they are created (suspending the execution of the
parent task, which potentially can be resumed on a different thread).

Several practical issues have been addressed by the OpenMP
language committee when designing the tasking model specifica-
tion [10], considering simplicity of use, compatibility with the ex-
isting specification and performance as the main metrics of inter-
est. However, the requirements for the co-existence of a “legacy”
thread-based execution model and a new task-based execution
model led to conflicting needs for choosing in the default settings.
Unfortunately, none of the considered design choices took time pre-
dictability into account, as this is traditionally not a relevant metric
in the HPC domain. In this paper we revisit such design choices
introducing timing predictability as a new key metric of interest.

Probably the most notable example of a “trade-off” design
choice between the old (thread-centric) and the new (task-centric)
specification is the distinction between tied and untied tasks. In
state-of-the-art tasking programming models [15], there are points
in the execution of a program where a thread can suspend the exe-
cution of the current task and switch to a new task. The suspended
task can resume execution on a different thread, if available. This
execution model implements a work-conserving policy, which en-
sures that no thread remains idle if there is work to be done. Ul-
timately, this behavior guarantees efficient exploitation of a multi-
core processor and facilitates the timing characterization of parallel
execution (see Section 3.2 for further details). Unfortunately, the
thread-centric nature of many of the original OpenMP constructs
exposes a number of issues if migration of a task from one thread
to another is allowed. To give a few examples:

• thread id-based work partitioning among threads, at the core
of older OpenMP programming practices (up to v2.5), would
break the semantics of the program;
• mutually-exclusive code regions (e.g. critical construct)

would result in deadlock scenarios, as critical section locks are
owned by threads;
• private data to a thread (e.g., threadprivate variables) should

also migrate with the task, which is not easy nor efficient to
implement.

As a solution to the problem, the OpenMP4 specification states that
tasks must be tied by default and that all parts of a tied task must
execute on the same thread in which it started executing. More-
over, the OpenMP4 specification defines a set of task scheduling
constraints in which tied tasks are not allowed to be scheduled in
threads in which other non-descendant tied tasks are suspended.
Overall, the tied tasking model results in a non work-conserving
task scheduling approach. The knowledgeable programmer can
specify a work-conserving approach by using untied tasks, which
are allowed to resume execution on a different thread when sus-
pended. As it often happens in OpenMP, the programmer takes re-
sponsibility for guaranteeing correct execution of the program.

The use of tied tasks clearly restricts the performance and has
serious implications on the schedulability analysis of OpenMP4
applications. In this paper we explore the tied and untied
clauses from a timing analyzability point of view, considering both
scheduling strategies BFS and WFS and estimating the impact that
such programming model features have on the capability of our
analysis to provide precise and tight timing guarantees.

Our first experiences suggest that, despite OpenMP4 tasking
model can be timing analyzed, the quality of the analysis is sig-
nificantly worse when tied tasks are assumed, leading to a very
pessimistic and conceptually complicated worst-case scheduling
scenario. The use of untied tasks, instead, allows deriving an effi-
cient schedulability test considering the scheduling constraints im-
posed by OpenMP tasking directives and clauses, due to the work-
conserving nature of the untied tasking model. Overall, this paper
demonstrates that OpenMP4 can be effectively applied in real-time
systems if the untied tasking model is adopted.

2. OpenMP4 Tasking Model
This section summarizes the main characteristics of the OpenMP
specification focusing on the tasking support provided by the latest
versions [1][2].

2.1 From thread-centric to task-centric Model
Up to specification version 2.5, OpenMP assumed a thread-centric
execution model, in which the programmer could determine the
thread in which a code segment was executing (with the OpenMP
call omp get thread num). Following the single program, mul-
tiple data (SPMD) programming paradigm, the programmer was
allowed to explicitly perform different work on various threads,
based on their id. Moreover, the programmer could assign pri-
vate storage to the thread (marking target variables with the
threadprivate directive) that remained valid across executions
of different parallel regions.

With the introduction of OpenMP 3.0 specification, the task
construct was introduced, exposing a higher level of abstraction to
programmers. A task is an independent parallel unit of work, speci-
fied by an instance of executable code and its data environment, and
executed by a given available thread from a team. This new model,
known as “tasking model”, provides a very convenient abstraction
of parallelism, being the run-time in charge of scheduling tasks to
threads. With the latest 4.0 specification, OpenMP introduced ad-

vanced features to express dependencies among tasks, resembling
sporadic DAG real-time scheduling models [19], as will be shown
in Section 3.1. This makes OpenMP4 a firm candidate to be adopted
in future real-time systems.

For backward compatibility reasons, both models need to co-
exist in the last OpenMP specification. As a result, the tasking
model introduces certain characteristics that complicate the deriva-
tion of a tight timing analysis. The next section introduces the de-
sign choices in the default settings to allow both execution models
to coexist.

2.2 OpenMP4 Tasking Model
An OpenMP program starts with an implicit task1 surrounding the
whole program. This implicit task is executed by a single thread,
called the master or initial OpenMP thread that runs sequentially.

When the thread encounters a parallel construct, it creates a
new team of threads, composed of itself and n−1 additional threads
(n being specified with the num threads clause).

When a thread encounters a task construct, a new explicit task
is created and assigned to one of the threads in the current team
for immediate or deferred execution, based on additional clauses:
depend, if, final and untied.

The depend clause forces sibling tasks to be executed in a given
order based on dependences defined among data items. The if
clause makes the new task to be undeferred and executed by a
thread of the team, suspending the current task region until the new
task completes. Similarly, the final clause makes all descendants
of the new task to be included, meaning that they must execute
immediately by the encountering thread.

The untied clause (which is the focus of this paper) makes the
new generated task not being tied to any thread and so, in case it
is suspended, it can later be resumed by any thread in the team. By
default, OpenMP tasks are tied to the thread that first starts their
execution. Hence, if such tasks are suspended, they can later only
be resumed by the same thread.

The completion of a subset or all explicit tasks bound to a given
parallel region may be specified through the use of task synchro-
nization constructs, i.e., taskwait, taskgroup and barrier con-
structs. The taskwait construct specifies a wait on completion of
child tasks of the current task. The taskgroup construct specifies
a wait on completion of child tasks of the current task and their de-
scendant tasks. The barrier construct specifies an explicit barrier
where all threads of the team must complete execution before any
of them is allowed to continue execution beyond the barrier.

Figure 1 shows an OpenMP program example. The code en-
closed in the parallel construct defines a team of N threads. The
single construct at line 2 is used to specify that only one of the
threads in the team has to execute the implicit task region T0. When
the thread executing T0 encounters the task constructs at lines 4,
12 and 19, new tasks T1, T3 and T5 are generated. T3 will not start
its execution until T1 finishes because there exits a data dependency
(T1 produces item x and T3 consumes it). The thread executing T1

creates task T2 and the thread executing T3 creates task T4. Simi-
larly, the thread executing T5 creates task T6, T6 creates tasks T7

and T9, and T7 creates T8.
All tasks are guaranteed to have completed at the implicit bar-

rier at the end of the parallel region at line 39. Moreover, task T1

will wait on the taskwait at line 8 until task T2 has completed and
similarly T3 will wait T4, T5 will wait T6, task T7 will wait T8 and
T0 will wait on the taskwait at line 37 until tasks T1, T3 and T5

have completed before proceeding past the taskwait.

