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SUPERPOSITION PRINCIPLE FOR THE TENSIONLESS CONTACT OF
A BEAM RESTING ON A WINKLER OR A PASTERNAK FOUNDATION

by Andrea Nobilit

ABSTRACT

A Green function based approach is presented to addressotiimeaar tensionless contact
problem for beams resting on either a Winkler or a Pasterwakparameter elastic foundation.
Unlike the traditional solution procedure, this approalidvmes determining the contact locus posi-
tion independently from the deflection curves. In so doingg@eral nonlinear connection between
the loading and the contact locus is found which enlighteaspecific features of the loading that
affect the position of the contact locus. It is then possibleuild load classes sharing the property
that their application leads to the same contact locus. iWghch load classes, the problem is lin-
ear and a superposition principle holds. Several applinatdf the method are presented, including
symmetric and non-symmetric contact layouts, which candvdli tackled within the traditional
solution procedure. Whenever possible, results are compdatk the existing literature.

Keywords: Tensionless contact, Green function, two-parameterielfgtndation

INTRODUCTION

The contact problem for beams resting on elastic foundati@s long attracted considerable
attention, given its relevance in describing soil-stroetinteraction (Hetenyi 1946; Selvadurai
1979). In particular, a very extensive literature existaa@ning beams resting on one, two and
three-parameter elastic foundations (Kerr 1964). Theiegi$iterature is for the most part devoted
to considering contact as a bilateral constraint, which liagits the validity of the analysis to
situations where lift-off plays a minor role. However, indoing, the problem retains a valuable

linear character and the superposition principle holds.

IDipartimento di Ingegneria Meccanica e Civile, Univexsiegli Studi di Modena e Reggio Emilia, via Vignolese
905, 41122 Modena, Italy. E-mail:andrea.nobili@unimiore.
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When lift-off becomes an important feature, tensionlessaminmust be reverted to at the
expense of the problem linearity. From a mathematical gtaimd, tensionless contact determines
a free-boundary problem (Kerr 1976; Nobili 2012).

Historically, interest in tensionless contact betweenaniband a foundation arose in connec-
tion with railway systems. In this respect, Weitsman (19Ti) and Adams (1987) and recently
Chen and Chen (2011) considered detachment and stabilitgdgroblem of tensionless contact
under a moving load. Besides, much research on tensiontessuse-foundation contact is de-
voted to assessing its role in reducing the structuralstres seismic event (Celep andil@r 1991;
Psycharis 2008). Recently, Coskun (2003) studied forceddr@owibrations of a finite beam sup-
ported by a tensionless Pasternak soil, while Zhang and Mu{p004) studied a finite beam in
tensionless contact in a non-symmetric contact scenaénsidnless contact for an infinite beam
in a multiple contact scenario was investigated by Ma et 2009a) and Ma et al. (2009b). An
extensive body of literature exists regarding numeriaatsgies specifically devised to deal with
tensionless contact. Recently, Sapountzakis and Kam(28i9) considered a boundary element
method for beam-columns partly supported on a Winkler aaigr1(2011), a three-constant soll
model.

The classic approach to solving a tensionless contact@mofdr a beam on an elastic founda-
tion consists of integrating the deflection curves for tharben contact, the beam in lift-off and
the soil, and then matching the solutions at the yet unknawtact locus, that is the point where
contact ceases and lift-off begins (Weitsman 1970; Kerr@affin 1991). This approach suffers
from two major shortcomings. On the one hand, the procedhitially assumes a contact layout
and then proceeds to determining the relevant quantitisgsrwsuch layout. It then remains to be
checked that results are consistent with the assumptiamgh&@other hand, contact loci positions
are determined through deflection curves integration. e&Sihe general integrals of the governing
equations depend on the loading, it appears that resultestrected to one particular loading.

