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SUPERPOSITION PRINCIPLE FOR THE TENSIONLESS CONTACT OF1

A BEAM RESTING ON A WINKLER OR A PASTERNAK FOUNDATION2

by Andrea Nobili13

ABSTRACT4

A Green function based approach is presented to address the nonlinear tensionless contact5

problem for beams resting on either a Winkler or a Pasternak two-parameter elastic foundation.6

Unlike the traditional solution procedure, this approach allows determining the contact locus posi-7

tion independently from the deflection curves. In so doing, ageneral nonlinear connection between8

the loading and the contact locus is found which enlightens the specific features of the loading that9

affect the position of the contact locus. It is then possibleto build load classes sharing the property10

that their application leads to the same contact locus. Within such load classes, the problem is lin-11

ear and a superposition principle holds. Several applications of the method are presented, including12

symmetric and non-symmetric contact layouts, which can be hardly tackled within the traditional13

solution procedure. Whenever possible, results are compared with the existing literature.14

Keywords: Tensionless contact, Green function, two-parameter elastic foundation15

INTRODUCTION16

The contact problem for beams resting on elastic foundations has long attracted considerable17

attention, given its relevance in describing soil-structure interaction (Hetenyi 1946; Selvadurai18

1979). In particular, a very extensive literature exists concerning beams resting on one, two and19

three-parameter elastic foundations (Kerr 1964). The existing literature is for the most part devoted20

to considering contact as a bilateral constraint, which fact limits the validity of the analysis to21

situations where lift-off plays a minor role. However, in sodoing, the problem retains a valuable22

linear character and the superposition principle holds.23

1Dipartimento di Ingegneria Meccanica e Civile, Università degli Studi di Modena e Reggio Emilia, via Vignolese
905, 41122 Modena, Italy. E-mail:andrea.nobili@unimore.it
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When lift-off becomes an important feature, tensionless contact must be reverted to at the24

expense of the problem linearity. From a mathematical standpoint, tensionless contact determines25

a free-boundary problem (Kerr 1976; Nobili 2012).26

Historically, interest in tensionless contact between a beam and a foundation arose in connec-27

tion with railway systems. In this respect, Weitsman (1971), Lin and Adams (1987) and recently28

Chen and Chen (2011) considered detachment and stability for the problem of tensionless contact29

under a moving load. Besides, much research on tensionless structure-foundation contact is de-30

voted to assessing its role in reducing the structural stress in a seismic event (Celep and Güler 1991;31

Psycharis 2008). Recently, Coskun (2003) studied forced harmonic vibrations of a finite beam sup-32

ported by a tensionless Pasternak soil, while Zhang and Murphy (2004) studied a finite beam in33

tensionless contact in a non-symmetric contact scenario. Tensionless contact for an infinite beam34

in a multiple contact scenario was investigated by Ma et al. (2009a) and Ma et al. (2009b). An35

extensive body of literature exists regarding numerical strategies specifically devised to deal with36

tensionless contact. Recently, Sapountzakis and Kampitsis(2010) considered a boundary element37

method for beam-columns partly supported on a Winkler and, later (2011), a three-constant soil38

model.39

The classic approach to solving a tensionless contact problem for a beam on an elastic founda-40

tion consists of integrating the deflection curves for the beam in contact, the beam in lift-off and41

the soil, and then matching the solutions at the yet unknown contact locus, that is the point where42

contact ceases and lift-off begins (Weitsman 1970; Kerr andCoffin 1991). This approach suffers43

from two major shortcomings. On the one hand, the procedure initially assumes a contact layout44

and then proceeds to determining the relevant quantities within such layout. It then remains to be45

checked that results are consistent with the assumptions. On the other hand, contact loci positions46

are determined through deflection curves integration. Since the general integrals of the governing47

equations depend on the loading, it appears that results arerestricted to one particular loading.48

In this paper, a Green function approach is adopted. Unlike the classic approach, this method49

consists of first determining the contact locus through a nonlinear equation and then solving the50

2



linear problem for the deflection curves. In fact, only the first stage is here presented, the second51

being a classic problem. Although the method still requiressome assumptions concerning the lay-52

out of the contact, nonetheless such assumptions are somewhat relaxed and a general connection53

between the contact locus and a family of loadings is obtained, so much so that a form of superposi-54

tion is also retrieved. It is emphasized that this procedurediffers from the integral approach of Tsai55

and Westmann (1967), which is still based on the Green function and yet it aims at determining the56

deflection curves and the contact locus in one stage.57

THE FREE-BOUNDARY PROBLEM58

The tensionless contact problem for a Euler–Bernoulli (E-B) beam resting on a tensionless59

elastic foundation is first stated in its simplest form, concerning a Winkler soil in a symmetric60

contact scenario (Fig.1). Let[−X,X] denote the contact interval andX > 0 be thecontact locus,61

i.e. the beam rests supported on the soil up to abscissaX and then it detaches from it. The beam62

detached from the soil is often addressed as lifting off the soil. The free soil extends beyond63

