
24/07/2024 12:26

Response-Time Analysis of Conditional DAG Tasks in Multiprocessor Systems / Melani, Alessandra;
Bertogna, Marko; Bonifaci, Vincenzo; Marchetti Spaccamela, Alberto; Buttazzo, Giorgio C.. - 2015-:(2015),
pp. 211-221. (Intervento presentato al convegno 27th Euromicro Conference on Real-Time Systems,
ECRTS 2015 tenutosi a Lund, Svezia nel 7-10 luglio 2015) [10.1109/ECRTS.2015.26].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

IEEE - Institute of Electrical and Electronics Engineers Inc.

This is the peer reviewd version of the followng article:

Response-Time Analysis of Conditional DAG Tasks in Multiprocessor Systems

Alessandra Melani∗, Marko Bertogna†, Vincenzo Bonifaci‡, Alberto Marchetti-Spaccamela§, Giorgio C. Buttazzo∗
∗Scuola Superiore Sant’Anna, Pisa, Italy, E-mail: {alessandra.melani, g.buttazzo}@sssup.it
†Università di Modena e Reggio Emilia, Modena, Italy, E-mail: m.bertogna@unimore.it

‡Istituto di Analisi dei Sistemi ed Informatica, CNR, Roma, Italy, E-mail: vincenzo.bonifaci@iasi.cnr.it
§Università di Roma “La Sapienza”, Roma, Italy, E-mail: alberto@dis.uniroma1.it

Abstract—Different task models have been proposed to repre-
sent the parallel structure of real-time tasks executing on many-
core platforms: fork/join, synchronous parallel, DAG-based, etc.
Despite different schedulability tests and resource augmentation
bounds are available for these task systems, we experience
difficulties in applying such results to real application scenarios,
where the execution flow of parallel tasks is characterized by
multiple (and nested) conditional structures. When a conditional
branch drives the number and size of sub-jobs to spawn, it is
hard to decide which execution path to select for modeling the
worst-case scenario.

To circumvent this problem, we integrate control flow infor-
mation in the task model, considering conditional parallel tasks
(cp-tasks) represented by DAGs composed of both precedence and
conditional edges. For this task model, we identify meaningful
parameters that characterize the schedulability of the system,
and derive efficient algorithms to compute them. A response-
time analysis based on these parameters is then presented for
different scheduling policies. A set of simulations shows that the
proposed approach allows efficiently checking the schedulability
of the addressed systems, and that it significantly tightens the
schedulability analysis of non-conditional (e.g., classic DAG) tasks
over existing approaches.

I. INTRODUCTION

As a larger number of multi-/many-core systems is proposed
by the main hardware producer to the embedded market [1],
[3], [2], there is an increasing interest for applications re-
quiring both high-performance and real-time requirements.
The real-time community has been recently active in trying
to update classic schedulability analysis to such relatively
new platforms, providing new models and tests to guarantee
the timing requirements of parallel task systems. Different
real-time task models have been proposed to capture the
most salient features of parallel applications: the fork/join
model [16], the synchronous parallel task model [23], and the
DAG-based task model [8]. Each of these models divides each
task into multiple smaller computation units called sub-tasks,
that are allowed to run simultaneously on different cores.

As noted in [15], the problem introduced by conditional
statements does not arise when tasks have no parallelism,
as in classic single-core applications. For these systems, it
is sufficient to consider one single parameter for each task,
i.e., the Worst-Case Execution Time (WCET), which corre-
sponds to the longest chain of execution among all possible
conditional paths. For this reason, conditional statements are
not explicitly modeled in the schedulability analysis for single
core applications, while they are much more detrimental to the
schedulability analysis of parallel task models.

In fact, when checking the schedulability of real parallel
applications (e.g., for image processing or autonomous-driving
systems), many problems arise in mapping the actual task
structures to the existing task models. This is mainly due to the

#pragma omp parallel num_threads(N) {
#pragma omp master {
#pragma omp task { // T0

if (condition) {
#pragma omp task { // T1 }

}
else {

#pragma omp task { // T2 }
#pragma omp task { // T3 }
#pragma omp task { // T4 }

}}}}

if (cond) { … }
else { … }

10

6

6

6

T1

T2

T3

T4

Fig. 1: A parallel program with conditional execution.

existence of multiple conditional branches (such as if-then-else
statements) and control flow instructions in correspondence
with the creation of different parallel sub-tasks. For example,
consider the case of a task that conditionally elaborates an
image depending on the particular system state; either it may
fork a large number of sub-tasks to process small clusters
of pixels in a parallel way, or it may require to run a
single sub-task to process a larger sampled set of pixels in
a sequential way. Moreover, the level of detail at which each
image region is processed may dynamically vary depending on
runtime information. For example, when an object is detected
in a particular region, the processing detail for the associated
region may be progressively intensified, thus reducing the
number of pixels to process.

Therefore, the response-time of a task may significantly vary
depending on the particular instance, as does its interfering
contribution to other tasks. Identifying the scenario that mostly
affects the schedulability of the system is then challenging.

Figure 1 represents a parallel task T0 specified according to
the OpenMP standard, with just one conditional statement at
the beginning of execution. For simplicity, we consider only
one task instance. Depending on the conditional clause, the
task takes either the upper branch, creating a sequential sub-
task T1 of 10 time-units, or the lower branch, forking three
sub-tasks T2, T3, T4 of 6 time-units each. Which branch leads
to the worst-case response-time depends on the number of
cores and the interference from the other tasks. For example,
with three or more cores and no interfering task, the upper
branch leads to the largest response-time for every work-
conserving scheduler1 (i.e., 10 time-units instead of 6). With
less cores, the largest response-time is given by the lower
branch (i.e., 12 time-units with two cores, and 18 time-units
with one core). If interfering tasks are added, the situation is
even more challenging because the conclusions stated above
may be reversed. For example, adding a sequential task of 6

1A scheduler is work-conserving if it never idles a core whenever there is
pending workload to execute.

time-units, the worst-case response-time with three cores is
now given by the lower branch (12 instead of 10).

Similarly, it is difficult to predict which branch imposes a
larger interference on other tasks: depending on the character-
istics of the other tasks, a higher interference may be produced
by a set of parallel sub-tasks or by a longer sequential sub-
task. Since applications are typically composed of several
nested conditional statements, the problem of mapping parallel
applications to task models that do not explicitly consider
conditional statements is therefore not easy to solve.

A. Contributions and paper organization
We extend the parallel DAG model by integrating con-

ditional constructs to provide a tighter analysis to parallel
task systems. In the conditional parallel task (cp-task) model,
each task is represented by a DAG containing both parallel
and conditional nodes. In order to capture the structure of
parallel applications, we provide a formal definition of cp-task
by specifying the possible connections between the various
(conditional and non-conditional) sections of the graph.

For this model, we derive efficient ways to compute an
upper-bound on the response-time of each cp-task using dif-
ferent global scheduling algorithms, and show the effective-
ness of our schedulability analysis by means of exhaustive
simulations. Moreover, we show that the proposed response-
time analysis can be efficiently applied to non-conditional task
models as well (such as the DAG task model [8]). For these
latter systems, our simulations show that a significantly higher
number of schedulable task-sets is detected (at a considerably
smaller time complexity) with respect to existing approaches.

The rest of this paper is organized as follows. In Sections II
and III we review related work and introduce the proposed task
model and the notation used throughout the paper. We then
characterize the critical interference among tasks (Section IV),
used to derive a response-time analysis (Section V) through
the computation of certain task parameters of interest (Section
VI). In Section VII we report the results of our simulations.