1 An implicit task is not created by the programmer but by the run-time; tasks created
by the programmer using the task construct are commonly referred to as explicit
tasks.

1 #pragma omp p a r a l l e l num threads (N) {
2 #pragma omp s i n g l e { / / T0

3 p a r t 00
4 #pragma omp task depend (o u t : x) / / T1

5 { p a r t 10
6 #pragma omp task { p a r t 20 } / / T2

7 p a r t 11
8 #pragma omp t a s k w a i t
9 p a r t 12

10 }
11 p a r t 01
12 #pragma omp task depend (i n : x) / / T3

13 { p a r t 30
14 #pragma omp task { p a r t 40 } / / T4

15 #pragma omp t a s k w a i t
16 p a r t 31
17 }
18 p a r t 02
19 #pragma omp task / / T5

20 { p a r t 50
21 #pragma omp task { / / T6

22 p a r t 60
23 #pragma omp task / / T7

24 { p a r t 70
25 #pragma omp task { p a r t 80 } / / T8

26 #pragma omp t a s k w a i t
27 p a r t 71
28 }
29 p a r t 61
30 #pragma omp task { p a r t 90 } / / T9

31 p a r t 62
32 }
33 p a r t 51
34 #pragma omp t a s k w a i t
35 p a r t 52
36 }
37 #pragma omp t a s k w a i t
38 p a r t 03
39 }}

Figure 1: Example of an OpenMP program using tasking con-
structs.

A predecessor/descendant relationship exists among tasks. Pre-
decessor tasks of Ti are Ti’s parent task and parent’s predecessor
tasks. On the contrary, the descendant tasks of Ti are Ti’s child
tasks and child’s descendant tasks. For example, predecessor tasks
of T4 are T3 and T0 and the descendant tasks of T5 are T6, T7 , T8

and T9.

2.3 OpenMP Task-to-thread Scheduling
2.3.1 Task Scheduling Points (TSP) and Task Scheduling

Constraints (TSC)
OpenMP [2] defines task scheduling points (TSP) as points in the
program where the encountering task can be suspended and the
hosting thread can be rescheduled to a different task. As a result,
TSPs divide task regions into task parts (or simply parts) executed
uninterrupted from start to end. The example shown in Figure 1
identifies the parts in which each task region is divided, e.g. T0 is
composed of part00, part01, part02 and part03.

TSPs occur upon (1) task creation and completion, (2) at
task synchronization points such as taskwait directives and
taskgroup directives, (3) at explicit and implicit barriers and (4)
upon taskyield directives, in which the current task can be sus-
pended in favor of the execution of a different task2. When a thread
encounters a TSP, it can begin or resume the execution of a task,
provided that a set of task scheduling constraints (TSC) are ful-
filled:

1. An included task must be executed immediately after the task
is created.

2 An additional TSP is implied at OpenMP construct target but we do not consider
in this paper for the sake of simplicity.

1 f o r (i =0 ; i < N; i ++) {
2 #pragma omp task / / T1

3 {
4 foo () ;
5 #pragma omp c r i t i c a l
6 {
7 b a r () ;
8 #pragma omp task / / T2

9 f o o b a r () ;
10 }
11 }
12 }

Figure 2: Example of an OpenMP program using synchroniza-
tion constructs.

2. Scheduling of new tied tasks is constrained by the set of task
regions that are currently tied to the thread, and that are not
suspended in a barrier region. If this set is empty, any new
tied task may be scheduled. Otherwise, a new tied task may be
scheduled only if it is a descendant task of every task in the set.

3. A dependent task shall not be scheduled until its task data
dependencies are fulfilled.

4. When a task contains an if clause and its associated condition
evaluates to false, the task is executed immediately if the rest of
the TSCs are met.

A program relying on any other TSC or performing a different
action when a TSP is encountered is non OpenMP-conforming.

TSC 2 may considerably reduce the number of threads avail-
able to tied tasks, impacting on both performance and timing pre-
dictability. Next section explains the reason of such a design choice.

2.3.2 Understanding TSC 2
TSC 2 prevents tied task from being scheduled in threads in
which other non-descendant tied tasks are suspended. This in-
hibits the run-time from incurring in a deadlock situation when
the critical synchronization construct is used within a task [10].
The critical construct is a synchronization mechanism inherited
from the thread-centric model that defines a region that can be ex-
clusively executed by a single thread at a time [2]. The reason of
the deadlock situation is because the owner of the lock is a thread
and not a task.

Figure 2 shows an example in which the critical construct is
used within a task. The example will create as many T1 and T2 task
instances as for-loops iterations. When the thread executing the first
instance of T1 enters the critical section, the thread obtains the lock
so that no other thread can access it. However, the execution of this
task instance T1 can be suspended when reaching the TSP at line 8
(T2 task construct) and so the same thread may execute a different
task. If the thread started executing another instance of T1, it would
eventually reach the critical section again, but this time would not
be able to enter it as this thread already has the lock. This leads to a
deadlock situation in which the thread has the lock due to the first
T1 instance and, at the same time, is blocked in the critical section
due to the second T1 instance. Notice that the critical construct
does not imply a TSP, so that the thread is stalled in the second T1

task instance.
The TSC 2 prevents the same thread from executing any tied

task that is not descendant of T1. Note that T2 is a descendant task
of T1 and so it is allowed to execute it.

When untied tasks are used, the responsibility of the utilization
of critical sections or thread-specific information lies on the pro-
grammer.

2.3.3 Scheduling Algorithms
When a task encounters a TSP, the program execution branches
into the OpenMP runtime system, where task-to-thread schedulers

can: 1) begin the execution of a task region bound to the current
team or 2) resume any previously suspended task region bound
to the current team. The order in which these two actions are
applied is not specified by the standard. An ideal task scheduler will
schedule tasks for execution in a way that maximizes concurrency
while accounting for load imbalance and locality to facilitate better
performance. Current implementations of OpenMP run-times are
based on two main task scheduling policies:

Breadth-First scheduling (BFS). When a task is created, it is
placed into a pool of tasks and the encountering thread continues
the execution of the parent task. Tasks placed in that pool can then
be executed by any available thread from the team. Due to TSC 2,
when a tied task is suspended in a TSP, it is placed into the private
pool of tasks associated to its execution thread. Untied tasks instead
are queued into a pool of tasks accessible by all threads in the team.
Access to these pools can be LIFO (i.e., last queued tasks will be
executed first) or FIFO (i.e., oldest queued tasks will be executed
first). Threads will always try to schedule first a task from their
local pool. If it is empty then they will try to get tasks from the
team pool. An example of BFS is shown in [16].

