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Abstract—In this paper, we propose a dynamic resource
provisioning scheduler to maximize the application through-
put and minimize the computing-plus-communication energy
consumption in virtualized networked data centers. The goal
is to maximize the energy-efficiency, while meeting hard QoS
requirements on processing delay. The resulting optimal resource
scheduler is adaptive, and jointly performs: i) admission control
of the input traffic offered by the cloud provider; ii) adap-
tive balanced control and dispatching of the admitted traffic;
iii) dynamic reconfiguration and consolidation of the Dynamic
Voltage and Frequency Scaling (DVFS)-enabled virtual machines
instantiated onto the virtualized data center. The proposed
scheduler can manage changes of the workload without requiring
server estimation and prediction of its future trend. Furthermore,
it takes into account the most advanced mechanisms for power
reduction in servers, such as DVFS and reduced power states.
Performance of the proposed scheduler is numerically tested and
compared against the corresponding ones of some state-of-the-
art schedulers, under both synthetically generated and measured
real-world workload traces. The results confirm the delay-vs.-
energy good performance of the proposed scheduler.

Index Terms—Virtualized Data Centers, Cloud Computing,
Resource Allocation, Energy-efficiency, Lyapunov Optimization.

I. INTRODUCTION

Over the last years, the evolution of demands for mod-
ern applications combined with the adoption of the cloud
computing paradigm has led to the establishment of large-
scale virtualized data centers. They are characterized by a
large (and ever increasing) number of servers, which rely
on hardware-assisted virtualization and multi-hop networks to
provide server interconnection [1].

In a Software-as-a-Service (SaaS) scenario, two main needs
must be taken into account. First, QoS requirements, typically
expressed in the form of a Service Level Agreements (SLAs),
must be met. Second, we also aim to reduce the energy
consumption, in order to meet the demand of the so-called
green computing (or, more pragmatically, we need to reduce
power consumption to maximize the economic revenue). The
perspective of this paper is that of an entity that is in
charge of providing services to clients and controls the cloud
infrastructure as well. This scenario is typical when a SaaS
provider manages its own physical infrastructure, or when a
company deploys its own private cloud platform.

However, current proposals are still far from solving all
the problems that characterize the management of large cloud
data centers. For example, several existing solutions [2]–[4]
rely on the forecast of future workload and infrastructure
resource demands. This may be a problem due to inherent
errors in the prediction steps, that may be exacerbated by
the presence of highly variable and unpredictable fluctuations
of the workload patterns. Even solutions that do not rely on
prediction have the critical shortcoming of considering only
the resources of the servers, without considering the power
consumption of the underlying intra-data center network [5]. A
specular set of works focuses on the network without providing
a detailed view of the computational infrastructure [6]–[8].
Only recently, the authors proposed some solutions to manage
data centers considering both computational and networking
infrastructure [9].

In this paper, we present a further step with respect to
these proposals by introducing an innovative mechanism that
combines admission control, request management through
scheduling, and server management by using DVFS and re-
duced power states of the servers. The final goal is to manage a
cloud networked data center in an energy-efficient way, while
meeting QoS requirements. The main contributions of our
proposal are the following ones: (1) we manage unpredictable
changes of workload without the need for estimation and
prediction mechanisms; (2) we consider virtual machine (VM)
consolidation and task replacements; (3) we take into account
both the computing (including power state changes and DVFS)
and the communication energies in the management of the
infrastructure.

Our proposal is tested using a simulative approach based
on both real traces and synthetic workloads. The scheduler
is tested under different data center scenarios. Furthermore,
its performance is compared with the ones of the recent
GRADient-based Iterative Scheduler (GRADIS) in [10], the
Static Lyapunov-based Scheduler (SLS) in [11], the hybrid
NetDC scheduler (H-NetDC) in [12], and the NetDC scheduler
in [9] by considering throughput, delay, and energy costs
(e.g., computing plus communication costs). Our experiments
prove that our proposal maximizes energy efficiency, while
per-application service rate is also maximized according to
the control policies we define for each server.
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The rest of this paper is organized as follows. After pre-
senting the model of the considered virtualized data center
architecture in Section II, we provide the problem formulation
and the proposed joint scheduler in Section III. Performance
evaluation results obtained through extensive simulation tests
are presented in Section IV. Finally, Section V presents some
concluding remarks.