In this paper, a Green function approach is adopted. Untikectassic approach, this method

consists of first determining the contact locus through dinear equation and then solving the
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linear problem for the deflection curves. In fact, only thetfstage is here presented, the second
being a classic problem. Although the method still reque@®e assumptions concerning the lay-
out of the contact, nonetheless such assumptions are s@hesiléixed and a general connection
between the contact locus and a family of loadings is obthis@ much so that a form of superposi-
tion is also retrieved. It is emphasized that this procediifers from the integral approach of Tsai
and Westmann (1967), which is still based on the Green fonetnd yet it aims at determining the

deflection curves and the contact locus in one stage.

THE FREE-BOUNDARY PROBLEM

The tensionless contact problem for a Euler—Bernoulli (E-8arb resting on a tensionless
elastic foundation is first stated in its simplest form, caming a Winkler soil in a symmetric
contact scenario (Fig.1). Lét X, X| denote the contact interval aid > 0 be thecontact locus,
i.e. the beam rests supported on the soil up to abséisaad then it detaches from it. The beam
detached from the soil is often addressed as lifting off thié SThe free soil extends beyond
X to infinity. Here, the inverse of a reference length is introeld as the ratio between the soil
modulusk and the beam flexural rigiditg 1, i.e. 3* = k(4EI)~". Then, the problem is cast in
dimensionless formz = X is the dimensionless contact locus position and gw denotes the
beam dimensionless displacement. The beam displacemmaetidi, =, restricted to the contact
interval I¢ = [0,Z] and to the lift-off intervall' = (Z,1], is denoted by andu', respectively.
2l = 24L is the beam dimensionless length andis the soil dimensionless displacement in
the unbounded regiof® = [=, +00), which is relevant for the Pasternak soil alone. Besides,
o¢ = [q¢¢/k ando! = Bq'/k are the dimensionless loadings actingfrand’, respectively. In the

contact interval ¢, the beam rests entirely supported on the soil and the goneegjuation reads

(uc)(iv) +uf = O'C, (l)

N

where superscripts within parenthesis denote the diftexteon order with respect t§. To shorten

notation, it is expedient to write theth derivative(uc)(k) with respect t&t asuf,. The problem
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boundary conditions (BCs) due to symmetry are

ullj(o) =0, ug(()) =0, (2)

while the BCs at the contact loc@ enforce continuity for the beam of the bending moment and

of the shearing force

us(2) = up(2),  us(E) = uy(2). 3)

However, unlike an ordinary boundary value problem (BVP)ehte contact locus is a problem
unknown, whence a further condition is demanded for itsiptac This condition, namedon-
tact locus eguation, enforces displacement continuity with the Winkler foutnala (which is here
assumed load free), i.e.

u’(Z) = 0. (4)
In more general terms, the problem may be rewritten formesly

Du® = o¢ (5)
whereD¢ denotes the differential operator embodying the dimemsgsgoverning equation in the
contact region’¢, with its boundary conditions.

THE GREEN FUNCTION APPROACH
In this paper, a new solution procedure is introduced whagles advantage of the Green func-
tion to obtain an explicit connection between the loading #re contact locus position. Let the

adjoint problem for Eq.(5) be considered

DG(€, ) = d(£. ), 6)

whered (&, ¢) is Dirac’s delta function about = ¢ and D¢ the adjoint operator. Let indicate the

order of the operatob*, i.e. n = 4 for both the Pasternak and the Winkler models. It is worth



a1 recalling that the Green functiagd is determined assuming homogeneous boundary conditions at
e the boundarylc and it is thereby independent of the behavior in the lifttefjion. The latter

s comes into play in the form of a boundary tef$i’(¢, ¢). Furthermore, a over-determined system

« becomes an under-determined problem for the Green funciiois then possible to write the

s displacement at a poitin the contact region as

w(©) = [ o0t e )

s and, accordingly, the condition setting the contact lo&ias.instance, for a Winkler foundation, it
o7 IS

w$(E) = lim [ o(6)G(&, Q)de — [BT(E,2)]5, = 0. (8)