Work-first scheduling (WFS). New tasks are executed imme-
diately after they are created by the parent’s thread, suspending the
execution of the parent task. When a task is suspended in a TSP, it is
placed in a per thread local pool which can be accessed in a LIFO or
FIFO manner. When looking for tasks to execute, threads will look
into their local pool. If it is empty, they will try to steal work from
other threads. When stealing from another thread pool, to comply
with OpenMP restrictions, tied task cannot be stolen from its as-
sociated thread. The Cilk scheduler [15] pertains to this family. In
particular, it is a WFS where access to the local pool is LIFO, tries
to steal the parent task first and otherwise steals from another thread
pool in a FIFO manner.

WFS tends to obtain better performance results than BFS due
to two reasons [3]: (1) the WFS strategy tries to follow the serial
execution path hoping that if the sequential algorithm was well
designed, it will lead to better data locality; and (2) it also has the
property of minimizing space: in a BFS strategy all tasks coexist
simultaneously, because all child tasks are created before executing
them. On the contrary, WFS creates the same number of tasks,
but fewer tasks have to exist at the same time because they are
executed immediately after they are created. However, OpenMP
implementations typically use BFS due to the tied tasks default
restriction: if WFS is implemented, when a tied task Ti creates a
child tied task Ti+1, this one starts its execution in Ti’s thread.
Then, Ti is suspended and it cannot resume its execution until
Ti+1 finishes or suspends in a TSP because it is tied to a thread.
Therefore, WFS turns a parallel program with tied tasks into a
sequential execution, as will be shown in Section 5.1.

Overall, TSC 2 and the semantics of tied tasks prevent the
implementation of work-conserving schedulers. We will discuss in
the next section how this limits the analyzability of the tied task
execution model.

3. Timing characterization of OpenMP4
The sporadic DAG scheduling model [21] [20] [5] [7] [13] gen-
eralizes the fork-join execution model to allow exploitation of
parallelism within tasks. This section explains how to derive an
OpenMP-DAG and the implications that the OpenMP4 tasking
model has on the scheduling.

3.1 OpenMP4 Tasking Model and Sporadic DAG Scheduling
Model

Despite the current OpenMP specification lacks any notion of real-
time scheduling semantics, the structure and syntax of an OpenMP

program have certain similarities with DAG-based models pre-
sented in the real-time community, as shown in [19].

In the sporadic DAG model, each task (called DAG-task) is
represented by a directed acyclic graph (DAG) G = (V,E), a
period (T) and a deadline (D). Each node υi ∈ V denotes a
sequential operation or job, characterized by a worst-case execution
time (WCET) estimate ci. The edges represent the dependencies
between jobs: if (υ1, υ2) ∈ E, then job υ1 must complete its
execution before job υ2 can start executing. In other words, the
DAG captures scheduling constraints imposed by dependencies
among jobs and it is annotated with a WCET estimate ci of each
individual job. When a DAG-task is released at time t, all jobs in V
are ready to execute if precedence constraints are fulfilled, and all
jobs must finish before time t+D.

Moreover, the sporadic DAG model defines a chain as a se-
quence of jobs λ = υ1, υ2, . . . , υk such that (υi, υi+1) is an edge
in G, 1 ≤ i < k. The length of this chain is the sum of the WCETs
of all its nodes, i.e., len(λ) =

∑k
i=1 ci. The critical path of G is the

longest chain in G and its length is denoted by len(G). Finally, the
volume of a DAG-task is defined as the sum of all WCETs of its
jobs, i.e., vol(G) =

∑
υi∈V ci.

The execution of an OpenMP program has certain similarities
with the execution of a DAG-task: (1) the execution of a task part
in the OpenMP program resembles the execution of a job in V for
which WCET estimation can be derived [19]; (2) the edges E in
the DAG model can be used to model the depend clause, which
forces tasks not to be scheduled until all precedence constraints
are fulfilled; the if and final clauses, which make the task to
be suspended until the new task completes execution; and the
synchronization directives.

Figure 3 shows the OpenMP-DAG obtained by the example pro-
gram presented in Figure 1. Tasks parts are the nodes in V and the
TSPs encountered at the end of a task part (task creation or com-
pletion, task synchronization) are the edges in E, The figure distin-
guishes three different types of edges: control flow dependencies
(dotted arrows) that force parts to be scheduled in the same order as
they are executed within the task, TSP task creation dependencies
(dashed arrows) that force tasks to start/resume execution after the
corresponding TSP, and TSP synchronization dependencies (solid
arrows) that force the sequential execution of tasks as defined by
the if clause, the depend clause and the taskwait synchroniza-
tion construct. All edges express a precedence constraint.

3.2 Schedulability Problem for OpenMP4
Once the OpenMP-DAG of an OpenMP application is derived, the
problem of schedulability reduces to the problem of determining
whether the DAG can be scheduled on the available threads to
complete within a specified relative deadlineD, i.e., withinD time
units from the release of the DAG.

The OpenMP4 specification is agnostic of the task-to-thread
scheduling implemented by the run-time. It is therefore the respon-
sibility of the run-time developer to implement the most suitable
scheduler for the OpenMP system, guaranteeing that the TSCs de-
fined in Section 2.3.1 are fulfilled.

In high-performance systems, the main goal of task-to-thread
schedulers is to maximize the occupancy of threads. In real-time
systems, the main goal is not only maximizing the use of resources
but also to provide timing guarantees. The use of work-conserving
schedulers facilitates the timing characterization of parallel execu-
tion.

Definition 1. A scheduling algorithm is said to be work-conserving
if and only if it never idles threads whenever there exists at least one
ready job awaiting execution in the system.

Figure 3: DAG corresponding to the program in Figure 1.

For work-conserving schedulers, the problem of determining
the schedulability of an OpenMP-DAG has a strong correspon-
dence with the makespan3 minimization problem of a set of prece-
dence constrained jobs (task parts in our case) on identical proces-
sors (threads in a team in our case), which is known to be strongly
NP-hard by a result of Lenstra and Rinnooy Kan [12]. However,
the Graham’s List Scheduling algorithm [18], which can be imple-
mented in polynomial run-time complexity, provides an approxi-
mation of 2 − 1

m
for this problem, being m the total number of

threads in a team. This means that this algorithm is able to pro-
duce for any input task graph a value of the makespan that is at
most 2 − 1

m
times the optimal one. The List Scheduling algorithm

simply maps tasks to available threads in a team without introduc-
ing idle times if not needed, i.e., it implements a work-conserving
scheduling algorithm.

Therefore, implementing OpenMP4 run-time incorporating
work-conserving schedulers seems to be the best option. Current
OpenMP4 run-time implementations already incorporate work-
conserving schedulers, i.e. BFS and WFS (see Section 2.3.3).