X to infinity. Here, the inverse of a reference length is introduced as the ratio between the soil64

modulusk and the beam flexural rigidityEI, i.e. β4 = k(4EI)−1. Then, the problem is cast in65

dimensionless form:Ξ = βX is the dimensionless contact locus position andu = βw denotes the66

beam dimensionless displacement. The beam displacement function,u, restricted to the contact67

interval Ic = [0, Ξ] and to the lift-off intervalI l = (Ξ, l], is denoted byuc andul, respectively.68

2l = 2βL is the beam dimensionless length andus is the soil dimensionless displacement in69

the unbounded regionIs = [Ξ, +∞), which is relevant for the Pasternak soil alone. Besides,70

σc = βqc/k andσl = βql/k are the dimensionless loadings acting inIc andI l, respectively. In the71

contact intervalIc, the beam rests entirely supported on the soil and the governing equation reads72

1

4
(uc)(iv) + uc = σc, (1)

where superscripts within parenthesis denote the differentiation order with respect toξ. To shorten73

notation, it is expedient to write thek-th derivative(uc)(k) with respect toξ asuc
k. The problem74
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boundary conditions (BCs) due to symmetry are75

uc
1(0) = 0, uc

3(0) = 0, (2)

while the BCs at the contact locusΞ, enforce continuity for the beam of the bending moment and76

of the shearing force77

uc
2(Ξ) = ul

2(Ξ), uc
3(Ξ) = ul

3(Ξ). (3)

However, unlike an ordinary boundary value problem (BVP), here the contact locus is a problem78

unknown, whence a further condition is demanded for its placing. This condition, namedcon-79

tact locus equation, enforces displacement continuity with the Winkler foundation (which is here80

assumed load free), i.e.81

uc(Ξ) = 0. (4)

In more general terms, the problem may be rewritten formallyas82

Dcuc = σc (5)

whereDc denotes the differential operator embodying the dimensionless governing equation in the83

contact regionIc, with its boundary conditions.84

THE GREEN FUNCTION APPROACH85

In this paper, a new solution procedure is introduced which takes advantage of the Green func-86

tion to obtain an explicit connection between the loading and the contact locus position. Let the87

adjoint problem for Eq.(5) be considered88

D̃cG(ξ, ζ) = δ(ξ, ζ), (6)

whereδ(ξ, ζ) is Dirac’s delta function aboutξ = ζ andD̃c the adjoint operator. Letn indicate the89

order of the operatorDc, i.e. n = 4 for both the Pasternak and the Winkler models. It is worth90
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recalling that the Green functionG is determined assuming homogeneous boundary conditions at91

the boundary∂Ic and it is thereby independent of the behavior in the lift-offregion. The latter92

comes into play in the form of a boundary termBT (ξ, ζ). Furthermore, a over-determined system93

becomes an under-determined problem for the Green function. It is then possible to write the94

displacement at a pointζ in the contact region as95

uc(ζ) =

∫

Ic

σc(ξ)G(ξ, ζ)dξ (7)

and, accordingly, the condition setting the contact locus.For instance, for a Winkler foundation, it96

is97

uc(Ξ) = lim
ζ→Ξ

∫

Ic

σc(ξ)G(ξ, ζ)dξ − [BT (ξ, Ξ)]Ξξ=0 = 0. (8)

Here, boundary terms are algebraic and have been gathered inBT (ξ, Ξ). Eq.(8) sets an integral98

connection between the applied loading and the contact locus Ξ which has a three-fold purpose.99

First, it may be employed to test a given load distribution against the contact locusΞ. Second, it100

may be employed to build the loading classesQX , whose elements share the property that their101

application produces the same set of contact lociX = {Ξj}. Then, the nonlinear contact problem102

of a beam resting on a tensionless two-parameters elastic soil may be actually solved for any one103

representative of the load class, the solution for the otherload members of that class being obtained104

by linear combination. The third purpose of the condition isto provide the contact locus without105

recurring to the actual integration of the deflection curves.106

TENSIONLESS WINKLER-TYPE SOIL107

Let us first consider the case of a E-B beam resting on a tensionless Winkler soil and acted upon108

by a line loadσc (the resultant of which is indeed irrelevant owing to the homogeneous nature of109

the BC setting the contact locus) possibly extending up to (though vanishing at) the contact locus110