II. SYSTEM ARCHITECTURE

A. Networked data center overview

We begin to present an overview of the considered net-
worked data center that uses our solution for performing
scheduling and admission control.

Fig. 1 provides a general scheme of the considered net-
worked data center. We have an heterogeneous set of clients
issuing requests to the networked data center (e.g., the boxes
on the left side of the figure). The set of requests is first
processed by the admission controller that decides whether
or not the request should be accepted by the data center.
The traffic of admitted requests is, then, handled by the
traffic controller and dispatcher. This component dispatches
the requests over the VMs hosted by the processing nodes,
while buffering the requests that are not immediately sent
to the VMs. Our data center supports multiple services that
can be requested by the clients, and each VM may host
only one service; hence, queuing and dispatching operations
take into account the deployment of VMs over the server
infrastructure. Requests are distributed through the internal
data center network to the appropriate processing servers (and
VMs). A final element of our infrastructure is the internal
service of servers reconfiguration and consolidation. This
service is in charge of the capacity adjustment, that decides the
deployment of VMs over the servers and manages the servers
by determining the ON/OFF status of the servers, as well as
the CPU frequencies by exploiting the DVFS capabilities of
the underlying hardware.

The virtualized data center shown in Fig. 2 provides a
more detailed view of three main components: ADmission
Controller (ADC), Dispatcher, and Virtual Machine Monitor
(VMM). The proposed model is consistent with the architecture
presented in [11]. We consider a separate ADC for each
application. A set of dispatchers, one for each application, has
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Fig. 2: Data center detailed model

the twofold task of storing the allowed requests in buffers and
distributing them over the VMs that will be responsible for
their processing. Each VM has a queue that is used to store
requests to be processed. Furthermore, a per-server VMM is
responsible for both managing the status of the server (power
ON/OFF, CPU frequency that is, servers reconfiguration) and
for deciding which VMs must run on each server (that is,
servers consolidation).

We consider that the data center supports a Software as
a Service (SaaS) cloud system, that provides a set A of
applications. Let N = |A| be the number of such applications.
The VMs that support the execution of these applications
are deployed over a set S of M servers. For this purpose,
we assume that each server j ∈ S has a set of resources
(i.e., CPU, disk, memory, etc.) that are binded to the VMs
hosted on it and supervised by its VMM. In practice, this
VMM resides on the host Operating System of each virtualized
server. In this paper, we focus on the case where the CPU
is the bottleneck resource of each server. This happens, for
example, when all applications running on the servers are
computationally intensive. Therefore, CPU frequency, switch
frequency and power and/or energy constraints are critical for
this scenario [13].

According to [11], we consider a discrete-time model based
on timeslots. Decisions on the capacity adjustment of the data
centers are taken at the beginning of each timeslot. We assume
that each timeslot is significantly longer than the job average
interarrival time, so that resource provisioning may be based
on the average arrival rate during each slot. For example,
if requests arrive at a rate of few requests per seconds, the
timeslot can be in the order of minutes.

We now detail the formal model used to describe the system.
For the convenience of the readers, the major notations used in
this paper are listed in Table I. In each slot t, new requests for
i-th application arrive according to a random arrival process
Ai(t) (IU/slot) with time average rate λi (IU/slot)1. We
assume that the statistics of Ai(t) are unknown, so that

1The meaning of an Information Unit (IU) is application-dependent. We
anticipate that, in the carried out tests of Section IV, IUs are understood as
Mbit.



TABLE I: Notation.

Symbol Meaning/Role

aij Indicator of the i-th application to the j-th server
Ri(t) (IU/slot) Admitted arrival requests after ADC(i) in slot t
Ai(t) (IU/slot) New arrival requests for i-th application in slot t
Rij(t) (IU/slot) Routing decisions of i-th application to j-th server
µij(t) (IU/slot) Service rate of i-th application on j-th server in slot t
Wi(t) (IU/slot) i-th application buffer size in slot t
Uij(t) (IU/slot) i-th application buffer size of the j-th server in slot t