II. RELATED WORK

There is a substantial amount of work in the real-time
literature on parallel task models, but for the most part this
has been limited to non-conditional execution modes. One
of the first parallel task models to be proposed is the fork-
join model by Lakshmanan, Kato and Rajkumar [16], [6], in
which each task is represented as an alternating sequence of
sequential and parallel segments, and every parallel segment
has the same degree of parallelism (which is constrained to
be less than or equal to the number of available processors).
A natural extension, called the synchronous parallel model
[23], [5], [20], [13], [19], allows consecutive parallel segments
and an arbitrary degree of parallelism of every segment.
Synchronization is still enforced at the boundary of each
segment, in the sense that a sub-task in the new segment
may start only after all sub-tasks in the previous segment have
completed. A more flexible model of concurrency than either
the fork-join or the synchronous parallel models is provided
by the DAG model: a task is represented by a directed acyclic
graph, where every node is a sequential sub-task, and arcs
represent precedence constraints between the sub-tasks [8],
[11], [17], [22], [7], [24], [18].

The multi-DAG model by Fonseca al. [15] is to our knowl-
edge the first attempt at enriching a parallel task model with
control-flow information. This model represents each parallel
task as a collection of DAGs, each of which represents a dif-
ferent execution flow. A method is proposed to combine such
flows into a single synchronous parallel task that preserves the
execution requirements and the precedence constraints of all
the execution flows that can possibly occur at runtime, thus
reducing the schedulability problem to the simpler problem for
synchronous parallel tasks. On the other hand, a disadvantage
of the approach of [15] is that it is not scalable with respect to
the number of sub-tasks, since the number of different flows
through a DAG can be exponential in the number of nodes.
Moreover, it adds pessimism in the task transformation process
and requires server-based synchronization mechanisms that are
difficult to implement.

We discuss in Appendix A a related submitted paper by
some of the authors.

III. SYSTEM MODEL AND DEFINITIONS

Let T = {τ1, . . . , τn} denote a set of n sporadic condi-
tional parallel tasks (cp-tasks) that execute upon a platform
consisting of m identical processors. Each cp-task τk releases
a potentially infinite sequence of jobs. Each job of τk is
separated from the next by at least Tk time-units, and has a
constrained relative deadline Dk ≤ Tk. Moreover, each cp-task
τk is represented as a directed acyclic graph Gk = (Vk, Ek),
where Vk = {vk,1, . . . , vk,nk

} is a set of nodes (or vertices)
and Ek ⊆ Vk × Vk is a set of directed arcs (or edges),
see Figure 2. Each node vk,j ∈ Vk represents a sequential
chunk of execution (or “sub-task”) and is characterized by
a worst-case execution time Ck,j . We assume preemption
and migration overhead be integrated within WCET values.
The arcs represent dependencies between sub-tasks, that is, if
(vk,1, vk,2) ∈ Ek, then vk,1 must complete before vk,2 can
begin execution. A node with no incoming arcs is referred to
as a source of the DAG, while a node with no outgoing arcs
is referred to as a sink of the DAG. Without loss of generality,
we assume that each cp-task has exactly one source vsource

k
and one sink node vsink

k . If this is not the case, a dummy
source/sink node with zero WCET can be added to the DAG,
with arcs to/from all the source/sink nodes. We will omit using
the subscript k for denoting parameters associated to the task
τk whenever the reference to the task is clear in the discussion.

In our cp-task model, nodes can be of two types: a) regular
nodes, which allow all successor nodes to be executed in
parallel and are represented as rectangles in our figures; b)
conditional nodes, which allow modeling the beginning and
the end of a conditional (for example, if-then-else) construct.
Conditional nodes come in start/end pairs and represent condi-
tional branching by requiring execution of exactly one among
the successors of the start node; in our figures, conditional
nodes are represented by diamonds and circles, for the head
and tail of the conditional pair, respectively.

To properly model the possible execution flows of a struc-
tured programming language, a further restriction is imposed
to the possible connections within a conditional branch. That
is, there cannot be any connection between a node belonging
to a branch of a conditional statement and nodes outside that

branch (including other branches of the same statement). More
formally, we use the following definition.

Definition III.1. Let (v1, v2) be a pair of conditional nodes
in a DAG Gk = (Vk, Ek). The pair (v1, v2) is a conditional
pair if the following hold:

1) Suppose that there are exactly q outgoing arcs from v1
to the nodes s1, s2, . . ., sq , for some q > 1. Then there
are exactly q incoming arcs into v2 in Ek, from some
nodes t1, t2, . . ., tq .

2) For each ` ∈ {1, 2, . . . , q}, let V ′` ⊆ Vk and E′` ⊆ Ek
denote all the nodes and arcs on paths reachable from
s` that do not include node v2. By definition, s` is the
sole source node of the DAG G′` := (V ′` , E

′
`). It must

hold that t` is the sole sink node of G′`.
3) It must hold that V ′` ∩ V ′j = ∅ for all `, j, ` 6= j.

Additionally, with the exception of (v1, s`) there should
be no arcs in Ek into nodes in V ′` from nodes not in V ′` ,
for each ` ∈ {1, 2, . . . , q}. That is, Ek ∩ ((Vk \ V ′`) ×
V ′`) = {(v1, s`)} should hold for all `.

As in the classical DAG task model, two quantities of
interest are the length and the volume of a task. We define
a chain or path of a cp-task τk as a sequence of nodes
λ = (vk,a, . . . , vk,b) such that (vk,j , vk,j+1) ∈ Ek, ∀j ∈ [a, b).
The length of the chain, denoted by len(λ), is the sum of the
WCETs of all its nodes. That is, for a chain of task τk, the
value

∑b
j=a Ck,j . The longest path of a cp-task is any source-

sink path of the task that achieves the longest length.

Definition III.2. The length of a cp-task τk, denoted by Lk,
is the length of any longest path of τk.

Note that Lk also represents the minimum worst-case exe-
cution time of cp-task τk, that is, the time required to execute
it when the number of processing units is sufficiently large
(potentially infinite) to allow the task to always execute at
maximum parallelism. A necessary condition for the feasibility
of a cp-task τk is then Lk ≤ Dk.

In the absence of conditional branches, the classical sporadic
DAG task model defines the volume of the task as the worst-
case execution time needed to complete it on a dedicated
single-core platform [8], [11], [17], [24]. This quantity can
be computed as the sum of the WCETs of all the sub-tasks,
that is

∑
vk,j∈Vk

Ck,j . In the presence of conditional branches,
assuming that all sub-tasks are always executed may be overly
pessimistic. Hence, we generalize the concept of volume of a
cp-task by introducing the notion of worst-case workload.

Definition III.3. The worst-case workload Wk of a cp-task τk
is the maximum time needed to execute an instance of τk on a
dedicated single-core platform, where the maximum is taken
among all possible choices of conditional branches.

Section VI explains in detail how the worst-case workload
of a task can be computed efficiently.

The utilization Uk of a cp-task τk is the ratio between its
worst-case workload and period, that is, Uk = Wk/Tk. For the
task-set T , its total utilization is defined as UT =

∑n
i=1 Ui.

A simple necessary condition for feasibility is UT ≤ m.
Example. Figure 2 illustrates an example cp-task consisting

of nine sub-tasks (nodes) V = {v1, . . . , v9} and twelve

1 0

1
4

3

1

1

2

v1

v2

v3

v4

v5

v6 v7

v9

1
v8

Fig. 2: An example cp-task. Each vertex is labeled with the
WCET of the corresponding sub-task.