(—Z Jre
¢« Here, boundary terms are algebraic and have been gathergd (i =). Eq.(8) sets an integral
% connection between the applied loading and the contacslBonhich has a three-fold purpose.
wo  First, it may be employed to test a given load distributioaiast the contact locus. Second, it
101 mMay be employed to build the loading clasg2s, whose elements share the property that their
102 application produces the same set of contactdoet {=;}. Then, the nonlinear contact problem
10s  Of @ beam resting on a tensionless two-parameters elagtimap be actually solved for any one
4 representative of the load class, the solution for the dd@er members of that class being obtained
s by linear combination. The third purpose of the conditiotoigrovide the contact locus without

106 recurring to the actual integration of the deflection curves

107 TENSIONLESS WINKLER-TYPE SOIL
108 Let us first consider the case of a E-B beam resting on a tdes®Winkler soil and acted upon
s by aline loads® (the resultant of which is indeed irrelevant owing to the lageneous nature of
1o the BC setting the contact locus) possibly extending up tugh vanishing at) the contact locus
=, ina symmetric continuous contact scenario. Here, the BCaré)omogeneous. The boundary
w2 term reads

1

BT = [uG — usG' + uiG" — uG"S (9)
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Here, prime denotes differentiation with respect tahile GG is shorthand for= (¢, ¢). It is easily
seen that to warrant the vanishing of the boundary term, tieeiGfunction has to be subjected to
symmetric conditions at = 0

G'(0,¢) = G"(0,6) =0 (10)

and to the single condition

G"(Z,¢) = 0. (11)

such that the beam slopg (=) drops out the boundary term. This result holds in generanev
when the loading extends beyond the contact locus, whicluatedo saying that the Green func-
tion is entirely independent of the lift-off part. The preli for the Green function is under-
determined and it possesses one free integration parameter

The ODE for the Green function is

1 .
10060 + 66,0 = 3(6,0). (12)
whose general solution is written as

G(£,¢) = 6= e m(€), i=1,...,n. (13)

bz(C7 E)a €> C

Here,{n;(£)} is the fundamental set and, for a Winkler soil,

{n:i(6)} = {eScos €, efsiné, e C cos €, e Csin€}. (24)

Hereinafter, a summation convention is assumed for twipeatd subscripts, ranging froiro
n. Let us further enforce the BC

G"(Z,¢) =0, (15)

whence a self-adjoint formulation f6é# is set. Since the problem is self adjoint, the Green function
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is symmetric as it allows exchanging the roleofind (. Through Eq.(13), the contact zone

displacement is given by

¢ =
w(Q) = ai¢.3) [ (OO +5(C3) [ o ©OnOd eI @)
0 ¢
In particular, letting; — Z, itis u¢(¢) — 0 according to Eq.(4). Letting
F(E) = ai<E’)Ai(E>7 (17)

where

AE) = aZ3),  wE) - / ()i (€) e, (18)

itis F(Z) = 0. Itis remarked that Eqgs.(18) should be taken in a limitingsgeas( — =,
although direct substitution is equally permitted for thenkler foundation. In particular, explicit

expressions are available for the functiotis namely

Ay = Ay = 2A? cos(ZE) cosh(Z), (19a)

Ay = —Ay = 2A"%5in(2) sinh(Z), (19b)

having let the nonnegative quantityy = sin(2=Z) + sinh(2=). Eq.(17), with Egs.(14) and (19),

may be rewritten as
F(2) = a4 (2) cos(E) cosh(Z) + a_(Z) sin(E) sinh(Z), (20)

where2a, () = a(E) + au(2), 2a_(Z) = a1 (Z) — a3(=). The dependence from the loading is
completely embedded in the functions (=), «_(Z) and it is clear that different loadings giving
the same functions are equivalent inasmuch as the contact Is concerned. Eq.(20) acquires a

particularly simple form when it exists® < = such that the loading vanishes outside the interval
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[0, p¢], for then

tan(=) tanh(Z) = —

=r (22)