RTTj (s) Average round-trip-time of j-th dispatcher-server link
fj(t) (IU/slot) Processing rate of j-th server in slot t
fmax
j (IU/slot) Maximum allowed processing rate of j-th server
rj(t)(IU/slot) Communication rate of the j-th server-dispatcher link
Eidlec (j)(Joule) Static energy consumed by j-th server
P idle
N (j)(Watt) Static power consumed by j-th dispatcher-server link
Emax
c (j)(Joule) Maximum energy consumed by j-th server
Ec(j, t)(Joule) Computing energy consumed by j-th server in slot t
Edyn(j, t)(Joule) Switch energy consumed by j-th server in slot t
ELAN (j, t)(Joule) Communication energy consumed by j-th server
Etotj (t)(Joule) Total energy consumed by j-th server in slot t

{Ai(t) ∈ R+
0 , t ≥ 0} is a random process with unknown

statistics.

B. Admission Controller

For each application i ∈ A, the ADC of Fig. 2 decides
whether to admit or decline the new requests. The admitted
requests are stored in the Dispatcher buffers (see the buffers
connected to each ADC), before being routed by the Dis-
patcher to one of the servers hosting that application.

We consider (time-slotted) G/G/1 fluid systems for mod-
eling the queue sets of ADC and servers of Fig. 2. Due to
the admission control, both set of queues are loss-free and
they implement the FIFO service discipline. Specifically, at
the end of slot t, the arrival Ai(t), t ≥ 0 of processing new
(possibly, heterogeneous) requests arrive at the input of the
ADCs of Fig. 2. Note that Ai(t) is assumed to be independent
from the current backlogs of the ADC queues of Fig. 2. We
assume that any new arrival that is not admitted by the ADC
of Fig. 2 is declined. Let Ri(t) be the number of requests out
of Ai(t) that are admitted into the i-th application buffer of the
Dispatcher by ADC(i). Let Wi(t) ∈ R+

0 and Uij(t) ∈ R+
0

be the numbers of IUs stored by ADCs and server queues
of Fig. 2 at the beginning of slot t. Furthermore, let Rij
(IU/slot) be the size of task of the i-th application served
by the j-th server that: (i) is drained from the ADC(i) queue
at the beginning of slot t; and, (ii) is injected into the ij-
th queue at the end of slot t. We assume that dispatching
occurs on the basis of the VM-to-Server mapping provided by
{aij}. If a given application is served by multiple VMs, we
assume that the dispatcher uses the round-robin discipline for
the scheduling.

C. Adaptive Balancing Control and Dispatching

Let µij(t) (IU/slot) be the traffic that is drained from
the j-th server queue of Fig. 2 during slot t. We denote the
buffer backlog by Wi(t), with 0 ≤ Wi(t) ≤ Ai(t). Hence,
the time evolutions of the backlogs {Wi(t) ∈ (R)+

0 , t ≥ 0},
{Uij(t) ∈ (R)+

0 , t ≥ 0} of the ADC(i) and j-th server queues
are dictated by the following Lindley’s equations, respectively:

Wi(t+ 1) =

[
Wi(t)−

(∑
j

aijRij(t)

)]
+

+Ri(t), t ≥ 0, (1)

Uij(t+ 1) = [Uij(t)− µij(t)]+ +Rij(t), t ≥ 0, (2)

where Rij(t) is the number of requests for i-th application
that are routed from its dispatcher to the j-th server in slot t.

D. Computing and Switching

The client requests are sent by the dispatchers to the active
VMs running on the servers for being processed. In this paper,
we assume that VMs deployed over a server can change their
share of server resources according to the model described
in [14], that is widely adopted in private cloud environments.
This model tends to face conditions of high computational
demand by means of few large VMs instead of many small
VMs. We adopt a simplified model where a single VM is
deployed over each server and uses all the available resources
for that server (we will refer to the VM deployed on server
j as VM(j)). The extension of the model to the case where
multiple VMs share the same server is left as an open issue
to be addressed in future works.

In this paper, we model each server as capable of a process-
ing rate fj(t) in slot t. Depending on the size Rij(t) (IU/slot)
of the i-th application’s task to be currently processed by the
j-th server in slot t, the corresponding processing rate fj(t)
may be adaptively scaled at run-time through DVFS. In this
way, each server can be operated at multiple voltages which
operate different CPU frequency [15]. Let Q be the number of
allowed CPU rates: for example, the Intel EIST-technologies
allows to choose the clock frequency from a set of Q = 62

or Q = 153 values for reducing the power consumption when
the computational demands are low.