Ξ, in a symmetric continuous contact scenario. Here, the BCs (3)are homogeneous. The boundary111

term reads112

BT =
1

4
[uc

3G − uc
2G

′ + uc
1G

′′ − ucG′′′]
Ξ
0 . (9)
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Here, prime denotes differentiation with respect toξ, while G is shorthand forG(ξ, ζ). It is easily113

seen that to warrant the vanishing of the boundary term, the Green function has to be subjected to114

symmetric conditions atξ = 0115

G′(0, ζ) = G′′′(0, ζ) = 0 (10)

and to the single condition116

G′′(Ξ, ζ) = 0. (11)

such that the beam slopeuc
1(Ξ) drops out the boundary term. This result holds in general, even117

when the loading extends beyond the contact locus, which amounts to saying that the Green func-118

tion is entirely independent of the lift-off part. The problem for the Green function is under-119

determined and it possesses one free integration parameter.120

The ODE for the Green function is121

1

4
G(iv)(ξ, ζ) + G(ξ, ζ) = δ(ξ, ζ), (12)

whose general solution is written as122

G(ξ, ζ) =











ai(ζ, Ξ), ξ < ζ

bi(ζ, Ξ), ξ > ζ











ηi(ξ), i = 1, . . . , n. (13)

Here,{ηi(ξ)} is the fundamental set and, for a Winkler soil,123

{ηi(ξ)} = {eξ cos ξ, eξ sin ξ, e−ξ cos ξ, e−ξ sin ξ}. (14)

Hereinafter, a summation convention is assumed for twice repeated subscripts, ranging from1 to124

n. Let us further enforce the BC125

G′′′(Ξ, ζ) = 0, (15)

whence a self-adjoint formulation forG is set. Since the problem is self adjoint, the Green function126
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is symmetric as it allows exchanging the role ofξ and ζ. Through Eq.(13), the contact zone127

displacement is given by128

uc(ζ) = ai(ζ, Ξ)

∫ ζ

0

σc(ξ)ηi(ξ)dξ + bi(ζ, Ξ)

∫ Ξ

ζ

σc(ξ)ηi(ξ)dξ, ζ ∈ [0, Ξ]. (16)

In particular, lettingζ → Ξ, it is uc(ζ) → 0 according to Eq.(4). Letting129

F (Ξ) = αi(Ξ)Ai(Ξ), (17)

where130

Ai(Ξ) = ai(Ξ, Ξ), αi(Ξ) =

∫ Ξ

0

σc(ξ)ηi(ξ)dξ, (18)

it is F (Ξ) = 0. It is remarked that Eqs.(18) should be taken in a limiting sense asζ → Ξ,131

although direct substitution is equally permitted for the Winkler foundation. In particular, explicit132

expressions are available for the functionsAi, namely133

A1 = A3 = 2Λ−2 cos(Ξ) cosh(Ξ), (19a)

A2 = −A4 = 2Λ−2 sin(Ξ) sinh(Ξ), (19b)

having let the nonnegative quantityΛ2 = sin(2Ξ) + sinh(2Ξ). Eq.(17), with Eqs.(14) and (19),134

may be rewritten as135

F (Ξ) = α+(Ξ) cos(Ξ) cosh(Ξ) + α−(Ξ) sin(Ξ) sinh(Ξ), (20)

where2α+(Ξ) = α2(Ξ) + α4(Ξ), 2α−(Ξ) = α1(Ξ) − α3(Ξ). The dependence from the loading is136

completely embedded in the functionsα+(Ξ), α−(Ξ) and it is clear that different loadings giving137

the same functions are equivalent inasmuch as the contact locus is concerned. Eq.(20) acquires a138

particularly simple form when it existsρc < Ξ such that the loading vanishes outside the interval139
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[0, ρc], for then140

tan(Ξ) tanh(Ξ) = −α+(ρc)

α−(ρc)
= r (21)

and the RHSr is a constant with respect toΞ. It is observed that forr positive the contact locus141

sits in the interval(π/2, π) and, by solution continuity, forr negative in(π, 3
2
π). In this situation,142

loadings are equivalent inasmuch as they exhibit the same ratio r. For instance, in the case of143

two symmetric pairs of concentrated forces, placed at∆1 and∆2 > ∆1, it is144

r = −cos(∆1) cosh(∆1) + cos(∆2) cosh(∆2)

sin(∆1) sinh(∆1) + sin(∆2) sinh(∆2)
(22)

such that solving the implicit equationr = k, k being a real constant, gives the set of pairs∆1, ∆2145

yielding the same contact locusΞ(k). Fig.2 shows the curves∆2 − ∆1 vs. ∆1 for k = 1, 5, 10.146

The curves may be taken as a graphical representation of the setsQk. Indeed, Fig.3 shows that147

for k = 1, the deformed beam profiles for the cases∆2 − ∆1 = 0.1 and∆2 − ∆1 = 1, to which148

it pertains respectively∆1 = 0.8857167949 and∆1 = 0.2529526456, exhibit the same contact149

locus positionΞ(1) = 2.347045566. Among such loadings the superposition principle does hold.150