Unfortunately, TSC 2 and the execution semantics of tied tasks
force these schedulers not to be work-conserving. On the one hand,
TSC 2 forbids a new tied task to be scheduled to a thread where
it is not a descendant of all the other suspended tied tasks already
assigned to this thread. This may potentially reduce the number of
threads in the team that can be assigned to new tied tasks. On the
other hand, tied task parts cannot migrate when the task is resumed
and its corresponding thread is being used by another descendant
tied task or an untied task. These constraints impose extra condi-
tions on the schedulability analysis of OpenMP4 programs.

This is not the case for untied tasks, which are not subject to TSC
2, allowing parts of the same task to execute on different threads;
so, when a task is suspended, the next part to be executed can be
resumed on a different thread. Hence, the execution model of untied
tasks allows BFS and WFS to be work-conserving.

Overall, the additional requirements imposed by the use of tied
tasks suggest devising distinct timing characterizations for the two
types of OpenMP4 tasks, i.e., tied and untied. Hence, in the rest
of this paper we analyze both types of tasks to characterize their

3 The makespan of a set of precedence constrained jobs is defined as the
total length of the schedule (i.e., response-time) of the collection of jobs.

timing behavior, outlining the major challenges posed by the use of
tied tasks in a real-time domain.

4. Schedulability Analysis of Untied Tasks
The untied clause allows a task to be executed in any thread and,
in case it is suspended, to be resumed by any thread in the team. In
other words, the task can be freely migrated across threads during
its execution. This flexibility in the task allocation is exploited
at the analytical level in order to derive a direct solution to the
schedulability problem.

Given the OpenMP-DAG derived in Section 3.1, we build upon
the result in [18] to derive response-time bounds for untied tasks, by
considering that each task part represents a sequence of operations
that can be executed in one of the available threads as soon as all its
three types of dependencies have been fulfilled (control flow, TSP
creation/resume and TSP synchronization). Whenever more parts
than available threads are ready to be executed, we assume any
possible allocation order is possible, provided that the scheduling
strategy remains work-conserving. This is the case of BFS and
WFS strategies.

We now derive an upper-bound on the response-time of an
OpenMP program composed of untied tasks and represented as an
OpenMP-DAGG. Such a bound can be computed starting from the
proof of the 2 − 1

m
approximation bound in [18], in conjunction

with some additional considerations. Here, we first establish two
lower-bounds on the minimum makespan Ropt of an OpenMP
program, which will be useful to derive an upper-bound on its
response-time.

Proposition 1.

Ropt ≥ 1

m

∑
υi∈V

ci =
1

m
vol(G). (1)

Proposition 2.

Ropt ≥ max
λ∈G

∑
υi∈λ

ci = len(G). (2)

Equation (1) trivially follows from the fact that the total amount
of work should be executed on m threads, while Equation (2)
is obtained by noticing that parts belonging to a chain must be
executed sequentially. This is true for any chain of the OpenMP-
DAG, and in particular for its longest one, i.e., its critical path.

We now review the proof in [18] to derive the approxima-
tion bound of List Scheduling on the minimum makespan of a
generic set of precedence-constrained jobs (parts), which applies
to OpenMP-DAGs with untied tasks as well.

Theorem 1. Graham’s List Scheduling algorithm gives a 2 − 1
m

approximation for the makespan minimization problem of a set of
precedence-constrained jobs (or parts) expressed by means of a
task graph G, scheduled on m identical processors (or threads).

Proof. Let υz be the job inG that completes last, and tz its starting
time. Let υz−1 be the predecessor of υz that completes last. By the
precedence relation between the two jobs, we have that tz ≥ tz−1+
cz−1. Proceeding in this way until a job without predecessors is
reached, we construct a particular chain of jobs λ∗ = (υ1, . . . , υz).
The fundamental observation that must be made is that, between the
completion time ti + ci of each job of λ∗ and the starting time of
the next job, all threads must be busy, otherwise job υi+1 would
have started earlier. The same applies to the time interval between
0 and t1. Note also that some job belonging to λ∗ is executing at
every time instant when not all the threads are busy.

The response-time R of the OpenMP-DAG is given by the sum
of the time instants when some of the threads are idle and the

time instants when all the threads are busy. The former contribution
cannot exceed len(λ∗), while the latter cannot exceed 1

m
(vol(G)−

len(λ∗)), since the total amount of workload executed in such time
slots is no more than vol(G)− len(λ∗). Hence,

R ≤ len(λ∗) +
1

m
(vol(G)− len(λ∗)) . (3)

Now, by combining Equations (1), (2) and (3) and rephrasing
the terms, we obtain:

R ≤ len(λ∗) +
1

m
(vol(G)− len(λ∗)) =

= len(λ∗) +
1

m
vol(G)− 1

m
len(λ∗) ≤

≤ Ropt +Ropt − 1

m
Ropt =

=

(
1− 1

m
+ 1

)
Ropt =

=

(
2− 1

m

)
Ropt.

Equation (3) cannot be directly used as an upper-bound to the
response-time of the OpenMP-DAG, because the chain λ∗ is not
known a priori. However, a simple upper-bound can be found
from Equation (3) by upper-bounding the length of the chain λ∗

with the critical path length of the task graph, as it is longer than
any possible chain in the OpenMP-DAG. The following lemma
formalizes this result.

Lemma 1. An upper-bound on the response-time of an OpenMP-
DAG composed of untied tasks is given by Rub:

Rub = len(G) +
1

m
(vol(G)− len(G)) . (4)

Proof. The upper-bound Rub simply follows from Equation (3) by
definition of critical path and by considering that 1 ≥ 1

m
. More

explicitly:

R ≤ len(λ∗) +
1

m
(vol(G)− len(λ∗)) =

=

(
1− 1

m

)
len(λ∗) +

1

m
vol(G) ≤

≤ len(G) +
1

m
(vol(G)− len(G)) .

The result of Lemma 1 suggests that, whenever an OpenMP4
program is composed of untied tasks, a timing analysis can be
easily performed by checking Equation (4) against the relative
deadline D of the OpenMP-DAG.

5. Impact of Tied Tasks on Scheduling
When the OpenMP-DAG comprises tied tasks, the timing analysis
presents some conceptual difficulties that significantly affect the
complexity of the schedulability problem.

Tied tasks are constrained by TSC 2, which reduces the number
of available threads for the execution of new tied tasks, and by the
fact that tied tasks must always resume on the same thread where
they started executing. Overall, these two constraints impact both
performance and timing predictability.

5.1 Reduction of available threads
This section analyzes the implications of using tied tasks from a
schedulability point of view. In particular, we compute the number
of threads available to a new task due to TSC 2 (Section 5.1.1) and
the number of tasks that can prevent another task from resuming its
execution in its thread (Section 5.1.2). In this way, we demonstrate
that tied task execution model results in a non-conserving policy
and explain why analyzing tied tasks without introducing unaccept-
able pessimism is prohibitive, or at least conceptually very difficult
to achieve.

The following sections analyze these two scenarios assuming a
generic scheduler (GenS) in which no concrete scheduling policy
has been considered, and the BFS and WFS strategies with FIFO
policies (see Section 2.3.3). Notice that the possible scheduling
solutions derived by BFS and WFS strategies are included in GenS.