DVFS is applied by the hosting physical servers to stretch
the processing times of the tasks and reduce energy consump-
tion by decreasing the processing rates of the active VMs. Each
processing rate may assume values over interval [0, fmax

j ],
where fmax

j (IU/slot) is the maximum allowed processing
of VM(j).

In [16], it is shown that there is a quadratic relationship
between the CPU utilization of VM(j) and the corresponding
computing energy consumption Ec(j, t) (all servers in our
model are assumed to have identical CPU resources), so that
we can write:
Ec(j, t) = Eidlec (j) + (fj(t)/f

max
j )2

(
Emax
c (j)− Eidlec (j)

)
(3)

Furthermore, we note that switching from the processing rate
fj(t−1) (e.g., the processing rate of VM(j) at (t−1)-th slot)
to fj(t) (e.g., the processing rate of VM(j) in t-th slot) entails
an energy overhead of Edyn(j, t) [16]. Although the actual
behavior of the function Edyn(j, t) depends on the adopted
DVFS technique, a quite common model is the following
quadratic one [16]:

Edyn(j, t) = ke (fj(t)− fj(t− 1))2 . (4)

2http://download.intel.com/design/network/papers/30117401.pdf
3https://software.intel.com/sites/default/files/ftalat.pdf



In Eq. (4), ke (Joule/(Hz)2) denotes the switch cost induced
by an unit-size rate switching, which is typically limited up
to few hundreds of µJ ′s per (MHz)2 [16].

At each slot, the VMM allocates the resources of each
server among the VMs that host the applications running on
that server. Let S̀(t) be the set of turned ON VMs at slot t.
Hence, we have S̀(t) ⊆ S . In our reference data center, the
scheduler interleaves reconfiguration and consolidation slots.
Specifically, at each reconfiguration slot, the scheduler does
not change the set S̀(t) of turned ON VMs and, then, it leaves
unchanged the corresponding sets of turned ON/OFF physical
servers. However, it assigns the requests Rij to the turned
ON VMs. Thus, the routing decisions Rij(t) must satisfy the
following constraints at slot t:

aij =

{
1, Rij = 0, if j /∈ S̀(t)

0, if j ∈ S̀(t);
(5)

0 ≤
∑

j∈S̀(t)

aijRij(t) ≤Wi(t) (6)

E. Communication

We assume that the j-th virtual end-to-end connection (e.g.,
the j-th virtual link) of the data center of Fig. 2 is bidirec-
tional, symmetric and operates in a half-duplex way [17]. A
joint analysis of the computing-plus-communication energy
consumption in delay-tolerant data centers is performed in
[16], where the effects of inter networking infrastructures are
evaluated. Two main conclusions arise from [16]. First, the
energy consumption due to the data transport may represent
a large part of the total energy consumption, especially at
medium/high usage rates. Second, the energy consumption of
cloud infrastructures needs to be analyzed by simultaneously
accounting for data computing and Dispatcher-Server data
transport. Motivated by these considerations, we consider the
TCP New Reno protocol [18] to model the managed end-
to-end Dispatcher-Server transport connections. Hence, under
the Congestion Avoidance state, the power drained by each
connection may be evaluated as in [9]:

Pnet
j (t) = Ωj

(
RTTj rj(t)

)2
+ P idle

N (j), j = 1, . . . ,M, (7)

where RTTj is the average round-trip-time of the j-th server-
dispatcher end-to-end connection, rj(t) is the communication
rate of the j-th virtual link at the t-th slot, and Ωj is the j-th
virtual link power coefficient that depends on the maximum
segment size of the transmitted packets and on the number of
per-segment ACKs as described in [10], [19].