Eq.(20) is generally nonlinear inΞ owing to both the functionsαi andAi.151

Let us now investigate the contribution of the boundary termand consider the situation where152

the beam is loaded beyond the contact locus through the line loadσl(ξ), Ξ < ξ < l. Then, a153

boundary term enters the functionF . Exploiting the symmetry of the Green function and the154

continuity of its first derivative, Eq.(17) becomes155

F (Ξ) =

{

αi(Ξ) − 1

4
uc

3(Ξ)ηi(Ξ) +
1

4
uc

2(Ξ)η′

i(Ξ)

}

Ai(Ξ) (23)

where, in analogy with the first of Eqs.(18), it is letBi(Ξ) = bi(Ξ, Ξ). With a bit of work, Eq.(20)156
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is now157

α+(Ξ) cos(Ξ) cosh(Ξ) + α−(Ξ) sin(Ξ) sinh(Ξ) =
1

8
uc

3(Ξ) [cosh(2Ξ) + cos(2Ξ)]

− 1

8
uc

2(Ξ) [sinh(2Ξ) − sin(2Ξ)] . (24)

Eq.(24) provides a nonlinear equation relating the loadingand the contact locus, in a symmetric158

layout, which gathers all the nonlinear feature of the unilateral contact problem. It also provides a159

mean of determining whether the beam lifts off the foundation or, rather, rests entirely supported160

on it. To this aim, solutions of Eq.(24) are checked against the beam lengthl and when it is found161

thatΞ > l, then the beam rests entirely supported by the foundation.162

Applications for a Winkler soil163

Symmetric case164

Let us consider the case of a beam loaded at midspan by a unit force. Then, it isα+ = 1,165

α− = 0 and Eq.(20) reduces to the simple relation166

cosh Ξ cos Ξ = 0, (25)

which corresponds to Eq.(7) of Weitsman (1970) and yields the well-known resultΞ = π/2. We167

are interested in adding an end forcef l and an end couplecl such that the contact locus remains168

unchanged. To this aim, a relationship betweenuc
2(Ξ) anduc

3(Ξ) needs be sought in order that the169

boundary contribution drops out. Writing the latter as at theRHS of Eq.(24) and considering that170

1

4
uc

2(Ξ) = cl + f l(l − Ξ),
1

4
uc

3(Ξ) = −f l, (26)

given thatf l is positive when downwards andcl when clockwise, a connection is found between171

cl andf l as follows:172

cl = −f l
(

l − Ξ + RW (Ξ)
)

, (27)
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where the positive function is let173

RW (Ξ) =
cosh(2Ξ) + cos(2Ξ)

sinh(2Ξ) − sin(2Ξ)
. (28)

In particular, forΞ = π/2, it is RW (Ξ) = 0.6536439910.174

As a second application, the case of a pair of concentrated forces, symmetric aboutξ = 0 and175

placed at a distance2∆ > 0 apart, is considered. Then, it isαi = ηi(∆) and Eq.(21) gives a176

connection between the contact locus and the distance∆ < Ξ, namely177

tan Ξ tanh Ξ = − 1

tan ∆ tanh ∆
. (29)

It is immediate to see that the sign of both the left and the right hand side is given by the tangent178

terms: for∆ ∈ [0, π/2), the RHS is negative and solutions are to be found in the interval Ξ ∈179

[π/2, π). By the same token, for∆ ∈ [π/2, π), continuity of the solution suggests takingΞ ∈180

[π, 3
2
π). It is further observed that the situation∆ = Ξ is not allowed. If the applied forces are far181

apart beyond a limiting spacing2∆̃, lift-off takes place in the neighborhood of the origin as well,182

in a discontinuous contact scenario. Such limiting spacingoccurs when183

uc(0) = bi(0, Ξ)

∫ Ξ

0

σc(ξ)ηi(ξ)dξ = bi(0, Ξ)ηi(∆̃) = 0 (30)

and the grazing conditionuc
1(0) = 0 follows directly from the symmetry requirement. Here, it is184

b1(0, Ξ) =
1

2Λ2
[cos(2Ξ) + cosh(2Ξ) − sinh(2Ξ) − sin(2Ξ) + 2]

b2(0, Ξ) =
1

2Λ2
[cos(2Ξ) − cosh(2Ξ) + sinh(2Ξ) + sin(2Ξ)]

andb2(0, Ξ) + b4(0, Ξ) = 1, b1(0, Ξ) − b3(0, Ξ) = −1. For a general∆, Eq.(30) with Eq.(29)185

yields186

b2(0, Ξ) − b1(0, Ξ) tan Ξ tanh Ξ = f(∆), (31)
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being187

f(∆) = − e−∆

2 sinh ∆
(1 + cot ∆) . (32)

Eq.(31) lends a connection between the contact locus and thespacing∆. Since∆ > 0 demands188

Ξ > π/2, the LHS of (31) is positive and to get a positive value for theRHS it must be∆ > ∆̃ =189