and the RHS- is a constant with respect &. It is observed that for positive the contact locus
sits in the intervalr /2, w) and, by solution continuity, for negative in(r, 27). In this situation,
loadings are equivalent inasmuch as they exhibit the satiterta For instance, in the case of

two symmetric pairs of concentrated forces, placed aandA, > Ay, itis

_ _COS(AI) cosh(Ay) + cos(Asg) cosh(As)
"7 T sin(Ay) sinh(A;) + sin(Ay) sinh(A,) (22)

such that solving the implicit equation= k, k being a real constant, gives the set of pairs A,
yielding the same contact locagk). Fig.2 shows the curved, — A; vs. A, for £ = 1,5, 10.
The curves may be taken as a graphical representation oeth€@gs. Indeed, Fig.3 shows that
for k = 1, the deformed beam profiles for the cages— A; = 0.1 andA; — A; = 1, to which

it pertains respectivelA; = 0.8857167949 and A; = 0.2529526456, exhibit the same contact
locus positior=(1) = 2.347045566. Among such loadings the superposition principle does.hold
Eq.(20) is generally nonlinear i owing to both the functions; and A;.

Let us now investigate the contribution of the boundary tand consider the situation where
the beam is loaded beyond the contact locus through thedmed'(¢),= < ¢ < [. Then, a
boundary term enters the functian. Exploiting the symmetry of the Green function and the
continuity of its first derivative, Eq.(17) becomes

FE) = {() - {EnE) + usEmE | 4G 23

where, in analogy with the first of Egs.(18), itis IBf(=) = b;(=, Z). With a bit of work, Eq.(20)
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1
a;(Z) cos(Z) cosh(Z) + a_(Z) sin(Z) sinh(Z) = gug(E) [cosh(2Z) + cos(2Z)]

— %ug(E) [sinh(2Z) — sin(22)]. (24)

Eq.(24) provides a nonlinear equation relating the loadind the contact locus, in a symmetric
layout, which gathers all the nonlinear feature of the uerk contact problem. It also provides a
mean of determining whether the beam lifts off the foundatiq rather, rests entirely supported
on it. To this aim, solutions of Eq.(24) are checked agaimstteam lengthand when it is found

that= > [, then the beam rests entirely supported by the foundation.

Applicationsfor a Winkler soil
Symmetric case

Let us consider the case of a beam loaded at midspan by a weét fdhen, it isa, = 1,

a_ = 0 and EQ.(20) reduces to the simple relation
cosh=cos= = 0, (25)

which corresponds to Eq.(7) of Weitsman (1970) and yieldsakll-known resulE = 7 /2. We
are interested in adding an end forfeand an end couplé such that the contact locus remains
unchanged. To this aim, a relationship betwegft) andu5(=) needs be sought in order that the

boundary contribution drops out. Writing the latter as atRhS of Eqg.(24) and considering that

WEE =+ -, @) =f (26)

given thatf! is positive when downwards arfiwhen clockwise, a connection is found between
¢ andf! as follows:

d=-f1-2+R"(T), (27)
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where the positive function is let

~ cosh(2E) + cos(22) (28)

W=y
E7(E) sinh(2Z) — sin(2Z)
In particular, for= = /2, itis RV (Z) = 0.6536439910.
As a second application, the case of a pair of concentratedspsymmetric abogt= 0 and
placed at a distanc2A > 0 apart, is considered. Then, itig = n;(A) and Eq.(21) gives a

connection between the contact locus and the distAnee=, namely

o 1
tan = tanh = = m (29)

It is immediate to see that the sign of both the left and thietdgand side is given by the tangent
terms: forA € [0,7/2), the RHS is negative and solutions are to be found in the iat&ve
[7/2,7). By the same token, foA € [r/2,7), continuity of the solution suggests takifg e

[, 37). Itis further observed that the situatidn= = is not allowed. If the applied forces are far
apart beyond a limiting spaciry\, lift-off takes place in the neighborhood of the origin adlye

in a discontinuous contact scenario. Such limiting spaorwurs when

w(0) = b:(0,Z) /0 " oS (©m)de = bi(0,Zm(A) = 0 (30)

and the grazing condition; (0) = 0 follows directly from the symmetry requirement. Here, it is