TABLE I: Notation

T set of cp-tasks n number of tasks in T
τk k-th task of T Dk relative deadline of τk
Tk period of τk Gk DAG associated to τk
Vk node set of Gk Ek arc set of Gk

vk,j jth sub-task of τk Ck,j WCET of vk,j
Lk length of τk’s longest chain Wk worst-case workload of τk
Uk utilization of τk

precedence constraints (arcs). The number inside each node
represents its WCET. Two of the nodes, v2 and v6, form a
conditional pair, meaning that only one sub-task between v3
and v4 will be executed (but never both), depending on a
conditional clause. The (longest path) length of this cp-task
is L = 8, and is given by the chain (v1, v2, v4, v6, v7, v9). Its
volume is 14 units, while its worst-case workload must take
into account that either v3 or v4 are executed at every task
instance. Since v4 corresponds to the branch with the largest
workload, we obtain W = 11.

To further clarify the restrictions imposed to the graph
structure, note that there cannot be any arc connecting v4 to
v5, because this would violate the correctness of conditional
constructs and the semantics of the precedence relation. In fact,
v5 could start executing only when v4 has terminated; however,
if the branch corresponding to v3 is taken, v5 should then wait
for the completion of a sub-task that will never be executed.
Analogously, a connection from v5 to to v4 would not make
sense in case the branch corresponding to v3 is taken. Indeed,
v4 belongs to one of the branches induced by the conditional
pair (v2, v6), while v5 does not; therefore, by Definition III.1,
no arc is allowed to join v4 to v5 or vice versa. Similarly, no
connection is possible between v4 and v3, as they belong to
different branches of the same conditional statement.

Table I summarizes the notation used throughout the paper.

IV. CRITICAL INTERFERENCE OF CP-TASKS

In this section, a schedulability analysis is presented for
cp-tasks globally scheduled with any work-considering sched-
uler. The analysis is based on the notion of interference. In
the existing literature for globally scheduled sequential task
systems, the interference on a task τk is defined as the sum
of all intervals in which τk is ready, but it cannot execute
because all cores are busy executing other tasks. We modify
this definition to adapt it to the parallel nature of cp-tasks, by

introducing the concept of critical interference [13], [19].
Given a set of cp-tasks T and a (work-conserving) schedul-

ing algorithm, we first define the notion of critical chain.

Definition IV.1. The critical chain λ∗k of a cp-task τk is the
chain of nodes of τk that leads to its worst-case response-time
Rk.

In particular, the critical chain λ∗k of a cp-task τk can be
identified taking the sink vertex vsink

k of the worst-case instance
of τk (i.e., the job of τk that has largest response-time in the
worst-case scenario), and recursively pre-pending the last to
complete among the predecessor nodes (either conditional or
not) until the source vertex vk,1 has been included in the chain.

A critical node of task τk is a node that belongs to τk’s
critical chain. Since the response-time of a cp-task is given by
the response-time of the sink vertex of the task, it follows that
the sink node is always a critical node. For deriving the worst-
case response-time of a task, it is then sufficient to characterize
the maximum interference suffered by its critical chain.

Definition IV.2. The critical interference Ik on task τk is
defined as the maximum cumulative time in which any critical
node of the worst-case instance of τk is ready but it cannot
execute because all cores are busy.

Lemma IV.1. Given a set of cp-tasks T scheduled by any
work-conserving algorithm on m identical processors, the
worst-case response-time of each task τk is

Rk = len(λ∗k) + Ik. (1)

Proof. Let rk be the release time of the worst-case instance of
τk. In the scheduling window [rk, rk +Rk], the critical chain
will require len(λ∗k) time-units to complete. By Definition
IV.2, the interference from non-critical nodes of τk and from
other cp-tasks τi 6=k is Ik. The lemma simply follows noting
that the response-time of τk corresponds to the response-time
of its sink node, which is the last node of the critical chain.

The problem in using Equation (1) for schedulability anal-
ysis is that it is difficult to exactly bound the interference
imposed on the considered task. An established solution is
to express the total interfering workload as a function of
individual contributions of the interfering tasks, and then
upper-bound such contributions with the worst-case workload
of each interfering task τi. In the following, we explain how
such interfering contributions can be computed, and how they
relate to each other to determine the total interfering workload.

Definition IV.3. The critical interference Ii,k imposed by task
τi on task τk is defined as the cumulative workload executed by
sub-tasks of τi while a critical node of the worst-case instance
of τk is ready to execute but is not executing.

Lemma IV.2. For any work-conserving algorithm, the follow-
ing relation holds:

Ik =
1

m

∑
τi∈T

Ii,k. (2)

Proof. By the work-conserving property of the scheduling
algorithm, whenever a critical node of τk is interfered, all
m cores are busy executing other sub-tasks. The total amount
of workload executed by sub-tasks interfering with the critical

Ri

Ti

L

Fig. 3: Worst-case scenario to maximize the workload of an
interfering task τi in the sequential case.

chain of τk is then mIk. Hence,
∑
τi∈T Ii,k(L) = mIk(L),

and by reordering the terms, the lemma follows.

In the particular case when i = k, the critical interference
Ik,k may include the interfering contributions of non-critical
sub-tasks of τk on itself, that is, the self-interference.

By combining Equations (1) and (2), we obtain that the
response-time of a task τk is given by

Rk = len(λ∗k) +
1

m
Ik,k +

1

m

∑
τi∈T ,i6=k

Ii,k. (3)

V. RESPONSE-TIME ANALYSIS

We now show how to derive an upper-bound on the worst-
case response-time of each cp-task. The first problem in using
Equation (3) to derive a response-time analysis is related to the
computation of the interfering contributions Ii,k. To sidestep
this problem, we compute an upper-bound on the workload
that an interfering task τi may produce within the scheduling
window [rk, rk +Rk] of the worst-case instance of a task τk,
and use this value as an upper-bound on the interference Ii,k.

A. Inter-task interference
Following a typical approach adopted in the response-time

analysis for globally scheduled systems [9], [19], we divide
the contribution to the workload of an interfering task τi in a
window of interest between carry-in, body, and carry-out jobs.
The carry-in job is the first instance of τi that is part of the
window of interest and has release time before and deadline
within the window of interest. The carry-out job is the last
instance of τi executing in the window of interest, having a
deadline after the window of interest. All other instances of
τi are named body jobs.

For sequential task-sets, an upper-bound on the workload of
an interfering task τi within a window of length L is found in
a situation where (i) the first job of τi starts executing as late
as possible, with a starting time aligned with the beginning of
the window of interest, and (ii) later jobs are executed as soon
as possible [9]. Such a situation is depicted in Figure 3.

For cp-task systems, it is much more difficult to find
a configuration that maximizes the carry-in and carry-out
contributions. In fact:
1) Due to the precedence constraints and different degree of
parallelism of the various execution paths of a cp-task, it may
happen that a larger workload is executed within the window if
the interfering task is shifted left, i.e., by decreasing the carry-
in and increasing the carry-out contributions. This happens
for example when the first part of the carry-in job has little
parallelism, while the carry-out part at the end of the window
contains multiple parallel sub-tasks.
2) A sustainable schedulability analysis [12] has to guarantee

Ri

L

L

m

✏

✏

Wi/m Wi/m

Fig. 4: Worst-case scenario to maximize the workload of an
interfering cp-task τi.

that all tasks meet their deadlines even when some of them
execute less than the worst-case. For example, one of the
sub-tasks of an execution path of a cp-task may execute for
less than its WCET Ci,j . This may lead to larger interfering
contributions within the window of interest, for example if a
parallel section of a carry-out job is included in the window
due to an earlier completion of a preceding sequential section.
3) The carry-in and carry-out contribution of a cp-task may
correspond to different conditional paths of the same task, with
different levels of parallelism.