2.356194490. Fig.4 shows the beam bending moment, shearing force and contact pressure in the190

contact interval. As on the verge of lifting-off, the lattervanishes at midspan.191

As a third example, Eq.(24) is put to advantage for the case ofa constant line loadingq extend-192

ing up to the abscissalq and a concentrated force2f0 at midspan. Whenlq = l the classic solution193

for a concentrated load2f0 acting at midspan of a beam with weight per unit lengthq is obtained.194

This situation is generally more involved than the previousones because, forlq large enough, the195

contact locus sits within the loaded interval. Eq.(24) gives196

2f0 cos Ξ cosh Ξ +
q

2
[sinh 2Ξ + sin 2Ξ] = −q(lq − Ξ) [cosh 2Ξ + cos 2Ξ]

− 1

2
q(lq − Ξ)2 [sinh 2Ξ − sin 2Ξ] , (33)

provided thatlq > Ξ. Whenlq < Ξ it is197

2f0 cos Ξ cosh Ξ + q [cos lq sinh lq + sin lq cosh lq] cos Ξ cosh Ξ

+ q [− cos lq sinh lq + sin lq cosh lq] sin Ξ sinh Ξ = 0. (34)

For f0 = 1, Fig.5 plots both Eqs.(33,34) in their realms of validity, the boundary between them198

being represented by the bisector. It is seen that forq small (q = 0.01), the contact locus tends to199

the classic resultπ/2 in a wide range oflq. At q = 0.05, it is observed that for a givenlq multiples200

solutions forΞ are found and a maximum value forlq > Ξ appears. Beyond such maximum, a201

second branch of solution exists withΞ > lq. It rests to be seen whether the beam is long enough202

to warrant the admissibility of such solution. In order to discuss the multiplicity of solutions, Fig.6203

shows the beam profiles forq = 0.05 andlq = 3, when the solutionΞ < lq, curve (a), andΞ > lq,204
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curve (b), are considered. It is seen that the solution (b) leads to interpenetration and must be205

discarded. However, above the maximum value forlq, solution (a) disappears and solution (b)206

becomes admissible.207

Non-symmetric case208

Let us now drop the symmetry assumption and deal with a general continuous contact scenario209

(Fig.7). Then, two contact loci,Ξ1 < Ξ2, are expected and Eq.(16) becomes210

uc(ζ) = ai(ζ, Ξ1, Ξ2)

∫ ζ

Ξ1

σc(ξ)ηi(ξ)dξ + bi(ζ, Ξ1, Ξ2)

∫ Ξ2

ζ

σc(ξ)ηi(ξ)dξ. (35)

Likewise, two limits are now considered211

lim
ζ→Ξ2

uc(ζ) = 0 ⇔ αi(Ξ1, Ξ2)Ai(Ξ1, Ξ2) = 0, (36a)

212

lim
ζ→Ξ1

uc(ζ) = 0 ⇔ αi(Ξ1, Ξ2)Bi(Ξ1, Ξ2) = 0, (36b)

having letAi(Ξ1, Ξ2) = ai(Ξ2, Ξ1, Ξ2), Bi(Ξ1, Ξ2) = bi(Ξ1, Ξ1, Ξ2) andαi =
∫ Ξ2

Ξ1

σc(ξ)ηi(ξ)dξ.213

Despite the fact that the analysis follows along the same path as in the symmetric situation, the214

increased mathematical complication suggests to limit thediscussion to a single concentrated force.215

Then,σc = δ(ξ, ∆) and it is expedient to set theξ-axis origin atξ = ∆ without loss of generality.216

Eqs.(36) become217

A1(Ξ
∗

1, Ξ
∗

2) + A3(Ξ
∗

1, Ξ
∗

2) = 0, (37a)

B1(Ξ
∗

1, Ξ
∗

2) + B3(Ξ
∗

1, Ξ
∗

2) = 0, (37b)

with the understanding thatΞ∗

1 = Ξ1 − ∆ and likewiseΞ∗

2 = Ξ2 − ∆. It is easy to show that for a218

symmetric disposition of the contact loci, i.e.Ξ∗

1 = −Ξ∗

2, Eqs.(37) collapse into a single equation,219

which corresponds to Eq.(25). Indeed, every time a solutionexists withΞ∗

1 = −Ξ∗

2 for either of220

the Eqs.(37), then it complies with both. It is natural to introduced = Ξ∗

1 + Ξ∗

2, the deviation221
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with respect to a symmetric condition (Fig.7). Fig.8 draws the solution curvesd vs. Ξ∗