Hence, the corresponding one-way transmission delay is:
Dj(t) = (Rij(t))/rj(t), where Rij(t) is the workload of the
i-th application (requests) which is assigned to available j-th
server at the t-th slot. The overall two-way computing-plus-
communication delay induced by the j-th end-to-end connec-
tion of Fig. 2 equates to 2Dj , so that the hard constraint on
the overall per-request execution time is: max1≤j≤M{2Dj}.
Thus, the corresponding one-way communication energy
ELAN (j, t) wasted by the j-th virtual link at slot t is:

ELAN (j, t) = Pnet
j (t) (aijRij(t)) /rj(t), ∀i ∈ A, (8)

Hence, the resulting total computing-plus-communication en-
ergy Etotj (t) consumed at slot t by the j-th server is:

Etotj (t) = Ec(j, t) + Edyn(j, t) + ELAN (j, t). (9)

III. PROBLEM FORMULATION AND SOLUTION

We now present our proposal of a dynamic load balancing
and resource provisioning approach that takes into account
computation and communication costs, and exploits DVFS-
based discrete frequencies and their time shares for each VM.
Our final goal is to maximize the throughput of the applica-
tions and minimize the joint computing-plus-communication
energy costs of the servers, subject to the available control
options and to the structural constraints imposed by the con-
sidered model. Since frequent turning ON/OFF servers may be
undesirable (for example, due to hardware reliability issues),
we will focus on frame-based control policies, where time
is divided into frames of length T slots. We define Tmax as
the maximum number of slots considered in our experiments
for the evaluation of SLAs. We recall that the set of active
servers is chosen at the beginning of each frame and does
not change for the duration of that frame (reconfiguration
state): this set may change in the next frame as workloads
change (consolidation state). In the consolidation state, we
use the MBFD [20] policy to migrate some of active servers’
backlogs to some other servers, then we update the set of
active servers. Let Ti and ξj denote the (average expected) rate
of admitted requests for i-th application and the (average ex-
pected) total joint computing-plus-communication energy con-
sumption of j-th server, that is Ti, lim

t←∞
1
t−1

∑t−1
τ=0E{Ri(τ)}

and ξj , lim
t←∞

1
t−1

∑t−1
τ=0E{Etotj (τ)}, respectively. We define

T , { T1, T2, . . . , TN } as the vector of average rates of
applications and ξ,{ ξ1, ξ2, . . . , ξM } as the vector of energy
average rates of servers. Hence, the resource reconfigura-
tion/consolidation problem at slot t is formulated as in the
following:

min
χ

θ∑
j∈S̀

ξj −
∑
i∈A

βiTi

 , (10.1)

subject to:

0 ≤ fj(t) ≤ fmaxj , ∀j ∈ S̀, (10.2)

0 ≤ Ti ≤ λi, T ∈ Γ, ∀i ∈ A, (10.3)
Eqs. (1), (2), (5), (6). (10.4)

where χ , {T , fj(t), Uij , Ri(t), i ∈ A, j ∈ S̀}. In Eq.(10.1),
θ and βi are non-negative weights which are used for normal-
ization and to assign priorities between throughput and energy.
The optimization problem in Eq. (10.1) is a general weighted
linear combination of the sum throughput of the applications
and the average energy usage in the data center. Eq. (10.2)
(resp., Eq. (10.3)) bounds the maximum processing rate of j-
th server (resp., maximum average rate of i-th application). At
the end, Γ in (10.3) represents the capacity region of the data
center, which is defined as the set of all possible longterm



throughput values that can be achieved under any feasible
resource allocation strategy.

In the rest of the paper, the optimal solution of the problem
(10) is denoted as in {f∗j (t), U∗ij , R

∗
i (t), i ∈ A, j ∈ S }. We

rely on the Lyapunov optimization [11], [21] to develop an
optimal control policy. In particular, we introduce a dynamic
control algorithm that achieves the optimal solution {T ∗i } and
{ξ∗j }. We use queue backlog values in slot t to make decisions
for the proposed algorithm in ADC, Routing and VMM
components of Fig. 2. These decisions help us to dynamically
update the system condition, while the new requests come
to the system. Hence, the proposed algorithm optimizes the
objective in (10) by solving a sequence of optimization prob-
lems over time. The queue backlogs can be viewed as dynamic
Lagrange multipliers that enable stochastic optimization [21].
The proposed method called Joint Dynamic Lyapunov-based
Scheduler (JDLS) performs the following actions:

1) Admission control: it is important to maximize Ri(t)
and minimize the application backlog Wi(t) for i-th
application in slot t. So, we should solve the following
problem:

min
i

Ri(t) [Wi(t)− V βi] , (11.1)

s.t: 0 ≤ Ri(t) ≤ Ai(t), (11.2)

where V ≥ 0 is a control parameter used by the
system administrator to control the trade-off between
average delay and total average utility by exploiting the
threshold-based mechanism used in [11]. If the current
ADC queue backlog for i-th application satisfies the
condition Wi(t)>V βi, then R∗i (t) = 0 and no new
requests are admitted. Otherwise, R∗i (t) = Ai(t) and
all new requests are admitted.