To overcome the above problems, we consider a scenario in
which each interfering job of task τi executes for its worst-case
workload Wi. This quantity (which we show how to compute
in Section VI) represents the maximum amount of workload
that can be generated by a single instance of a cp-task. The
next lemma provides a safe upper-bound on the workload of
a task τi within a window of interest of length L.

Lemma V.1. An upper-bound on the workload of an interfer-
ing task τi in a window of length L is given by

Wi(L) =

⌊
L+Ri −Wi/m

Ti

⌋
Wi +

+ min
(
Wi,m · ((L+Ri −Wi/m) mod Ti)

)
.

Proof. Consider a situation in which all instances of τi execute
for their worst-case workload Wi. The highest workload
within a window of length L for such a task configuration
is produced when the carry-in and carry-out contributions are
evenly distributed among all cores, as shown in Figure 4. Note
that distributing the carry-in or carry-out contributions on a
lesser number of cores may not possibly increase the workload
within the window. Moreover, other task configurations with a
smaller workload for the carry-in or carry-out instance cannot
lead to a higher workload in the window of interest: although
a reduced carry-in workload may allow including a larger part
of the carry-out (as in shifting right the window of interest
by ε = ∆Wi/m in the figure), the carry-out part that enters
the window from the right cannot be larger than the carry-in
reduction.

In the considered scenario, an upper-bound on the number
of carry-in and body instances that may execute within the
window is ⌊

L+Ri −Wi/m

Ti

⌋
,

each one contributing for Wi. The portion of the carry-out
job included in the window of interest is (L + Ri −Wi/m)

mod Ti. Since at most m cores may be occupied by the
carry-out job within that interval, and the carry-out job cannot
execute for more than Wi units, the lemma follows.

When global EDF is used as a scheduling algorithm, it is
possible to find an additional upper-bound on the interfering
contribution of each task by noting that the deadline of the
interfering jobs cannot be later than that of the interfered task.

Lemma V.2. An upper-bound on the interfering workload of
a task τi on a task τk with global EDF is given by

Ii,k =

(⌊
Dk −Di

Ti

⌋
+ 1

)
Wi +

+ min
(
Wi,m ·max (0, Dk mod Ti −Di +Ri)

)
.

Proof. Consider a window [rk, rk + Dk] of a task τk. The
interfering contribution of a task τi is maximized when the
deadline of the carry-out job is aligned with rk +Dk. In such
a situation, the number of body and carry-out jobs of τi is
b(Dk − Di)/Tic + 1, each contributing for Wi. Concerning
the carry-in job, its scheduling window overlaps with the
considered window for Dk mod Ti. Subtracting the slack
(Di − Ri), we obtain that the carry-in job may execute for
at most (Dk mod Ti) − (Di − Ri) within the considered
window, when this term is not negative. Since the carry-in
job can occupy at most m cores, and its worst-case workload
is bounded by Wi, the lemma follows.

B. Intra-task interference

After deriving valid upper-bounds for the Ii,k terms of
Equation (3), we now consider the remaining terms of the
response-time equation, which take into account the contri-
bution of the considered task to its overall response-time.
We hereafter derive an upper-bound2 on the sum Zk

def
=

len(λ∗k) + 1
mIk,k.

Lemma V.3. For a constrained deadline cp-task system
scheduled with any work-conserving algorithm, the following
relation holds for any task τk:

Zk = len(λ∗k) +
1

m
Ik,k ≤ Lk +

1

m
(Wk − Lk). (4)

Proof. Since we are in a constrained deadline setting, a job
will never be interfered by other jobs of the same task. Being
Wk the maximum possible workload produced by a job of cp-
task τk, the portion that may interfere with the critical chain
λ∗k is Wk − len(λ∗k). Then, Ik,k ≤Wk − len(λ∗k). Hence,

len(λ∗k) +
1

m
Ik,k ≤ len(λ∗k) +

1

m
(Wk − len(λ∗k)). (5)

Since len(λ∗k) ≤ Lk and m ≥ 1, the lemma follows.

C. Schedulability condition

Using the bounds derived in this section to replace the
corresponding terms in Equation (3), the following theorem
can be proved [9].

2Despite Zk includes only the contribution of task τk , it would be wrong to
identify this parameter with the makespan of τk , i.e., the worst-case response-
time of τk when it has no interference from other tasks. See Appendix B.

Theorem V.1. Given a cp-task set globally scheduled on m
cores, an upper-bound Rubk on the response-time of a task τk
can be derived by the fixed-point iteration of the following
expression, starting with Rubk = Lk:

Rubk ← Lk +
1

m

(
Wk − Lk

)
+

⌊
1

m

∑
∀i 6=k

X ALG
i

⌋
,

where, with global FP:

X ALG
i = X FP

i =

{
Wi(R

ub
k), ∀i < k

0, otherwise
;

with global EDF:

X ALG
i = X EDF

i = min
{
Wi(R

ub
k), Ii,k

}
;

and X ALG
i =Wi(R

ub
k) for any work-conserving scheduler.

The schedulability of a cp-task system can then be simply
checked using Theorem V.1 to compute an upper-bound on
the response-time of each task. In the FP case, the bounds
are updated in decreasing priority order, starting from the
highest priority task. In this case, it is sufficient to apply
Theorem V.1 only once for each task. Instead, in the EDF
or general work-conserving cases, multiple rounds may be
necessary. All bounds are initially set to Rubk = Lk,∀τk ∈ T .
Then, Theorem V.1 is used to compute a response-time bound
for each task τk. The procedure continues until either (i) one
of the response-time bounds exceeds the corresponding task
deadline (returning a negative schedulability result), or (ii) no
more update is possible (returning a schedulable condition).

VI. COMPUTATION OF CP-TASK PARAMETERS

The response-time analysis of Theorem V.1 shows that the
schedulability of a conditional DAG task system can be simply
checked if, beside deadline and period, two characteristic
parameters are known for each cp-task τk: the worst-case
workload Wk and the length of the longest chain Lk. Then, an
upper-bound on the response-time of each task can be easily
computed with Theorem V.1 in pseudo-polynomial time.

The longest path of a cp-task can be computed exactly in
the same way as for the longest path of a classical DAG
task. For this purpose, conditional nodes can be considered
as if they were simply regular nodes. The computation can be
implemented in time linear in the size of the DAG by standard
techniques, see e.g. Bonifaci et al. [11] and references therein.

The computation of the worst-case workload of a cp-task is
not as easy. We hereafter show an algorithm to compute Wk

for each task τk.

A. Worst-case workload computation
We first compute a topological order of the DAG3. Then,

exploiting the (reverse) topological order, a simple dynamic
program can compute for each node the accumulated workload
corresponding to the portion of the graph already examined.
The algorithm must distinguish the case when the node under
analysis is the head of a conditional pair or not. If this is

3A topological order is such that if there is an arc from u to v in the DAG,
then u appears before v in the topological order. A topological order can be
easily computed in time linear in the size of the DAG (see any basic algorithm
textbook, such as [14]).

the case, then the maximum accumulated workload among
the successors is selected, otherwise the sum of the workload
contributions of all successors is computed.