2 for the222

first (dash curve) and the second (solid curve) of Eqs.(37). In this plot, each intersection point223

is a possible solution of the system. The shaded area, bounded from below by the dotted curve224

d = 2Ξ∗

2, is ruled out as it leads to a contact locusΞ∗

1 > Ξ∗

2. It is seen that a discrete number225

of solutions is available yet the ones with minimumΞ∗

2 andd are specially interesting. As long226

as l2 ≥ ∆ + π/2, which means that the solution points atΞ∗

2 ≥ π/2 are admissible, the classic227

solutiond = 0, corresponding to a symmetric layout, is retrieved (pointA in Fig.8). When such228

condition no longer holds, one of the beam ends plunges into the foundation, say the right end,229

whence it isΞ2 = l2 fixed. Then, only the second equation of (37) survives (solidcurve) and it230

providesd vs. Ξ∗

2 = l2 − ∆. Note thatΞ∗

1 = d − Ξ∗

2 or, equivalently,Ξ1 = d − l2 + 2∆.231

It is interesting to describe the system behavior as∆ increases and the loading is brought closer232

and closer to the beam end. Then,d is found moving along the solid curve from pointA to point233

B and beyond, until the origin is reached. It is seen thatd acquires decreasing (with∆) negative234

values until the pointB is reached, where the layout with maximum deviation from symmetry |d|235

is found. Since, for the most part, the solid curve possessesunit slope, in the neighborhood ofA it236

is d ≈ −∆ and the left contact locus moves rightwards proportionallywith ∆, i.e. Ξ1 ≈ −l2 + ∆.237

The contact imprint, however, is given bylc = Ξ2 − Ξ1 and it shrinks as238

lc ≈ 2l2 − ∆. (38)

Fig.9 plots the position of the left contact locus against the loading offset∆ for a beam with239

l2 = π/2, that is starting from pointA. Since both the absolute positionΞ1 and the relative240

positionΞ∗

1 are given, the difference between the curves equals∆, while the distancel2 −Ξ1 gives241

the contact imprint lengthlc. The deviation from symmetry,d, is also shown as the difference242

from the dash-dot curve and−l2. Dotted curves show the positive and negative unit slope, which243

confirm the behavior previously inferred forΞ1, lc andd. BeyondB, a substantial rotation of the244

beam occurs which leads to a very small contact imprint and analmost symmetric situation. Here,245
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d increases towards zero again.246

It is easy to obtain the results numerically developed in Zhang and Murphy (2004) for a beam247

of varying lengthl loaded symmetrically and non-symmetrically by a unit force. Three regimes248

are considered:249

1. whenΞ2 < l2 and|Ξ1| < l1,250

2. when, say,Ξ2 > l2 and|Ξ1| < l1,251

3. whenΞ2 > l2 and|Ξ1| > l1.252

In regime 1, both left and right contact loci sit inside the beam, the symmetric solutiond = 0 is253

admitted and the contact imprint lengthlc = Ξ2−Ξ1 = 2Ξ∗

2 is constant. In regime 2, the beam right254

lengthl2 is too short to warrant that the right contact locus sits inside the beam. Conversely, the255

left lengthl1 accommodates the left contact locus. It is observed that this regime demands a non-256

symmetric loading situation. Having letl2 = k2l and∆ = k∆l, wherek2, k∆ < 1, Eq.(38) shows257

that the contact imprint length scales linearly withl with a proportionality coefficient2k2 − k∆.258

Finally, regime 3 is such that both contact loci exceed the beam left and right length. The beam259

rests entirely supported by the soil and the contact imprintlength corresponds to the beam length.260

In a symmetric layout, beam length scaling brings the systemfrom regime 1 to regime 3 or vice261

versa and the contact imprint length is either constant or equal tol, as numerically found in Zhang262

and Murphy (2004). In a non-symmetric layout, the system undergoes all three regimes and, from263

1 to 3, the contact imprint length is constant, decreases with coefficient2k2−k∆ and finally equals264

the beam length, i.e. coefficient1.265

PASTERNAK SOIL266

Let us consider the case of a E-B beam resting on a tensionlessPasternak soil in a symmetric267

continuous contact scenario. The governing ODE reads, in the contact interval,268

1

4
uc

4 − αuc
2 + uc = σc, (39)
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where the dimensionless quantityα = β2kG/k is introduced andkG is the shear modulus of the269

foundation (Selvadurai 1979). The BCs enforce symmetry atξ = 0, as at Eqs.(2), and bending270

moment and shearing force continuity at the contact locusΞ, as in (3). Furthermore, two BCs271

involve the soil profile through setting displacement and slope continuity (Kerr 1976), i.e.272

uc(Ξ) = us(Ξ), uc
1(Ξ) = us

1(Ξ). (40)