2) Request dispatching: for the i-th application, we dispatch
the ADC(i)’s drained queue requests to the active
servers in set S̀(t) using a round-robin policy.

3) VMM and resource allocation: for j-th server in the set
S̀(t), we have to solve the following sub-problem:

min
i

∑
i∈A

V θEtotj (t)− Uij(t)µij(t), (12.1)

s.t: Eqs. (3), (4), (7), (12.2)

Eq. (12) is a generalized min-weight problem, where the
service rate provided to any application is weighted by
its current queue backlog. Hence, the optimal solution
allocates resources to maximize the service rate of
the most backlogged application:

∑
i∈A Uij(t)µij(t),

and minimize the overall energy consumption for j-
th server:

∑
i∈A V θEtotj (t). It is worth to note that

each server solves its own resource allocation problem
independently by using the queue backlog values of the
applications hosted on it and this can be implemented
in a fully distributed way, with a major benefit in terms
of scalability.

Algorithm 1 reports a pseudo-code for the adaptive imple-
mentation of the proposed resource scheduler.

Algorithm 1 A pseudo-code of the proposed JDLS
1: for t ≥ 1 do
2: if t 6= nT , then . t is a reconfiguration slot,
3: for all i ∈ A do
4: Update Ri(t) using eq. (11);
5: Update Rij(t) using eq. (5), (6) and JDLS’s Routing;
6: Update Wi(t+ 1) using eq. (1);
7: end for
8: for all j ∈ S̀ do
9: Update µij(t) using eq. (12);

10: Update Uij(t+ 1) using eq. (2);
11: end for
12: else . t is a consolidation slot
13: re-run lines 3-7;
14: for all j ∈ S̀ do
15: Update µij(t) using eq. (12) and update eq. (3), (4),

and (8) with zero frequency;
16: Request task replacement using MBFD [20] policy

over S̀(t);
17: Update S̀(t);
18: end for
19: end if
20: end for

IV. TEST RESULTS AND PERFORMANCE COMPARISONS

This section presents the performance evaluation of the
proposed scheduler under a set of synthetic and real-world
input traffic traces. In particular, we perform a sensitivity
analysis with respect to the main model parameters; then,
we compare the performance of the proposed JDLS scheduler
with that of the recent GRADient-based Iterative Scheduler
(GRADIS) [10], the Static Lyapunov-based Scheduler (SLS)
in [11], the hybrid NetDC scheduler (H-NetDC) in [12], and
the NetDC scheduler (NetDC) in [9]. It is worth to note that the
parameters of each scheduler have been tuned in preliminary
experiments to ensure a fair comparison among the considered
approaches. As metrics for the scheduler performance evalua-
tion, we consider the total utility (Throughput) Utot, the total
consumed energy ξ

∗
j and the total delay T

∗
tot of the admitted

requests.

A. Simulated Setup

The simulations have been carried out by exploiting the nu-
merical software of the MATLAB platform. They emulate 10
quad-core Dell PowerEdge servers, equipped with 3.06 GHz
Intel Xeon CPU and 4GB of RAM. All the emulated servers
are connected through commodity Fast Ethernet NICs. In all
carried out tests, we configure the VMs with 512MB of RAM
and emulate the TCP New Reno protocol for implementing
the needed VM-to-VM transport connections.

For the experiments, we consider two different scenarios.
The first scenario includes a synthetic workload, whose main
parameters are detailed in Table II. The second scenario refers
to a real-world workload trace, which is represented in Fig. 3:
this is the same real-world workload trace considered in [22].
We perform preliminary experiments and we found that the
best parameter values for the real-world workload are ke = 0.5
[Joule/(MHz)2] and T = 1.2 [s].