The pseudo-code for determining the worst-case workload
of a cp-task is shown in Algorithm 1. This algorithm takes

Algorithm 1 Worst-Case Workload Computation

1: procedure WCW(G)
2: σ ← TOPOLOGICALORDER(G)
3: S(vsink)← {vsink}
4: for vi ∈ σ from sink to source do
5: if SUCC(vi) 6= ∅ then
6: if ISBEGINCOND(vi) then
7: v∗ ← argmaxv∈SUCC(vi)

C(S(v))
8: S(vi)← {vi} ∪ S(v∗)
9: else

10: S(vi)← {vi} ∪
⋃
v∈SUCC(vi)

S(v)
11: end if
12: end if
13: end for
14: return C(S(vsource))
15: end procedure

as input the graph representation of a cp-task G and outputs
its worst-case workload W . In the algorithm, for any set of
nodes S, its total WCET is denoted by C(S). First, at line 2,
a topological sorting of the vertices is computed and stored
in the permutation σ. Then, the permutation σ is scanned in
reverse order, that is, from the (unique) sink to the (unique)
source of the DAG. At each iteration of the for loop at line 4, a
node vi is analyzed; a set variable S(vi) is used to store the set
of nodes achieving the worst-case workload of the subgraph
including vi and all its descendants in the DAG. Since the sink
node has no successors, S(vsink) is initialized to {vsink} at line
3. Then, the function SUCC(vi) computes the set of successors
of vi. If that set is not empty, function ISBEGINCOND(vi)
is invoked to determine whether vi is the head node of a
conditional pair. If so, the node v∗ achieving the largest value
of C(S(v)), among v ∈ SUCC(vi), is computed (line 7). The
set S(v∗) therefore achieves the maximum cumulative worst-
case workload among the successors of vi, and is then used to
create S(vi) together with vi. Instead, whenever vi is not the
head of a conditional pair, all its successors are executed at
runtime. Therefore, the workload contributions of all its suc-
cessors must be merged into S(vi) (line 10) together with vi.
The procedure returns the worst-case workload accumulated
by the source vertex, that is C(S(vsource)).

The complexity of the algorithm is quadratic in the size
of the input DAG. Indeed, there are O(|E|) set operations
performed throughout the algorithm, and some operations on a
set S (namely, the ones at line 7) also require computing C(S),
which has cost O(|V |). So the time complexity is O(|V ||E|).
To implement the set operations, set membership arrays are
sufficient.

One may be tempted to simplify the procedure by avoiding
the use of set operations, keeping track only of the cumulative
worst-case workload at each node, and allowing a linear
complexity in the DAG size. However, such an approach would
lead to an overly pessimistic result. Consider a simple graph

1 0

1

1

1

1

5

v1

v2

v3

v4

v5

v6

v7

v8

1

1

1
v9

v10

Fig. 5: Example of cp-task that shows the pessimism of the
upper-bound given in Equation (4).

with a source node forking multiple parallel branches which
then converge on a common sink. The cumulative worst-case
workload of each parallel path includes the contribution of
the sink. If we simply sum such contributions to derive the
cumulative worst-case workload of the source, the contribution
of the sink would be counted multiple times. Set operations
are therefore needed to avoid accounting multiple times each
node contribution.

B. Improved upper-bound on intra-task interference

Once Wk and Lk are known for a task τk, Equation
(4) gives an upper-bound on the term Zk that accounts for
the contribution of the considered task τk to its worst-case
response-time. However, due to the presence of conditional
branches, such an upper-bound might be pessimistic. As an
example, consider the cp-task τk in Figure 5, which executes
on a platform composed of m = 2 processors.

This cp-task has a longest path length of 7 time-units (given
by the upper branch), and a worst-case workload Wk = 8 time-
units (given by the lower branch). When m = 2, Equation (4)
gives a bound on Zk of 7.5. However, if the upper branch is
taken after the completion of v1, only the longest path of τk
would be executed, yielding a value of Zk = 7 time-units.
Instead, if the lower branch is taken, only the corresponding
portion of the graph would be executed, with an upper-bound
of Zk ≤ 4 + 4/2 = 6 time-units. Hence, in both cases, the
upper-bound computed by (4) would be pessimistic.

This is mainly due to the fact that Equation (4) considers
the worst-case situation where, simultaneously, i) the critical
path of Gk is executed; and ii) the total worst-case workload
of τk is experienced. However, given the internal structure of
the cp-task of Figure 5, this situation can never happen.

The example intuitively suggests that the bound in Equation
(4) can be further improved by jointly computing the worst-
case workload and the longest chain length for each portion of
the cp-task, so that both values refer to the same conditional
branch. Specifically, for a given chain λ of τk, let Wλ

k be
the maximum workload attainable by τk when the conditional
choices are compatible with λ. Then, arguing similarly as in
Lemma V.3, we get:

Lemma VI.1.

Zk ≤ len(λ∗k) +
1

m
(W

λ∗
k

k − len(λ∗k))

≤ max
λ

(
len(λ) +

1

m
(Wλ

k − len(λ))

)
where λ ranges over all source-sink paths of τk.

Algorithm 2 shows the pseudo-code computing an improved
bound on Zk, which takes into account the issue discussed
above by computing jointly the worst-case workload and the
contributions of different subgraphs of the task.

Algorithm 2 Zk Bound Computation

1: procedure ZBOUND(G,m)
2: σ ← TOPOLOGICALORDER(G)
3: S(vsink)← {vsink}
4: T (vsink)← {vsink}
5: f(vsink)← Csink

6: for vi ∈ σ from sink to source do
7: if SUCC(vi) 6= ∅ then
8: if ISBEGINCOND(vi) then
9: v∗ ← argmaxv∈SUCC(vi)

C(S(v))
10: S(vi)← {vi} ∪ S(v∗)
11: u∗ ← argmaxu∈SUCC(vi)

f(u)
12: T (vi)← {vi} ∪ T (u∗)
13: f(vi)← Ci + f(u∗)
14: else
15: S(vi)← {vi} ∪

⋃
v∈SUCC(vi)

S(v)

16: u∗ ← argmaxu∈SUCC(vi)

(
f(u) +

17: +
∑
w∈SUCC(vi),w 6=u C(S(w) \ T (u))/m

)
18: T (vi)← {vi} ∪ T (u∗)
19: f(vi)← Ci + f(u∗)+
20: +

∑
w∈SUCC(vi),w 6=u∗ C(S(w) \ T (u∗))/m

21: end if
22: end if
23: end for
24: return f(vsource)
25: end procedure

This algorithm takes as input a given task graph G and the
number of processors composing the platform, and outputs
an upper-bound on the task’s Zk value. As for Algorithm
1, a topological sorting of the nodes is required (line 2).
Three variables for each node vi are used by the algorithm
to store intermediate results: S(vi), as in Algorithm 1, is a
set representing the nodes that determine the largest partial
workload from vi till the end of the DAG; f(vi) stores the
bound on the partial Zk value from node vi to the end of the
DAG, including the full contribution of nodes belonging to the
partial longest chain (stored in set T (vi)) and the workload
contribution over m cores due to other nodes of the same
conditional instance. The computation of the values S(vi)
(lines 3, 10, 15) is exactly as in Algorithm 1. In the following,
we focus on the computation of f(vi) and T (vi).

Since the sink node has no successors, we initialize T (vsink)
to {vsink} and f(vsink) to Csink. The algorithm’s main loop
iterates over the nodes of G in reverse topological order (line
6). If the node under analysis has some successor, different

actions are taken depending on whether vi is the head of a
conditional pair or not. In the former case, we compute the
successor u∗ that maximizes the intermediate upper-bound on
Zk, and set f(vi) and T (vi) accordingly. If, instead, a parallel
branch is departing from the current node vi, the workload by
all the successors will be transferred to vi. Hence, the driving
logic is to determine the successor u that yields the largest
combined value of its partial Zk bound (f(u)) plus the total
self-interference from other nodes, which is bounded by∑

w∈SUCC(vi),w 6=u

C(S(w) \ T (u))/m.