The problem is only formally self-adjoint, as the Green function for the beam in the contact region273

is determined by symmetric BCs atξ = 0, as at Eqs.(10), and homogeneous conditions atξ = Ξ274

as follows:275

1

4
G′′(Ξ, ζ) − αG(Ξ, ζ) = 0,

1

4
G′′′(Ξ, ζ) − αG′(Ξ, ζ) = 0. (41)

It is observed that, in the limit forα → 0, the BCs (11,15) for the Winkler soil are retrieved. The276

displacement in the contact region atζ < Ξ is given by277

uc(ζ) =

∫ Ξ

0

σc(ξ)G(ξ, ζ)dξ − 1

4
[uc

3G − uc
2G

′]Ξ0

+

[(

−1

4
G′′ + αG

)

uc
1 +

(

1

4
G′′′ − αG′

)

uc

]Ξ

0

, (42)

whereG(ξ, ζ) takes the shape (13) and, of course, the functionsai(ζ, Ξ) andbi(ζ, Ξ) differ from278

the case of the Winkler foundation. The fundamental set is taken in even/odd fashion279

{ηi(ξ)} =
{

cosh
(

√

λ1ξ
)

, sinh
(

√

λ1ξ
)

, cosh
(

√

λ2ξ
)

, sinh
(

√

λ2ξ
)

}

.

Here, for the sake of definiteness, it is assumedα > 1 whenceλ1,2 = 2
(

α ±
√

α2 − 1
)

. The term280

in square brackets at RHS of (42) vanishes owing to the BCs (2,10,41).281

In the absence of a soil loadingσs, it is us
1 = −α−1/2us, whence the BCs (40) yield the contact282

locus equation283

uc(Ξ) +
√

αuc
1(Ξ) = 0. (43)
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Eq.(43) sets the contact locus without recurring to the soilprofile. It may be written as284

F (Ξ) =

∫ Ξ

0

σc(ξ)K(ξ, Ξ)dξ − 1

4
lim
ζ→Ξ

[uc
3K(Ξ, ζ) − uc

2K
′(Ξ, ζ)] , (44)

wherein a new kernel function is defined in terms of the Green functionG285

K(ξ, ζ) = G(ξ, ζ) +
√

α
∂G

∂ζ
(ξ, ζ). (45)

Now the argument runs parallel to the treatment given for theWinkler soil. However, it is empha-286

sized that neither the kernelG nor K is symmetric, for the problem for the Green function is no287

longer self-adjoint. When the beam lifting-off the soil is load-free, Eq.(44) gives an expression288

formally analogous to (17)289

F (Ξ) = Ai(Ξ)αi(Ξ), (46)

being understood thatAi(Ξ) = Ai(Ξ) +
√

αĀi(Ξ) and290

Ai(Ξ) = lim
ζ→Ξ

ai(ζ, Ξ), Āi(Ξ) = lim
ζ→Ξ

∂ai

∂ζ
(ζ, Ξ). (47)

The symmetric layout accounts for the vanishing of the functionsA2, A4 and likewise forĀ2, Ā4.291

Besides,A1 equalsA3 andĀ1 equalsĀ3 provided that the role ofλ1 andλ2 is exchanged. After292

some lengthy manipulations, it is found, omitting a common non-vanishing denominator,293

A1 = λ1(λ1 − λ2)
[

cosh(
√

λ2Ξ) +
√

αλ2 sinh(
√

λ2Ξ)
]

, (48a)

A3 = λ2(λ2 − λ1)
[

cosh(
√

λ1Ξ) +
√

αλ1 sinh(
√

λ1Ξ)
]

, (48b)

whenceA1 andA3 are easily retrieved lettingα → 0. As expected,A3 equalsA1 once the role of294

λ1 andλ2 is exchanged.295
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When accounting for the contribution from the lift-off interval, it is296

F (Ξ) = Ai(Ξ)αi(Ξ) − 1

4
[uc

3(Ξ)Ai(Ξ)ηi(Ξ) − uc
2(Ξ)Ai(Ξ)η′

i(Ξ)] , (49)

where use has been made of the continuity properties of the Green functionG.297

Applications for a Pasternak soil298

Let us consider the classic situation of a beam resting on a tensionless Pasternak soil and299

loaded at midspan by a unit force. Then, it isσc = δ(ξ, 0)/2 and Eq.(46), together with Eqs.(48)300

and divided through by(λ1 − λ2), gives301

F (Ξ) = λ1

[

cosh
(

√

λ2Ξ
)

+
√

αλ2 sinh
(

√

λ2Ξ
)]

− λ2

[

cosh
(

√

λ1Ξ
)

+
√

αλ1 sinh
(

√

λ1Ξ
)]

. (50)

The first positive root ofF gives, whenβ = 2.5, the resultΞ = 0.8423946552. We wish to302

determine the loading condition at the beam end such that thecontact locus is preserved. Again,303

we need to vanquish the last term of Eq.(49), i.e.304

cl = f l
(

l − Ξ + RP (Ξ)
)

, RP (Ξ) =
Ai(Ξ)ηi(Ξ)

Ai(Ξ)η′

i(Ξ)
.