TABLE II: Default values of the main simulated parameters.

Parameter Value

(∆, γ = θ/βi) (1 (s), {0.5, 1, 2})
(T, Tmax) (100, 1000)
(Ωj , P

idle
N (j)) (0.5, 0.5) (Watt) ∀j ∈ S

(M, N, V ) (100, 10,{0:500:20000})
Ai 8 (Mbit) ∀i ∈ A
PMR4 2
ke, Q 0.05 (J/(MHz)2), 6
rmax
j , fmax

j 100, 10 (Mbit/s) ∀j ∈ S
RTTj 70 (µs) ∀j ∈ S
(µmin

ij , µmax
ij ) {(200, 400), (50, 300)} (Mbit/slot)

(Eidlec (j), Emax
c (j)) (5, 240)(Joule) ∀j ∈ S
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Fig. 3: Measured workload trace: PMR = 1.526.

B. Experimental Results

In order to measure the performance of the proposed sched-
uler JDLS, we perform different experiments detailed in the
following subsections.

1) Throughput and Average Total Delay: In this experiment
we evaluate the total average utility Utot and the average total
delay of the admitted requests T

∗
tot for different values of the

input parameters V and γ. We define T
∗
tot like [23] as the

sum of the delay in the first queue blocks (ADC buffers) and
second queue blocks (VM buffers), expressed as the number
of time slots. Fig. 4a and 4b show the measured Utot and
T
∗
tot under the linear and quadratic control decisions µij of

Eq. (12), respectively.
The observation of these results leads to two main conclu-

sions. First, Utot (which is the solution of (10.1)) decreases
for increasing values of the weight factor of γ , θ/βi, ∀i and
V . Utot converges to a minimum value, and T

∗
tot increases

and converges to a maximum value for larger values of V .
This is due to the fact that, according to the conditional
Lyapunov optimization approach in [24] (exploiting Lyapunov
drift theorem), the performance of the minimization algorithm
is bounded up to a finite constant which depends on the arrival
and service rates [24]. Second, we conclude that the average
overall time and utility of the presented data center is inde-
pendent of the control decision µij . It means that each server
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Fig. 4: T
∗
tot vs. V and Utot for the synthetic workload for

linear (4a) and quadratic (4b) control decision µij .

solves its own resource allocation problem independently by
using the queue backlog values of the applications hosted on it
and this allows, in return, the implementation of the proposed
approach in a fully distributed way.

2) Sensitivity to the data center parameters: Fig. 5 reports
the average total consumed energy ξ

∗
j for servers for various

values of M and other parameters, such as Q (Fig. 5a), ke
(Fig. 5b), and Ωj (Fig. 5c). Specifically, Fig. 5 points out that:
(i) while M increases, the ξ

∗
j decreases; (ii) while Q, ke, and

Ωj increases, the ξ
∗
j declines according to the Eqs. (3), (4) and

(8), respectively. In Fig. 5a, Q =∞ indicates the case of real-
time results where we have no queues: in this case, the optimal
frequency of each server is the corresponding frequency that
we need for the incoming workload (ideal case).

3) Performance Comparisons: We now present a compar-
ison of the proposed JDLS scheduler with other available
alternatives in terms of consumed energy, total delay and
execution times.

Fig. 6 presents the average total consumed energy ξ
∗
j and

the average total delay T
∗
tot versus the number of VMs M for

the aforementioned schedulers [9]–[12] for the synthetic work-

4PMR:=Peak-to-Mean Ratio of the input workload
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Fig. 5: Sensitivity analysis with respect to parameters Q (5a), ke (5b) and Ωj at V = 104, ke = 5 (5c).

load. In detail, Fig. 6a shows that the average energy saving
of the JDLS scheduler over NetDC, GRADIS, SLS H-NetDC
methods is about 75%, 70%, 85% and 91%, respectively. This
result confirms that the proposed JDLS scheduler is capable
to adapt to the incoming behaviors of the input workload by
increasing the number of turned ON VMs faster than other
methods. Fig. 6b compares the average total delay T

∗
tot of

JDLS, GRADIS [10] and SLS [11] for increasing values of
M . In this case we do not consider the NetDC and H-NetDC
schedulers because they are real-time approaches which do
not use any queue for the incoming requests. The results of
Fig. 6b show that the average total saving of JDLS over the
GRADIS is almost 30%, but is lower with respect to SLS; it is
important to consider that JDLS performs communication joint
switching optimization whilst SLS does not perform them.