Note that the set T (u) is subtracted from the set to consider
for the self-interfering contribution, because such nodes are
already fully accounted for in the term f(u).

As for the case of Algorithm 1, this procedure can be
implemented efficiently, that is, to run in polynomial time
in the size of the graph: the complexity of Algorithm 2 is
O(|V ||E|∆), where ∆ denotes the maximum out-degree of
a node. In fact, similarly to the analysis of Algorithm 1,
the complexity of the algorithm is O(|V ||E|), plus the cost
of executing the instructions at lines 16 − 17. The cost of
performing such an instruction once is O(|V |δ(vi)2), where
δ(vi) is the out-degree of node vi; since δ(vi) ≤ ∆, it follows
that the total cost of the instructions at line 16− 17 is

O

(
|V |
∑
i

δ(vi)
2

)
= O

(
|V |∆

∑
i

δ(vi)

)
= O(|V ||E|∆).

This cost dominates, in the worst case, the cost of other oper-
ations; hence, the complexity of Algorithm 2 is O(|V ||E|∆).

VII. EXPERIMENTAL RESULTS

In this section, we validate the performance of the schedu-
lability tests proposed in Section V in terms of number of
schedulable task-sets against existing approaches, both for
global FP and global EDF scheduling. In particular, we show
that our response-time analysis not only outperforms the ex-
isting approaches for analyzing parallel tasks with conditional
branches, but it is also significantly superior to the state-of-
the-art techniques in the particular case with no conditional
branches, i.e., for classic DAG tasks.

All the algorithms compared in our experiments have been
implemented in MATLAB R©. The code is fully available
online [4].

A. Generation of cp-tasks
Concerning the simulation environment, we refer to [21]

as a baseline to generate cp-tasks. In that work, series-
parallel graphs are generated by recursively expanding blocks
(i.e., non-terminal vertices) either to terminal vertices or to
conditional subgraphs, until a maximum recursion depth is
reached, hence permitting multiple nested levels of condi-
tional branches. We extend the derivation rules given in [21]
by considering that non-terminal vertices can be expanded
to either terminal vertices, conditional subgraphs or parallel
subgraphs. The probabilities that control such three events are
pterm, pcond, and ppar, respectively, subject to the relation
pterm+pcond+ppar = 1. Moreover, we specify the maximum
number of branches of parallel and conditional subgraphs

(npar and ncond, respectively). Based on these values, when-
ever a non-terminal vertex is expanded to a parallel subgraph,
the number of branches is uniformly selected in [2, npar].
Analogously, whenever a conditional subgraph is generated,
the number of its branches is uniformly selected in [2, ncond].
By applying this methodology, a series-parallel graph can
be obtained. However, in this work we address the analysis
of a more general class of task graphs, i.e., DAGs that
respect the structural restrictions mentioned in Section III,
imposed by conditional pairs. For this reason, we randomly
add edges between pairs of nodes with a certain probability
padd, provided that the structural restrictions of our cp-task
model (see Definition III.1) are not violated.

In all our experiments we used a maximum recursion depth
of 3 for each cp-task.

The generation of each cp-task τk is performed as follows:
• the WCET of each node vk,j is uniformly selected as a

positive integer Ck,j in the interval [1, 100];
• then, Lk and Wk are computed;
• the period Tk is uniformly selected as an integer in the

interval [Lk,Wk/β], where β ≤ 1 is used to control the
minimum cp-task utilization. In particular, the utilization
of each cp-task is uniformly distributed in the interval
[β,Wk/Lk], where the right endpoint of the interval (i.e.,
the maximum possible utilization) corresponds to the
average degree of parallelism of the cp-task;

• the relative deadline Dk is an integer selected with
uniform probability in the interval [Lk, Tk].

Whenever a specific utilization is desired, we repeatedly add
tasks until the cumulative utilization is achieved, increasing
the period of the last task so that the total system utilization
matches the desired one.

As the design of a sufficiently general setting for evaluating
the performance of DAG-based tasks required a considerable
effort, we created a repository [4] where any interested user
can freely download our benchmark and use it to test the
schedulability performance of conditional/parallel task sys-
tems.

B. Evaluation of cp-tasks
This first set of experiments aims at comparing our

response-time analysis in a global fixed-priority setting (re-
ferred to as RTA-FP) against the only work in the literature
that addresses the scheduling of DAG tasks with conditional
branches, i.e., [15]. Since that work only proposes a trans-
formation of the DAG task into a synchronous parallel task,
without proposing any schedulability test, we adopt the test for
synchronous parallel tasks that, to our knowledge, outperforms
the others, i.e., the one proposed by Maia et al. [19]. We will
refer to this schedulability test as COND-SP.

For this class of experiments, we set pcond = 0.4, ppar =
0.4, pterm = 0.2, padd = 0.1, ncond = 2, npar = 6,
β = 0.1. When not explicitly specified, we assume a Deadline
Monotonic (DM) priority ordering. For each experiment, we
generated 500 task-sets for each value on the x−axis.

In the first set of experiments, we varied the total system
utilization UT in the range [0,m]. Figure 6 reports the number
of schedulable task-sets obtained when m = 4, which is
representative of the general behavior. As can be seen, RTA-FP
clearly outperforms COND-SP for any value of UT .

0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

300

350

400

450

500

Utilization

N
um

be
r

of
 s

ch
ed

ul
ab

le
 ta

sk
−

se
ts

RTA−FP
COND−SP

Fig. 6: Evaluation of RTA-FP as a func-
tion of UT , with m = 4.

5 10 15 20
0

50

100

150

200

250

300

350

400

450

500

Number of processors

N
um

be
r

of
 s

ch
ed

ul
ab

le
 ta

sk
−

se
ts

RTA−FP
COND−SP

Fig. 7: Evaluation of RTA-FP as a func-
tion of m, with UT = 2.

5 10 15 20
50

100

150

200

250

300

350

400

450

500

Number of tasks

N
um

be
r

of
 s

ch
ed

ul
ab

le
 ta

sk
−

se
ts

RTA−FP
COND−SP

Fig. 8: Evaluation of RTA-FP as a func-
tion of n, with m = 4 and UT = 2.

In the second set of experiments, we varied the number
of cores. Figure 7 illustrates the results for UT = 2. For a
low number of processors, RTA-FP substantially outperforms
COND-SP, while for higher values of m both tests are able to
schedule nearly all the task-sets.

In the third set of experiments, we varied the number of
tasks n in the range [1, 20]. Since n is now a fixed parameter in
each experiment, we computed individual cp-task utilizations
using UUnifast [10]. Figure 8 reports the results for m = 4
and UT = 2. While the two tests perform comparably for a
small value of n, RTA-FP exhibits a substantial improvement
over COND-SP when n ≥ 4. In particular, RTA-FP achieves
full schedulability for larger n, conforming to the intuition
that scheduling a large number of light tasks is easier than
scheduling fewer heavy tasks. Instead, COND-SP achieves its
maximum for n = 7 and then degrades for higher values of
n. This is due to the increased pessimism introduced by the
transformation technique in [15] when the number of tasks is
higher.

Other experiments when varying the task parallelism and
the priority ordering are reported in Appendix C.

Another weakness of COND-SP is that it requires enumer-
ating all the conditional flows of each cp-task, which are
exponentially many in the nesting level of the conditional
branches. Our approach instead relies on efficient algorithms
to deal with conditional branches with pseudo-polynomial
complexity. A straightforward consequence is that the running
time of COND-SP is often quite prohibitive, while RTA-FP is
in general very fast (i.e., in the order of milliseconds).