5.1.1 New tied tasks
The number of available threads for a new tied task may be reduced
because other tied tasks suspended in a TSP may prevent the new
tied task from being scheduled in the same thread. According to
TSC 2, the new tied task can be scheduled to a thread in which
other tied tasks are suspended only if it is a descendant of all the
tasks tied to this thread. In the extreme case, a new tied task could
even not start its execution despite existing available threads in the
team.

We consider basic notions of set theory to derive the number
of tasks affecting the effective number of threads available to new
tied tasks. Concretely, we define BlockCTi(GenS) as the set of
potential tasks that may prevent task Ti from executing on the same
threads in which they are suspended considering a GenS strategy:

BlockCTi(GenS) =(T \DesTi \ PreTi \DDepTi \ {Ti})
∩ TSPT,

(5)

where T is the set of all tasks, DesTi is the set of descendant
tasks of Ti, PreTi is the set of predecessor tasks of Ti,DDepTi is
the set of tasks having a data dependency relationship with Ti and
TSPT is the set of tasks with at least one TSP that can suspend
their execution (e.g. contain a task or a taskwait construct). The
data dependency relationship inDDepTi considers tasks with data
dependencies through depend clauses and also their child tasks if
a synchronization dependency exits (e.g. a taskwait).

In other words, BlockCTi contains the sibling tasks of Ti and
their descendant tasks that do not depend on Ti and that can be
suspended in a TSP. It is important to remark that the descendant
tasks of Ti have not been created yet at the point Ti is created, hence
we can neglect them. Similarly, the dependent tasks of Ti and their
descendant tasks are not considered because they have to wait until
Ti has finished in order to start executing. Also, the predecessor
tasks of Ti can be neglected because, according to TSC 2, Ti can
be scheduled in the threads of all its predecessor tasks.

In the case of BFS strategy, BlockCTi(BFS) if defined as
BlockCTi(GenS) removing the tasks that start executing after Ti
(due to the FIFO policy):

BlockCTi(BFS) = BlockCTi(GenS) \ SAftTi =
=((T \DesTi \ PreTi \DDepTi \ {Ti})
∩ TSPTbfs) \ SAftTi,

(6)

where BlockCTi(GenS) is the set defined in Equation (5) and
SAftTi is the set of sibling (and their descendant) tasks starting
their execution after Ti according to the FIFO policy. This set
includes the tasks for which the execution order can be defined.
For example, in Figure 3 we can ensure that T5 starts executing

Table 1: DesTi, PreTi, DDepTi and SAftCTi sets for
each task Ti in Figure 1.

Ti DesTi PreTi DDepTi SAftCTi
T0 {T1..., T9} ∅ ∅ ∅
T1 {T2} {T0} {T3, T4} {T3..., T9}
T2 ∅ {T0, T1} {T3, T4} ∅
T3 {T4} {T0} {T1, T2} ∅
T4 ∅ {T0, T3} {T1, T2} ∅
T5 {T6, T7, T8, T9} {T0} ∅ ∅
T6 {T7, T8, T9} {T0, T5} ∅ ∅
T7 {T8} {T0, T5, T6} ∅ {T9}
T8 ∅ {T0, T5, T6, T7} ∅ ∅
T9 ∅ {T0, T5, T6} ∅ ∅

after T1, but we do not know whether T2 will start or not after T5.
However, we cannot ensure that T3 is executed before T5 despite
the BFS FIFO policy, because T3 depends on T1 and so T5 may
start executing before T1 finishes.

It is important to notice that the set TSPT contains different
elements depending on the task scheduling policy. In the case of
BFS (TSPTbfs), task creation TSPs are not considered in this set
because the parent task is not suspended when it creates a child
task, but rather it continues its execution in the same thread.

Finally, in case of the WFS strategy, the set BlockCTi(WFS)
is empty, because all tasks Ti start executing immediately after their
creation in the parent task thread:

BlockCTi(WFS) = ∅. (7)

Table 1 shows, for each task Ti in Figure 1, the sets
DesTi, PreTi, DDepTi and SAftTi, required to calculate
BlockCTi for GenS, BFS and WFS, and shown in Table 2.
Moreover, T is equal to {T0, T1, T2, T3, T4, T5, T6, T7, T8, T9},
TSPTgens is equal to {T0, T1, T3, T5, T6, T7}, TSPTbfs is equal
to {T0, T1, T3, T5, T7}, and TSPTwfs is equal to TSPTgens.

As an example, given T1, DesT1 is equal to {T2} because T1

creates T2, PreT1 is equal to {T0} because T0 creates T1, and
DDepT1 is equal to {T3, T4} because T3 and its descendant task
(due to the taskwait in T3) have a data dependency relationship
with T1. As a result, BlockCT1(GenS) is equal to {T5, T6, T7}
and so these tasks can suspend their execution and block a thread
that T1 could not use. However, BlockCT1(BFS) is equal to ∅
because, according to the BFS policy, T5, T6 and T7 are created
after T1 ({T5, T6, T7} ∈ SAftCTi) and T6 never suspends its
execution (T6 /∈ TSPTbfs). Finally, BlockCT1(WFS) is equal
to ∅ by definition.

Within the set BlockCTi only tasks that can be executed
in parallel have to be considered at the same time. That is, if
BlockCTi = {Tj , Tj+1} but Tj+1 depends on Tj , and so Tj+1

and Tj will never execute in parallel, then BlockCTi = {Tj} or
BlockCTi = {Tj+1}. This is the case of task T5. Given the sit-
uation in which T3 is suspended in the taskwait, waiting for the
task T4 to finish, T5 could not use T3’s thread because it is not a
descendant of it. Similarly, T1 could block a thread of T5 if it is
suspended waiting for T2. However, T1 and T3 could not subtract a
thread to T5 at the same time because they are executed sequentially
and therefore, in the case of GenS or BFS, BlockCT5 = {T1}
or BlockCT5 = {T3}.

The cardinality4 of each set BlockCTi determines the maxi-
mum number of tasks that may block threads which Ti could not
use at its creation time due to TSC 2.

4 The cardinality of a set A, expressed as |A|, is a measure of the number of elements
of the set.

Table 2: Given the example in Figure 1, tasks that may block
threads for a new task at creation time.

BlockCTi
Ti BlockCTi(GenS) BlockCTi(BFS) (WFS)
T0 ∅ ∅ ∅
T1 {T5, T6, T7} ∅ ∅
T2 {T5, T6, T7} {T5, T7} ∅
T3 {T5, T6, T7} {T5, T7} ∅
T4 {T5, T6, T7} {T5, T7} ∅
T5 {T1} or {T3} {T1} or {T3} ∅
T6 {T1} or {T3} {T1} or {T3} ∅
T7 {T1} or {T3} {T1} or {T3} ∅
T8 {T1} or {T3} {T1} or {T3} ∅
T9 {T1, T7} or {T3, T7} {T1, T7} or {T3, T7} ∅

5.1.2 At resumption time
When a suspended tied task wants to resume, it may not restart
its execution even if there are idle available threads, because the
thread the task is tied to is executing another task (it is important
to remark that a task can only be suspended if it contains a TSP).
This situation occurs when a task has been suspended in a TSP
and, at resumption time, another (predecessor or descendant) task
or an untied task is executing in the thread. There may be other idle
threads but the task cannot resume its execution because it is tied
to its thread.