We also evaluate how JDLS can handle a real world
scenario. To this aim, we consider the traces in Fig. 3 [22] pre-
viously described. Fig. 7 compares the average total consumed
energy ξ

∗
j for different values of M for the aforementioned

schedulers [9]–[12]. These results show that by increasing
the number of servers, the average energy consumption per-
server decreases for all the tested schedulers. The amount of
energy saving of JDLS compared to SLS, NetDC, GRADIS,
and H-NetDC is about 30%, 50%, 51% and 78%, respectively.
This last comparison confirms that JDLS can reduce energy
consumption even in the highly variable scenario that charac-
terizes real world workloads.

In the last simulation, we evaluate the average execution
time for each of the five considered schedulers for differ-
ent number of slots (Tmax = 103, 104) for the synthetic
and the real-world workload traces. The results reported in
Table III show that the JDLS scheduler is able to work
with a significantly lower average execution time with respect
to the GRADIS and the NetDC/H-NetDC methods, in both
scenarios and scales of incoming workloads. The NetDC/H-
NetDC methods are considered together because, from a
computational point of view, they perform the same operations
and therefore have the same speed. As shown in Table III,
the average time saving of the JDLS scheduler for the higher
amount of time slots (Tmax = 104) over the GRADIS and
the NetDC/H-NetDC alternatives is of about 48% and 94.7%
in the synthetic workload, and of 59% and 66% in the real-
world workload, respectively. On the other hand, with respect
to the SLS scheduler, the JDLS execution time is about 3%
(0.9 ms) and 13% (5.5 ms) higher in the same scale of
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Fig. 6: Performance comparison under synthetic workload
(with Tmax = 104 and V = 104).
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incoming workload (Tmax = 104). It is important to note
that, differently from the SLS scheduler, the JDLS proposal



TABLE III: Average execution time (ms) of considered sched-
ulers for synthetic and real-world workloads.

Workload JDLS SLS GRADIS NetDC/
H-NetDC

Real-world (Tmax = 104) 26.7 25.8 65.3 78.6
Real-world (Tmax = 103) 3.6 2.9 7 7.3
Synthetic (Tmax = 104) 44.1 38.6 85.1 840
Synthetic (Tmax = 103) 4 3.4 8 84.8

includes the communication and switch components in the
model: even with this additional element, the execution time
of JDLS is comparable with the SLS alternative.

To summarize our results, we can conclude that the JDLS
scheduler can significantly outperform every other considered
solution in reducing the computing-plus-communication en-
ergy for a wide range of workloads (including real-world
traces) and parameter setups. Furthermore, the scheduler is
extremely fast in taking decisions, suggesting that it has
potential for scalability over large data centers and large input
workloads.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an effective dynamic scheduler
for the joint adaptive tuning of the: (i) admitted traffic;
(ii) delivered throughput; and (iii) resource reconfiguration
and consolidation of virtualized networked data center plat-
forms. The overall goal is to reduce the energy consumption
while guaranteeing QoS in cloud scenarios characterized by
high computational demand and delay sensitivity. Remarkable
features of the developed joint scheduler are that: (i) its
implementation is distributed and adaptive, and the resulting
complexity scales with the number of the available VMs; (ii)
it minimizes the energy consumed by the overall platform for
computing, router-server communication and server reconfigu-
ration; and, (iii) despite the unpredictable time-varying nature
of the input workload, it is capable to provide QoS guarantees,
in terms of maximizing delivered average throughput, and
maximum queuing-plus-computing delay. Actual performance
of the proposed scheduler has been numerically tested under
both synthetic and real-world traces for the input traffic under
various conditions, allowing us to drive analytical performance
guarantees of the algorithm. This work can be extended in
some directions of potential interest. In particular, we can
enrich the application scenario to consider intra-slot traffic
arrivals and we can introduce live migration of VMs to achieve
additional energy savings.
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