C. Evaluation of classical DAG tasks
In the following experiments, we considered non-

conditional (i.e., classical) DAG tasks. This setting allowed us
to evaluate the improvement of our response-time analysis for
global EDF (referred to as RTA-EDF) over existing approaches
for scheduling sporadic DAG tasks.

The random task generator described above can be used
to generate classical DAG tasks by simply setting pcond = 0
and requiring that pterm + ppar = 1. In particular, we set:
ppar = 0.8, pterm = 0.2, padd = 0.1, npar = 6, β = 0.1.

We compared our RTA-EDF test against three schedulability
tests for global EDF targeting systems of sporadic DAG tasks:
• the test by Baruah [7], which analytically dominates the

one in [11];

• the test by Li et al. [17], based on capacity augmentation
bound;

• the test by Qamhieh et al. [22] that takes into account the
internal structure of the DAG.

Since the test in [17] targets implicit deadline DAG task
systems, all the result are reported under that setting, even
though the results were consistent also in the general case of
constrained deadlines. We decided not to plot the results of
the test in [22], because its performance was very poor in all
the tested configurations. This is mainly because that work is
more concerned with improving the minimum processor speed
that guarantees schedulability under global EDF rather than
effectively increasing the schedulability performance.

Figure 9 illustrates the number of schedulable task-sets with
8 processors when UT ∈ [0, 8]. While RTA-EDF is able to
schedule nearly all task-sets until UT = 2, the performance of
the other approaches degrades significantly at a much lower
utilization.

Figure 10 illustrates how RTA-EDF performs when m
is varied in the interval [1, 30], with UT = 2. RTA-EDF
significantly outperforms the other tests, requiring a much
lower number of cores (around 5) to schedule most of the
task-sets. The test in [7] typically requires twice that number
of cores to schedule most task sets, and it cannot admit any
task-set when m < 7. The test in [17] behaves even worse,
since it cannot admit a large share of the generated task sets
even with a very large number of cores. This result indeed
reflects the analytical formulation of the test given in [17].

Figure 11 reports the results for m = 8 and UT = 2 when
varying the number of tasks (n ∈ [1, 20]). Also in this case our
approach substantially outperforms the others for any value of
n. The test in [7] reaches almost a constant trend for high
values of n. Instead, the one in [17] is favorably impacted by
increasing n, since, by keeping the total utilization constant,
the individual critical path lengths are reduced, which is
beneficial for the outcome of the test.

This class of experiments clearly shows that our approach
is able to significantly tighten the schedulability of non-
conditional DAG task systems as well, widening the effec-
tiveness of our schedulability analysis beyond conditional task
structures.

1 2 3 4 5 6 7
0

50

100

150

200

250

300

350

400

450

500

Utilization

N
um

be
r

of
 s

ch
ed

ul
ab

le
 ta

sk
−

se
ts

RTA−EDF
Baruah
Li et al.

Fig. 9: Evaluation of RTA-EDF as a
function of UT , with m = 8.

5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

500

Number of processors

N
um

be
r

of
 s

ch
ed

ul
ab

le
 ta

sk
−

se
ts

RTA−EDF
Baruah
Li et al.

Fig. 10: Evaluation of RTA-EDF as a
function of m, with UT = 2.

5 10 15 20
0

50

100

150

200

250

300

350

400

450

500

Number of tasks

N
um

be
r

of
 s

ch
ed

ul
ab

le
 ta

sk
−

se
ts

RTA−EDF
Baruah
Li et al.

Fig. 11: Evaluation of RTA-EDF as a
function of n, with m = 8 and UT = 2.

VIII. CONCLUSIONS

As multi-core systems become pervasive architectures, fu-
ture programming practices are likely to be characterized by
parallel constructs interleaved with conditional control flow
executions. In this paper, we proposed the cp-task model
as a generalization of the classic sporadic DAG task model,
integrating conditional structures within the task model. This
allows improving the information that can be used by the
schedulability analysis to derive a tighter estimation of the
interfering contributions, by discriminating their level of par-
allelism depending on the conditional path undertaken. We
characterized the topological structure of a cp-task graph,
specifying which connections are allowed between conditional
and non-conditional nodes. Then, a schedulability analysis
has been derived to compute a safe upper-bound on the
response-time of each task in pseudo-polynomial time. Beside
its reduced complexity, such an analysis has the advantage
of requiring only two parameters to characterize the complex
structure of the conditional graph of each task: the worst-case
workload and the length of the longest path. Algorithms are
proposed to derive these parameters from the DAG structure
in polynomial time.

Experiments among randomly generated cp-task workloads
clearly show that the proposed approach does not only improve
over a previously proposed solution for conditional DAG tasks,
but can also be used to significantly tighten the schedulabil-
ity analysis of classic (non-conditional) sporadic DAG task
systems.

REFERENCES

[1] Kalray. http://www.kalrayinc.com/.
[2] Keystone. http://www.keyelco.com/.
[3] Parallela. http://www.parallela.org/.
[4] A MATLAB R© implementation of schedulability tests for conditional and

parallel tasks. http://retis.sssup.it/∼al.melani/downloads/cptasks.zip,
2015.

[5] B. Andersson and D. de Niz. Analyzing global-edf for multiprocessor
scheduling of parallel tasks. In 16th International Conference on Prin-
ciples of Distributed Systems (OPODIS 2012), Rome, Italy, December
18-20, 2012, pages 16–30, 2012.

[6] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Döbel, and H. Härtig.
Response-time analysis of parallel fork-join workloads with real-time
constraints. In 25th Euromicro Conference on Real-Time Systems
(ECRTS 2013), Paris, France, pages 215–224, July 9-12, 2013.

[7] S. Baruah. Improved multiprocessor global schedulability analysis of
sporadic DAG task systems. In 26th Euromicro Conference on Real-
Time Systems (ECRTS 2014), Madrid, Spain, July 8-11, 2014.

[8] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese. A generalized parallel task model for recurrent real-time
processes. In 33rd IEEE Real-Time Systems Symposium (RTSS 2012),
San Juan, Puerto Rico, December 4-7, 2012.

[9] M. Bertogna and M. Cirinei. Response-time analysis for globally
scheduled symmetric multiprocessor platforms. In 28th IEEE Real-Time
Systems Symposium (RTSS 2007), Tucson, Arizona, USA, December 3-6,
2007.

[10] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[11] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese. Feasibil-
ity analysis in the sporadic DAG model. In 25th Euromicro Conference
on Real-Time Systems (ECRTS 2013), Paris, France, July 9-12, 2013.

[12] A. Burns and S. K. Baruah. Sustainability in real-time scheduling.
Journal of Computing Science and Engineering, 2(1):74–97, 2008.

[13] H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin. Global
EDF schedulability analysis for synchronous parallel tasks on multicore
platforms. In 25nd Euromicro Conference on Real-Time Systems (ECRTS
2013), Paris, France, July 9-12, 2013.

[14] S. Dasgupta, C. H. Papadimitriou, and U. Vazirani. Algorithms.
McGraw-Hill, Inc., 2006.

[15] J. C. Fonseca, V. Nélis, G. Raravi, and L. M. Pinho. A multi-DAG
model for real-time parallel applications with conditional execution.
In 30th ACM/SIGAPP Symposium On Applied Computing (SAC 2015),
Salamanca, Spain, April 13-17, 2015.

[16] K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-
time tasks on multi-core processors. In 31st IEEE Real-Time Systems
Symposium, San Diego, CA, November 30 - December 3, 2010. IEEE.