We define BlockRTi(GenS) as the set of potential tasks that
may prevent (block) task Ti ∈ TSPT from resuming its execution
in the thread to which Ti is tied, assuming GenS strategy.

BlockRTi(GenS) = DesTi ∪ PreTi ∪ uT, (8)

where DesTi is the set of descendant tasks of Ti, PreTi is the set
of predecessor tasks of Ti and uT is the set of untied tasks.

This set contains predecessor and descendant tasks of Ti and all
the untied tasks because, due to TSC 2, they are the only ones that
can be scheduled in Ti’s thread, and therefore can prevent Ti to be
resumed.

In the case of BFS strategy, BlockRTi(BFS) is defined as:

BlockRTi(BFS) = (DesTi \TSPDepTi)∪PreTi∪uT, (9)

where TSPDepTi is the set of tasks having a synchronization
dependency with Ti through any of its TSP. With respect to PreTi,
which is the set of predecessor tasks, Ti’s parent task is included
in it only if it contains a taskyield TSP, as in this case Ti’s
parent task could block Ti’s thread. Otherwise, if Ti’s parent task is
suspended in any other TSP, e.g. a taskwait, it cannot resume its
execution as it is blocked until Ti finishes and so, it cannot block
Ti’s thread.

In the case of WFS strategy, BlockRTi(WFS) is equal to
BlockRTi(GenS):

BlockRTi(WFS) = BlockRTi(GenS) = DesTi∪PreTi∪uT.
(10)

As previously noted, WFS is particularly affected when tied
tasks are implemented, because the parallel execution turns into a
sequential execution. When any Ti is created, it starts its execution
in the parent’s thread. The parent task is suspended and it cannot
resume its execution in another thread because it is tied to Ti’s
thread. On the contrary, if Ti is suspended in a TSP (not a task
creation) and Ti’s parent task resumes its execution, the thread Ti
is blocked because of its parent.

Table 3 shows the sets TSPDepTi for each Ti ∈ TSPT in
Figure 1. Based on this and on PreTi and DesTi shown in Table
1, the sets BlockRTi considering GenS, BFS and WFS strategies
have been calculated and are shown in Table 4. Similar to the
BlockCTi, the set TSPT is different for BFS because the task

Table 3: TSPDepTi set for each task Ti ∈ TSPT in Figure
1.

Ti TSPDepTi
T0 {T1, T2, T3, T4, T5, T6}
T1 {T2}
T3 {T4}
T5 {T6}
T6 –
T7 {T8}

Table 4: Given the example in Figure 1, tasks that may block
threads for each task Ti ∈ TSPT at resumption time.

Ti BlockRTi(GenS) BlockRTi(BFS) BlockRTi(WFS)
T0 {T1, ...T9} {T7, T8, T9} {T1, ...T9}
T1 {T0, T2} – {T0, T2}
T3 {T0, T4} – {T0, T4}
T5 {T0, T6, T7, T8, T9} {T0, T7, T8, T9} {T0, T6, T7, T8, T9}
T6 {T0, T5, T7, T8, T9} – {T0, T5, T7, T8, T9}
T7 {T0, T5, T6, T8} {T0, T5} {T0, T5, T6, T8}

creation is not considered as a scheduling point for the task creating
the new task.

Hence, given T0, BlockRT0(GenS) contains all its descen-
dant tasks because all of them can be scheduled in the same
thread and prevent T0 from resuming its execution. In case of
BlockRT0(BFS), we analyze independently each TSP in which
T0 can be suspended, that is, at the taskwait at line 26 in Fig-
ure 1. Then, from DesT0 we remove all the descendant tasks
that have a synchronization dependency with this taskwait, i.e.,
tasks in TSPDepT0: task T1 (and recursively its child T2 be-
cause it has another synchronization dependency with T1), task
T3 (and similarly T4) and task T5 (and similarly T6 but not its
descendants T7, T8 and T9 because there is no synchronization
dependency with T6). As a result, tasks T7, T8 and T9 compose
the set BlockRT0(BFS). Finally, for BlockRT0(WFS), T0’s
thread will be blocked by its descendants BlockRT0(WFS) =
{T1, T2, T3, T4, T5, T6, T7, T8, T9}.

5.2 Issues on the timing characterization of tied tasks
The reasoning about the computation ofBlockCTi andBlockRTi
suggests that deriving schedulability results when tied tasks are in-
volved is extremely challenging, unless very pessimistic assump-
tions are made. More specifically, in Section 4 we have leveraged
the work-conserving policy implied by the use of untied tasks to de-
rive a timing analysis simply based on two quantities: (i) the critical
path length of the entire task graph and (ii) the remaining interfer-
ing workload over m threads.

However, when considering the non-work-conserving scenario
induced by tied tasks, deriving such an accurate analysis is not as
easy, due to multiple reasons:

1. It is not correct to compute the critical path of the task graph
as a whole, but rather a critical path reaching the end of each
task in the OpenMP-DAG, since it is important to compute the
different time offsets after which each task can start executing.
In fact, since each task has its own descendant and precedence
relationships, the correspondingBlockCTi andBlockRTi sets
will be different, suggesting to carry out a per-task timing
analysis.

2. The interference contribution for a tied task cannot be consid-
ered as evenly distributed. Specifically, it is necessary to dif-
ferentiate the interference contribution before the task starts,
which can be accounted for as evenly distributed on the threads

being blocked due to BlockCTi, and the interference suffered
by the task at each of its TSPs, which includes the full contribu-
tion of the set of tasks BlockRTi.

3. The critical path reaching the end of a task may comprehend
parts of other tasks that can have different descendant relation-
ships with respect to Ti, which makes really hard to identify
which tasks may actually interfere Ti without introducing un-
acceptable pessimism in the analysis. In order to have an intu-
itive feeling of the problem, please consider again the example
given in Figure 3, where all task parts have unitary WCETs.
Here, task T3 has a data dependency with T1, hence it cannot
start executing until T1 has finished. When computing the criti-
cal path reaching the end of T3, we immediately observe that it
is not simply composed of tasks that are predecessors of T3, but
also by parts of T1 and T2 p10, p11 and p20 (that are not prede-
cessors of T3). Hence, the interference imposed on critical task
parts of T3 cannot simply be estimated based on the descendant
relationships of T3 (i.e., by the knowledge of BlockRT3), but
should take into account those of all the tasks involved, which
hugely complicates the analysis.