1

b1(0,E) = JA2 [cos(2Z) 4 cosh(2Z) — sinh(2E) — sin(2=) + 2]
1

b2(0,2) = SAZ [cos(2Z2) — cosh(2E) + sinh(2Z) + sin(2Z)]

andbz(0,=2) + b4(0,E) = 1, b1(0,Z) — b3(0,Z) = —1. For a general\, Eq.(30) with Eq.(29)
yields
b2(0,Z) — b1(0,E) tan Ztanh = = f(A), (31)

10
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being
-A
(&

2sinh A

f(A) =— (1+cotA). (32)

Eq.(31) lends a connection between the contact locus ansp@ngA. SinceA > 0 demands
= > /2, the LHS of (31) is positive and to get a positive value for RS it must beA > A =
2.356194490. Fig.4 shows the beam bending moment, shearing force artdat@ressure in the
contact interval. As on the verge of lifting-off, the latiemishes at midspan.

As a third example, Eq.(24) is put to advantage for the casecohstant line loading extend-
ing up to the abscisda and a concentrated foreg, at midspan. Whef), = [ the classic solution
for a concentrated loagif, acting at midspan of a beam with weight per unit length obtained.
This situation is generally more involved than the previonss because, féy large enough, the

contact locus sits within the loaded interval. Eq.(24) give

2focos=cosh = + % [sinh 2= + sin 2Z] = —¢(l, — =) [cosh 2E + cos 25|

1
- §q(lq — E)?[sinh 22 — sin 2], (33)

provided that, > =. Whenl, < Zitis

2fo cos = cosh = + ¢ [cos [, sinh [, + sinl, cosh[,] cos = cosh =

+ ¢ [—cosl,sinh(, 4 sinl, cosh [ ] sin Z=sinh = = 0. (34)

For fy = 1, Fig.5 plots both Eqgs.(33,34) in their realms of validityetboundary between them
being represented by the bisector. It is seen thag &mall (7 = 0.01), the contact locus tends to
the classic result/2 in a wide range of,. At ¢ = 0.05, it is observed that for a givelp multiples
solutions for= are found and a maximum value ffr > = appears. Beyond such maximum, a
second branch of solution exists with> [,. It rests to be seen whether the beam is long enough
to warrant the admissibility of such solution. In order tedaliss the multiplicity of solutions, Fig.6

shows the beam profiles for= 0.05 andi, = 3, when the solutiol® < [,, curve (a), an&E > [,,

11
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curve (b), are considered. It is seen that the solution @jddo interpenetration and must be
discarded. However, above the maximum valuelforsolution (a) disappears and solution (b)

becomes admissible.

Non-symmetric case
Let us now drop the symmetry assumption and deal with a gec@mnéinuous contact scenario

(Fig.7). Then, two contact loct; < =, are expected and Eq.(16) becomes

¢ =)
W() = ai(C, B, En) / (€ (E)dE + bi(C, Zr, ) /< CEm(E)de.  (35)

1

Likewise, two limits are now considered

Chlll u(Q)=0 < ai(E1,52)A(E1,E2) =0, (36a)
— 2

Clggl u(() =0 <  (51,52)Bi(E1,52) =0, (36b)
haVing IetA,L(El,EQ) - Gi(EQ,El,EQ), Bi(El,Eg) - bi(EhEl? andOéZ - f_ df

Despite the fact that the analysis follows along the samke aatin the symmetric situation, the
increased mathematical complication suggests to limidibeussion to a single concentrated force.
Then,o¢ = §(¢, A) and it is expedient to set tigeaxis origin att = A without loss of generality.