It is observed that forα → 0 the Pasternak soil becomes a Winkler soil and indeedRP (Ξ) →305

RW (Ξ). In particular, forΞ = 0.8423946570, it is RP (Ξ) = 0.2763085352.306

When two symmetrically placed unit forces are far apart enough, the beam stands on the verge307

of lifting off at the origin. Letting the force distance be2∆ and making use of Eqs.(48), Eq.(46)308

specializes to309

F (Ξ) = λ1 cosh(
√

λ1∆)
[

cosh
(

√

λ2Ξ
)

+
√

αλ2 sinh
(

√

λ2Ξ
)

]

− λ2 cosh(
√

λ2∆)
[

cosh
(

√

λ1Ξ
)

+
√

αλ1 sinh
(

√

λ1Ξ
)]

, (51)
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having omitted the common factorλ1 − λ2 and provided thatα > 1. Seeking the solution of310

F (Ξ) = 0 lends the curvesΞ vs. ∆. For a Pasternak foundation, the counterpart of Eq.(30)311

demands that the dimensionless contact pressure−uc
4/4 vanishes at the origin. With Eq.(39), the312

requirement amounts to313

αi(Ξ)
(

Bi(Ξ) − α ¯̄Bi(Ξ)
)

= 0, (52)

being, in analogy with Eq.(47),Bi(Ξ) = limζ→Ξ bi(ζ, Ξ), ¯̄Bi(Ξ) = limζ→Ξ
∂2bi

∂ζ2 (ζ, Ξ). Fig.10 plots314

the solution curves of Eq.(51) (dash) and Eq.(52) (solid curve) forα = 1.1, 5 and10. The bisector315

is also plotted as a dotted line for solutions are admissibleinasmuch asΞ > ∆. When the forces are316

brought farther apart, the contact locus position moves along the dash curve until the solid curve317

is met. At such limiting distance2∆̃, the continuous contact scenario breaks down and lift-off318

appears in the neighborhood of the origin.319

CONCLUSIONS320

In this paper, the free-boundary problem of tensionless contact for a beam resting on either321

a Winkler or a Pasternak two-parameter elastic foundation is addressed. The classic approach to322

the problem consists of integrating the deflection curves for the beam in contact with the soil, the323

beam lifting off it and the soil and then matching solutions at the contact locus, which is a problem324

unknown. When matching solutions, an extra condition existsthat determines the contact locus.325

Conversely, in this paper, a Green function approach is put forward which aims at determining a326

direct (nonlinear) connection between the loading and the contact locus. Once the contact locus is327

set, the problem reduces to solving a classic linear BVP in thecontact and lift-off regions. This328

way of approaching the problem lends considerable advantages over the classic one. First, the329

connection between the contact locus position and the loading is expressed as a general relation,330

which allows to determine what features of the loading affect the contact locus. This implies331

that it is possible to build the set of loadings whose application leads to the same contact locus.332

Among such loadings, the superposition principle holds. Second, solutions are obtained once some333

assumptions are made concerning the contact layout. Accordingly, results must be checked against334
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such assumptions at the end of the procedure. Although this part is common to both approaches, it335

is shown that here the required assumptions are weaker. For instance, the non-symmetric contact336

problem for a Winkler foundation is analyzed in general and two families of solution curves are337

obtained: one for the left and one for the right contact locus. When the beam length is insufficient338

to accommodate both contact loci, one curve is simply dropped in place of the constraint that339

fixes the contact at the beam end. Conversely, when deflection curves are integrated, whether340

lift-off exists needs be assumed from the start, given that the BCs depend on such assumption.341

Several applications are presented for both the cases of symmetric and non-symmetric contact.342

Furthermore, comparison with the existing literature is carried out.343
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FIG. 1. Symmetric continuous contact scenario with lift-off for a beam on a tension-
less Winkler foundation
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FIG. 2. ∆1, ∆2 − ∆1 pairs giving the same contact locus Ξ(k)
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FIG. 3. Beam profile for k = 1 and either ∆2 − ∆1 = 1 or ∆2 − ∆1 = 0.1
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FIG. 4. Bending moment, shearing force and contact pressure for a beam on a
Winkler foundation at the onset of midspan lift-off
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FIG. 5. lq vs Ξ for f0 = 1 as given by Eqs.(33,34)
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FIG. 6. Beam profiles for Ξ < lq (a) and Ξ > lq (b), for q = 0.05, lq = 3, f0 = 1
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FIG. 7. Beam on a Winkler soil in a non-symmetric layout
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FIG. 8. Plots of the fist (dash) and the second (solid) of Eqs. (37)

29



FIG. 9. Left contact locus absolute (solid) and relative (da sh) position for a beam
loaded by a concentrated force at ξ = ∆.
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FIG. 10. Ξ vs. ∆ curve (dash) for α = 1.1, 5 and 10, and limiting curve (solid) which
marks the onset of a discontinuous contact scenario
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