4. From the analytical point of view, computing an upper-bound
on the response-time of a tied task Ti would require to as-
sume the worst-case scenario in which all the tasks that can
be suspended simultaneously at the creation point of Ti are in-
deed suspended, inhibiting Ti to execute on the corresponding
threads tied to these tasks. Therefore, beside knowing the max-
imum number of tasks that could be suspended at the time of
Ti’s creation due to TSC 2 (i.e., the set BlockCTi), we should
provide an upper-bound on the maximum time the suspended
tasks would take before being resumed.

Overall, the above considerations confirm that a timing analysis
for tied tasks, besides being conceptually very difficult to achieve,
would require to address sources of inherent complexity that would
lead to unacceptably pessimistic response-time bounds. As a re-
sult, the makespan of the task graph may undergo large variations
depending on the allocation of newly generated tasks, leading in
few cases to resource under-utilization and undesirable idleness of
some threads as shown in next section.

5.3 Platform Under-utilization
As previously observed, the use of tied tasks encompasses their sus-
pension and resumption only by the same thread that first started
their execution. This may lead to platform under-utilization reduc-
ing the number of threads working even if there are tasks ready to
execute. We refer as m∗i to the minimum number of threads avail-
able to task Ti at the time of its creation. Since not all threads may
be available to a task when it is created, it follows that the interfer-
ence suffered from other tasks cannot be considered to be evenly
distributed across all threads, but only on m∗i ≤ m threads.

Theorem 2. The minimum value of m∗i is 2, for any task graph
comprising tied tasks.

Proof. The statement can be demonstrated by the two following
points: (i) providing a configuration where m∗i = 2, and (ii)
showing that no configuration can be produced with 0 ≤ m∗i < 2.

(i) There exists a scenario where m∗i = 2. Consider the
OpenMP program illustrated in Figure 4. Suppose the program
must be executed on m = 4 threads and that the allocation on the
available threads is as shown in Figure 5(a). Tasks T1, T2 and T3

must wait for their first-level descendants before terminating, due
to the taskwait directives. Then, if task parts p04 and p40 have a
very long WCET, there is a long time interval where T5, T6 and
T7 cannot execute on threads 2 and 3, although they are idle, due

1 #pragma omp p a r a l l e l num threads (N) {
2 #pragma omp s i n g l e { / / T0

3 p a r t 00
4 #pragma omp task { / / T1

5 p a r t 10
6 #pragma omp task { / / T2

7 p a r t 20
8 #pragma omp task { / / T3

9 p a r t 30
10 #pragma omp task { p a r t 40 } / / T4

11 #pragma omp t a s k w a i t
12 p a r t 31
13 }
14 #pragma omp t a s k w a i t
15 p a r t 21
16 }
17 #pragma omp t a s k w a i t
18 p a r t 11
19 }
20 p a r t 01
21 #pragma omp task { p a r t 50 } / / T5

22 p a r t 02
23 #pragma omp task { p a r t 60 } / / T6

24 p a r t 03
25 #pragma omp task { p a r t 70 } / / T7

26 p a r t 04
27 }}

Figure 4: Example of an OpenMP program, pessimistic
scheduling of tied tasks.

to TSC 2. T5, T6 and T7 can only be scheduled in threads 1 and
4 which are used by tasks T4 and T0, respectively. Therefore, T5,
T6 and T7 cannot start their execution until they finish and such
a time interval can be arbitrarily long depending on the WCET of
task parts p04 and p40.

(ii) There is no configuration such that m∗i = 0 or 1. It cannot
be m∗i = 0 because this would mean that all m threads contain
tasks simultaneously suspended in a TSP, but then none of them
would make progress (i.e., a deadlock occurs). In this case, no new
task can be created, hence the blocking due to TSC 2 cannot be
experienced.

Analogously, it cannot be m∗i = 1. By contradiction, assume
m∗i = 1. This means that when task Ti is released, m − 1 threads
are not available to it due to TSC 2, i.e., m− 1 threads are blocked
by tasks that are not predecessors of Ti. Such m− 1 tasks must be
suspended in a TSP, and cannot continue executing because some
of their synchronization constraints are not fulfilled. This can only
happen when some task must wait for its first-level descendants,
due to a taskwait or an if-false clause. The semantics of the latter
constructs implies that there cannot be any synchronization arrow
that traverses multiple levels: indeed, synchronization arrows can
either connect siblings (belonging to the same level) in the case
of data-dependency, or first-level descendants to their father, in the
case of taskwait or if-false. From this reasoning, it follows that
them−1 tasks must belong tom−1 contiguous descendant levels
[lx, lx+m−2]. Therefore, the task that generates Ti must belong to
li, being either i ≤ x−1 or i ≥ x+m−1. In the case i ≤ x−1, a
contradiction is reached, because each of the m threads executes
at least one task, but the task belonging to x + m − 2 has no
descendant, hence there is no reason why it should be suspended
in a TSP. If instead i ≥ x+m− 1, then the task that generates Ti
is descendant of all the other m − 1 tasks, and the same holds for
Ti. This facts also imply a contradiction because TSC 2 comes into
play only when the generated task is not descendant of the other
ones. We conclude that there is no situation such that m∗i = 1,
proving the theorem.

Therefore, we define m∗i as:

m∗i = max(2,m− |BlockCTi|), (11)

(a) BFS tied (b) WFS tied (c) BFS untied
Figure 5: (a) Pessimistic breadth-first scheduling example with
tied tasks, (b) work-first scheduling (LIFO) with tied tasks
and (c) breadth-first scheduling with untied tasks. Program in
Figure 4.

where |BlockCTi| is the maximum number of tasks that may
block threads which Ti could not use at its creation time due to
TSC 2. As we consider all potential cases, this number of tasks
can be greater than the total number of threads, m. Therefore,
m − |BlockCTi| may be negative, but it is proven by Theorem
2 that the minimum value of m∗i is 2. Hence, in this case, an
accurate timing analysis should identify which tasks compose this
subset in the worst-case, since only a subset of the tasks composing
BlockCTi will subtract threads to the considered task. However,
when tied tasks are involved, it is absolutely non-trivial to identify
the scenario that maximizes the interference imposed on Ti. This is
another subtle reason (in addition to those listed in Section 5.2) that
explains why devising a timing analysis for tied tasks is so difficult.

Figure 5 illustrates a case of resource under-utilization implied
by the use of tied tasks, as opposed to the untied case. In particu-
lar, Figure 5a shows a possible scheduling of the OpenMP program
in Figure 4, considering BFS: if all the nested tasks are scheduled
in different threads before T5, T6 and T7, and being part04 and
part40 very time-consuming, then the execution of tasks T5, T6

and T7 is postponed even if threads 2 and 3 are idle (striped areas)
but tied to tasks T1 and T2. Figure 5b shows the scheduling consid-
ering WFS (LIFO): as already noted, WFS turns into a sequential
execution when implementing tied tasks. Notice that in this figure
task parts p40, p50, p60, p70 and p04 are less time-consuming only
for the sake of space-saving. If the clause untied is added to all
the tasks in the program of Figure 4, we observe that the breadth-
first scheduling of these untied tasks, illustrated in Figure 5c, deter-
mines no platform under-utilization beyond program limitations.
WFS will result in a similar scheduling for untied tasks.