Egs.(36) become

with the understanding th&t} = =, — A and likewise=} = =, — A. Itis easy to show that for a
symmetric disposition of the contact loci, i€} = —=3, Eqs.(37) collapse into a single equation,
which corresponds to Eq.(25). Indeed, every time a soluasts with=} = —=3 for either of

the EQs.(37), then it complies with both. It is natural taaduced = =} + =3, the deviation

12



222 With respect to a symmetric condition (Fig.7). Fig.8 draws solution curved vs. =; for the

223 first (dash curve) and the second (solid curve) of Egs.(3@)this plot, each intersection point
24 1S @ possible solution of the system. The shaded area, bdudnaa below by the dotted curve
2s d = 223, is ruled out as it leads to a contact locts > =;. It is seen that a discrete number
226 Of solutions is available yet the ones with minim&Eh andd are specially interesting. As long
27 asly > A + /2, which means that the solution points=t > = /2 are admissible, the classic
228 Solutiond = 0, corresponding to a symmetric layout, is retrieved (peinh Fig.8). When such
220 condition no longer holds, one of the beam ends plunges i@ddundation, say the right end,
20 Whence it is=, = [, fixed. Then, only the second equation of (37) survives (solidve) and it
2 providesd vs. =5 = [, — A. Note that=} = d — =5 or, equivalently=; = d — l; + 2A.

232 It is interesting to describe the system behavioAascreases and the loading is brought closer
253 and closer to the beam end. Therns found moving along the solid curve from poiAtto point

2 B and beyond, until the origin is reached. It is seen thatquires decreasing (with) negative
25 values until the poinB3 is reached, where the layout with maximum deviation from syatry |d|

256 1S found. Since, for the most part, the solid curve possassieéslope, in the neighborhood df it

21 1Sd ~ —A and the left contact locus moves rightwards proportionalth A, i.e. =, =~ —I, + A.

233 The contact imprint, however, is given hy= =, — =; and it shrinks as

I~ 2l — A (38)

20 Fig.9 plots the position of the left contact locus againgt libading offsetA for a beam with
20 [y = m/2, that is starting from pointA. Since both the absolute positiGy and the relative
21 POSItion=} are given, the difference between the curves eqgiaishile the distancé, — =, gives
22 the contact imprint length.. The deviation from symmetry], is also shown as the difference
23 from the dash-dot curve andl,. Dotted curves show the positive and negative unit slopégtwh
20 CcoONfirm the behavior previously inferred fay, [, andd. BeyondB, a substantial rotation of the

25 beam occurs which leads to a very small contact imprint aralranst symmetric situation. Here,

13
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d increases towards zero again.
It is easy to obtain the results numerically developed innghand Murphy (2004) for a beam
of varying lengthl loaded symmetrically and non-symmetrically by a unit forGéree regimes

are considered:

1. When52 <l and’Eﬂ < Iy,
2. when, say=, > I, and|Z,| < [,

3. WhenEQ > Iy and’Eﬂ > .

In regime 1, both left and right contact loci sit inside theuve the symmetric solutiod = 0 is
admitted and the contact imprint lendth= =, —=, = 2=3 is constant. In regime 2, the beam right
lengthl, is too short to warrant that the right contact locus sitsdeghe beam. Conversely, the
left length/; accommodates the left contact locus. It is observed thatrdgime demands a non-
symmetric loading situation. Having l&ét = k3l andA = kal, whereks, ka < 1, EQ.(38) shows
that the contact imprint length scales linearly witivith a proportionality coefficien2k, — ka.
Finally, regime 3 is such that both contact loci exceed trenb&eft and right length. The beam
rests entirely supported by the soil and the contact impemgth corresponds to the beam length.
In a symmetric layout, beam length scaling brings the sygtem regime 1 to regime 3 or vice
versa and the contact imprint length is either constant nakip/, as numerically found in Zhang
and Murphy (2004). In a non-symmetric layout, the systemeogokes all three regimes and, from
1 to 3, the contact imprint length is constant, decreasdsamiefficient2k, — ka and finally equals

the beam length, i.e. coefficieht

PASTERNAK SOIL
Let us consider the case of a E-B beam resting on a tensidhéstsrnak soil in a symmetric

continuous contact scenario. The governing ODE readsegicdhtact interval,

Zuj — aug + u’ = o°, (39)