[17] J. Li, K. Agrawal, C. Lu, and C. Gill. Analysis of global EDF for
parallel real-time tasks. In 25th Euromicro Conference on Real-Time
Systems (ECRTS 2013), Paris, France, July 9-12, 2013.

[18] J. Li, J. Chen, K. Agrawal, C. Lu, C. D. Gill, and A. Saifullah. Analysis
of federated and global scheduling for parallel real-time tasks. In 26th
Euromicro Conference on Real-Time Systems (ECRTS 2014), Madrid,
Spain, July 8-11, 2014.

[19] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho. Response-time
analysis of synchronous parallel tasks in multiprocessor systems. In 22nd
International Conference on Real-Time Networks and Systems (RTNS
2014), Versailles, France, October 8-10, 2014.

[20] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Techniques
optimizing the number of processors to schedule multi-threaded tasks.
In 24th Euromicro Conference on Real-Time Systems (ECRTS 2012),
Pisa, Italy, July 11-13, 2012.

[21] B. Peng, N. Fisher, and M. Bertogna. Explicit preemption placement for
real-time conditional code. In 26th Euromicro Conference on Real-Time
Systems (ECRTS 2014), Madrid, Spain, July 8-11, 2014.

[22] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet. Global EDF
scheduling of directed acyclic graphs on multiprocessor systems. In 21st
International Conference on Real-Time Networks and Systems (RTNS
2013), Sophia Antipolis, France, October 16-18, 2013.

[23] A. Saifullah, K. Agrawal, C. Lu, and C. D. Gill. Multi-core real-time
scheduling for generalized parallel task models. In 32nd IEEE Real-
Time Systems Symposium (RTSS 2011), Vienna, Austria, November 29
- December 2, 2011.

[24] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill. Parallel
real-time scheduling of DAGs. IEEE Trans. Parallel Distrib. Syst.,
25(12):3242–3252, 2014.

APPENDIX

A. Other related work
In the submitted paper by Baruah, Bonifaci and Marchetti-

Spaccamela [1], the same conditional parallel task model as
in this paper is considered. However, that paper focuses on
global Earliest Deadline First (G-EDF) scheduling. The main
result of [1] is obtained through an efficient transformation that
transforms any conditional DAG task into a non-conditional
DAG task that is “equivalent”, in the sense of preserving the
quantities used by the test of [2] for DAGs without condi-
tional statements. This allows extending the existing tests and
speedup bounds for DAG tasks to the G-EDF schedulability
of systems of conditional DAG tasks.

The results in the present paper are orthogonal to the work
of Baruah et al. [1] for multiple reasons, in particular:

1) the results apply to the analysis of general work-
conserving scheduling algorithms, as opposed to focus-
ing on G-EDF;

2) the results are based on response-time analysis, as op-
posed to resource augmentation analysis or comparison
with an ideal offline scheduler;

3) a significant experimental part is performed that shows
the effectiveness of the proposed analysis.

B. Interference vs. makespan
To better clarify the theoretical insights behind the response-

time analysis presented in this paper, we hereafter discuss the
relation between the different terms of Equation (3).

Rk = len(λ∗k) +
1

m
Ik,k +

1

m

∑
τi∈T ,i6=k

Ii,k.

While the meaning of the last term in the equation is clearly
connected to the interference of the other cp-tasks τi on the
considered task τk, one may think that the sum of the first
two terms (len(λ∗k) +

1
mIk,k) is equivalent to the worst-case

response-time of τk when it executes in isolation on the multi-
core system (i.e., the so-called makespan of τk). However, this
is not true. Consider an example where a cp-task τk has only
one if-then-else statement. When the “if” part is executed, the
task executes one sub-task of length 10. Otherwise, the task
executes two parallel sub-tasks of length 6 each. When τk
executes in isolation on a two-core platform, the makespan
is clearly given by the “if” branch, i.e., 10. When instead τk
can be interfered by one job of a task τi which executes a
single sub-task of length 6, the worst-case response time of
τk is found when it executes the “else” branch, leading to
a response time of 12. The share of the response time due
to the term len(λ∗k) +

1
mIk,k in Equation (3) is 6 + (1/2) ·

6 = 9, which is strictly smaller than the makespan. Note that
len(λ∗k)+

1
mIk,k does not even represent a valid lower bound

on the makespan. This can be seen by replacing the “if” branch
in the above example with a shorter subtask of length 8, giving
a makespan of 8. For this reason, one cannot replace the term
len(λ∗k) +

1
mIk,k in Equation (4) with the makespan of τk.

The righthand side of Equation (4) (Lk + 1
m (Wk − Lk))

and the refined bound computed by Algorithm 2 have been
therefore introduced to upper-bound the term len(λ∗k)+

1
mIk,k.

However, interestingly, these two quantities do also rep-
resent valid upper-bounds on the makespan of τk, so that

0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Utilization

N
um

be
r

of
 s

ch
ed

ul
ab

le
 ta

sk
−

se
ts

LS
DM
WS

Fig. 1: Evaluation of RTA-FP as a function of UT with
different priority orderings and m = 4.

they can be used to bound the response time of a cp-task
executing in isolation. The proof is identical to the proofs
of the presented bounds included in the paper, considering
only the interference due to the task itself, i.e., the intra-task
interference.

C. Further simulation results

Task parallelism: In this experiment we varied the degree
of connectivity of the tasks, by acting on the probability padd
and keeping the other parameters (i.e., UT , n and m) constant.
However, we do not recognize any particular trend, i.e., the
schedulability ratio remains almost constant for all possible
values of padd, hence we do not report the corresponding plots.
Additional experiments have been performed to vary the com-
position of the cp-tasks, by changing pcond with respect to ppar
while keeping their sum constant. Again, no particular trend
has been identified. These results can be explained considering
that the computation of the worst-case workload, which plays
a fundamental role in the computation of the interference
produced by each cp-task, is not very much influenced by its
degree of parallelism (see Algorithm 1). Moreover, also the
composition of tasks in terms of conditional/parallel branches
does not significantly affect the schedulability performance,
since the worst-case workload, which already abstracts from
the different conditional flows, impacts the utilization of each
task-set and its schedulability performance.

Priority ordering: The performance of our RTA-FP ap-
proach has been tested under three distinct priority orderings:
i) Deadline Monotonic (DM); ii) Worst-Case Workload Slack
(WS): the tasks are ordered by increasing slack between
relative deadline and worst-case workload over m processors
(i.e., Di −Wi/m); iii) Critical Path Length Slack (LS): the
tasks are ordered by increasing slack between relative deadline
and critical path length (i.e., Di − Li). In this experiment,
we generated more task-sets (i.e., 5000 for each value on
the x-axis), since the running time of our RTA-FP is very
fast (i.e., in the order of milliseconds). The results plotted in
Figure 1 have been obtained by fixing m = 4, and varying
the system utilization between 0 and 4. The figure shows

that the three different orderings perform comparably, but LS
is slightly superior to the other two. This result suggests to
further analyze the problem of priority assignment in parallel
task systems, where DM might not always be the best choice
as it is in the sequential case. However, a thorough discussion
on how to assign priorities under the cp-task model is out of
the scope of this paper and is left to future investigation.

REFERENCES

[1] S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela. The global EDF
scheduling of systems of conditional sporadic DAG tasks. ECRTS 2015,
submitted, February 2015.

[2] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese. Feasibility
analysis in the sporadic DAG model. In 25th Euromicro Conference on
Real-Time Systems (ECRTS 2013), Paris, France, July 9-12, 2013.

	main
	supplement_SUBMITTED