6. Related work
The OpenMP language committee presented in [10] a comparison
between the thread-centric and the task-centric models, exposing
the design choices done in the new tasking model due to conflicts
with the thread-centric model. These decisions include the defini-

tion of tied and untied tasks and some others related to the data-
sharing and the scheduling. However, the paper does not take time
predictability into account.

In [3], authors performed an evaluation of different scheduling
policies using their run-time system Nanos++ [22] and analyzed the
differences existing between tied and untied tasks for an average
performance point of view.

The first attempt to apply OpenMP4 has been recently intro-
duced in [19], where the authors studied how to construct an
OpenMP task graph which contains enough information to allow
the application of real-time DAG scheduling models, from which
timing guarantees can be derived, considering the tasking seman-
tics of OpenMP4.

OpenMP has been already considered as a convenient interface
to describe real-time applications to deal with parallel task models
in multiprocessor systems. The earliest parallel task model to be
proposed is the fork-join model [14], where each task is represented
as an alternating sequence of sequential and parallel segments and
no nested parallelism is allowed. Later, this model has been gen-
eralized by the synchronous parallel model [5] [8], which allows
consecutive parallel segments with arbitrary degree of parallelism.
Still, synchronization is enforced at every segment’s boundary. As a
further generalization of the previously mentioned task models, the
sporadic DAG model represents a task as a directed acyclic graph,
where each node is a sequential job, and edges represent prece-
dence constraints between jobs [21] [20] [5] [7] [13].

Unfortunately, besides the increasing expressiveness provided
by existing real-time parallel task models, all of them neglect the
real semantics of the OpenMP execution model and bypass the
functionality of the runtime system. Moreover, the focus has typ-
ically been on the thread-centric model from OpenMP specifica-
tion v2.5, which is limited to a standard fork-join type of paral-
lelism and does not take advantage of the way more expressive task-
ing interface. The purpose of this work, instead, is to demonstrate
that OpenMP tasking model can be applied to real-time systems if
work-conserving schedulers, such as BFS and WFS, are used.

Hence, to our knowledge, this work represents the first attempt
to provide an accurate timing characterization of a real and promi-
nent parallel programming model such as OpenMP.

7. Conclusions
This paper analyses from a timing perspective the two tasking exe-
cution models existing in OpenMP4, tied and untied. The existence
of these two models results from the coexistence of the thread-
centric and task-centric models for backward compatibility rea-
sons.

The considerations drawn in this paper suggest that using tied
tasks inside time-critical applications is not recommendable, be-
cause of the inherent pessimism that underlies the timing analysis
of such tasks and the conceptual difficulties behind the construction
of an accurate schedulability test.

On the other hand, we have shown that a simple schedulability
analysis of OpenMP programs is possible whenever untied tasks are
involved. This definitely suggests that the use of untied tasks would
be preferable for parallel applications in the real-time context,
since it would permit to exploit a parallel execution model in a
predictable way. Overall, this paper demonstrates that OpenMP4
can be applied to real-time systems if untied tasking model is
adopted.

8. Acknowledgments
This work was supported by EU project P-SOCRATES (FP7-ICT-
2013-10) and by Spanish Ministry of Science and Innovation grant
TIN2012-34557.

References
[1] OpenMP Application Program Interface, Version 3.1. July 2011.
[2] OpenMP Application Program Interface, Version 4.0. October 2013.
[3] A. Duran, et. al. Evaluation of OpenMP Task Scheduling Strategies.

In 4th International Workshop on OpenMP, 2008.
[4] A. Marongiu, et. al. Improving the programmability of STHORM-

based heterogeneous systems with offload-enabled OpenMP. In First
International Workshop on Many-core Embedded Systems (MES),
2013.

[5] A. Saifullah, et. al. Multi-core real-time scheduling for generalized
parallel task models. Real-Time Systems, 49(4):404–435, 2013.

[6] B. Chapman, et. al. Implementing OpenMP on a high performance
embedded multicore MPSoC. In IEEE International Symposium on
Parallel & Distributed Processing (IPDPS), 2009.

[7] S. Baruah. Improved multiprocessor global schedulability analysis of
sporadic dag task systems. In 26th Euromicro Conference on Real-
Time Systems (ECRTS), 2014.

[8] C. Maia, et. al. Response-time analysis of synchronous parallel tasks
in multiprocessor systems. In 22nd International Conference on Real-
Time Networks and Systems (RTNS), 2014.

[9] C. Wang, et. al. libEOMP: A Portable OpenMP Runtime Library
Based on MCA APIs for Embedded Systems. In International Work-
shop on Programming Models and Applications for Multicores and
Manycores (PMAM), 2013.

[10] E. Ayguade, et. al. The Design of OpenMP Tasks. IEEE Transactions
on Parallel and Distributed Systems, 20(3):404–418, March 2009.

[11] E. Stotzer, et. al. OpenMP on the Low-Power TI Keystone II AR-
M/DSP System-on-Chip. In OpenMP in the Era of Low Power De-
vices and Accelerators, volume 8122, pages 114–127. Springer Berlin
Heidelberg, 2013.

[12] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of scheduling
under precedence constraints. Operations Research, 26(1):22–35,
1978.

[13] Jing Li, et. al. Outstanding Paper Award: Analysis of Global EDF for
Parallel Tasks. In 25th Euromicro Conference on Real-Time Systems
(ECRTS), 2013.

[14] K. Lakshmanan, et. al. Scheduling parallel real-time tasks on multi-
core processors. In 31st IEEE Real-Time Systems Symposium (RTSS),
2010.

[15] M. Frigo, et. al. The implementation of the Cilk-5 multithreaded
language. In ACM SIGPLAN Notices, volume 33, pages 212–223.
ACM, 1998.

[16] G. J. Narlikar. Scheduling threads for low space requirement and good
locality. Theory of Computing Systems, 35(2):151–187, 2002.

[17] P. Burgio, et. al. Enabling fine-grained OpenMP tasking on tightly-
coupled shared memory clusters. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2013.

[18] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM
journal on Applied Mathematics, 17(2):416–429, 1969.

[19] R. Vargas, et. al. OpenMP and Timing Predictability: A Possible
Union? In 18th Design, Automation and Test in Europe Conference
(DATE), 2015.

[20] S. Baruah, et. al. A Generalized Parallel Task Model for Recurrent
Real-time Processes. In IEEE Real-Time Systems Symposium (RTSS),
2012.

[21] V. Bonifaci, et. al. Feasibility Analysis in the Sporadic DAG
Task Model. In 25th Euromicro Conference on Real-Time Systems
(ECRTS), 2013.

[22] X. Teruel, et. al. Support for OpenMP tasks in Nanos v4. In Pro-
ceedings of the 2007 conference of the center for advanced studies on
Collaborative research. IBM Corp., 2007.