14
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where the dimensionless quantity= (3?kq/k is introduced andy; is the shear modulus of the
foundation (Selvadurai 1979). The BCs enforce symmetry at 0, as at Egs.(2), and bending
moment and shearing force continuity at the contact Iag€uas in (3). Furthermore, two BCs

involve the soil profile through setting displacement amgbslcontinuity (Kerr 1976), i.e.
u(E) =v'(5), ui(E) =ui(E). (40)

The problem is only formally self-adjoint, as the Green timt for the beam in the contact region
is determined by symmetric BCs &t= 0, as at Egs.(10), and homogeneous conditiorgs-at=
as follows:

iG”(E, O —aG(EC) =0, ~G"E.¢) - aG(E,¢) =0, (41)

It is observed that, in the limit forx — 0, the BCs (11,15) for the Winkler soil are retrieved. The

displacement in the contact region(at = is given by

w(Q) = [ o6 e - Jlus6 - 6

+ {(—iG’” + aG) u§ + (iG”’ - aG’) ucl , (42)

0

whereG (&, () takes the shape (13) and, of course, the functigs =) andb; (¢, =) differ from

the case of the Winkler foundation. The fundamental sekisrtan even/odd fashion

{m()} = {eosh (VAi€) s sinh (Vi€ cosh (Vg ) ssinh (Ve }.

Here, for the sake of definiteness, it is assumesd 1 whence\; , = 2 (a + Va2 — 1). The term
in square brackets at RHS of (42) vanishes owing to the BCs @110,
In the absence of a soil loading, it is u{ = —a~'/2u*, whence the BCs (40) yield the contact

locus equation

u’(E) + vaus () = 0. (43)

15



2 EQ.(43) sets the contact locus without recurring to themaifile. It may be written as
— = c — 1 : c — c (=
FE) = [ oKD - § lim [5K(E.0) — K (E.0)]. (a4)
0 —=
.55 Wherein a new kernel function is defined in terms of the GreectonG
oG
K(ﬁ,C)ZG(ﬁ,C)+\/Ea—C(€,C)~ (45)

255 Now the argument runs parallel to the treatment given foiMtirgkler soil. However, it is empha-
27 Sized that neither the kernél nor K is symmetric, for the problem for the Green function is no
28 longer self-adjoint. When the beam lifting-off the soil isatbfree, Eq.(44) gives an expression

250 formally analogous to (17)

F(Z) = Ai(Z)a(Z), (46)
20 being understood that;(Z) = A;(Z) + /a4;(Z) and
AE) = Ima(C5)., A =l Uc.D) @7)
Z‘—‘_<_>E’L)H7 ZH_CHEaC )y =)

21 The symmetric layout accounts for the vanishing of the fiomstA,, A, and likewise forA,, A,.
22 Besides A, equals4; and A, equalsA; provided that the role ok, and ), is exchanged. After

203 SOMe lengthy manipulations, it is found, omitting a common-ranishing denominator,

A= M — Ao) [Cosh(\/)\_gE) 4 sinh(\/)\_zE)] , (48a)
As = do(da — 1) [cosh(\/)\_lE) + o sinh(\//\_lE)] , (48b)

24 WhenceA, and A; are easily retrieved letting — 0. As expectedA; equalsA,; once the role of

205 A1 and), is exchanged.
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When accounting for the contribution from the lift-off inte, it is

F(E) = ADau(E) — § 5@ AEM(E) — w5@AEME), (49)

where use has been made of the continuity properties of teerFunction.

Applicationsfor a Pasternak soil

Let us consider the classic situation of a beam resting omsideless Pasternak soil and
loaded at midspan by a unit force. Then, ibts= §(¢,0)/2 and Eq.(46), together with Egs.(48)
and divided through by\; — \,), gives

F(E)=M [COSh <\/>\_25) + v/ aAysinh <\/)\_QE>]
— A2 [COSh (\//\_15> + v/ sinh <\//\_15>} . (50)

The first positive root ofF' gives, wheng = 2.5, the result= = 0.8423946552. We wish to
determine the loading condition at the beam end such thatahact locus is preserved. Again,

we need to vanquish the last term of Eq.(49), i.e.
d=f(1-2+R"E), RE) =

It is observed that forv — 0 the Pasternak soil becomes a Winkler soil and indBE(E) —
RY(Z). In particular, for= = 0.8423946570, it is R"(Z) = 0.2763085352.

When two symmetrically placed unit forces are far apart ehotige beam stands on the verge
of lifting off at the origin. Letting the force distance RA and making use of Eqgs.(48), Eq.(46)

specializes to

F(2) = Ay cosh(v/ M A) [ cosh (\/)\_QE> + v/ a)g sinh <\/)\_QE> ]
— A2 cosh(\//\—QA) [COSh <\//\_15> + v/ aA; sinh (\/A_lEﬂ . (51)
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having omitted the common factoy, — X\, and provided thatr > 1. Seeking the solution of
F(Z) = 0 lends the curve& vs. A. For a Pasternak foundation, the counterpart of Eq.(30)
demands that the dimensionless contact pressufg4 vanishes at the origin. With Eq.(39), the

requirement amounts to

o (2) (Bi(E) - aBi(3)) =0, (52)

being, in analogy with Eq.(475;(Z) = lim._=z b;(¢, =), Ei(E) = lim;_= %(C, =). Fig.10 plots
the solution curves of Eq.(51) (dash) and Eq.(52) (solidepfor o« = 1.1, 5 and10. The bisector

is also plotted as a dotted line for solutions are admissaialemuch a& > A. When the forces are
brought farther apart, the contact locus position movesgtbe dash curve until the solid curve
is met. At such limiting distanceA, the continuous contact scenario breaks down and lift-off

appears in the neighborhood of the origin.

CONCLUSIONS

In this paper, the free-boundary problem of tensionlessambrior a beam resting on either
a Winkler or a Pasternak two-parameter elastic foundasaddressed. The classic approach to
the problem consists of integrating the deflection curveshfe beam in contact with the soil, the
beam lifting off it and the soil and then matching solutiohth@ contact locus, which is a problem
unknown. When matching solutions, an extra condition exfss determines the contact locus.
Conversely, in this paper, a Green function approach is putaia which aims at determining a
direct (nonlinear) connection between the loading and tiact locus. Once the contact locus is
set, the problem reduces to solving a classic linear BVP irctmact and lift-off regions. This
way of approaching the problem lends considerable advastager the classic one. First, the
connection between the contact locus position and thengadiexpressed as a general relation,
which allows to determine what features of the loading affee contact locus. This implies
that it is possible to build the set of loadings whose apfibbcaleads to the same contact locus.
Among such loadings, the superposition principle holdso8d, solutions are obtained once some

assumptions are made concerning the contact layout. Aicgdydresults must be checked against
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such assumptions at the end of the procedure. Althoughdénisgpcommon to both approaches, it
is shown that here the required assumptions are weakerngt@anice, the non-symmetric contact
problem for a Winkler foundation is analyzed in general and families of solution curves are
obtained: one for the left and one for the right contact lo&een the beam length is insufficient
to accommodate both contact loci, one curve is simply drdppeplace of the constraint that
fixes the contact at the beam end. Conversely, when defleaises are integrated, whether
lift-off exists needs be assumed from the start, given thatBCs depend on such assumption.
Several applications are presented for both the cases aheyme and non-symmetric contact.

Furthermore, comparison with the existing literature isied out.
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FIG.5. [,vs Efor f; =1 as given by Eqs.(33,34)
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FIG. 8. Plots of the fist (dash) and the second (solid) of Egs. (37)
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FIG. 10. = vs. A curve (dash) for o« = 1.1, 5 and 10, and limiting curve (solid) which
marks the onset of a discontinuous contact scenario
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